News & Research Highlights

Atomic & Molecular Physics
Rave Reviews for the Efimov Quartet
Published:

The most peculiar and fragile "molecules" ever discovered are the weakly bound triatomic Efimov molecules that form under specific conditions in a Bose-Einstein condensate (BEC). JILA theorists have now shown that such molecules can interact with an additional atom to form "daughter" molecules, which inherit many of their mother’s characteristics.

Read More
Investigators: Chris Greene
Atomic & Molecular Physics | Nanoscience
Holy Monodromy!
Published:

Monodromy literally means "once around." The term is applied in mathematics to systems that run around a singularity. In these systems, a parameter that describes the state of the system changes when the system loops around the singularity. Since monodromy’s discovery in 1980, mathematicians have predicted that many physical systems have it, including pendulums and tops as well as atoms and molecules.

Read More
Investigators: Heather Lewandowski
Chemical Physics
A Light Changing Experience
Published:

The Weber group wants to understand how the individual building blocks of DNA interact with ultraviolet (UV) light. Such knowledge would be an important step toward gaining a detailed understanding of the molecular processes responsible for the UV-induced DNA damage that results in mutations and can lead to cancer or cell death.

Read More
Investigators: J. Mathias Weber
Atomic & Molecular Physics
Free Association Tunes
Published:

Starting with ultracold atoms in a Bose-Einstein condensate, it’s possible to create coherent superpositions of atoms and molecules. Fellow Carl Wieman and others have done exactly this. Recently, the Jin group wondered if it would be possible to accomplish the same thing starting with a normal gas cloud of atoms.

Read More
Investigators: Deborah Jin
Biophysics | Chemical Physics | Nanoscience
It Takes Two to Tango
Published:

Quantum dots are tiny structures made of semiconductor materials. With diameters of 1–5 nm, they are small enough to constrain their constituents in all three dimensions. This constraint means that when a photon of light knocks an electron into the conduction band and creates an electron/hole pair, the pair can’t get out of the dot.

Read More
Investigators: David Nesbitt
Atomic & Molecular Physics
Altered States
Published:

Understanding how molecules collide is a hot topic in ultracold physics. Knowing the number of times molecules crash into each other and what happens when they do helps theorists predict the best ways to cool molecules to merely cold (1 K–1 mK), pretty cold (1 mK–1 µk), or ultracold (< 1 µK) temperatures.

Read More
Investigators: John Bohn
Biophysics | Nanoscience
How to Marry a Microscope
Published:

The most important step for a microscope wanting to marry another microscope is finding the right partner. A professional matchmaker, such as the Perkins lab, might be just the ticket. The group recently presided over the nuptials of atomic force microscopy and optical-trapping microscopy. Research associate Gavin King, graduate students Ashley Carter and Allison Churnside, CU freshman Louisa Eberle, and Fellow Tom Perkins officiated. The marriage produced an ultrastable atomic force microscope (AFM) capable of precisely studying proteins in real-world (ambient) conditions.

Read More
Related Publications: Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditionsInvestigators: Thomas Perkins
Quantum Information Science & Technology
Qubits in Action
Published:

Fellows Ana Maria Rey and Jun Ye have come up with a clever idea that should make it much easier to design a quantum computer based on alkaline-earth atoms such as strontium (Sr). In this work, they collaborated with former research associate Marty Boyd, former JILA Fellow Peter Zoller (University of Innsbruck), and colleagues from Harvard University and the University of Innsbruck.

Read More
Investigators: Ana Maria Rey
Atomic & Molecular Physics | Chemical Physics
Collision Course
Published:

The Greene group just figured out everything you theoretically might want to know about four fermions "crashing" into each other at low energies. Low energies in this context mean ultracold temperatures under conditions where large, floppy Feshbach molecules form. The group decided to investigate four fermions because this number makes up the smallest ultracold few-body system exhibiting behaviors characteristic of the transition between Bose-Einstein condensation and superfluidity. 

Read More
Investigators: Chris Greene
Biophysics | Chemical Physics | Nanoscience
Explosive Evidence
Published:

Imagine being able to study how molecules form on the quantum level. It turns out that researchers have already figured out some nifty techniques involving lasers and jets of reactive atoms for doing just that in a gaseous environment. Now graduate student Alex Zolot, former Visiting Fellow Paul Dagdikian of Johns Hopkins University, and Fellow David Nesbitt have taken this kind of study into a whole different arena: They recently probed the molecules that form when the surface of a liquid is bombarded with a very reactive gas.

Read More
Investigators: David Nesbitt
Laser Physics | Nanoscience
Breaking Up Is Hard To Do
Published:

An oxygen molecule (O2) doesn't fall apart so easily — even when an X-ray knocks out one of its electrons and superexcites the molecule during a process called photoionization. In this process, the X-ray first removes an electron from deep inside the molecule, leaving a hole in O2+. Then, an outer electron can fall into the hole, and a second outer electron gets ejected, carrying away any excess energy. The loss of the second electron is known as autoionization, or Auger decay.

Read More
Investigators: Henry Kapteyn | Margaret Murnane
Laser Physics | Nanoscience
Exotic Probes
Published:

Xibin Zhou and his colleagues in the Kapteyn/Murnane group have come up with a clever new way to study the structure of carbon dioxide (CO2) and other molecules. The researchers use two innovative tools: (1) coherent electrons knocked out of the CO2 molecules by a laser and (2) the X-rays produced by these electrons when they re-collide with the same molecules. The coherent electrons and X-rays are produced in a process known as high harmonic generation.

Read More
Investigators: Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
The Oldest Trick in the Book
Published:

The mission to find the electron electric dipole moment (eEDM) recently took a menacing turn. Chief Eric Cornell and his protégés were already hard at work characterizing the hafnium fluoride ion (HfF+). Their goal was to be the first in the world to complete the mission. In their choice of molecule, they owed a lot to JILA theorists Ed Meyer and John Bohn (a.k.a. Agents 13 and 86), who had taken the theory world by storm in 2006 when they devised a simple and straightforward method for the evaluation of molecular candidates for an eEDM search.

Read More
Investigators: Eric Cornell | John Bohn
Nanoscience | Precision Measurement
All Quiet on the Amplifier Front
Published:

Fellow Konrad Lehnert needed a virtually noiseless amplifier to help with his experiments on nanoscale structures, so he invented one. Working with graduate student Manuel Castellanos-Beltran and NIST scientists Kent Irwin, Gene Hilton, and Leila Vale, he conceived a tunable device that operates in frequencies ranging from 4 to 8 GHz. This device has the lowest system noise ever measured for an amplifier. In fact, it produces 80 times less noise than the best commercial amplifier. More importantly, it adds no noise to a measurement system — a critical feature for a system probing the quantum limits of measurement.

Read More
Investigators: Konrad Lehnert
Atomic & Molecular Physics
From Mental to Experimental?
Published:

The John Bohn lab at JILA owes its very existence to a 2002 decision by the Colorado Rockies to begin storing baseballs in a room with ~50% humidity. The conventional wisdom at the time was that Denver’s thinner air was responsible for making Coors Field a hitter’s heaven. In mile-high Denver, hitters averaged two more home runs per game because the thinner air caused a given home run ball to travel 20 feet further than at sea level. 

Read More
Investigators: John Bohn
Atomic & Molecular Physics | Nanoscience
Missing Link
Published:

The Jin group recently came up with the first strong experimental link between superfluidity in ultracold Fermi gases and superconductivity in metals. What’s more, this feat was accomplished with photoemission spectroscopy, a tried-and-true technique that has been used for more than 100 years to study solids. This technique has been instrumental in revealing the properties of superconductors. It is just beginning to be developed in ultracold Fermi gases, where it could prove to be just as useful.

Read More
Investigators: Deborah Jin
Atomic & Molecular Physics | Nanoscience
Bragging Rites
Published:

What happens to a Bose-Einstein condensate (BEC) when its atoms interact strongly? One possibility for large attractive interactions is that the condensate shrinks and then explodes, as the Cornell and Wieman groups discovered in 2001.

Read More
Investigators: Carl Wieman | Deborah Jin | Eric Cornell
Laser Physics | Nanoscience | Precision Measurement
Stalking the X-Ray Frequency Comb
Published:

Fellow Jun Ye’s group is methodically working its way toward the creation of an X-Ray frequency comb. Recently, senior research associate Thomas Schibli, graduate student Dylan Yost, Fellow Jun Ye, and colleagues from IMRA America, Inc. developed a high-performance, ultrastable fiber laser optical frequency comb. At the same time, Yost developed a clever method for getting coherent short-wavelength light out of a femtosecond enhancement cavity used with the fiber laser. These achievements have opened the door to the generation of frequency combs in the extreme ultraviolet (EUV) and soft X-ray regions of the electromagnetic spectrum.

Read More
Investigators: Jun Ye
Biophysics | Chemical Physics | Nanoscience
Splash 2
Published:

For many years, chemists have explored the differences between liquids and solids. One difference is that liquid surfaces tend to be softer than solid surfaces (from the perspective of molecules crashing onto them). Another difference is that the surface of at least one oily liquid (perfluorinated polyether, or PFPE) actually gets stickier as it gets hotter, according to a new study by graduate student Brad Perkins and Fellow David Nesbitt. This behavior contrasts with solid surfaces, which usually get stickier when they get colder!

Read More
Investigators: David Nesbitt
Precision Measurement
The Gravity of the Situation
Published:

What sort of experiment could detect the effects of quantum gravity, if it exists? Theories that go beyond the Standard Model of physics include a concept that links quantum interactions with gravity. Physicists would very much like to find evidence of this coupling as these two branches of physics are not yet unified in a single theory that explains everything about our world.

Read More
Investigators: Jun Ye