Xibin Zhou and his colleagues in the Kapteyn/Murnane group have come up with a clever new way to study the structure of carbon dioxide (CO2) and other molecules. The researchers use two innovative tools: (1) coherent electrons knocked out of the CO2 molecules by a laser and (2) the X-rays produced by these electrons when they re-collide with the same molecules. The coherent electrons and X-rays are produced in a process known as high harmonic generation.
The mission to find the electron electric dipole moment (eEDM) recently took a menacing turn. Chief Eric Cornell and his protégés were already hard at work characterizing the hafnium fluoride ion (HfF+). Their goal was to be the first in the world to complete the mission. In their choice of molecule, they owed a lot to JILA theorists Ed Meyer and John Bohn (a.k.a. Agents 13 and 86), who had taken the theory world by storm in 2006 when they devised a simple and straightforward method for the evaluation of molecular candidates for an eEDM search.
Fellow Konrad Lehnert needed a virtually noiseless amplifier to help with his experiments on nanoscale structures, so he invented one. Working with graduate student Manuel Castellanos-Beltran and NIST scientists Kent Irwin, Gene Hilton, and Leila Vale, he conceived a tunable device that operates in frequencies ranging from 4 to 8 GHz. This device has the lowest system noise ever measured for an amplifier. In fact, it produces 80 times less noise than the best commercial amplifier. More importantly, it adds no noise to a measurement system — a critical feature for a system probing the quantum limits of measurement.
The John Bohn lab at JILA owes its very existence to a 2002 decision by the Colorado Rockies to begin storing baseballs in a room with ~50% humidity. The conventional wisdom at the time was that Denver’s thinner air was responsible for making Coors Field a hitter’s heaven. In mile-high Denver, hitters averaged two more home runs per game because the thinner air caused a given home run ball to travel 20 feet further than at sea level.
The Jin group recently came up with the first strong experimental link between superfluidity in ultracold Fermi gases and superconductivity in metals. What’s more, this feat was accomplished with photoemission spectroscopy, a tried-and-true technique that has been used for more than 100 years to study solids. This technique has been instrumental in revealing the properties of superconductors. It is just beginning to be developed in ultracold Fermi gases, where it could prove to be just as useful.
What happens to a Bose-Einstein condensate (BEC) when its atoms interact strongly? One possibility for large attractive interactions is that the condensate shrinks and then explodes, as the Cornell and Wieman groups discovered in 2001.
Fellow Jun Ye’s group is methodically working its way toward the creation of an X-Ray frequency comb. Recently, senior research associate Thomas Schibli, graduate student Dylan Yost, Fellow Jun Ye, and colleagues from IMRA America, Inc. developed a high-performance, ultrastable fiber laser optical frequency comb. At the same time, Yost developed a clever method for getting coherent short-wavelength light out of a femtosecond enhancement cavity used with the fiber laser. These achievements have opened the door to the generation of frequency combs in the extreme ultraviolet (EUV) and soft X-ray regions of the electromagnetic spectrum.
For many years, chemists have explored the differences between liquids and solids. One difference is that liquid surfaces tend to be softer than solid surfaces (from the perspective of molecules crashing onto them). Another difference is that the surface of at least one oily liquid (perfluorinated polyether, or PFPE) actually gets stickier as it gets hotter, according to a new study by graduate student Brad Perkins and Fellow David Nesbitt. This behavior contrasts with solid surfaces, which usually get stickier when they get colder!
What sort of experiment could detect the effects of quantum gravity, if it exists? Theories that go beyond the Standard Model of physics include a concept that links quantum interactions with gravity. Physicists would very much like to find evidence of this coupling as these two branches of physics are not yet unified in a single theory that explains everything about our world.
With every breath you take, you breathe out carbon dioxide and roughly 1000 other different molecules. Some of these can signal the early onset of such diseases as asthma, cystic fibrosis, or cancer. Thanks to graduate student Mike Thorpe and his colleagues in Fellow Jun Ye’s group, medical practitioners may one day be able to identify these disease markers with a low-cost, noninvasive breath test. The new laser-based breath test is an offshoot of Thorpe’s research on cavity-enhanced direct optical frequency comb spectroscopy, a molecular fingerprinting technique reported in Science two years ago.
When the Jin and Ye group collaboration wanted to investigate the creation of stable ultracold polar molecules, the researchers initially decided to make ultracold KRb (potassium-rubidium) molecules and then study their collision behavior. Making the molecules required a cloud of incredibly cold K and Rb atoms, the ability to apply a magnetic field of just the right strength to induce a powerful attraction between the different kinds of atoms, and some low-frequency photons.
Benzene has a special ring structure that allows some of its electrons to be shared among all six carbon atoms in the ring. It turns out that chemists like Fellow J. Mathias Weber can adjust the charge density in the ring by exchanging hydrogen (H) atoms in the ring with other atoms or groups of atoms. Such exchanges can change the charge pattern in the ring "seen" by neighboring molecules.
The Perkins group is helping to develop DNA as a force standard for the nano world. Polymers of DNA act like springs, and DNA's elasticity may one day provide a force standard from 0.1–10 piconewtons (pN). One pN is the force exerted when 1 mW of light reflects off a mirror or the approximate weight of one hundred E. coli cells. DNA is an excellent candidate for a force standard because its double helix is reproduced with exquisite fidelity, which allows researchers (or cells) to build it with atomic precision.
Fellows Ralph Jimenez and Henry Kapteyn and their groups recently helped develop optical technology that will make femtosecond laser experiments much simpler to perform, opening the door to using such lasers in many more laboratories. The technology, which employs reflection grisms as laser pulse compressors, has been patented and is now available commercially. A reflection grism consists of metal reflection grating mounted on one face of a prism.
In the quantum world inside Fellow Eric Cornell’s lab, communication occurs across a two-dimensional lattice array of Bose-Einstein condensates (BECs) when atoms tunnel out of superatoms (made from about 7000 garden-variety rubidium (Rb) atoms) into neighboring BECs. This communication keeps the array coherent, i.e., the phases of all condensates remain locked to each other. But something interesting happens when the tiny superatoms stop communicating among themselves. Vortices form. And how many appear depends on temperature.
A second wave has appeared on the horizon of ultracold atom research. Known as the p-wave, it is opening the door to probing rich new physics, including unexplored quantum phase transitions. The first wave of ultracold atom research focused on s-wave pairing between atoms, where the “s” meant the resultant molecules are not rotating. In contrast, p-waves involve higher-order pairing where the atoms do rotate around each other.
Researchers from the Ye, Bohn, and Greene groups are busy exploring a cold new world crawling with polar hydroxyl radical (OH) molecules. The JILA experimentalists have already discovered how to cool OH to “lukewarm” temperatures of 30 mK. They’ve precisely measured four OH transition frequencies that will help physicists determine whether the fine structure constant has changed in the past 10 billion years.
A Fermi sea forms at ultracold temperatures when fermions in a dilute gas stack up in the lowest possible energy states, with two fermions in each state, one spin up and one spin down. New analytic techniques for diving headfirst into the fundamental physics of this exotic form of matter were recently developed by graduate students Seth Rittenhouse and Javier von Stecher, Fellow Chris Greene, and former postdoc Mike Cavagnero, now at the University of Kentucky.
Small changes in the quantum fluctuations of free space are responsible for a variety of curious phenomena: a gecko’s ability to walk across ceilings, the evaporation of black holes via Hawking radiation, and the fact that warmer surfaces can be stickier than cold ones in micro- and nanoscale electromechanical systems (MEMS and NEMS). The tendency of tiny parts to stick together is a consequence of the Casimir force.
A key challenge in developing new nanotechnologies is figuring out a fast, low-noise technique for translating small mechanical motions into reasonable electronic signals. Solving this problem will one day make it possible to build electronic signal processing devices that are much more compact than their purely electronic counterparts. Much sooner, it will enable the design of advanced scanning tunneling microscopes that operate hundreds to thousands of times faster than current models.