RNA molecules can perform amazing biological feats, including storing, transporting, and reading genetic blueprints as well as catalyzing chemical reactions inside living cells. To manage the latter feat, RNA molecules must rapidly fold into an exact three-dimensional (3D) shape. Understanding how RNA accomplishes this is a major scientific challenge. Former JILA postdoc Jose Hodak, Christopher Downey (doctoral candidate in Chemistry and Biochemistry), JILA graduate student Julie Fiore, Chemistry and Biochemistry Professor Arthur Pardi and Fellow David Nesbitt are meeting this challenge head on.
Imagine high-school or college students so excited about physics they can hardly wait to get to class every day and learn more about how the world works. Fellow Carl Wieman recently offered cogent suggestions to new physics teachers on coming closer to this ideal. First, he recommended starting with research on how people learn physics and paying particular attention to the concept of "cognitive load." This concept, which posits that people can only process about seven ideas in short-term working memory, sets clear limits on how much information can be effectively introduced in a single lesson (or scientific talk).
It’s been more than 40 years since Russian theoretical physicist Vitaly Efimov predicted a strange form of matter called the Efimov state in 1970. In these strange states, three atoms can stick together in an infinite number of new quantum states, even though any two of the atoms can’t even form a molecule.