Ripples in Space-Time: Nano-Imaging Functional Materials at their Elementary Scales
Published:
Functional materials—like molecular electronics, biomaterials, light-emitting diodes, or new photovoltaic materials—gain their electronic or photonic properties from complex and multifaceted interactions occurring at the elementary scales of their atomic or molecular constituents. In addition, the ability to control the functions of these materials through external stimuli , e.g., in the form of strong optical excitations, enables new properties in the materials, making them appealing for new technological applications. However, a major obstacle to overcome is the combination of the very fast time (billionths of a second) scales and the very small spatial (nanometer) scales which define the many-body interactions of the elementary excitations in the material which define its function. The extremely high time and spatial resolutions needed have been extremely difficult to achieve simultaneously. Many physicists have, therefore, struggled to visualize the interactions within these materials. In a paper recently published in Nature Communications, JILA Fellow Markus Raschke and his team report on a new ultrafast imaging technique that could solve this issue.
Precision Measurement | Quantum Information Science & Technology
An Atomic Game of Duck, Duck, Goose
Published:
Physics has always been a science of rules. In many situations, these rules lead to clear and simple theoretical predictions which, nevertheless, are hard to observe in actual experimental settings where other confounding effects may obscure the desired phenomena. For JILA and NIST Fellows Ana Maria Rey and Jun Ye, one type of phenomena they are especially interested in observing are the interactions between light and atoms, especially those at the heart of the decay of an atom prepared in the excited state. “If you have an atom in the excited state, the atom will eventually decay to the ground state while emitting a photon,” explained Rey. “This process is called spontaneous emission.” The spontaneous emission rate can be manipulated by scientists, making it longer or shorter, depending on the experimental conditions. Many years ago it was predicted that one way to suppress or slow down spontaneous emission was by applying a special type of statistics known as Fermi statistics which prevents two identical fermions from being in the same quantum state, known as the Pauli Exclusion Principle
This principle is similar to a game of Duck, Duck, Goose, where two individuals fight over an open spot in a circle in order to avoid being “it.” Like children in this game, the atoms must find an empty quantum state to decay into. If they cannot find an empty state, interesting things begin to happen. “If an excited atom wants to decay, but the ground state is already filled, then the decay is “Pauli blocked” and the atom will stay in the excited state longer, or even forever,” Rey said. Nevertheless, the experimental observation of this effect happened to be challenging. It was not until last year that the Ye group observed Pauli blocking of radiation for the first time indirectly by measuring the light scattered by the atoms—but a direct observation of Pauli blocking by measuring the lifetime of atoms in the steady state was lacking. More recently, Ye’s and Rey’s groups collaborated in a joint study, and were able to find an appropriate experimental setting where they were able to observe Pauli blocking of spontaneous emission by direct measurements of the excited state population. The results have been published in the journal Physical Review Letters.
JILA and Cubit Partner with Key Quantum Companies for an Engaging Panel
Published:
Colorado has a reputation for being a quantum ecosystem hotspot and a recent panel discussion further bolstered this image. It was hosted by JILA, a world-leading physics institute created by a partnership between the University of Colorado Boulder and NIST; and the CUbit Quantum Initiative, a CU Boulder research center. The panel, titled "Women in Quantum: What Does It Take," brought in individuals from both quantum research and the quantum industry. With panelists from some of the biggest names in the quantum industry, including ColdQuanta, Maybell Quantum, Quantinuum, and Vescent, the discussions about the industry itself were relevant and engaging.
Running in a Quantum Corn Maze and Getting Stuck in the Dark
Published:
Light is emitted when an atom decays from an excited state to a lower energy ground state, with the emitted photon carrying away the energy. The spontaneous emission of light is a fundamental process that originates from the interaction between matter and the modes of the electromagnetic field—the background “hiss” of the universe that is all around us. However, spontaneous emission of light can limit the utility of atomic excited states for a wide array of scientific and technological applications, from probing the nature of the universe to inertial navigation. Understanding ways to alter or even engineer spontaneous emission has been an intriguing topic in science. JILA Fellows Ana Maria Rey and James Thompson study ways to control light emission by placing atoms in an optical cavity, a resonator made of two mirrors between which light can bounce back and forth many times. Together, with JILA postdoc and first author Asier Piñeiro Orioli, they have predicted that when an array of multi-level atoms is placed in the cavity the atoms can all cooperate and collectively suppress their emission of light into the cavity. These findings were recently published in Physical Review X.
Precision Measurement | Quantum Information Science & Technology
Electrifying Molecular Interactions
Published:
Worldwide, many researchers are interested in controlling atomic and molecular interactions. This includes JILA and NIST fellows Jun Ye and Ana Maria Rey, both of whom have spent years researching interacting potassium-rubidium (KRb) molecules, which were originally created in a collaboration between Ye and the late Deborah Jin. In the newest collaboration between the experimental (Ye) and theory (Rey) groups, the researchers have developed a new way to control two-dimensional gaseous layers of molecules, publishing their exciting new results in the journal Science.
The hunt was afoot within the laboratory of JILA and NIST Fellow Ralph Jimenez as his team continued to unravel the mystery of entangled two-photon absorption. Entangled photons are pairs of light particles whose quantum states are not independent of each other, so they share aspects of their properties, such as their energies and angular momenta. For many years, these photons have been studied by physicists who are trying to create quantum networks and other technologies. The Jimenez lab has been researching whether entangled photons can excite molecules with greater, even super, efficiency as compared with normal photons.
In a new paper published in the Journal of Physical Chemistry Letters, Jimenez and his team report a new experimental setup to search for the cause of a mysterious fluorescent signal that appears to be from entangled photon excitation. According to Jimenez: “We built a setup where you could use either a classical laser or entangled photons to look for fluorescence. And the reason we built it is to ask: ‘What is it that other people were seeing when they were claiming to see entangled photon-excited fluorescence?’ We saw no signal in our previous work published a year ago, headed by Kristen Parzuchowski. So now, we're wondering, people are seeing something, what could it possibly be? That was the detective work here.” The results of their new experiments suggested that hot-band absorption (HBA) by the subject molecules, could be the potential culprit for this mysterious fluorescent signal, making it the prime suspect.
Physicists develop some of the most cutting-edge technologies, including new types of lasers, microscopes, and telescopes. Using lasers, physicists can learn more about quantum interactions in materials and molecules by taking snapshots of the fastest processes, and many other things. While lasers have been used for decades, their applications in technology continue to evolve. One such application is to generate and control x-ray laser light sources, which produce much shorter wavelengths than visible light. This is important because progress in developing x-ray lasers with practical applications had essentially stalled for over 50 years. Fortunately, researchers are beginning to change this by using new approaches. In a paper published in Science Advances, a JILA team, including JILA Fellows Margaret Murnane, and Henry Kapteyn, manipulated laser beam shapes to better control properties of x-ray light.
JILA Atomic Clocks Measure Einstein’s General Relativity at Millimeter Scale
Published:
JILA physicists have measured Albert Einstein’s theory of general relativity, or more specifically, the effect called time dilation, at the smallest scale ever, showing that two tiny atomic clocks, separated by just a millimeter or the width of a sharp pencil tip, tick at different rates.
The experiments, described in the Feb. 17 issue of Nature, suggest how to make atomic clocks 50 times more precise than today’s best designs and offer a route to perhaps revealing how relativity and gravity interact with quantum mechanics, a major quandary in physics.
JILA Fellow Cindy Regal has helped consult on a new mural placed in Washington Park in Denver, Colorado. The mural, titled Leading Light, loosely alludes to AMO physics, which Regal studies by using laser beams. With bright yellows and vivid pinks, the mural depicts four women interacting with different blue spheres, representing electrons. One woman wears sunglasses, modeled on thelaser goggles that JILAns wear for lab safety. The artist, Amanda Phingbodhipakkiya, found Regal's work captivating. “We share a vision to not only uplift women in STEM and to bring science and our society closer together, but also to foster dynamic and organic relationships with science in everyone, whether or not they choose to become scientists,” the artist said.
Astrophysics | Biophysics | Quantum Information Science & Technology
A Look at She Has the Floor
Published:
When it comes to inspiring young people to pursue a career within the sciences, you can't start too early. At least, that's what the JILA Excellence in Diversity and Inclusivity (JEDI) group believed when they collaborated with the Colorado non-profit organization Pretty Brainy to develop a speaker series. The series, designed for girls from ages 11 and up, featured the voices of several women JILAns, all focusing on their work and giving tools for success to this younger generation. Over the course of 8 weeks, women of all ages could virtually tune in to hear some of the brightest female minds from JILA discuss the importance of mentorship, perseverance, failure, and of course, some of the newest findings within physics.
Last week, U.S. Rep. Joe Neguse got a first-hand look at the future of ultrafast lasers, record-setting clocks, and quantum computers on the CU Boulder campus. Neguse visited the university Thursday to tour facilities at JILA, a research partnership between CU Boulder and the National Institute of Standards and Technology (NIST).
Atomic & Molecular Physics | Quantum Information Science & Technology
Atomic Musical Chairs
Published:
How atoms interact with light reflects some of the most basic principles in physics. On a quantum level, how atoms and light interact has been a topic of interest in the worldwide scientific community for many years. Light scattering is a process where incoming light excites an atom to a higher-lying energy state from which it subsequently decays back to its ground state by reemitting a quantum of light. In the quantum realm, there are many factors that affect light scattering. In a new paper published in Science, JILA and NIST Fellow Jun Ye and his laboratory members report on how light scattering is affected by the quantum nature of the atoms, more specifically, thequantum statistical rule such as the Pauli Exclusion Principle.
Atomic & Molecular Physics | Quantum Information Science & Technology
A Magic Recipe for a Quantum Interferometer
Published:
Gravimetry, or the measurement of the strength of a gravitational field (or gravitational acceleration), has been of great interest to physicists since the 1600s. One of the most precise ways to measure gravitational acceleration is to use an atom interferometer. There are many different types of atom interferometers but so far all operate using uncorrelated atoms that are not entangled. To build the best one allowed in nature, it requires harnessing the power of quantum entanglement. However, making a quantum interferometer with entangled atoms is challenging. JILA Fellows Ana Maria Rey and James K. Thompson have published a paper in Physical Review Letters that discusses a new protocol that could make entangled quantum interferometers easier to produce and use.
Physicists study many forms of communication, including quantum communication. Thanks to specific properties of quantum mechanics, like entanglement, information integrity can be better maintained with quantum communications, even being hackproof in some cases. Quantum entanglement is the property that allows two molecules, each in a random quantum state, to be in perfect harmony with each other. This is important, as one common test of quantum communication devices, a.k.a., quantum channels, is to send entangled photons (light particles) down these channels. Entanglement helps when photons are lost or absorbed, as the redundancy in information being sent this way ensures that some of the information will still reach the receiver.
Quantum channels have their own quirks that make them unique to study. In a new paper published in Nature Communications, post-doctoral researcher Vikesh Siddhu of JILA Fellow Graeme Smith's team looked at some of the logistics in using quantum channels to send information. Siddhu analyzed how noise occurring in a quantum channel affects the information it communicates.
Gravitational ‘kick’ may explain the strange shape at the center of Andromeda
Published:
When two galaxies collide, the supermassive black holes at their cores release a devastating gravitational “kick,” similar to the recoil from a shotgun. New research led by CU Boulder suggests that this kick may be so powerful it can knock millions of stars into wonky orbits.
The research, published Oct. 29 in The Astrophysical Journal Letters, helps solve a decades-old mystery surrounding a strangely-shaped cluster of stars at the heart of the Andromeda Galaxy. It might also help researchers better understand the process of how galaxies grow by feeding on each other.
“When scientists first looked at Andromeda, they were expecting to see a supermassive black hole surrounded by a relatively symmetric cluster of stars,” said Ann-Marie Madigan, a fellow of JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST). “Instead, they found this huge, elongated mass.”
Now, she and her colleagues think they have an explanation.
Help Wanted: How to Build a Prepared and Diverse Quantum Workforce
Published:
The second quantum revolution is underway, a period marked by significant advances in quantum technology, and huge discoveries within quantum science. From tech giants like Google and IBM, who build their own quantum computers, to quantum network startups like Aliro Quantum, companies are eager to profit from this revolution. However, doing so takes a new type of workforce, one trained in quantum physics and quantum technology. The skillset required for this occupation is unique, and few universities expose students to real-world quantum technology.
In 2019, a team of researchers used an international network of radio telescopes—called the Event Horizon Telescope—to take the first photo of a supermassive black hole in the center of the elliptical galaxy Messier 87 (M87). On that team of researchers was JILA Fellow Jason Dexter. Since then, Dexter has been studying M87's black hole further using simulations, with code written by researchers at the University of Illinois. As described in a new paper published in the Monthly Notices of the Royal Astronomical Society (MNRAS), Dexter, and his team of graduate students and postdoctoral researchers, collaborated with researchers at the Los Alamos National Laboratory and the University of Illinois to create a new simulation studying the edge of a black hole.
Don’t React, Interact: Looking Into Inert Molecular Gases
Published:
One of the major strengths of JILA are the frequent and ongoing collaborations between experimentalists and theorists, which have led to incredible discoveries in physics. One of these partnerships is between JILA Fellow John Bohn and JILA and NIST Fellow Jun Ye. Bohn's team of theorists has partnered with Ye's experimentalist laboratory for nearly twenty years, from the very beginning of Ye’s cold molecule research when he became a JILA Fellow. Recently in their collaborations, the researchers have been studying a three-dimensional molecular gas made of 40K87Rb molecules. In a paper published in Nature Physics, the combined team illustrated new quantum mechanical tricks in making this gas unreactive, thus enjoying a long life (for a gas), while at the same time letting the molecules in the gas interact and socialize (thermalize) with each other.
Atomic & Molecular Physics | Biophysics | Chemical Physics
When Breath Becomes Data
Published:
There are many ways to diagnose health conditions. One of the most common methods is blood testing. This sort of test can look for hundreds of different kinds of molecules in the body to determine if an individual has any diseases or underlying conditions. Not everyone is a fan of needles, however, which makes blood tests a big deal for some people. Another method of diagnosis is breath analysis. In this process, an individual's breath is measured for different molecules as indicators of certain health conditions. Breath analysis has been fast progressing in recent years and is continuing to gain more and more research interest. It is, however, experimentally challenging due to the extremely low concentrations of molecules present in each breath, limited number of detectable molecular species, and the long data-analysis time required. Now, a JILA-based collaboration between the labs of NIST Fellows Jun Ye and David Nesbitt has resulted in a more robust and precise breath-testing apparatus. In combining a special type of laser with a mirrored cavity, the team of researchers was able to precisely measure four molecules in human breath at unprecedented sensitivity levels, with the promise of measuring many more types of molecules. The team published their findings in the Proceedings of the National Academy of Sciences (PNAS).
Understanding the chemical and physical properties of surfaces at the molecular level has become increasingly relevant in the fields of medicine, semiconductors, rechargeable batteries, etc. For example, when developing new medications, determining the chemical properties of a pill's coating can help to better control how the pill is digested or dissolved. In semiconductors, precise atomic level control of interfaces determines performance of computer chips. And in batteries, capacity and lifetime is often limited by electrode surface degradation. These are just three examples of the many applications in which the understanding of surface coatings and molecular interactions are important.
The imaging of molecular surfaces has long been a complicated process within the field of physics. The images are often fuzzy, with limited spatial resolution, and researchers may not be able to distinguish different types of molecules, let alone how the molecules interact with each other. But it is precisely this–molecular interactions–which control the function and performance of molecular materials and surfaces.
In a new paper published in Nano Letters, JILA Fellow Markus Raschke and graduate student Thomas Gray describe how they developed a way to image and visualize how surface molecules couple and interact with quantum precision. The team believes that their nanospectroscopy method could be used for molecular engineering to develop better molecular surfaces, with controlled properties for molecular electronic, photonic, or biomedical applications.