An international team of astrophysicists, including scientists from CU Boulder, may have pinpointed the cause of that shift. The magnetic field lines threading through the black hole appear to have flipped upside down, causing a rapid but short-lived change in the object’s properties. It was as if compasses on Earth suddenly started pointing south instead of north.
The findings, published May 5 in The Astrophysical Journal, could change how scientists look at supermassive black holes, said study coauthor Nicolas Scepi.
“Normally, we would expect black holes to evolve over millions of years,” said Scepi, a postdoctoral researcher at JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST). “But these objects, which we call changing-look AGNs, evolve over very short time scales. Their magnetic fields may be key to understanding this rapid evolution.”
Scepi, alongside JILA Fellows Mitchell Begelman and Jason Dexter, first theorized that such a magnetic flip-flop could be possible in 2021.
The new study supports the idea. In it, a team led by Sibasish Laha of NASA’s Goddard Space Flight Center collected the most comprehensive data yet on this far-away object. The group drew on observations from seven telescope arrays on the ground and in space, tracing the flow of radiation from 1ES 1927+654 as the AGN blazed bright then dimmed back down.
Read the full article here.
Written by Daniel Strain, Writer for CU Boulder Strategic Relations and Communications