Until recently, astronomers have had difficulty figuring out the composition and size of dust grains in galaxies beyond the Milky Way. They've had some luck with the Large and Small Magellanic Clouds (LMC and SMC, respectively). However, these two "satellite" galaxies are practically our next-door neighbors and much easier to observe.
Astrophysicists know that the centers of galaxies have supermassive black holes whose size correlates with the size of the galaxy surrounding them. They’ve also observed that galaxies collide and merge. In fact, galactic mergers were even more common billions of years ago in the Universe when today’s galaxies were still being assembled.
Fellow Konrad Lehnert needed a virtually noiseless amplifier to help with his experiments on nanoscale structures, so he invented one. Working with graduate student Manuel Castellanos-Beltran and NIST scientists Kent Irwin, Gene Hilton, and Leila Vale, he conceived a tunable device that operates in frequencies ranging from 4 to 8 GHz. This device has the lowest system noise ever measured for an amplifier. In fact, it produces 80 times less noise than the best commercial amplifier. More importantly, it adds no noise to a measurement system — a critical feature for a system probing the quantum limits of measurement.
The Jin and Ye groups recently crafted an entirely new form of matter — tens of thousands of ultracold polar molecules in their lowest energy state. The ground-state molecules are too cold to exist naturally anywhere in the Universe. But, like the Bose-Einstein condensates discovered in the mid-1990s, they promise to open the door to unprecedented explorations of the quantum world, including quantum information processing and exquisite precision measurement. That these molecules exist at all is a testament to the clever ideas and persistence of the Jin and Ye groups.
The John Bohn lab at JILA owes its very existence to a 2002 decision by the Colorado Rockies to begin storing baseballs in a room with ~50% humidity. The conventional wisdom at the time was that Denver’s thinner air was responsible for making Coors Field a hitter’s heaven. In mile-high Denver, hitters averaged two more home runs per game because the thinner air caused a given home run ball to travel 20 feet further than at sea level.
Like people, planets can migrate far from where they were born. In the case of planets, they usually travel toward their parent star, but some may also move away. Some wind up in blistering proximity to their Sun-like parents, orbiting them in 1.2 to 8 days. Such orbits are well inside the magnetic-field-induced cavities that typically separate such stars from their planet-forming accretion disks. There’s no way planets could have formed in these cavities, given their lack of raw materials for planet building and incredibly high temperatures.
The Jin group recently came up with the first strong experimental link between superfluidity in ultracold Fermi gases and superconductivity in metals. What’s more, this feat was accomplished with photoemission spectroscopy, a tried-and-true technique that has been used for more than 100 years to study solids. This technique has been instrumental in revealing the properties of superconductors. It is just beginning to be developed in ultracold Fermi gases, where it could prove to be just as useful.
Nanoartisans Cindy Regal, John Teufel, and Konrad Lehnert have come up with a clever new way to observe ordinary (very small) things behaving quantum mechanically. They’ve tucked a nanomechanical beam (which is actually a really thin aluminum wire) inside a tiny resonant microwave cavity made of lightweight superconducting aluminum. This design ensures that very small forces will cause large detectable motion.
What happens to a Bose-Einstein condensate (BEC) when its atoms interact strongly? One possibility for large attractive interactions is that the condensate shrinks and then explodes, as the Cornell and Wieman groups discovered in 2001.
Fellow Jun Ye’s group is methodically working its way toward the creation of an X-Ray frequency comb. Recently, senior research associate Thomas Schibli, graduate student Dylan Yost, Fellow Jun Ye, and colleagues from IMRA America, Inc. developed a high-performance, ultrastable fiber laser optical frequency comb. At the same time, Yost developed a clever method for getting coherent short-wavelength light out of a femtosecond enhancement cavity used with the fiber laser. These achievements have opened the door to the generation of frequency combs in the extreme ultraviolet (EUV) and soft X-ray regions of the electromagnetic spectrum.
Graduate student Robyn Levine, Fellow Andrew Hamilton, and colleagues from the University of Chicago’s Kavli Institute for Cosmological Physics are working on modeling how supermassive black holes grow inside galaxies.
For many years, chemists have explored the differences between liquids and solids. One difference is that liquid surfaces tend to be softer than solid surfaces (from the perspective of molecules crashing onto them). Another difference is that the surface of at least one oily liquid (perfluorinated polyether, or PFPE) actually gets stickier as it gets hotter, according to a new study by graduate student Brad Perkins and Fellow David Nesbitt. This behavior contrasts with solid surfaces, which usually get stickier when they get colder!
Fellow Phil Armitage is excited about the discovery of several new galaxies in which a disk of water masers is orbiting within half a light year of the central massive black hole. Like their counterpart M106 (NGC 4258) discovered in 1995, these hot (600 K) water molecules mase, i.e., emit coherent radio wavelength photons when they return to lower energy states after being excited by collisions inside the gas near the black hole. The water masers orbit black holes much like a planetary system, beaming their steamy songs toward radio telescopes on Earth.
By late 2006, Fellow Jun Ye’s clock team had raised the accuracy of its strontium (Sr)-lattice atomic clock to be just shy of that of the nation’s primary time and frequency standard, the NIST-F1 cesium (Cs) fountain clock. Graduate students Marty Boyd and Andrew Ludlow led the effort to improve the clock’s accuracy.
What sort of experiment could detect the effects of quantum gravity, if it exists? Theories that go beyond the Standard Model of physics include a concept that links quantum interactions with gravity. Physicists would very much like to find evidence of this coupling as these two branches of physics are not yet unified in a single theory that explains everything about our world.
With every breath you take, you breathe out carbon dioxide and roughly 1000 other different molecules. Some of these can signal the early onset of such diseases as asthma, cystic fibrosis, or cancer. Thanks to graduate student Mike Thorpe and his colleagues in Fellow Jun Ye’s group, medical practitioners may one day be able to identify these disease markers with a low-cost, noninvasive breath test. The new laser-based breath test is an offshoot of Thorpe’s research on cavity-enhanced direct optical frequency comb spectroscopy, a molecular fingerprinting technique reported in Science two years ago.
When the Jin and Ye group collaboration wanted to investigate the creation of stable ultracold polar molecules, the researchers initially decided to make ultracold KRb (potassium-rubidium) molecules and then study their collision behavior. Making the molecules required a cloud of incredibly cold K and Rb atoms, the ability to apply a magnetic field of just the right strength to induce a powerful attraction between the different kinds of atoms, and some low-frequency photons.
What did Fellow Jeff Linsky come home with from a 2006 SINS conference? He arrived at JILA with the realization that quasars twinkle for much the same reason stars twinkle: Light from both quasars and stars pass through turbulence that mixes up the light rays, causing the light to vary in intensity, or twinkle. However, the stars we see every night twinkle because of turbulence in the Earth’s dynamic atmosphere, which changes hundreds of times a second.
Neutron stars are born in supernovae, spinning very fast. How fast they spin at birth depends on a variety of factors including the initial rotation of the star that goes supernova and what takes place during the supernova explosion. So, if you want to understand these phenomena, one place to start is by investigating how fast a new neutron star can initially spin.
Benzene has a special ring structure that allows some of its electrons to be shared among all six carbon atoms in the ring. It turns out that chemists like Fellow J. Mathias Weber can adjust the charge density in the ring by exchanging hydrogen (H) atoms in the ring with other atoms or groups of atoms. Such exchanges can change the charge pattern in the ring "seen" by neighboring molecules.