News & Research Highlights

Nanoscience
Schrödinger Cats Light the Way
Published: January 13, 2012

We can get valuable information about a material by studying how it responds to light.  But up to now, researchers have been forced to ignore how some of light’s stranger quantum behavior, such as being in a superposition of one or more intensity states, affects these measurements.  New research from the Cundiff group (with newly minted PhD Ryan Smith and graduate student Andy Hunter) has shown that it is possible to back-calculate how a semiconductor responds to light’s quantum features even though we can’t directly create light with those features.

Read More
Investigators: Steven Cundiff
Atomic & Molecular Physics
Quantum Body Swapping
Published: October 28, 2011

Theorists Norio Takemoto (now at the Weizmann Institute of Science) and Fellow Andreas Becker figured that something was amiss when they first analyzed the details of what occurs when an ultrafast laser dislodges an electron from a “simple” molecular ion, H2+. Since H2has already lost one of its electrons, its two protons only have one electron left to play with.  How hard would it be to “see” what happened to this electron in a strong laser field? After all, a widely accepted theory said that a strong laser field would make it easier for the lone electron to escape when the ion was stretched apart (as opposed to contracted). 

Read More
Investigators: Andreas Becker
Biophysics
Cross-Cultural Spectroscopy
Published: October 19, 2011

Graduate student Jennifer Lubbeck (Jimenez Group) spent the summer of 2011 doing research in the Molecular Spectroscopy Laboratory at the RIKEN Institute in Wako, Japan (near Tokyo). Her host's group included 16 postdocs and four graduate students. The group was under the direction of Chief Scientist Tahei Tahara. However, Lubbeck actually worked directly with just five other young scientists under the supervision of Professor Kunihiko Ishi (Ishi-san).

Read More
Investigators: Ralph Jimenez
Chemical Physics
Chemistry in the Cosmos
Published: October 19, 2011

The Nesbitt group wants to figure out how chemistry works in outer space. In particular, the group wants to understand the “cosmo”-chemistry leading to the generation of soot, which is similar to products of combustion here on Earth.

Read More
Investigators: David Nesbitt
Atomic & Molecular Physics
Ultracold Polar Molecules to the Rescue!
Published: September 14, 2011

Physicists would very much like to understand the physics underlying high-temperature superconductors. Such an understanding may lead to the design of room temperature superconductors for use in highly efficient and much lower-cost transmission networks for electricity. A technological breakthrough like this would drastically reduce world energy costs. However, this breakthrough requires a detailed understanding of the physics of high-temperature superconductivity.

Read More
Investigators: Ana Maria Rey | Jun Ye
Atomic & Molecular Physics
The Cold Case
Published: September 02, 2011

The Ye group has built a cool new system for studying cold collisions between molecules. The system is far colder than a typical chemistry experiment that takes place at room temperature or hotter (300–500 K). But, it’s also much warmer than experiments that investigate ultracold-molecule collisions conducted at hundreds of billionths of a degree above absolute zero (0 K). The new system is known as “the cold molecule experiment” and operates at temperatures of approximately 5 K (-450 °F).

Read More
Investigators: Jun Ye
Precision Measurement
Probing the Tell-Tale Ions
Published: August 25, 2011

JILA’s quest to determine whether the electron has an electric dipole moment (eEDM) began in 2006 with a suggestion by Fellow Eric Cornell that the molecular ion hafnium fluoride (HfF+) might be well suited for an eEDM experiment. An electric dipole moment is a measure of the separation of positive and negative charges in a system. If an electron does have an electric dipole moment, it’s a pretty darn small one. So small, in fact, that if the electron were the size of the Earth, its eEDM would only alter the planet’s roundness by less than the width of a human hair.

Read More
Investigators: John Bohn
Laser Physics
Reactions on Demand
Published: July 16, 2011

Predrag Ranitovic dreams of controlling chemical reactions with ultrafast lasers. Now he and his colleagues in the Kapteyn/Murnane group are one step closer to bringing this dream into reality. The group recently used a femtosecond infrared (IR) laser and two extreme ultraviolet (XUV) harmonics created by the same laser to either ionize helium atoms or prevent ionization, depending on experimental conditions. The researchers adjusted experimental conditions to manipulate the electronic structure of the helium atoms as well as control the phase and amplitude of the XUV laser pulses.

Read More
Investigators: Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
The Secrets of the Resonant Lattice
Published: July 15, 2011

Theoretical physicists recently combined two powerful tools for exploring ultracold atomic gases: Optical lattices and Feshbach resonances. Optical lattices are crystals of light formed by interacting laser beams. Feshbach resonances in an ultracold atom gas occur at a particular magnetic field strength and cause ultracold atoms to form very large, loosely associated molecules. However, because lattice atoms interact strongly at a Feshbach resonance, the physics of Feshbach resonances in an optical lattice is quite complicated.

Read More
Investigators: Ana Maria Rey
Nanoscience | Precision Measurement
Quantum CT Scans
Published: June 01, 2011

The Lehnert group and collaborators from the National Institute of Standards and Technology (NIST) recently made what was essentially a CT scan of the quantum state of a microwave field. The researchers made 100 measurements at different angles of this quantum state as it was wiggling around. Because they only viewed the quantum state from one angle at a time, they were able to circumvent quantum uncertainties to make virtually noiseless measurements of amplitude changes in their tiny microwave signals. Multiple precision measurements of the same quantum state yielded a full quantum picture of the microwave field.

Read More
Investigators: Konrad Lehnert
Nanoscience
JILA MONSTR and the Chamber of Secrets
Published: May 17, 2011

The semiconductor gallium arsenide (GaAs) is used to make tiny structures in electronic devices such as integrated circuits, light-emitting diodes, laser diodes, and solar cells that directly convert light into electrical energy. Because of GaAs’s importance to modern electronics, the Cundiff group seeks to understand the fundamental physics of its light-matter interactions on atomic and electronic levels.

Read More
Investigators: Steven Cundiff
Chemical Physics
I Sing the Body Electric
Published: May 11, 2011

The Lewandowski group recently decided to see what would happen if it could get cold molecules (1K–1mK) and ultracold (<1mK) atoms to collide. Former graduate student L. Paul Parazzoli, graduate student Noah Fitch, and Fellow Heather Lewandowski devised a novel experiment to determine the collision behavior of cold (100 mK) deuterated ammonia (ND3) molecules and ultracold (600 microK) rubidium (Rb) atoms.

Read More
Investigators: Heather Lewandowski
Atomic & Molecular Physics
A Flair for Lasing
Published: May 01, 2011

Triatomic hydrogen ion (H3+) has many talents. In interstellar clouds, it can be blown apart by free low-energy free electrons, which interact with the ion core (H3+), briefly forming unstable H3 molecules. The interaction of the electron with the ion core almost immediately causes the molecule to fall apart into three hydrogen atoms (3H) or a hydrogen molecule (H2) and an H atom. This reaction is known as dissociative recombination.

Read More
Investigators: Chris Greene
Chemical Physics
The Long Goodbye
Published: April 02, 2011

The dance of electrons as a bromine molecule (Br2) separates into two atoms is intricate and complex. The process of breaking up takes far longer than expected (~150 vs 85 fs) because the cloud of electrons that bind atoms together in a molecule behaves as if it were still surrounding a molecule until the last possible moment — when the atomic fragments are about twice the normal distance apart (~.55 nm). At this point, there’s simply not enough energy left in the system to hold the molecule together. When the two atoms finally appear as separate entities, it was if someone had snapped a rubber band.

Read More
Investigators: Andreas Becker
Quantum Information Science & Technology
The Quantum Control Room
Published: March 21, 2011

In 2008, the Ye and Jin groups succeeded in making ultracold potassium-rubidium (KRb) molecules in their ground state (See “Redefining Chemistry at JILA” in the Spring 2010 issue of JILA Light & Matter). Their next goal was to figure out how to precisely control chemical reactions of these ultracold polar molecules by manipulating the quantum states of the reactants. But first the researchers had to discover how to calm those reactions down enough to study them. Under the conditions in which they were made (an optical trap allowing motion in all three dimensions), ultracold KRb molecules were so chemically reactive they disappeared almost as soon as they were formed.

Read More
Investigators: Deborah Jin | John Bohn | Jun Ye
Atomic & Molecular Physics
The Fickle Finger of Fate
Published: February 24, 2011

Putting the brakes on a superfluid dipolar Bose-Einstein condensate (BEC) just got a whole lot more interesting. Last year, the Bohn theory group explored what would occur in a dipolar BEC when a laser probe — think of it like a finger — tickled a BEC just hard enough to excite a roton.

Read More
Investigators: John Bohn
Precision Measurement
Strontium Clock Performance Skyrockets
Published: February 03, 2011

In 2008-2009, much to their amazement,researchers working on the Jun Ye group’s neutral Sr optical atomic clock discovered tiny frequency shifts caused by colliding fermions! They figured out that the clock laser was interacting slightly differently with the Sr atoms inside a one-dimensional (pancake-shaped) trap. The light-atom interactions resulted in the atoms no longer being identical. And, once they were distinguishable, formerly unneighborly atoms were able to run into each other, compromising clock performance.

Read More
Investigators: Ana Maria Rey | Jun Ye
Astrophysics
Puff the Magic Planet
Published: January 21, 2011

Hot Jupiters — giant gas planets orbiting close to their parent stars — aren’t just scorched (at temperatures of >1000 K). They are also swollen up larger than can be explained by the intense heat from their host stars. Recently Fellow Rosalba Perna and her colleagues from Columbia University and the Kavli Institute for Theoretical Physics suggested a reason why these planets are so puffed up: The swelling results from heat dissipated from electric currents generated by the interaction of robust magnetic fields (generated from deep within the giant planets) with strong atmospheric winds carrying charged particles called ions.

Read More
Investigators: Rosalba Perna
Quantum Information Science & Technology
The Quantum Modeling Agency
Published: January 14, 2011

“Nature is built quantum mechanically,” says Fellow Jun Ye, who wants to understand the connections between atoms and molecules in complex systems such as liquids and solids (aka condensed matter). He says that the whole Universe is made of countless interacting particles, and it would be impossible to figure out the myriad connections between them one particle at a time, either theoretically or experimentally.

Read More
Investigators: Ana Maria Rey | Jun Ye
Other
Sharing the Adventure of Science
Published: January 04, 2011

Graduate students or research associates at JILA have the option of signing up to help teach after-school science classes to elementary and middle school students in the St. Vrain School District. The volunteers expect to stimulate the children to learn to think critically, enjoy science activities, and become confident in their own abilities to master difficult concepts. What they may not anticipate at first is that they will learn some important skills themselves, including the ability to communicate scientific concepts in everyday language and, with that new ability, gain a better understanding of education.

Read More
Investigators: Eric Cornell