How 1,000 undergraduates helped solve an enduring mystery about the sun

Radiation streaming from the sun's corona becomes visible during an eclipse

Image Credit
University of Colorado Boulder

For a new study, a team of physicists recruited roughly 1,000 undergraduate students at CU Boulder to help answer one of the most enduring questions about the sun: How does the star’s outermost atmosphere, or “corona,” get so hot?

The research represents a nearly-unprecedented feat of data analysis: From 2020 to 2022, the small army of mostly first- and second-year students examined the physics of more than 600 real solar flares—gigantic eruptions of energy from the sun’s roiling corona. 

The researchers, partially lead by JILA fellow Heather Lewandowski, and including 995 undergraduate and graduate students, published their finding May 9 in The Astrophysical Journal. The results suggest that solar flares may not be responsible for superheating the sun’s corona, as a popular theory in astrophysics suggests. 

“We really wanted to emphasize to these students that they were doing actual scientific research,” said James Mason, lead author of the study and an astrophysicist at the Johns Hopkins University Applied Physics Laboratory.

Study co-author Heather Lewandowski agreed, noting that the study wouldn’t be possible without the undergrads who contributed an estimated 56,000 hours of work to the project.

“It was a massive effort from everyone involved,” said Lewandowski, professor of physics and fellow of JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST).

Read the full article here. 

Written by Dan Strain, Science Writer for CU Boulder's Strategic Relations and Communications 

Synopsis

For a new study, a team of physicists recruited roughly 1,000 undergraduate students at CU Boulder to help answer one of the most enduring questions about the sun: How does the star’s outermost atmosphere, or “corona,” get so hot?

The research represents a nearly-unprecedented feat of data analysis: From 2020 to 2022, the small army of mostly first- and second-year students examined the physics of more than 600 real solar flares—gigantic eruptions of energy from the sun’s roiling corona. 

The researchers, partially lead by JILA fellow Heather Lewandowski, and including 995 undergraduate and graduate students, published their finding May 9 in The Astrophysical Journal. The results suggest that solar flares may not be responsible for superheating the sun’s corona, as a popular theory in astrophysics suggests. 

Principal Investigators
Research Topics