Magnetic fields catalyse massive black hole formation and growth
| Author | |
|---|---|
| Abstract |
Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. |
| Year of Publication |
2023
|
| Date Published |
2023-09
|
| Journal Title |
Monthly Notices of the Royal Astronomical Society: Letters
|
| Volume |
526
|
| Issue |
1
|
| Start Page or Article ID |
L94-L99
|
| ISSN Number |
1745-3925, 1745-3933
|
| DOI | |
| Download citation | |
| JILA PI | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.