Evaluation of Lattice Light Shift at Low 10^{-19} Uncertainty for a Shallow Lattice Sr Optical Clock
| Author | |
|---|---|
| Abstract |
A Wannier-Stark optical lattice clock has demonstrated unprecedented measurement precision for optical atomic clocks. We present a systematic evaluation of the lattice light shift, a necessary next step for establishing this system as an accurate atomic clock. With precise control of the atomic motional states in the lattice, we report accurate measurements of the multipolar and the hyperpolar contributions and the operational lattice light shift with a fractional frequency uncertainty of 3.5 × 10−19. |
| Year of Publication |
2023
|
| Date Published |
2023-03
|
| Journal Title |
Physical Review Letters
|
| Volume |
130
|
| Start Page or Article ID |
113203
|
|
LatticeLightShift_PRL130.113203.pdf513.88 KB
|
|
| DOI | |
| URL | |
| Download citation | |
| JILA PI | |
| Associated Institutes | |
Journal Article
|
|
| JILA Topics | |
| Publication Status | |
| Publication Image |
|
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.