Nonlinear post-compression in multi-pass cells in the mid-IR region using bulk materials
| Author | |
|---|---|
| Abstract |
We numerically investigate the regime of nonlinear pulse compression at mid-IR wavelengths in a multi-pass cell (MPC) containing a dielectric plate. This post-compression setup allows for ionization-free spectral broadening and self-compression while mitigating self-focusing effects. We find that self-compression occurs for a wide range of MPC and pulse parameters and derive scaling rules that enable its optimization. |
| Year of Publication |
2022
|
| Date Published |
2022-09
|
| Journal Title |
Optica
|
| Volume |
47
|
| Issue |
20
|
| Start Page or Article ID |
5289-5292
|
| ISSN Number |
0146-9592, 1539-4794
|
| DOI | |
| Download citation | |
| JILA PI | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.