Simulations of evaporation to deep Fermi degeneracy in microwave-shielded molecules
| Author | |
|---|---|
| Abstract |
In the quest toward realizing novel quantum matter in ultracold molecular gases, we perform a numerical study of evaporative cooling in ultracold gases of microwave-shielded polar fermionic molecules. Our Monte Carlo simulations incorporate accurate two-body elastic and inelastic scattering cross sections, realistic modeling of the optical dipole trap, and the influence of Pauli blocking at low temperatures. The simulations are benchmarked against data from evaporation studies performed with ultracold NaK molecules, showing excellent agreement. |
| Year of Publication |
2024
|
| Journal Title |
Submitted
|
| URL | |
| Download citation | |
| JILA PI | |
| Associated Institutes | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.