Influence of Fluorescence Lifetime Selections and Conformational Flexibility on Brightness of FusionRed Variants
| Author | |
|---|---|
| Abstract |
Fluorescent proteins (FPs) for bioimaging are typically developed by screening mutant libraries for clones with improved photophysical properties. This approach has resulted in FPs with high brightness, but the mechanistic origins of the improvements are often unclear. We focused on improving the molecular brightness in the FusionRed family of FPs with fluorescence lifetime selections on targeted libraries, with the aim of reducing nonradiative decay rates. Our new variants show fluorescence quantum yields of up to 75% and lifetimes >3.5 ns. |
| Year of Publication |
2024
|
| Date Published |
2024-02
|
| Journal Title |
The Journal of Physical Chemistry Letters
|
| Volume |
15
|
| Start Page or Article ID |
1644-1651
|
| ISSN Number |
1948-7185, 1948-7185
|
| DOI | |
| Download citation | |
| JILA PI | |
| Associated Institutes | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.