Confronting a Thin Disk-Wind Launching Mechanism of Broad-Line Emission in AGN with GRAVITY Observations of Quasar 3C 273
| Author | |
|---|---|
| Abstract |
Quasars show a remarkable degree of atomic emission line-broadening, an observational feature which, in conjunction with a radial distance estimate for this emission from the nucleus is often used to infer the mass of the central supermassive black hole. The radius estimate depends on the structure and kinematics of this so-called Broad-Line Region (BLR), which is often modeled as a set of discrete emitting clouds. |
| Year of Publication |
2023
|
| Date Published |
2023-08
|
| Journal Title |
The Astrophysical Journal
|
| Volume |
193
|
| Start Page or Article ID |
184
|
| DOI | |
| URL | |
| Download citation | |
| JILA PI | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.