Anisotropic acoustics in dipolar Fermi gases
| Author | |
|---|---|
| Abstract |
We consider plane wave modes in ultracold, but not quantum degenerate, dipolar Fermi gases in the hydrodynamic limit. Longitudinal waves present anisotropies in both the speed of sound and their damping, and experience a small, undulatory effect in their flow velocity. Two distinct types of shear waves appear, a ``familiar" one, and another that is accompanied by nontrivial density and temperature modulations. We propose these shear modes as an experimental means to measure the viscosity coefficients, including their anisotropies. |
| Year of Publication |
2023
|
| Date Published |
2023-03
|
| Journal Title |
Physical Review A
|
| Volume |
107
|
| Start Page or Article ID |
033321
|
| DOI | |
| URL | |
| Download citation | |
| JILA PI | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.