Time and angle resolved photoemission spectroscopy using femtosecond visible and high-harmonic light
| Author | |
|---|---|
| Abstract |
The angle resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying static key properties of complex systems such as the electronic band structure of adsorbed molecules, ultrathin quantum-well films or high temperature superconductors. We efficiently combined ARPES by using a two-dimensional analyzer for parallel energy (E) and momentum (k||) detection with femtosecond time-resolved spectroscopies. Using time and angle resolved two photon photoemission (2PPE) with visible light pulses, the hot electron dynamics in complex electronic structures are directly accessible by means of angle resolved hot electron lifetime mapping. Furthermore, femtosecond ARPES spectra recorded with high harmonic generation (HHG) light pulses are presented, showing the potential of this technique for future investigations of surface dynamics and photo-induced phase transition processes. |
| Year of Conference |
2009
|
| Conference Name |
Journal of Physics: Conference Series
|
| Volume |
148
|
| Start Page or Article ID |
012042
|
| Date Published |
2009-02
|
| URL |
https://dx.doi.org/10.1088/1742-6596/148/1/012042
|
| DOI |
10.1088/1742-6596/148/1/012042
|
| Download citation | |
| Publication Status | |
| JILA PI | |
| JILA Topics | |
Conference Proceedings
|
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.