Bipolaronic Nature of the Pseudogap in Quasi-One-Dimensional (TaSe4)2I Revealed via Weak Photoexcitation
| Author | |
|---|---|
| Abstract |
The origin of the pseudogap in many strongly correlated materials has been a longstanding puzzle. Here, we uncover which many-body interactions underlie the pseudogap in quasi-one-dimensional (quasi-1D) material (TaSe4)2I by weak photo-excitation of the material to partially melt the ground state order and thereby reveal the underlying states in the gap. We observe the appearance of both dispersive and flat bands by using time- and angle-resolved photoemission spectroscopy. |
| Year of Publication |
2023
|
| Date Published |
2023-09
|
| Journal Title |
Nano Letters
|
| Volume |
23
|
| Start Page or Article ID |
8392
|
| DOI | |
| URL | |
| Download citation | |
| JILA PI | |
| Associated Institutes | |
Journal Article
|
|
| JILA Topics | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.