Physics Department Colloquium

Quantum Simulation - from Dipolar Quantum Solids to Kinetic Nagaoka Ferromagnetism

When
-

Abstract: Quantum simulations with ultracold atoms in optical lattices enter the next phase, in which we can extend bosonic and fermionic Hubbard models in a wide range of ways. I will present recent results in which we realized strongly correlated dipolar quantum gases and observed quantum-phase transitions to stripe and checkerboard phases.

Relativistic Fluid Dynamics: From Particle Colliders to Neutron Star Mergers

When
-

Abstract: Heavy-ion collision experiments have provided overwhelming evidence that quarks and gluons, the elementary particles within protons and neutrons, can flow as a nearly frictionless, strongly interacting relativistic liquid over distance scales not much larger than the size of a proton. On the other hand, with the dawn of the multi-messenger astronomy era marked by the detection of a binary neutron star merger, it became imperative to understand how extremely dense fluids behave under very strong gravitational fields.