Physics Department Colloquium

Plasma-based Accelerators for Ultra High Energy Colliders

When
-

Abstract: Recent experiments at SLAC demonstrated beam-driven plasma acceleration with accelerating gradients in excess of 150 GeV/m. That’s nearly 10,000 times the accelerating gradient produced by RF cavities in the SLAC linac! Plasma accelerators are a promising technology for future ultra-high energy colliders and were identified by the P5 Panel as a path toward 10 TeV collisions. In this talk, I’ll review the physics of nonlinear plasma wakefield acceleration. What makes the plasma bubble nearly-ideal for electron acceleration?

How to Predict Space Weather

When
-

Abstract: This presentation describes space weather impacts and their economic and societal costs. Modern technological society is characterized by a complex set of interdependencies across its critical infrastructures. These are vulnerable to the effects of intense geomagnetic storms and solar disturbances. Strong currents flowing in the ionosphere can disrupt and damage Earth-based electric power grids and contribute to the accelerated corrosion of oil and gas pipelines.

Guiding Trojan Beams via Lagrange Points

When
-

Abstract: The guided transmission of optical waves is essential for modern applications in communication, information processing, and energy systems. Traditionally, light guiding in structures like optical fibers has been predominantly achieved through total internal reflection. In periodic structures, a range of other physical mechanisms can also facilitate optical wave transport.

Hadron spectroscopy from long ago till the day after tomorrow

When
-

 Perhaps "The quark model for an AMO audience'' would be a better title? Anyway, I will tell you a bit about the spectroscopy of strongly interacting particles, a bit about the quark model, a bit about how people calculate the masses of bound states of quarks and gluons, and a bit about some states that I think are particularly interesting.

 

The Dark Energy Spectroscopic Instrument First Year Results: Cosmic Expansion History with Baryon Acoustic Oscillations

When
-

Abstract: The Dark Energy Spectroscopic Instrument (DESI) collaboration is conducting a 5 year redshift survey of 40 million extra-galactic sources over 14,000 square degrees of the northern sky. One of its primary goals is to measure the cosmic expansion history with baryon acoustic oscillations (BAO). I will present the measurement of BAO in galaxy, quasar and Lyman-alpha forest tracers from the first year of observation.

Developing current and next generation physics assessments

When
-

Abstract: The ability to measure what students are learning (or not) is a crucial component of crafting effective learning environments. In particular, low-stakes, standardized diagnostic assessments can provide a valuable tool for tracking student learning over time and between instructional approaches to identify effective strategies that improve students' understanding of core physics content.

Ergodicity breaking in quantum dynamics

When
-

When can isolated many body quantum systems fail to go to equilibrium under their own dynamics, and how robust can this 'ergodicity breaking’ be? This question has been a central theme of research in quantum dynamics and statistical mechanics over the past decade, and I will share with you some highlights, focusing on three key developments: many body localization, dynamics with multipolar symmetries, and dynamics with higher form symmetries. I will present the rich and exotic phenomena that arise in these three regimes, and how they may be realized experimentally.