Dana Anderson
Ultracold Atom Gyroscope
The goal of this project is to demonstrate an ultracold atom gyroscope sensitive enough to detect the Earth’s rotation. To do this we trap 87Rb atoms in a cigar-shaped, high frequency magnetic trap created from an atom chip depicted below. We then cool the atoms to degeneracy and use a Sagnac interferometer geometry to perform the inertial sensing.
Putting Cold Atoms in Space
The Cold Atom Laboratory (CAL) is being designed to enable earth-bound researchers to carry out ultracold atom physics experiments in the micro-gravity environment of the International Space Station (ISS). Earth-bound experiments are subject to acceleration due to the Earth's gravity, and the corresponding energy shifts can be large compared with the temperature and quantum mechanical energy of ultracold atoms. Setting gravity to nearly zero allows one to carry out experiments and observations not possible with table-top experiments on Earth.
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.