Other

Entanglement optimization in quantum trajectories

When
-

Abstract: In this talk I present a method to solve the equations of motion of open quantum many-body systems. It is based on a combination of generalized wave function trajectories and matrix product states. More specifically, we developed an adaptive quantum stochastic propagator, which minimizes the expected entanglement in the many-body quantum state, thus minimizing the computational cost of the matrix product state representation of quantum trajectories.

Dipolar spin-exchange and entanglement between molecules in an optical tweezer array

When
-

Abstract: Ultracold polar molecules are promising candidate qubits for quantum computing and quantum simulations. Their long-lived molecular rotational states form robust qubits, and the long-range dipolar interaction between molecules provides quantum entanglement. We demonstrate dipolar spin-exchange interactions between single CaF molecules trapped in an optical tweezer array.

Pushing LIGO’s quantum limits

When
-

Abstract: The Advanced LIGO detectors operate at a regime where quantum uncertainty imposes a fundamental limitation to sensitivity in the form of quantum shot noise and quantum radiation pressure noise. During the last gravitational wave observing run O3, the LIGO and Virgo detectors used quantum states of light known as squeezed states of light in order to reduce high frequency quantum shot noise.

Using anisotropic strain to probe multipolar order parameters

When
-

Abstract: Because it can be applied in-situ in a continuous fashion, and can be tailored to preserve or break selected spatial symmetries, piezoelectric devices-based strain has lately emerged as a versatile tuning parameter of quantum materials. In this talk we will focus on utilizing anisotropic strain as a probe of otherwise elusive multipolar orders in solids. Using the adiabatic AC elastocaloric effect, a compact, thermodynamic strain-based experimental technique [1,2], we study anisotropic strain effects on f electron-based multipolar orders [3,4].