The Large Hadron Collider (LHC) at CERN is the most powerful particle accelerator ever constructed. It enables the study of the fundamental structure of matter by providing proton-proton collisions at the unprecedented energy of 6.8 TeV per beam. It delivers an instantaneous luminosity exceeding 2×1034 cm−2s−1 at its two general-purpose detectors, ATLAS and CMS. During high-intensity operation, the LHC now routinely stores energies of 430 MJ per beam—well beyond its original design specifications.
Given the high energies stored in both its particle beams and superconducting magnet circuits, the LHC requires a sophisticated machine protection system. This presentation will outline the key challenges and describe the main elements of the LHC machine protection system. Examples of relevant beam loss scenarios, including interactions between the particle beam and dust contaminants, will be presented. Finally, an outlook for future high-intensity colliders will be given.
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.