Wilson
Nickname: Wilson
Specialization: Many-body theory of ultracold dipoles.
BS: Saint Louis University
With group: 2007-2012
Current whereabouts: Unknown
Quotes:
"No coffee, no workee!"
"I at least want to point out where the nonsense is."
Wilson publications in the group
Manifestations of the Roton Mode in Dipolar Bose-Einstein Condensates -- R. M. Wilson, S. Ronen, J. L. Bohn, and H. Pu, Phys. Rev. Lett. 100, 245302 (2008).
Stability and Excitations of a Dipolar Bose-Einstein Condensate with a Vortex -- R. M. Wilson, S. Ronen, and J. L. Bohn, Phys. Rev. A 79, 013621 (2009).
How does a Dipolar Bose-Einstein Condensate Collapse? -- J. L. Bohn, R. M. Wilson, ans S. Ronen, Laser Physics 19, 547 (2009).
Angular Collapse of Dipolar Bose-Einstein Condensates -- R. M. Wilson, S. Ronen, and J. L. Bohn, Phys. Rev. A 80, 023614 (2009).
Critical Superfluid Velocity in a Trapped Dipolar Gas -- R. M. Wilson, S. Ronen, and J. L. Bohn, Phys. Rev. Lett. 104, 094501 (2010).
Anisotropic Superfluidity in a Dipolar Bose Gas -- C. Ticknor, R. M. Wilson, and J. L. Bohn, Phys. Rev. Lett. 106, 065301 (2011).
Emergent Structure in a Dipolar Bose Gas in a One-Dimensional Lattice -- R. M. Wilson and J. L. Bohn, Phys. Rev. A 83, 023623 (2011).
A Dielectric Superfluid of Polar Molecules -- R. M. Wilson, S. T. Rittenhouse, and J. L. Bohn, New J. Phys. 14, 043018 (2012).
Roton Immiscibility in a Two-Component Dipolar Bose Gas -- R. M. Wilson, C. Ticknor, J. L. Bohn, and E. Timmermans, Phys. Rev. A 86, 033606 (2012).
Stability Spectroscopy of Rotons in a Dipolar Bose Gas -- J. P. Corson, R. M. Wilson, and J. L. Bohn, Phys. Rev. A. 87, 051605R (2013).
Geometric Stability Spectra of Dipolar Bose Gases in Tunable Optical Lattices -- J. P. Corson, R. M. Wilson, and J. J. Bohn, Phys. Rev. A 88, 013614 (2013).
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.