Compact binary x-ray sources
| Author | |
|---|---|
| Abstract | Compact binary X-ray sources include white dwarfs, neutron stars, and black holes that are accreting matter from a companion star. The X-ray emission from these systems is produced by the accreting matter as it flows through an accretion disk and strikes the surface of the compact object. The emitting regions have opacities dominated by electron scattering, and radiation pressure is likely to play an important role in the hydrodynamics. Strong magnetic fields greatly modify the hydrodynamics and radiation transfer in the pulsating neutron star sources. Accretion disks have complex structure, including an electron scattering corona, a cool outer region, and possibly a thick torus in their inner region. The structure and stability properties of accretion disks are only partially understood. Major problems exist with the interpretation of the spectra and luminosities of the X-ray burst sources. The pulsed X-ray emission from the pulsating binary X-ray sources probably comes from mounds of accreting gas at the magnetic poles of neutron stars, in which the accreting matter is decelerated by radiation pressure. The physics of these systems is reviewed, with an emphasis on problems for which hydrodynamical simulations may be especially useful. | 
| Year of Conference | 1986 | 
| Start Page or Article ID | 185-197 | 
| Publisher | Springer Berlin Heidelberg | 
| Conference Location | Berlin, Heidelberg | 
| ISBN Number | 978-3-540-38739-8 | 
| DOI | 10.1007/3-540-16764-1_11 | 
| Download citation | |
| Publication Status | |
| JILA PI | |
| JILA Topics | |
| Conference Proceedings | 
 
     
  The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.