A Wannier-Stark Optical Lattice Clock With Extended Coherence Times
| Author | |
|---|---|
| Abstract |
The pursuit of ever improving accuracy and precision in atomic clocks is inextricably linked to discovery. With each new decade we gain deeper insight into nature, probing ever smaller energy scales. In this thesis we report a body of research advancing our 1D strontium optical lattice clock (Sr1) to the frontiers of accuracy, precision, and atomic coherence. We demonstrate a new record for strontium clock fractional frequency inaccuracy of 2.0×10−18. We then leverage this in a series of comparisons, first comparing Sr1 with the Al+ and Yb clocks at NIST to 18 digits of accuracy. Intra-lab comparisons with the 3D Sr lattice clock demonstrate record low instability between two independent clocks (3.5 × 10−17 at 1 s). High uptime characterization and steering of Si3 by the Sr1 system further demonstrates a proof of principle all-optical timescale system. To move into the unknown, we introduce the newest version of Sr1. Utilizing a large waist, invacuum build up cavity we radically increase the homogeneity within the clock system. Operation at shallow trap depths allows us to realize a Wannier-Stark optical lattice clock. By tuning the delocalization of atomic wavefunctions we demonstrate the so called ‘magic depth’, where the clock frequency is free of atomic interaction induced frequency shifts regardless of atom number. Combining these advances in precision we demonstrate a fractional frequency uncertainty of 4.4 × 10−18 at 1 s of operation and 8 × 10−21 after 90 hours of operation, demonstrating nearly a factor of 100 lower uncertainty than the previous record. These advances allow us to rapidly evaluate gradients across our millimeter length atomic sample, resolving the gravitational redshift within a single clock. |
| Year of Publication |
2022
|
| Academic Department |
Department of Physics
|
| Degree |
PhD
|
| Number of Pages |
186
|
| Date Published |
2022-04
|
| University |
University of Colorado Boulder
|
| City |
Boulder
|
| JILA PI Advisors | |
|
Download the PDF49.4 MB
|
|
| Download citation | |
| Publication Status |
The Physics Frontiers Centers (PFC) program supports university-based centers and institutes where the collective efforts of a larger group of individuals can enable transformational advances in the most promising research areas. The program is designed to foster major breakthroughs at the intellectual frontiers of physics by providing needed resources such as combinations of talents, skills, disciplines, and/or specialized infrastructure, not usually available to individual investigators or small groups, in an environment in which the collective efforts of the larger group can be shown to be seminal to promoting significant progress in the science and the education of students. PFCs also include creative, substantive activities aimed at enhancing education, broadening participation of traditionally underrepresented groups, and outreach to the scientific community and general public.