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We explore the limits of atomic coherence and measurement precision in a 87Sr optical lattice clock. We
perform a detailed characterization of key effects, including lattice Raman scattering and atomic collisions
in a shallow lattice configuration, determining a 174(28) s 3P0 clock state lifetime. Investigation of atomic
coherence across a range of lattice depths and atomic densities reveals decoherence mechanisms related to
photon scattering and atomic interaction. At a reduced density, we observe a coherence time of 118(9) s,
approaching the fundamental limit set by spontaneous emission. Guided by this coherence understanding,
we demonstrate a clock instability for an atomic ensemble of 1.5 × 10−18 at 1 s in fractional frequency
units. Our results are important for further advancing the state of the art of an optical lattice clock for
fundamental physics applications.
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Introduction—Optical lattice clocks (OLCs) offer excep-
tional measurement precision by simultaneously interrog-
ating a large number of atoms with a long coherence time
[1–3]. The applications of OLCs range from timekeeping
[4] to quantum sensing for fundamental physics [5–8] and
are versatile platforms for exploring many-body physics
[9–13]. Of fundamental importance in modern quantum
science and technology is the scalability of a quantum
system, and OLCs provide an ideal platform to explore
relevant trade-offs for optimization. The use of many atoms
reduces quantum projection noise (QPN) but inevitably
introduces atomic interactions as a potential roadblock for
both precision and accuracy. Spin squeezing provides a
potential solution by providing better signal to noise with
fewer atoms [14]. Using an insulating quantum gas in a 3D
optical lattice or optical tweezer arrays provides another
route for number scaling [15–17]. However, even minute
interaction effects such as weak dipolar coupling [12] or
superexchange spin interactions [13] can noticeably affect
clock operation. In a 1D Wannier-Stark lattice, we have
engineered the interaction Hamiltonian to overcome the
trade-off between systematics and the atom number [18].
These efforts share a common goal: to realize atomic
coherence time limited by fundamental spontaneous emis-
sion while employing as many atoms as possible.
One major limitation to the observed coherence time in

87Sr clock transition arises from Raman scattering of the
lattice photons for individual atoms [19–21]. This process
leads to a reduction in the contrast of Ramsey spectroscopy
[22]. The other source of decoherence is atomic interactions
[23]. Although a large number of atoms N is desired to

reduce QPN, it degrades the coherence time through atomic
interactions. A large beam waist, gravity-induced Wannier-
Stark 1D optical lattice [24] allows us to operate the clock
at a lattice depth of only a few photon recoil energy Er,
which greatly reduces the lattice photon scattering as well
as atomic density.
Previously, we investigated how the spin-orbit coupling

[10,25] in a Wannier-Stark OLC introduces off site s-wave
interaction [18]. Near a specific optical lattice depth
U0 ∼ 10Er, we null the mean interaction strength, enabling
us to utilize a largeN without losing metrological precision.
This is essential for resolving sub-mm gravitational redshift
[6] and reducing systematic uncertainties [26,27]. A natural
next step is to explore how these interactions affect the
coherence time.
In this Letter, we study the effect of lattice light

scattering and atomic collisions on clock performance
for different lattice depths and demonstrate an atomic
coherence time of ∼2 min. Raman scattering leads to
population accumulation in different nuclear spin states
of 1S0. The resulting “spectator” atoms collide via strong
s-wave interactions with those in clock states, dominating
the decoherence rate. With in situ imaging [28] of the
atomic distribution, we infer the coherence time by
extrapolating to a zero density limit. When this limit is
further extrapolated to U0 ¼ 0, we find that the atomic
decoherence is in agreement with the limit set by the natural
lifetime of 3P0 and blackbody radiation (BBR) from the
environment. Furthermore, we use this system to inves-
tigate the intrinsic clock precision and demonstrate an
instability of 1.5 × 10−18 at 1 s.
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Detailed description of the experimental apparatus can
be found in Refs. [6,18,27]. Notably, the trap lifetime is
improved by more than a factor of 8 in our recent work
[27], which allows us to explore longer timescales with
greater signal-to-noise ratio. We prepare the atoms in
j1S0 ≡ g;mF ¼ −5=2i at U0 ¼ 20Er. For the popula-
tion decay measurement, we use a π pulse to populate
j3P0 ≡ e;mF ¼ −3=2i and remove the remaining popula-
tion in jgi using a strong 1S0 ↔ 1P1 transition at 461 nm.
Then, we adiabatically ramp the lattice to the desired U0 in
50 ms and hold it with a variable time and measure the
atomic population. To measure the coherence time of the
clock transition, jg;mF ¼−5=2i↔ je;mF ¼−3=2i, we
observe the contrast of the Ramsey fringe with the varying
dark time. Finally, we use the imaging spectroscopy
method [28] to estimate the frequency measurement noise
contributed by the atoms.
Population decay—Environmental perturbations, such as

lattice photon scattering, can extract information from an
atom [29,30], and consequently any state-dependent per-
turbation can cause decoherence of the clock superposition.
For example, half of the e → g decay rate directly contrib-
utes to the decoherence rate. The use of a magic wavelength
in OLCs protects coherence by removing the information
carried out by the photon [19,20], as well as minimizing the
effect from atomic motion. State-independent trap loss does
not directly affect the coherence time, but it can have an
indirect impact by requiring an increase of the initial N to
achieve a reasonable signal to noise at the detection stage.

The population dynamics of the atoms in the optical
lattice can be described by the following rate equation:

Ṅe ¼ −ΓeNe − ΓLNe − Kee=vN2
e;

Ṅg ¼ −ΓgNg þ ΓLNe; ð1Þ

where NeðgÞ is the atom number per site in jeðgÞi, ΓeðgÞ
is the single-body loss rate for eðgÞ, and Kee ∝ Tr is
the two-body loss rate of jei, where Tr (assumed to
be time independent) is the radial temperature [31], and
vðTr; U0Þ is the effective volume per site. ΓLðUÞ ¼
ΓLð0Þ þ ð∂UΓLÞU is the rate for e → g. U ¼ ηð1ÞU0 −
ηð1=2Þ ffiffiffiffiffiffiffiffiffiffiffi

U0Er
p

is the averaged lattice depth, with ηðjÞ ¼
ð1þ jkBTr=U0ErÞ−1 and kB the Boltzmann constant
[26,32]. To extract the decay rates, we measure the
population dynamics starting in jei and fit Eq. (1) to the
data using a least-squares method.
Figure 1 and Table I present the measurement results. For

the fit, we use lattice depths greater than 50Er (black
markers) to exclude the loss effects from parametric heating
and Raman scattering recoil, which become significant at
shallower depths in our experiment.
Raman scattering drives 3P0 population into the 3P1 and

3P2 states [20], and then the 3P1 state quickly decays to the
1S0 state with a rate ΓL. The value of ΓLð0Þ ¼ 8.1ð8Þ ×
10−3 s−1 represents the limit set by the combined effect of
the spontaneous decay of 3P0 and the BBR scattering rate.
After subtracting the contribution of the BBR of 2.36 ×
10−3 s−1 [20,27,33], we obtain a lifetime of the 3P0 state of
1=Γnat ¼ 174ð28Þ s. This is in agreement with previous
measurements [20,34,35] and is longer than reported
in [36].
Γg shows no dependence on U0, suggesting the back-

ground gas collision as the dominant jgi loss mechanism.
On the other hand, Γe shows a linear dependence on U. We
attribute this dependence to the Raman scattering into 3P2,
which has a large inelastic cross section with the clock
states. The ratio of the background gas collision rates,
Γeð0Þ=Γg of 2.3(8), is slightly larger than the values of 1.1
reported in Refs. [20,21], which are obtained under fairly

FIG. 1. Lattice depth dependent population decay rates. (a) Sin-
gle-body loss rate of the excited state. (b) Single-body loss rate of
the ground state. (c) e → g pumping rate. (d) Two-body loss rate
of the excited state. Each horizontal axis represents the peak
lattice depth, U0. We use the lattice depth greater than the 50Er
(black markers) for the fit (see text). The extracted coefficients are
summarized in Table I. The error bars show the 68% confidence
interval. The blue lines are fitted curves, and the shades are their
uncertainties.

TABLE I. Summary of the population decay rate measurement.
U is average lattice depth (see text for the details) in units of
Er ¼ ðh=λLÞ2=2M ≈ h × 3.57 kHz, where h is Planck constant,
λL is the magic wavelength (813.427 nm) [26], andM is the mass
of 87Sr.

Quantity Value

ΓeðUÞ ð1.3ð3Þ × 10−4U=Er þ 2.7ð4Þ × 10−2Þ s−1
Γg 1.2ð4Þ × 10−2 s−1

ΓLðUÞ ð4.30ð7Þ × 10−4U=Er þ 8.1ð8Þ × 10−3Þ s−1
Kee=Tr 4ð1Þ × 10−6 cm−3 s−1 K−1

1=Γnat 174(28) s
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different experimental conditions than ours. We could also
attribute this small discrepancy to modeling imperfections
such as assuming a constant temperature. The value of Kee
is consistent with a previous measurement [31].
Coherence time—We investigate the coherence time of

the atomic ensembles using Ramsey interferometry.
Because the coherence time of the atoms exceeds that of
laser [37,38], the atom-laser phase is randomized at the
readout. As a result, we repeat the experiment multiple
times for a given dark time, Tdark, and measure the change
in peak-to-peak excitation fraction as an estimate of the
contrast, C. We subdivide the image of the atomic dis-
tribution [see also Fig. 3(a)] and take the average for each
bin to estimate the atom number per site Nsite. Large QPN
can overestimate C; thus, we use only the bins where QPN
corresponds to an excitation fraction noise≲5%. We model
the contrast decay trajectory [Fig. 2(a)] with an empirical
stretched exponential, CðTdarkÞ ¼ Cð0Þ exp½−ðγTdarkÞα�,
where fCð0Þ; γ; αg are the fit parameters, and γ represents
the contrast decay rate. The fitted exponent α ranges from
0.7 to 1.3 across different lattice depths. The uncertainty is
estimated via bootstrapping. The coherence time for an
atom number per lattice site Nsite ¼ 9 is 118(9) s for
U0 ¼ 11Er, plotted as a black curve in Fig. 2(a).
The extracted γ shows a strong density dependence

[Fig. 2(b)]. We fit the data to a linear curve, γ ¼ γ0 þ

γNNsite. Here, γ0 represents the contrast decay rate at
the single-atom regime, and γN quantifies the collisional
interaction effect.
Figures 2(d) and 2(e) summarize the dependence of γ0

and γN on U0. γ0 is dominated by the lattice Raman
scattering rate ΓRðUÞ ¼ ∂UðΓe þ ΓLÞ ×U, the single pho-
ton scattering rate from BBR ΓBBR ∼ 1=164 s−1, and the
natural lifetime of the excited state Γnat. We use the result
from the previous section ΓR=U ¼ 5.6ð3Þ × 10−4 s−1E−1

r .
As shown in Fig. 2(d), γ0 is mainly limited by ΓR at highU0

and converges to a value close to the sum of Γnat and ΓBBR
as U0 approaches 0. We find that the observed γ0 is
captured by a simple estimation of ðΓR þ Γnat þ ΓBBRÞ=2.
In contrast to γ0, γN shows a nonmonotonic dependence

on U0 [Fig. 2(e)]. At shallow depths, delocalization
between adjacent lattice sites introduces off-site s-wave
interactions via spin-orbit coupling [18], which dominates
the decoherence. As the lattice depth increases, the s-wave
channel is suppressed, and the on site p-wave contribution
grows with density. However, this effect does not explain
the data quantitatively given the limited strength of p-wave
interactions (the orange band).
Lattice Raman scattering introduces additional decohe-

rence through the generation of spectator atoms [Fig. 2(c)].
The photon scattering events populate various nuclear spin
states in g that are distinguishable from the clock state.

FIG. 2. Collisional interactions and the atomic coherence time. (a) Contrast of the Ramsey fringe as a function of the dark time for two
different mean atom numbers per site cases. The circle (triangle) is for Nsite ¼ 9ð90Þ. Solid lines are a fit to a stretched exponential
model. The coherence time, γ−1 forNsite ¼ 9 is 118(9) s at 11Er. (b) Density dependence of the contrast decay rate. The blue solid line is
a fit to a linear curve. (c) A cartoon illustrates the generation of spectator atoms (gray) via the lattice Raman scattering. The semicircles
represent halves of a superposition. The spectator atoms lead to additional phase diffusion through the s-wave collision. (d) Lattice
depth dependence of γ0. The bands are estimation of the contrast decay time. The gray band is ðΓnat þ ΓBBRÞ=2. The blue band
is ðΓR þ Γnat þ ΓBBRÞ=2. (e) Lattice depth dependence of γN . The band shows DDTWA simulations. The blue band includes the effect
of spectator atoms, while the orange band excludes the interaction effect from the spectator atoms. The error bars show the 68%
confidence interval.
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These spectator atoms interact with the clock atoms via
strongon site s-wave collisions, becoming a dominant source
of decoherence. In addition, the stochastic generation of the
spectator atoms introduces further fluctuations in the clock
phase [39]. These mechanisms are supported by theoretical
simulations based on a dissipative discrete truncatedWigner
approximation (DDTWA) [40]. In Fig. 2(e), we show the
simulation result of γN with and without the spectator atoms.
For deeper lattices, decoherence induced by spectator atoms
becomes prominent, which limits the use of large atom
numbers. We note that the simulation shows a nonlinear
dependence of γ on Nsite [40]. To account for this small
nonlinearity, we fit the line for two different ranges,
½0; ð2=3ÞmaxðNsiteÞ� and ½ð1=3ÞmaxðNsiteÞ;maxðNsiteÞ�,
and take the difference as additional uncertainties for γ0
and γN . The same treatment is applied to the theoretical
simulation when extracting γN , and its range is indicated by
the bands. We exclude theoretical simulations for U0 >
102Er due to extra sources of decoherence in this regime such
as atoms in higher bands not captured by our model.
Imaging spectroscopy—To estimate the atomic contribu-

tion for the clock instability beyond the laser coherence time,
we perform a synchronous clock comparison by using a
Ramsey protocol achieved through imaging spectroscopy
[28]. The frequency difference of the two regions [Fig. 3(a)]
is reflected as a correlation between the excitation fractions,
resulting in a parametric plot with the shape of an ellipse
[Fig. 3(b)]. The opening angle of the ellipse,ϕ, related to the
frequency difference of the two regions is obtained from the
ellipse fit. The QPN contribution to the variance of ϕ can be
estimated as [28]

varðϕÞ ¼ 4

C2

�Z
2π

0

dθ
2π

1P
i¼x;y csc

2ðθiÞvarðpiÞ
�

−1
: ð2Þ

Here, px;y ¼ ½1þ C cosðθx;yÞ�=2 represents the excitation
fractions for each region with θx;y ¼ θ ∓ ϕ=2, C is the
contrast, θ is the phase of the laser, which is assumed to be
uniformly distributed, and ϕ is the Ramsey phase difference
between two regions [Fig. 3(a)]. For coherent spin states, the
variance varðpiÞ ¼ pið1 − piÞ=Nens, where Nens is the
number of atoms in one ensemble. Note that Eq. (2) is a
good approximation for the classical Cramér-Rao bound for
large atom numbers and not so small ϕ [40,41]. The QPN
contribution to the clock instability can be, therefore,
estimated as

σyðτÞ ¼
σrely ðτÞffiffiffi

2
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
varðϕÞp

2πν0Tdark
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τ=Tcycle

p ; ð3Þ

where σrely is relative (comparison) instability between two
regions, ν0 is the frequency of the clock transition, Tcycle is
the experimental cycle period, and τ is the averaging time.
The reduction by a factor of

ffiffiffi
2

p
accounts for the independent

contribution from the two regions.

The contrast decay limits the achievable sensitivity with
increasing Tdark and Nsite. This competition results in a
minimum instability at specific Tdark for a given Tcycle and
Nsite. Figure 3(c) presents such a parametric contour plot of
σyðτÞ based on DDTWA for U0 ¼ 11Er lattice depth at

FIG. 3. Estimation of the atomic contribution to the clock
stability. (a) 1D image of the atomic cloud. z is the coordinate
along the gravity. The frequency difference between two regions
(e.g., the blue and the orange) is induced by a magnetic field
gradient of 12.7 mHz=mm. (b) Parametric plot of the excitation
fractions of two regions. The black circles are the experimental
data, and the orange solid line is the fitted ellipse. The inset shows
the fit residuals, where each axis edge spans �0.01. The diagonal
pattern is mostly from QPN. (c) A single lattice site’s σyð1 sÞ in
units of 10−17 as a function of Nsite and Tdark from DDTWA. The
orange line indicates the optimal Tdark as a function ofNsite. (d) 1-
s instability for different Nens. The black circles are experimental
data, and the red triangles are theoretical predictions. The solid
lines are heuristic fits. The gray dashed line shows the theoretical
prediction from Eq. (3) for coherent spin states. (e) Overlapping
Allan Deviation (OADEV) for σyðτÞ. The black markers are
comparison instability σrely and the gray line the fit. The black
solid line is the single clock instability σyðτÞ ¼ 1.5 × 10−18=ffiffiffiffiffiffiffi

τ=s
p

. The red dashed line is theoretical prediction. The error
bars show the 68% confidence interval.
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which we see a minimal density-dependent contrast decay,
and hence the best stability. The plot assumes a magnetic
field gradient of 12.7 mHz=mm, a separation between
adjacent lattice sites of 260 μm, and a phase accumulation
ϕ linear with Tdark. The experimental dead time is
accounted as Tcycle ¼ Tdark þ 1.5 s. The density profile
of the sample [Fig. 3(a)] suggests using Tdark ¼ 4–8 s.
In Fig. 3(e), we present the Allan deviation for the

comparison and a single clock instability, under Tdark ¼ 7 s
and Tcycle ¼ 8.48 s with 313 realizations. A jackknifing
method is used to generate series of ϕ and compute the
Allan deviation [28]. Subsequently, we convert ϕ to σrely .
The fit to data, ∝ 1=

ffiffiffi
τ

p
(the gray dotted line), along with a

single clock σyð1 sÞ ¼ 1.5 × 10−18 (the black solid line), is
plotted with the theoretical QPN contribution for σyð1 sÞ of
9.4 × 10−19 (the red dashed line).
The observed instability is 50% larger than the theoreti-

cal estimate. To quantify the difference, we vary the bin size
of the image [Fig. 3(a)] to change the atom number per
ensemble, Nens, and estimate the instability for each Nens
[Fig. 3(d)]. We observe that the experimental value starts to
saturate after Nens ≈ 5 × 104. We fit a heuristic curve
σyð1 sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=Nens þ b2

p
to the data, where a and b

are the fit parameters (solid lines). For the experimental
data (black circles), a ¼ 5.57ð9Þ × 10−16, b ¼ 1.76ð5Þ ×
10−18 and for the theoretical prediction (red triangles),
a ¼ 4.8ð1Þ × 10−16, b ¼ 6.5ð1.0Þ × 10−19. This suggests
that the observed instability is limited by an atom number-
independent noise source, to be investigated in the future.
We note that ellipse fitting can introduce additional noise
and bias depending on the method [42–44]. We test the
fitting method using simulated data; see [40] for more
details. We also emphasize that the theoretically simulated
σy (red) is larger than that predicted from coherent spin
states (gray), indicating excess noise from the specta-
tor atoms.
Conclusion—We report coherence time of 2 min for the

87Sr clock transition in a shallow optical lattice. Through
systematic investigations of various population decay mech-
anisms,we find that the observed coherence time in the single
particle limit is consistent with predictions based on these
mechanisms. When the atom number increases, we identify
that spectator atoms with different spin states, generated via
lattice Raman scattering, are essential for understanding the
observed density-dependent decoherence rate. This density
related decoherence cannot be canceled by balancing s- and
p-wave contributions, unlike in the mean density shift [18].
To scale up the atom number for further improvement of
precision,we, thus, need to increase the trappingvolumeand/
or engineer favorable lattice site occupation. Guided by the
understanding of the decoherence rates, we demonstrate
instability from each ensemble of 1.5 × 10−18=

ffiffiffiffiffiffiffi
τ=s

p
, rep-

resenting approximately a factor-of-2 improvement over the
previous record [6]. Our findings advance the understanding

of stability limits in state-of-the-art optical lattice clocks and
pave theway for future developments in fundamental physics
applications [5,45–47].

Note added—While performing this Letter, we became
aware of related works [48,49], demonstrating the lifetime
of the 3P0 state and the extended coherence time with
hyperfine state resolved readout in an OLC.
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