
Exploring the Dynamical Interplay between Mass-Energy Equivalence, Interactions, and
Entanglement in an Optical Lattice Clock

Anjun Chu ,1,2,* Victor J. Martínez-Lahuerta ,3 Maya Miklos ,1 Kyungtae Kim ,1 Peter Zoller ,4,5

Klemens Hammerer,3 Jun Ye ,1 and Ana Maria Rey 1,2

1JILA, NIST, and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
2Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA

3Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, 30167 Hannover, Germany
4Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

5Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

(Received 13 June 2024; revised 24 October 2024; accepted 17 January 2025; published 3 March 2025)

We propose protocols that probe manifestations of the mass-energy equivalence in an optical lattice
clock interrogated with spin coherent and entangled quantum states. To tune and uniquely distinguish the
mass-energy equivalence effects (gravitational redshift and second-order Doppler shift) in such a setting,
we devise a dressing protocol using an additional nuclear spin state. We then analyze the dynamical
interplay between photon-mediated interactions and gravitational redshift and show that such interplay can
lead to entanglement generation and frequency synchronization dynamics. In the regime where all atomic
spins synchronize, we show the synchronization time depends on the initial entanglement of the state and
can be used as a proxy of its metrological gain compared to a classical state. Our work opens new
possibilities for exploring the effects of general relativity on quantum coherence and entanglement in
optical lattice clock experiments.
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Introduction—Understanding the interplay between
quantum mechanics and general relativity (GR) is a
fundamental quest for modern science. Nevertheless, to
date measurements capable of genuinely witnessing this
simultaneous interplay have not been realized in tabletop
experiments. A push forward toward this milestone is
becoming feasible thanks to recent improvements in the
precision and accuracy of atomic clocks and interferom-
eters. For example, matter-wave interferometers have been
used for stringent tests on the equivalence principle [1–4].
In parallel, the resolution of the gravitational redshift
using spatially separated clocks has improved from meter
scales [5,6] to submillimeter [7,8]. Furthermore, coherence
times for both clocks and matter-wave interferometers are
now sufficiently long [7,9] to consider integrating clocks
and interferometers on a single platform. These develop-
ments open up unique opportunities to search for new
physics [1,10] that could help reconcile the seemingly
contradictory predictions of quantum mechanics and GR.
Experimental developments have in parallel driven

a great deal of theoretical effort toward the understanding
of quantum dynamics with GR corrections. These pro-
gresses encompass analyses of relativistic corrections to
Hamiltonians considered specifically in the context of
neutral-atom and trapped-ion systems [11–22]; tests of

mass-energy equivalence with atoms in internal super-
position states, including predictions of energy-dependent
phase shifts; loss of coherence; and spin-motion coupling
induced by gravitational time dilation [23–31], among
others [32–38]. However, understanding the direct conse-
quence of GR effects in more complex scenarios such as
many-body systems, where particles can interact over the
entire array, remains an outstanding problem.
In this Letter, we provide a first step in this direction by

proposing near-term protocols to explore manifestations of
single-atom GR effects, including the gravitational redshift
(GRS) and the second-order Doppler shift (SDS), in the
quantum many-body dynamics of an atomic ensemble. We
take advantage of the state-of-the-art Wannier-Stark optical
lattice clocks (OLCs) that interrogate large arrays of
interacting particles under gravity [7,39]. We analyze the
GRS and the SDS specifically in Wannier-Stark OLCs,
both governed by the same mechanism known as mass-
energy equivalence. To distinctly characterize these GR
effects and overcome the limitation that the gravitational
redshift acts just as an effective magnetic field gradient in
current OLCs, we first devise a dressing protocol using an
additional nuclear spin state to tune and uniquely
distinguish the mass-energy equivalence. Second, we pro-
pose a spectroscopic protocol to probe the dynamical
modification of the GRS due to photon-mediated inter-
actions in the array. Depending on the relative strength of
the GRS to the photon-mediated interactions, the atomic*Contact author: anjun.chu@colorado.edu
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phases dynamically evolve from their individual values,
dictated by the local GRS, into a semilocal or global
synchronized regime. In both cases we observe entangle-
ment growth from an initial product state due to the
interplay of the GRS and interactions, in contrast to the
entanglement generated directly by gravitational inter-
actions between massive objects [32,33,36–38]. Last, we
analyze the interplay of the GRS and interactions when
they act on an initially entangled state. This is achieved by
studying the dependence of the global synchronization time
on the entanglement content of the initial state. Remarkably
we find the synchronization time can be used as a probe of
the state’s metrological utility.
Mass-energy equivalence in OLCs—We consider a

single atom in Earth’s gravity described by a curved
spacetime metric gμν [see Fig. 1(a)]. We perform an
expansion of gμν in a power series of ϕ=c2 [40,41], with
ϕðZÞ ≈ gLOZ the Newtonian gravitational potential near the
Earth’s surface and gLO the local gravitational acceleration.
Following the treatment in Refs. [11,14,16,18], one can
obtain a single-atom Hamiltonian ĤA accounting for the
leading relativistic corrections,

ĤA ¼ Ĥpoint

�
M þ ĤI

c2

�
þOðc−4Þ: ð1Þ

Here, ĤpointðMÞ ¼ Mc2 þ Ĥ0ðMÞ þ Ĥother is the
Hamiltonian of a point particle with mass M, Ĥ0ðMÞ ¼
P̂2=ð2MÞ þMϕ contains the nonrelativistic terms, and
Ĥother contains other GR corrections in center-of-mass
coordinates negligible in our case (see [41]). The key idea
of Eq. (1) can be understood as themass-energy equivalence,

summarized by the replacementM → M þ ĤI=c2 in Ĥpoint.
OLCs feature an ultranarrow optical transition (clock
transition) between two long-lived electronic states (excited
state jei, ground state jgi), which is described by the internal
Hamiltonian ĤI ¼ ℏω0jeihej, with ω0 the clock transition
frequencymeasured at the lab positionZ ¼ 0 [see Fig. 1(a)].
Since in an OLC ĤI contains the largest observable energy
scale compared to other terms, the mass-energy equivalence
is the leading order GR correction. It translates into a
difference in the rest mass of an atom in states jei and
jgi: Mg ¼ M, ΔM0 ¼ Me −Mg ¼ ℏω0=c2. Note that in
general themass defectΔM ¼ hĤIi=c2 is not simply a fixed
number, and its tunability (see Fig. 2) is an important tool to
determine the relativistic origin of the mass defect.
We assume that in OLCs atoms are trapped in a magic-

wavelength 1D lattice along the gravitational potential
(Z axis) [7,39], where jei and jgi states experience the
same potential, VðZÞ ¼ VZsin2ðkLZÞ þMϕ. Here, VZ is
the lattice depth, kL is the wave number of the lattice that
sets the atomic recoil energy ER ¼ ℏ2k2L=2M and lattice
spacing aL ¼ π=kL. GR corrections to the optical lattice
potential are negligible in our case (see [41]). In a tilted 1D
lattice described by VðZÞ, the motional eigenstates in the
ground band are the so-called Wannier-Stark (WS) states
jWji, with j the Z-lattice site index where the WS state is
centered [39]. Assuming the radial degrees of freedom are
also confined to the lowest ground state by an additional
2D lattice, with lattice depths VX;Y , the eigenenergies of
WS states are given by Ej ¼ MgLOaLjþ Eband, where

Eband ≈
P

α¼X;Y;Z ERð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vα=ER

p
− 1=4Þ [48] is the ground

band zero-point energy. The GR corrections due to mass-
energy equivalence is given by

Ĥcorr ¼
X
j

ðEGRS;j þ ESDSÞje;Wjihe;Wjj; ð2Þ

with EGRS;j the gravitational redshift (GRS) and ESDS the
second-order Doppler shift (SDS). Their orders of magni-
tude are discussed below for 87Sr atoms.
Applying the mass-energy equivalence to the gravita-

tional potential energy Mϕ, we get the GRS (or gravita-
tional time dilation) between jei and jgi states
(ΔM ¼ ΔM0),

EGRS;j ¼
ΔM
M

hWjjMϕjWji ¼ ℏω0

gLOaLj
c2

: ð3Þ

The GRS leads to a gradient of frequency shifts across the
lattice. For example, the fractional frequency difference for
nearest-neighbor lattice sites is just 4.4 × 10−23, while it is
at the order of 10−19 for 1 mm spatial separation as recently
observed [7,8].
The contribution of mass-energy equivalence in the

kinetic energy leads to a local modification of the zero-

FIG. 1. (a) Schematic of an optical lattice clock embedded in
the curved spacetime (metric gμν) formed by the Earth’s gravity.
Mass-energy equivalence is the leading order GR correction that
translates internal energy difference ℏω0 between jei and jgi
states into a difference in the rest mass of an atom ℏω0=c2. Such
type of correction generates second-order Doppler shift ESDS and
gravitational redshift EGRS;j to the clock transition [see Eqs. (3)
and (4)]. (b) Schematic of probing the dynamical interplay
between gravitational redshift and collective cavity-mediated
interactions [see Eq. (5)].
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point energy known as SDS (or motional time dilation in
special relativity) between jei and jgi states,

ESDS ¼ −
ΔM
M

hWjjP̂2jWji
2M

¼ −
ℏω0

2Mc2
Eband: ð4Þ

The magnitude of ESDS increases with the lattice depth. For
example, a deep lattice with VX;Y;Z ¼ 300ER leads to the
fractional frequency shift −4.5 × 10−21. Corrections in the
kinetic energy can also lead to a modification of the WS
wave functions for jei atoms, while they play a negligible
role compared to EGRS;j and ESDS.
Tuning and distinguishing GR effects—In standard

OLCs, the effects of GRS might be mimicked by a weak
magnetic field gradient. To provide further evidence of
genuine GR effects beyond ruling out all possible system-
atics, one approach is to simultaneously observe EGRS;j and
ESDS in the same system. This could be achieved in next-
term OLCs by populating higher motional bands if the
systematic uncertainty of lattice Stark shifts [49] is sup-
pressed below 10−20.
An alternative approach is to use dressed states as a

means to tune the mass defect ΔM and with it
simultaneously change EGRS;j and ESDS. As shown in
Fig. 2(a), we make use of the intrinsic multilevel structure
in fermionic alkaline earth atoms with nuclear spin F. We
apply a dressing beam with Rabi frequency Ω and detuning
δ connecting je;mFi with jg;mF − 1i states, leading
to the dressed states, jþi ¼ C1je;mFi þ C2jg;mF − 1i,
j−i ¼ −C2je;mFi þ C1jg;mF − 1i, with C1 ¼ ð1−
δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
Þ1=2= ffiffiffi

2
p

, C2 ¼ ð1þ δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
Þ1=2= ffiffiffi

2
p

in

the rotating frame of the dressing laser (see End Matter).
By addressing the transition between j↑i≡ j−i and
j↓i≡ jg;mFi states with a clock laser for the ΔmF ¼ 0
transition, one can therefore get a tunable mass defect
ΔM ¼ jC2j2ΔM0 in the dressed clock transition via scan-
ning the dressing parameter δ=Ω [see Fig. 2(b)]. Since the
nuclear spin states in the ground manifold share the same
mass M but different Zeeman shifts, the dressing allows us
to differentiate between a gravitational redshift and a
magnetic field gradient. In the lab frame, we can understand
the tunability of the mass-energy equivalence achieved by
the dressing scheme by noticing that the state j−i has a
probability jC2j2 to be in the jei level and therefore an
average internal energy of jC2j2ℏω0.
This protocol is feasible thanks to the fact that the clock

transitions between different nuclear spins are frequency
resolved due to magnetic Zeeman shifts. We also assume all
other dynamical frequencies are smaller than the dressed
state energy gap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
and the Zeeman shifts between

nuclear spins. To guarantee the matching of laser phases for
each atom, the dressing beam and the clock beam should be
copropagating. Moreover, spatial inhomogeneities in
atomic detunings δ and in the dressing laser Rabi frequency
Ω might obscure the effects of gravitational redshift. For a
mHz gravitational redshift arising from a cm-scale spatial
separation, the spatial variations of δðZÞ, ΩðZÞ, and
other source of perturbations need to be suppressed below
10−4 Hz. The requirement for δðZÞ is attainable based on
the parameters in Ref. [7]. The requirement for ΩðZÞ
could be achievable using a cavity to stabilize the spatial
mode of the dressing laser. One can also circumvent the
stringent requirement for ΩðZÞ by averaging the transition
frequency of jg;mFi ↔ j−i and jg;mFi ↔ jþi (see End
Matter), while sacrificing the tunability of mass defect
(ΔM ¼ ΔM0=2).
Many-body dynamics—After providing a recipe to dis-

tinguish genuine GR effects in OLCs, we further explore
their manifestations in quantum many-body dynamics. We
consider photon-mediated interactions generated by plac-
ing the atoms in an optical cavity [42,50], in a regime where
atomic contact interactions are controlled to be much
weaker. The interplay between photon-mediated inter-
actions and the GRS is described by the following
Hamiltonian [see Fig. 1(b) and End Matter]:

ĤcGR=ℏ ¼ J⊥Ŝ · Ŝþ ðJz − J⊥ÞŜzŜz þ ωGRS

X
j

jŜz
j; ð5Þ

where ℏωGRS ¼ ðΔMÞgLOaL is the GRS between nearest-
neighbor sites, J⊥ and Jz are the collective exchange and
Ising couplings. Here, Ŝx;y;z

j are collective spin operators
summed over all atoms at the same height jaL, and
Ŝx;y;z ¼ P

j Ŝ
x;y;z
j . Based on Eq. (5), a magnetic field

gradient will in principle give rise to similar single-atom
inhomogeneities in the Hamiltonian, but we can tell them

FIG. 2. Tuning mass-energy equivalence via dressed states.
(a) Schematic of dressing the clock transition with another
nuclear spin. The left panel shows the application of the dressing
laser, and the right panel shows the new clock transition in the
dressed basis. (b) The tunability of the mass defect ΔM and
gravitational redshift ωGRS as a function of dressing parameter
δ=Ω. ΔM0 and ωGRS;0 are the corresponding values without
dressing. (c) The tunability of cavity-mediated interactions [see
ĤcGR in Eq. (5)] as a function of dressing parameters δ=Ω and
nuclear spin level mF. The Heisenberg interaction (J⊥ ¼ Jz) can
be reached with mF ¼ 3=2.
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apart using the dressing scheme. We drop the GR correc-
tions for interaction terms since they are negligible in
our case (see [41]). While the use of a single nuclear spin
state restricts the cavity exchange interactions to a single
polarization mode (Jz ¼ 0 only), the dressing to another
nuclear spin allows for coupling two polarization modes of
the cavity (see End Matter), which enhances the tunability
of ĤcGR and realizes collective Heisenberg interactions
(J⊥ ¼ Jz) as shown in Fig. 2(c). In the following, we
mainly focus on the case of J⊥ ¼ Jz, since the Ŝ · Ŝ term
becomes a constant and does not alter entanglement in the
fully symmetric manifold. This requirement is unnecessary
for observing frequency synchronization.
We propose to initialize all the atoms in the state

ðj↑i þ j↓iÞ= ffiffiffi
2

p
(π=2 pulse between the dressed clock

levels), perform time evolution under Hamiltonian
ĤcGR [Eq. (5)], and then measure the phase shift of
hŜþ

j i for every Z-lattice site, resulting in frequency shift

ωjðtÞ ¼ tan−1
�hŜy

ji=hŜx
ji
�
=t as a function of evolution time

[see Fig. 3(a)]. It can be observed by the application of a
π=2 pulse followed by local population measurements.
Without interactions or in the case of short interrogation
times, one expects to observe the GRS, ωj ¼ jωGRS, as
reported in Ref. [7]. In the interaction dominated regime,
the GRS persists only for a timescale shorter than the
atomic interaction timescale. Beyond this period, the

frequencies become synchronized due to interaction
locking and reach ωj ≈ 0 at synchronization time tsyn
[see Fig. 3(b)]. Without loss of generality, the numerical
simulations in Figs. 3 and 4 are based on exact diagonal-
ization for N ¼ 16 atoms with one atom per Z-lattice site.
The emergent synchronization is the result of many-

body gap protection also observed in prior experiments
[42,51–55], which arises when ωsplit ≪ ΔE. Here,
ωsplit ¼ ðNs − 1ÞωGRS is the maximum redshift in the array,
with Ns the number of Z-lattice sites, and ΔE is the many-
body gap due to Heisenberg couplings. On the contrary, in
the regime ωsplit ∼ ΔE, the gap cannot maintain global
synchronization [see Fig. 3(c)]. Using a spin wave analysis
one obtains ΔE ¼ NJ⊥ and NJ⊥tsyn ¼ π for J⊥ ¼ Jz,
where N corresponds to the total atom number in the
array [41]. For N ∼ 105 87Sr atoms, one can achieve
NJ⊥=2π ∼ Hz (ωsplit=NJ⊥ ∼ 10−3 for cm-scale separation)
[42], leading to a synchronization timescale (∼1 s) within
reach of current experiments.
Furthermore, we find that the simultaneous presence of

single-atom GRS and photon-mediated interactions can
lead to quantum entanglement as shown in Figs. 3(d) and
3(e). In fact, in the regimeωsplit ≪ ΔE, the projection of the
wave function into the fully symmetric manifold imposed
by the many-body gap transforms the single-particle term
into an effective one-axis twisting (OAT) [56,57] inter-
action term χŜzŜz, with χ ∼ ω2

split=½NðΔEÞ� (see Ref. [58]
where the splitting is generated by a different mechanism).
In this case, entanglement builds up for t > tsyn,

as witnessed by a squeezing parameter [57], ξ2 ≡
minφNðΔS⊥φ Þ2=jhŜij2 < 1 [see Fig. 3(d)]. Here, ðΔS⊥φ Þ2
is the variance of spin noise along an axis perpendicular to
the collective spin hŜi. A faster growth of entanglement can
be seen in the regime ωsplit ∼ ΔE [see Fig. 3(e)]. Since the
entanglement in this case is not captured by spin squeezing,
instead we characterize the entanglement by the normalized
Rényi entropy S̃N=2 ¼ −2log2½trðρ̂2N=2Þ�=N, where ρ̂N=2 is
the reduced density matrix by taking partial trace over half
of the system. The entanglement builds up at a timescale
tsplit ∼ π=ωsplit in this case, which might be due to pop-
ulation transfer to highly entangled states in manifolds of
lower total spin. For the implementation of entanglement
generation, ωsplit=NJ⊥ ∼ 0.1–1 is achievable for 10 cm to
1 m separation and NJ⊥=2π ∼ 0.1 Hz. Therefore, the
timescale for entanglement growth is at the order of 10 s
and thus requires careful suppression of systematics.
To study the effects of the GRS on quantum entangle-

ment, we consider the scenario with entangled initial states,
such as the ones generated using cavity induced OAT
interactions [59,60], ÛOATðQÞ ¼ expð−iQŜzŜz=NÞ, where
Q is the shearing strength [Fig. 4(a)]. The squeezing
direction corresponds to the direction with minimum value
of ðΔS⊥φ Þ2, which can be controlled by performing a

FIG. 3. Interplay between photon-mediated interactions and
GRS. (a) We prepare a product state with all atoms in j↓i state
and apply a laser pulse R̂−π=2

y ¼ exp½iðπ=2ÞŜy� to start the
dynamics. We focus on a single chain with N ¼ 16 atoms under
the Hamiltonian ĤcGR [Eq. (5)] with J⊥ ¼ Jz. (b) Individual
atomic frequency shift ωj with ωsplit=NJ⊥ ¼ 0.3125. Synchro-
nization of atomic frequencies can be reach at time tsyn.
(c) Individual atomic frequency shift ωj with ωsplit=NJ⊥ ¼
3.125. Global synchronization fails to occur in this regime.
(d) Spin squeezing parameter ξ2 and normalized Rényi entropy
S̃N=2 (inset) in the case of (b). (e) Normalized Rényi entropy S̃N=2

in the case of (c). Entanglement starts to build up at a timescale
tsplit in this case.
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rotation R̂θ
x ¼ expð−iθŜxÞ as shown in Fig. 4. As demon-

strated in Ref. [60], entangled state preparation timescales
in an OLC are at the order of 10 ms, so it is reasonable to
ignore GRS in initial state preparation. We use jψ0i to
denote the state after OAT interactions, and jψðθÞi for the
state after the R̂θ

x rotation.
In Fig. 4(b), we show that it is possible to control tsyn

below or above the value of a product initial state tsyn;0
(Q ¼ 0, as obtained in Fig. 3) depending on the rotation R̂θ

x.
The ratio tsyn=tsyn;0 under ĤcGR (J⊥ ¼ Jz) can be under-
stood using the following analytic result [41]:

tsyn
tsyn;0

¼ 1 −
2

π
arctan

�
Covðy; zÞ

ðN − 1Þhψ0jŜxjψ0i

�
; ð6Þ

where Covðα; βÞ ≡ hψðθÞjðŜαŜβ þ ŜβŜαÞjψðθÞi−
2hψðθÞjŜαjψðθÞihψðθÞjŜβjψðθÞi, with α; β ¼ x, y, z. The
tunability of tsyn is due to the θ dependence of Covðy; zÞ.
The tunable range Δtsyn ≡maxθtsyn −minθtsyn can be
used as a measure of entanglement [see Fig. 4(c)], since
Cyz ¼ 4maxθ Covðy; zÞ is approaching the quantum Fisher
information FQ [57], which corresponds to the maximal
eigenvalue of the matrix FQ;αβ ¼ 2Covðα; βÞ.
Conclusion and outlook—We discussed protocols acces-

sible in OLCs that explore how the single-atom GR effects
modify many-body dynamics generated by photon-
mediated interactions. A similar interplay should be
observable with atomic superexchange interactions.
While so far we have mostly focused on highly localized

atomic arrays, generalizations to the case of itinerant
particles where motion and other GR corrections also
become relevant, will open unique opportunities for testing
the basic tenets of GR when extended into the complex
quantum domain.
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End Matter

Construction of dressed states—Here, we explain the
dressing scheme in Fig. 2 in more detail. Because of
magnetic Zeeman shifts, the clock transitions between
different nuclear spins are frequency resolved; thus we
can restrict the dynamics within three internal levels
je;mFi, jg;mFi, and jg;mF − 1i. A dressing laser (with
Rabi frequency Ω, laser frequency ωd) is used to couple
je;mFi with jg;mF − 1i states [see Fig. 2(a)], leading to
the following Hamiltonian:

Ĥdress=ℏ ¼ ω0P̂e;mF
− ωZP̂g;mF−1

þ Ω
2
ðje;mFihg;mF − 1je−iωdt þ H:c:Þ; ðA1Þ

where ωZ is the Zeeman shift between jg;mFi
and jg;mF − 1i states, and we set the energy of jg;mFi
state to 0. The projection operators are defined by
P̂ψ ¼ jψihψ j. We then perform a unitary transformation
Û ¼ expð−iωdtP̂g;mF−1Þ to rewrite the Hamiltonian in the
rotating frame of the dressing laser,

Ĥ0
dress=ℏ ¼ ω0P̂e;mF

þ ðω0 þ δÞP̂g;mF−1

þΩ
2
ðje;mFihg;mF − 1j þ H:c:Þ; ðA2Þ

where δ ¼ ωd − ω0 − ωZ is the detuning of the
dressing laser. The eigenstates of this Hamiltonian

are given by jþi ¼ C1je; mFi þ C2jg; mF − 1i,
j−i ¼ −C2je; mFi þ C1jg; mF − 1i with energy
E�=ℏ ¼ ω0 þ δ=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
=2. These are the dressed

states defined in the main text with coefficients
C1 ¼ ð1 − δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
Þ1=2= ffiffiffi

2
p

and C2 ¼ ð1þ
δ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
Þ1=2= ffiffiffi

2
p

.

Tunability of GR effects—We first analyze the effects
of the dressing scheme on the GR effects. We focus on
the GRS described by the following Hamiltonian:

ĤGRS ¼ ðΔM0ÞϕP̂e;mF

¼ ðΔM0Þϕ
	jC2j2P̂− þ jC1j2P̂þ

þ 	
C1C�

2jþih−j þ H:c:



; ðA3Þ

where ΔM0 ¼ ℏω0=c2 is the mass defect without the
dressing protocol. As shown in Fig. 2(a), we probe the
transition between jg;mFi and j−i. Consider the case
that the energy gap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
between jþi and j−i

states due to Ĥdress is much larger than ω0ϕ=c2, the
coupling between jþi and j−i states in ĤGRS are
suppressed significantly. Therefore, to the leading order,
when projected into the relevant jg;mFi and j−i states
we can write ĤGRS as

ĤGRS ≈ ðΔM0ÞϕjC2j2P̂− ¼ ðΔMÞϕP̂−; ðA4Þ
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which is equivalent to a modification of the mass defect
[see Fig. 2(b)],

ΔM ¼ jC2j2ΔM0: ðA5Þ

The same analysis applies to the SDS.
The tunability of gravitational redshift due to the

dressing scheme allows us to distinguish GRS from a
magnetic field gradient. In the dressing scheme, ĤGRS leads
to a position-dependent correction of the dressed state
energy E−,

E−ðZÞ ¼ E− þ ℏω0gLO
c2

jC2j2Z; ðA6Þ

which can be resolved via clock spectroscopy in the
effective two level system formed by jg;mFi and j−i
states. While for a small magnetic field gradient term
adding on top of a constant magnetic field, we have
ω0ðZÞ ¼ ω0 þ ðηe − ηgÞmFZ, ωZðZÞ ¼ ωZ þ ηgZ, where
ηe ¼ −G3P0

μB∂ZB, ηg ¼ −G1S0μB∂ZB, with G3P0
and G1S0

representing the Landé g factors, and μB is the Bohr
magneton. So the position-dependent correction due to
magnetic field gradients is given by

E−ðZÞ ¼ E− þ �jC2j2ðηe − ηgÞmF − jC1j2ηg
�
Z: ðA7Þ

Since ηg ≠ 0, we find different dependence by varying δ
compared to the GRS [see Eq. (A6)]. The reason is that
different ground-state nuclear spins have the same mass but
different Zeeman shifts.

Tunability of cavity-mediated interactions—Next
we analyze the effects of the dressing protocol
on the cavity-mediated interactions. We focus on
multilevel alkaline earth atoms with the quantization axis
for nuclear spins perpendicular to the cavity axis (see

Fig. 5). In this case, the two polarization modes
supported by the cavity can drive the π transition and
the linear combination of σþ and σ− transitions, so we
can define the multilevel raising operators for these two
polarization modes, Π̂þ¼P

jmC
0
mje;mijhg;mj, Σ̂þ ¼P

jmði=
ffiffiffi
2

p ÞðC−1
m je;m− 1ijhg;mj þCþ1

m je;mþ 1ijhg;mjÞ,
where j is the label of atoms, m is the label of nuclear
spins, and Cσ

m ≡ hF;m; 1; σjF;mþ σi are the Clebsch-
Gordan coefficients. The photon-mediated exchange
interactions for multilevel alkaline earth atoms take the
following form [61,62]:

Ĥc=ℏ ¼ χðΠ̂þΠ̂− þ Σ̂þΣ̂−Þ; ðA8Þ

with Π̂− ¼ ðΠ̂−Þ† and Σ̂− ¼ ðΣ̂−Þ†. Assuming the
Zeeman shifts between nuclear spins and the energy gapffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p
between two dressed states are typically larger

than the interaction strength χN, one can restrict the
dynamics within two levels, j↓i≡ jg;mFi and
j↑i≡ j−i. We have

Ĥc=ℏ ≈ J⊥ŜþŜ− þ Jz

�
N
2
þ Ŝz

�
2

; ðA9Þ

where

J⊥¼ χðC0
mF
Þ2jC2j2; Jz¼ χ

ðCþ1
mF−1Þ2
2

jC1j2jC2j2: ðA10Þ

The tunability of J⊥ and Jz is shown in Fig. 2(c).
Equation (5) describing the interplay between
gravitational redshift and cavity-mediated interactions is
a combination of Eqs. (A4) and (A9) in the Wannier-
Stark basis.
The physical meaning of the J⊥ term is the spin

exchange interactions between jg;mFi and j−i state via
the Π̂þΠ̂− process, i.e., an atom in j−i state emits a virtual
photon into the cavity and flips to jg;mFi state (Π̂−), and
another atom in jg;mFi state absorbs the same photon and
flips to j−i state (Π̂þ). The physical meaning of Jz term is
the collective frequency shift of j−i state via the Σ̂þΣ̂−

process, i.e., an atom in j−i state absorbs a photon from the
dressing laser beam and emits it into the cavity while
staying in the same state (Σ̂−), then another atom in j−i
state absorbs the same cavity photon and emits it back to
the dressing laser beam (Σ̂þ).

Experimental considerations—Finally, we focus on the
experimental requirements of the dressing scheme. For
87Sr atoms, we consider the Zeeman shifts between
nuclear spin states to be at the order of 102 Hz. In order
to frequency resolve a single transition between nuclear
spin states, we have Ω=2π; δ=2π ∼ 10 Hz. Considering
χN=2π at the order of Hz for clock transition as shown

FIG. 5. Schematic of the cavity-mediated interactions in the
dressed basis. The cavity axis is along Z and the quantization axis
is along magnetic field B labeled in the plot. The additional
nuclear spin state in the dressing protocol allows for coupling to
two polarization modes in the cavity and enhancing the tunability
of the cavity-mediated interactions.
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in Ref. [42], and GRS at the order of mHz for 1-cm
spatial separation, the validity of the dressing scheme is
ensured.
As for experimental implementation, spatial inhomoge-

neities exist for the atomic frequency and the parameters δ
and Ω in E−. The effects of GRS will be washed out if the
inhomogeneities are much larger than the value of GRS.
For 1-cm spatial separation, the mHz scale of GRS requires
controlling the inhomogeneities below 10−4 Hz for direct
observation.
For the atomic frequencies and detuning δ, the leading

order contributions are from spatial inhomogeneities in the
magnetic field. One can suppress first order Zeeman shifts
by probing opposite nuclear spin states and calculating the
averaged frequency, which is attainable based on the
parameters in Ref. [7]. This approach allows for cancella-
tion of first order Zeeman shifts up to shot-to-shot fluctua-
tions, and residue effects of the magnetic field can be
distinguished from GRS based on the dressing scheme.
For the dressing laser Rabi frequency Ω, the leading

order contributions are from the spatial profile of the laser
beam. If we denote the modification of Ω as ΔΩ, the

change of E� is given by

ΔE�=ℏ ¼ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ δ2

p �
1þ ðΔΩÞΩ

Ω2 þ δ2

�
: ðA11Þ

The suppression of inhomogeneities in E− requires
ΔΩ=2π < 10−4 Hz, which is equivalent to ΔΩ=Ω < 10−5.
In principle, this requirement is achievable using an ultra-
stable cavity, which allows for precise control of the spatial
mode of the dressing laser. Notice that ΔEþ þ ΔE− ¼ 0,
an alternative approach to reduce this requirement is to
average the transition frequency of jg;mFi ↔ j−i and
jg;mFi ↔ jþi,

E−ðZÞ þ EþðZÞ
2

¼ ℏω0 þ
ℏδ
2
þ 1

2

ℏω0

c2
ϕðZÞ: ðA12Þ

In this way, the averaged transition frequency becomes
independent of Ω. Even though one sacrifices the full
tunability of GRS, it is still changed to half of its value
without dressing.
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