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Models of black holes in general relativity have a problem. Rotating spacetimes like the Kerr

metric do incredibly well at predicting observed phenomena outside of the event horizon, despite

the fact that these models assume that the spacetime is completely empty and stationary, or at the

least that any added matter or radiation will not contribute any gravity of its own. However, if this

matter or radiation falls below the event horizon into a black hole’s interior, counter-propagating

streams will grow in energy and eventually diverge before they even reach the central singularity, at

a special surface called the inner horizon. This divergence will trigger an inflationary instability that

calls into question the self-consistency of the Kerr metric and the very stability of black holes as

astrophysical (and especially as quantum mechanical) objects.

In this thesis, the astrophysically relevant effects of rotation and accretion are examined in

detail to understand how they contribute self-consistently to the spacetime geometry of a black hole

near its inner horizon. First, a model is developed (which I call the inflationary Kasner metric) that

reproduces and generalizes the aforementioned inflationary instability within the framework of general

relativity. Then, the effects of a quantum field near an inner horizon are explored. In particular,

Hawking radiation emanating from the past horizon will accumulate and eventually diverge in

temperature as the inner horizon is approached, and more numerically intensive calculations of the

renormalized stress-energy tensor reveal that this diverging radiation plays a substantial role in

modifying the black hole’s interior geometry and replacing the inner horizon with a strong, chaotic,

spacelike singularity. By analyzing the effects of both classical and quantum fields within black

holes, one can thus come to a closer understanding of how astrophysically realistic black holes should

appear in the context of semiclassical gravity.
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Chapter 1

Introduction: The Inner Horizon

1.1 Motivation

In 2017, the year before I began my Ph.D., the Nobel Prize in Physics was awarded to

Rainer Weiss, Barry Barish, and Kip Thorne for the first detection of gravitational waves, with

a remarkably short wait time between the award and the announcement of the discovery from

the Laser Interferometer Gravitational-Wave Observatory (LIGO) a year prior [1]. The discovery

provided novel evidence for the existence of two black holes merging together, the first of many such

observations that helped usher in an unprecedented era of multimessenger astronomy.

Just a few years later, in 2020 the Nobel Prize in Physics was awarded to Roger Penrose,

Reinhard Genzel and Andrea Ghez for their work on the theory of black hole formation and the

observation of a supermassive compact object at the center of the Milky Way galaxy [74, 76, 151].

This object, now named Sagittarius A*, was later imaged directly (or rather, its ring of accreted

plasma was imaged) by the Event Horizon Telescope (EHT) Collaboration [60], who had earned the

Breakthrough Prize in Fundamental Physics in 2020 for taking the first direct image of a black hole

shadow, for the supermassive black hole within the elliptical galaxy M87 [59].

Countless other recent discoveries have transformed our understanding of black holes, both on

the observational side with detections from the James Webb Space Telescope, the Gaia telescope,

and the GRAVITY Collaboration [78], and on the theoretical side with a resurgence of interest in the

information paradox in 2019-20 [3, 150] and in renormalization techniques that laid the groundwork

for the final two chapters of this thesis (see Chapter 3 for an overview).
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What have we learned from this “golden decade” of black hole research? We now are certain

that the Universe is filled with objects so massive yet so small that Newtonian physics fails to

describe them and instead, Einstein’s theory of general relativity reigns supreme (up to the classical

limit). These objects are generically rotating, accreting matter and radiation, and, according to the

traditional picture in semiclassical gravity, originally arose from the gravitational collapse of a star

down to a radius so small that an event horizon (beyond which no matter or radiation can escape)

forms. In fact, there are no known laws of classical physics that would prevent this collapse from

continuing until its density reaches infinity [151]. In light of these unphysically infinite singularities,

black holes offer themselves as one of the few places in the Universe where even general relativity

fails and one can be sure to find new physics within. This new physics will broadly be referred to by

the term quantum gravity.

It is worth distinguishing two separate but related concepts: the first is astrophysical black holes,

which here are taken to represent those compact, rotating, accreting objects that really exist in nature.

The second are mathematical black holes, which represent the mathematical models of spacetime

geometries that feature an event horizon (or at the least an apparent horizon). Mathematical black

holes predicted by general relativity often possess rich causal structures within their interiors, such

as bifurcate inner horizons and time-traveling geodesics of the Kerr metric for rotating vacuum

black holes that will be described in more detail in Sec. 1.2, but these structures may not form in

astrophysically realistic systems. One of the goals of the present thesis is to understand whether the

inner horizon structure of mathematical black holes also exists in astrophysical black holes.

Throughout my years of study of black hole interiors and discussions from researchers around

the globe, I have found that though there are few who dare to study inner horizons, those who

do are generally driven by one of two motivations (or three, when my advisor is included in the

mix).1 The first motivation, sought after largely by mathematicians and mathematical physicists, is

1Though there are many additional research groups interested in black hole interiors from a holographic perspective
to understand, e.g., the black hole information problem, they generally ignore the inner horizon, assume a spacelike
singularity (as supported by the conclusions of this thesis), or in a small number of cases [11] fit under the category of
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to understand the strong cosmic censorship conjecture, which states that spacetime can never be

extended past an inner (specifically, Cauchy) horizon and therefore that general relativity is purely

deterministic (see Sec. 1.2 for details). Such a conjecture implies that travelers falling into a black

hole (whether astrophysical in origin or artificially constructed in the far future) will never be able

to continue through a wormhole to a new universe, even though such a wormhole is predicted for

rotating or charged mathematical black holes. The potential for black holes to provide a mechanism

to travel through time and/or space drives much of the perception of black holes in popular culture,

aside from its utility as a mathematical problem in its own right.

The second main motivation many researchers have to study black hole inner horizons is to

answer the long-standing open question, “what is the generic final state of a gravitational collapse?”

For stellar objects below a given mass threshold, their collapse will eventually be stalled indefinitely

by quantum degeneracy pressure to form either a white dwarf or a neutron star. But above this

threshold, the collapse should continue until a black hole is formed. Beyond this point, the collapsing

material may form a spacelike singularity without an inner horizon, a timelike singularity hidden by

an inner horizon, or a lightlike (null) singularity along the inner horizon.2 But one can probe even

more deeply than to ask about the nature of the classical singularity produced from gravitational

collapse. For example, Kerr himself espouses the idea that the collapse will eventually stall to

form a star-like object within the inner horizon [102] (the viability of these so-called “regular” or

“singularity-free” models will be examined in detail throughout Chapters 4 and 6, with the general

conclusion that they are not semiclassically stable). Alternatively, various theories of quantum

gravity make largely unconstrained predictions about how collapse toward a singularity might lead

to a bounce toward a white hole or might destabilize the black hole to form a compact horizonless

object (like a fuzzball or gravastar) or might cause the black hole to evaporate completely. The inner

horizon and the instabilities it induces can thus serve as a theoretical testbed to differentiate various

the first motivation mentioned in this paragraph.
2See Sec. 2.1 for details on the history of this problem of understanding the genericity of spacelike BKL singularities

versus null singularities as the final endpoint of collapse-driven perturbations.
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models in quantum gravity and understand what black holes really look like once they form.

A third potential motivation to study the inner horizon arises from the acknowledgment that

the inflationary instability described in detail in Chapter 2 has the potential to produce a natural

particle accelerator with energies orders of magnitude above anything we might ever hope to produce

on Earth. Not only are black hole interiors ripe with new physics beyond the standard model that

has yet to be explored, but they also have the potential to host collisions so large that baby universes

may form [82]. While such an idea will not be explored further in this thesis, it would have profound

implications for many of the outstanding problems of quantum information and of fine-tuning in

cosmology.

As a primer for the reader, in the context of the first motivation described above, the conclusions

of this thesis support the claim that both classical and quantum perturbations act to block off the

inner horizon completely and prevent any possibility of traveling through a wormhole. In the context

of the second motivation, the conclusions of this thesis support the claim that spacelike singularities

are the generic result of any gravitational collapse with angular momentum and quantum matter,

and these singularities persist up to at least Planckian energies over astrophysical time scales. In

the context of the third motivation, the conclusions of this thesis are that not only will classical

matter inflate to an exponentially diverging energy-momentum near the inner horizon, but even in a

perfect vacuum, the mere presence of an inner horizon will cause the local, spontaneous production

of Hawking radiation that will quickly exceed Big-Bang energies.

Whatever the reason for studying inner horizons within black holes, it is hopefully clear that

something both complex and fascinating is happening within the heart of astrophysical black holes.

Near-inner-horizon effects stand at the cutting edge of our pursuit of knowledge not only in the

world of mathematics but also in our physical understanding of the ability of theories like general

relativity and quantum gravity to model the real world. In the next section, a deeper focus will be

placed on the nature of the inner horizon and other structures predicted by general relativity within

mathematical black holes.
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1.2 Anatomy of a black hole

In general relativity, space and time combine to form a single 4-dimensional manifold. One

consequence of this fact is that black holes usually cannot be visualized comprehensively with cartoon

diagrams that keep track of only spatial features. Instead, each observer within a spacetime will

experience the black hole differently as they move in time along their own worldline.

As an example, the experience of a freely falling radial observer for the simplest possible

model for black holes (the Schwarzschild metric) is shown in Fig. 1.1. Each frame in this figure

was computed with the help of the Black Hole Flight Simulator [81], a ray-tracing code written by

Andrew Hamilton that solves the geodesic equations so that various black hole spacetimes can be

visualized in real time for any choice of observer. In the first frame of this figure, the observer begins

in free-fall outside of the black hole. The most prominent feature in the image is the black hole

shadow, the voided portion of the field of view caused by the bending of light rays near the central

source of gravity. This shadow will also be referred to throughout this thesis as the past horizon,

since its image lies at the same radius as the event horizon, though the event and past horizons are

separate hypersurfaces—the observer passes directly through the event horizon in the third frame of

Fig. 1.1, while the past horizon continues to appear ahead of the observer as they continue their

descent all the way to r = 0.

Once the observer crosses the event horizon and enters into the interior of the black hole, they

will never be able to return to the exterior portion of the Universe unless they travel faster than

the speed of light (which is strictly forbidden for any object with mass). Instead, they are always

doomed to reach the central spacelike singularity at r = 0. One might assume that this singularity

would appear as a single point with infinite density, but rather, the final frames of Fig. 1.1 reveal

that at the spacelike singularity, the past horizon appears as a planar surface extending infinitely far

in every direction.

The black hole of Fig. 1.1 can also be visualized more comprehensively with the help of a

conformal spacetime diagram, also called a Penrose diagram, as in Fig. 1.2. Such a diagram plots
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no name no name

no name no name

no name no name

Figure 1.1: Six frames from a visualization of the view seen by an observer who free-falls radially
through the horizon of a Schwarzschild black hole. From left to right then top to bottom, the
observer is at radii r = 10, 3, 2, 1, 0.2, and 0.02 (in units of the gravitational radius GM/c2). The
inset at the bottom left shows the location of the observer in an equatorial spatial slice of the black
hole spacetime, with the innermost red circle corresponding to the event horizon at r = 2. The
background is an image of the Milky Way from Gaia Data Release 3 [72].
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Figure 1.2: Penrose diagram for the gravitational collapse of a shell of matter (red curve) in a
spherically symmetric, electrically neutral black hole. The event horizon is shown by the dashed
blue line.

both radial and temporal coordinates, while suppressing the angular coordinates (every point on

this diagram has the topology of a 2-sphere). Penrose diagrams are specially constructed so that

radial light rays always appear with a slope of ±1 (in units where the speed of light c = 1) and all

regions at infinity are conformally scaled to a finite position on the plot.

The Penrose diagram of Fig. 1.2 specifically depicts the Oppenheimer-Snyder spacetime, which

models the gravitational collapse of a shell of matter into a black hole. Everywhere outside the

shell (to the right of the red curve), the spacetime is identical to the Schwarzschild spacetime.

Therefore, it is common to take the collapse to have occurred sufficiently far into the past that the

full spacetime can be taken to be the Schwarzschild metric, equipped with the appropriate boundary

conditions. For example, the visualizations of Fig. 1.1 were produced solely in the context of an

eternal Schwarzschild black hole, where the past horizon is painted black. In the maximal analytic

extension, that surface would correspond to the horizon of a white hole, but for a realistic black hole,

the past horizon should coincide with the dimming, redshifting surface of the star that collapsed long

ago to form the black hole, which will become too dark to see after just a few light-crossing times.
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As previously mentioned, the black hole spacetimes depicted in Figs. 1.1 and 1.2 include the

simplest class of black holes, the Schwarzschild metric. Schwarzschild black holes contain an event

horizon at r = 2GM/c2, a spacelike singularity at r = 0, and not much else. If one wishes to model

a black hole that also contains an inner horizon, one can either add to the spacetime a non-zero

electric charge (the Reissner-Nordström metric), non-zero angular momentum (the Kerr metric), or

both (the Kerr-Newman metric). Consider, for example, the experience of an infalling observer in a

charged black hole, as depicted in Fig. 1.3.

The first three panels of Fig. 1.3 appear almost identical to that of Fig. 1.1, since both follow

an observer along a radial free-fall trajectory within a spherically symmetric spacetime. The main

difference in the initial frames is in the positions and apparent sizes of the horizons—for a charged

black hole, the event horizon will be at a smaller radius the greater the charge.

After the third frame of Fig. 1.3, the experience of the observer will change drastically

depending on their trajectory. If the observer continues in free-fall (not shown), the black hole

shadow will eventually stop growing in their field of view and instead will begin to shrink until it

disappears entirely once the observer reaches the inner horizon. In contrast, Fig. 1.3 shows what

happens if the interior observer accelerates outwards until they have negative specific energy with

respect to an asymptotically distant observer (this energy E is the constant of motion corresponding

to the covariant t-component of their 4-momentum; see, e.g., Eq. (2.42)). In that case, the black

hole shadow will not shrink and vanish but instead will grow until it takes up the observer’s entire

field of view at the inner horizon, as shown in Fig. 1.3. A third intermediate case, where the interior

observer’s specific energy is precisely zero, may result in the black hole shadow only taking up half

of the sky at the inner horizon; for Kerr black holes this special case is known as the Carter frame

and is the frame of choice for the inflationary Kasner metric derived in Chapter 2.

Why does the sky shrink to a point in the final frames of Fig. 1.3 as the observer approaches

the inner horizon, and how is the inner horizon even defined? The spacetime line element for an

empty, charged black hole (or any static, spherically symmetric vacuum spacetime) can be written

with free-fall coordinate time tff in the mostly pluses signature (− + ++) (the metric signature of
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Figure 1.3: Six frames from a visualization of the view seen by an observer who free-falls radially
into a Reissner-Nordström black hole with electric charge Q = 0.8 (in units of the gravitational
electric charge M

√
4πϵ0G). From left to right then top to bottom, the observer is at radii r = 10, 3,

1, 0.8, 0.401, and 0.4001 (in units of the gravitational radius GM/c2). Between the third and fourth
frames, the observer briefly accelerates outward to return home, but since they have already crossed
the event horizon at r = 1.6, their efforts are in vein—the sky above shrinks to an exponentially
blueshifted point as they approach the inner horizon at r = 0.4.
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choice throughout this thesis) as

ds2 = −c2dt2ff + (dr + βc dtff)
2 + r2(dθ2 + sin2θdφ2), (1.1)

where β is the Newtonian escape velocity, which for a Reissner-Nordström black hole with Misner-

Sharp mass M(r) =M −Q2/(8πϵ0rc2) is given by3

βc =
√

2GM(r)
r

(1.2)

(for comparison, the line element in the standard static coordinate chart is given in Eq. (4.1)). The

key takeaway from this line element is that for constant free-fall time, dtff = 0, the metric appears

spatially flat (Minkowski), and therefore, the geometry can be understood as space itself flowing

inward like a river at a speed βc, while any observers in free-fall are simply carried along by the

river as they obey the rules of special relativity [88]. The place where the inflow of space reaches the

speed of light, β = 1, corresponds to the event horizon, since beyond this point, the inflow speed β is

greater than 1 and the observer will never be able to back-paddle fast enough to escape the black

hole.

With this picture in mind, the inner horizon can be defined as the second spot in the infaller’s

trajectory (after the event horizon) where the inflow of space reaches the speed of light, this time

with β approaching 1 from above. Conceptually, one can imagine a “force” (electric in the case of

Reissner-Nordström or centrifugal in the case of Kerr) that couples to gravity to slow the inflow of

space back down to subluminal speeds close enough to the central singularity. An infaller is then

prevented from going too close to the gravitationally repulsive singularity at the core but is otherwise

free to travel forward or backward in radius in the region beyond the inner horizon.

When an infaller has negative specific energy within a black hole, as in the last three frames

3It can often be a bit of a hassle to keep track of every fundamental constant throughout every calculation. For the
remaining chapters of this thesis, geometrized units will be used so that the constants c, G, 4πϵ0, kB , and h̵ can be
safely set to unity, with the only remaining degree of freedom for any quantity’s units given by a mass dimension.
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Figure 1.4: Penrose diagram for a static, charged (Reissner-Nordström) black hole.

of Fig. 1.3, it can thus be pictured as a futile back-paddling against the superluminal inflow of space,

and they are doing so strongly enough that by the time they reach the inner horizon (where β slows

to 1), an infinite amount of time has passed from the perspective of the outside Universe. Thus, the

bright point in the last frame of Fig. 1.3 actually corresponds to light that is becoming infinitely

blueshifted from a Universe approaching the end of time.

The causal structure of the inner horizon can be explained more comprehensively with the help

of the Penrose diagram of Fig. 1.4, which equivalently models the spacetimes of Reissner-Nordström

black holes and equatorial cuts of Kerr black holes. In this diagram, the collapsing shell of matter

that first formed the black hole is assumed to have occurred far enough into the past that it coincides

with the past horizon (the bottom-left diagonal at radius r = r+). But more importantly, the inner

horizon in this figure (at r = r−) is split into two separate hypersurfaces—one that is only traversable
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by ingoing (i.e., left-moving, positive-energy) observers, and one that is only traversable by outgoing

(i.e., right-moving, negative-energy) observers. The observer of Fig. 1.3 is reaching this latter,

rightmost portion of the inner horizon. At this hypersurface, note that the observer will see ingoing

light signals from the entire future of the Universe (note where t→∞) all at once. The observer’s

evolution could in principle be continued past this point into the wormhole region at 0 < r < r−,

but as Penrose was the first to point out [152], the light from the infinite future of the external

Universe will be infinitely blueshifted at the inner horizon and would likely trigger an instability

that substantially modifies the local geometry. This classical instability, known as mass inflation, is

the subject of Chapter 2.

As a final comment on terminology, it is worth distinguishing the general notion of an inner

horizon, as defined above in terms of the space inflow speed β, from the term Cauchy horizon,

which refers to the boundary of predictability, beyond which one cannot deterministically extend the

development of a Cauchy surface due to the presence of a timelike singularity. In all of the black hole

spacetimes mentioned thus far (in particular, the Reissner-Nordström and Kerr metrics), the inner

horizon is also a Cauchy horizon, but in general, it is possible to construct dynamically evolving

black hole models where the two notions do not coincide (e.g., if the black hole evaporates). One

may worry that the results of this thesis only apply to Cauchy horizons, and that in more realistic

dynamical cases, inner horizons do not suffer any instabilities. However, recent work [39] has shown

that this is not the case—an exponential buildup in energy is a generic feature of any slowly evolving

inner horizon subject to perturbations. Thus, mass inflation is not simply an artificial byproduct of

the fact that the Cauchy horizon receives infinitely blueshifted light from timelike infinity, but rather,

this thesis is justified in its use of such stationary spacetimes as a minimal model for the generic

divergent behavior near any inner horizon where ingoing and outgoing perturbations intersect and

rapidly inflate to energies above the Planck scale.
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1.3 Overview of remaining chapters

The central goal of this thesis is to show that although many mathematical black hole models

feature inner horizons hiding timelike singularities, such structures break down and collapse into

spacelike singularities when the astrophysically relevant effects of rotation and accretion are included.

The progression of the thesis begins with arguments from classical physics (i.e., general relativity and

classical field theory) in Chapters 1–2 before shifting focus to semiclassical physics (i.e., quantum

field theory in curved spacetime) in Chapters 3–6. The fascinating conclusion is that even if a

black hole is completely isolated and free of accretion that would trigger the classical mass inflation

instability, the very presence of an empty quantum field is enough to create new particles from the

vacuum once the black hole is formed that will diverge in energy near the would-be inner horizon.

On the side of classical physics, Chapter 2 presents a novel model I developed during the

course of my Ph.D. that describes the geometry of spacetime near the inner horizon when a rotating

black hole is subject to a small but continuous bath of accretion. The model, dubbed the inflationary

Kasner metric, derives from a much more complex model of rotating, accreting black holes analyzed

by Hamilton a decade prior [84, 85, 90], the conformally separable Kerr metric. While this latter

model provides a complete global picture of how a rotating black hole responds to accretion, its

behavior near the inner horizon becomes quite intractable when performing calculations from the

full metric, especially if one wishes to analyze the effects of quantum fields. Consequently, the

inflationary Kasner metric serves as a local proxy that captures the main perturbative effects near

the inner horizon in a simple yet comprehensive manner.

The inflationary Kasner model presented in Chapter 2 is derived from the assumptions that

near the inner horizon, the backreacting geometry evolves quickly enough in time that any spatial

effects can be ignored (and therefore the metric is locally homogeneous), and the dynamics are

sourced primarily by collisionless, hyperrelativistic fluid streams along the principal null directions.

Under these simple assumptions (which agree with the full behavior in the conformally separable

Kerr solution), the spacetime will evolve through two epochs. The first, associated with mass
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inflation, predicts the traditional exponential increase in energy-momentum from generic perturbing

accretion. But then, the evolution will transition into a collapse epoch, where the geometry will stop

compressing along the direction of the accreted streams and instead will begin to stretch along the

same direction as the transverse directions collapse until a spacelike singularity is reached.

After analyzing the classical effects of accretion inside a rotating black hole in Chapter 2,

the question may then be asked of whether one can probe further beyond the straightforward

conclusion that the inner horizon should be replaced with a spacelike singularity. The notion of a

singularity in physics is a general one used to describe any appearance of infinite quantities that

signal the breakdown of the theory; for example, in electromagnetism, the Coulomb potential features

a singularity at r = 0 that can be truncated or screened with the help of quantum field theory, or in

hydrodynamics, the edge of a shock wave or the pinch point of an emerging drop contain infinite

velocity gradients or curvatures, respectively, which signal the need for a microscopic description of

the physical behavior. In the case of gravitational curvature singularities like the one formed from

perturbation instabilities near the inner horizon, the increase in energy beyond the Planck scale

signals the need for a quantum description of gravity.

Chapter 3 describes precisely this quantum description of gravity. The framework of choice,

semiclassical gravity, is an effective field theory able to probe the singularity more deeply than

classical general relativity, or potentially to remove it entirely. Chapter 3 provides an overview of

the formalism of quantum field theory in curved spacetime, describing the theoretical underpinnings,

open problems, and quantities of interest to be calculated. Then, Chapters 4–6 examine the three

most important quantities for various black hole models: Chapter 4 focuses on the particle number

operator N̂ , which is used in calculations of Hawking radiation, Chapter 5 focuses on the squared field

operator ϕ̂2, which, when renormalized, gives information about vacuum polarization, and Chapter 6

focuses on the stress-energy tensor operator T̂µν , which, when renormalized, gives information about

backreaction effects via a semiclassical modification to Einstein’s field equations.

The central conclusion of these semiclassically-focused chapters is that both charged and

rotating black hole spacetimes feature semiclassical divergences at the inner horizon even when they
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are in a vacuum and devoid of accretion. In Chapter 4, the most extensive chapter (it combines two

and half published works, one on Reissner-Nordström, one on Kerr, and part of one on singularity-free

black holes), it is shown by several independent means that an infalling observer will experience a

diverging amount of Hawking radiation as they approach the inner horizon. Similarly for Chapters 5

and 6, it is shown that even if one regards these Hawking particles as locally unphysical, other

semiclassical quantities also act to backreact on the spacetime and produce the same dynamic

evolution predicted in the classical case in Chapter 2.

The conclusion is simple—inner horizons are not stable. If someone (or something) were to

fall into an astronomically realistic black hole, they could not enter into a wormhole or orbit a stable,

regular core, but instead, the effects of both general relativity and 1-loop quantum field theory

always conspire to block off their descent. The generic outcome appears to be the formation of

a strong, chaotic, spacelike singularity in place of the inner horizon, thus restoring the notion of

determinism within semiclassical gravity.



Chapter 2

Classical Mass Inflation

The contents of this chapter have been published as [125].

2.1 Introduction

Physicists have long wondered what happens inside astrophysically realistic black holes. The

exterior geometry of a back hole has been well-established to be described completely by the Kerr-

Newman metric, since any perturbations during a generic collapse will be radiated away and leave

the black hole with only three uniquely-identifying parameters: a charge Q, angular momentum J ,

and mass M . But when the Kerr-Newman solution is extended to the interior of a black hole’s event

horizon, some puzzling, nonphysical structures emerge.

Within the simplest model of black holes (the Schwarzschild solution), no major peculiarities

or nonphysical structures arise except the divergence of the spacetime curvature at r=0 at a spacelike

singularity. Prior to the 1960s, many opposed the idea that a realistic gravitational collapse would

lead to a singularity, since most known models of collapse were highly idealized and unstable to

perturbations [115]. However, in 1965, Penrose published a theorem demonstrating the inevitability

of singularities within event horizons of black holes [151], and soon after, Belinskii, Khalatnikov, and

Lifschitz found a realistic model for such a collapse to a spacelike singularity (the so-called BKL

collapse), which is highly complex and oscillatory [24].

In spite of these efforts, the fact remains that most, if not all, black holes are not spherically

symmetric and instead carry at least some angular momentum. The structure of the Kerr-Newman
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interior differs drastically from that of a Schwarzschild black hole—instead of a spacelike singularity

at the center, the Kerr-Newman solution has a timelike singularity along with a second horizon

within the event horizon. This inner horizon coincides with the singularity when J = 0 and Q = 0,

but for nonzero spin or charge, the spacetime between the inner horizon and the singularity forms a

region in which predictability breaks down—general relativity is powerless to predict unambiguously

what would happen if an observer passes through the inner horizon, because such an observer would

be able to view the singularity.

Aside from the breakdown of predictability, the added interior structure of a rotating or

charged black hole is problematic for another reason. As first pointed out by Penrose in the context

of a Reissner-Nordström (charged) black hole, the inner horizon is a surface of infinite blueshift, so

that an infalling observer at an inner horizon would see the entire history or future of the Universe

flash before their eyes as the energy of any incoming radiation becomes classically unbounded [152].

Penrose conjectured that the added effects of this diverging radiation would change the underlying

spacetime curvature of the vacuum solution [165]. This conjecture was finally confirmed a few

decades later, when Poisson and Israel performed a nonlinear perturbation analysis in a seminal 1990

paper [23, 154]. Poisson and Israel concluded that the crossing of ingoing and outgoing shells of null

dust at the inner horizon would lead to a divergence of the spacetime curvature. Poisson and Israel

dubbed this divergence “mass inflation,” because an observer near the inner horizon would measure

an exponentially large quasi-local internal mass parameter (though the global mass as measured at

infinity would remain finite).

Classically, the Poisson-Israel toy model of mass inflation leads to the formation of a null weak

curvature singularity, in which the curvature locally diverges but the tidal distortion of extended

objects traveling along timelike geodesics remains finite, allowing for the continuation of spacetime

beyond the Cauchy surface [138, 139]. Dafermos extended this result for the less-simplified Einstein-

Maxwell-real scalar field equations [49], and Ori and others found that null curvature singularities

provide a generic class of solutions to the Einstein equations, adding it to the list of known possible

singularities that had previously only included the BKL singularity [32, 140, 142]. The BKL and
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null curvature singularities are quite different in nature—though they both may be oscillatory in

nature, the BKL singularity is strong and spacelike, whereas the null curvature singularity is weak

and lightlike [141].

Despite the enticement of the null weak curvature singularity, both in its mathematical

accessibility and in its potential to allow for a gateway to another Universe, it suffers one fatal

flaw. One of the key assumptions for all the models that predict a null weak singularity is that the

collapsed black hole is in complete isolation. Under this assumption, which still dominates much of

the research program for mass inflationary phenomena to this day [37], the only source of ingoing

perturbations is the Price tail, a stream of gravitational waves emitted and backscattered during the

collapse. The Price tail decays with an inverse power law in advanced time, and calculations for the

formation of a null weak singularity assume that no additional radiation perturbs the metric above

that power law [156]. However, astrophysical black holes continue to accrete material long after the

initial gravitational collapse, and even the cosmic microwave background radiation would dominate

over the longest-lived Price tail modes of a stellar-mass black hole after only 1 second [86].

Motivated by this shortcoming, Burko found numerically that a null weak singularity only

forms for a sufficiently steep radiation power law drop-off, and that if it does not drop off quickly

enough, a spacelike singularity will form at the intersection of the ingoing and outgoing inner horizons

and grow until it has completely sealed off the Kerr tunnel [34, 35].

Hamilton subsequently developed a self-similar model for the inner horizon spacetime that

generalizes the mass inflation phenomenon to include arbitrary ingoing and outgoing collisionless

streams of radiation at arbitrary times, first for spherical-symmetric spacetimes [91] and soon after

for the more realistic case of rotating black holes [84, 85, 90]. The rotating case, which assumes

conformal separability, is reviewed in more detail in Section 2.3.1. The key conclusion from this

model is that the continued streams eventually slow the inflation of the curvature, causing the

spacetime to collapse radially. The resulting global geometry, used throughout this chapter, is shown

in the Penrose diagram of Fig. 2.1.

Though the conformally separable model of Hamilton is valid through the inflation and the
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t

Figure 2.1: Penrose diagram for the late-time evolution of a collapsed star with a Kerr exterior
(white) matched to an inflationary Kasner regime (shaded blue). The inner horizons (dashed lines) of
the Kerr metric are superseded by the BKL singularity of the inflationary Kasner model (squiggled
line). The gray arrows labeled t indicate the direction of increasing Boyer-Lindquist time.

beginning of the subsequent collapse of the spacetime, it eventually fails once the rotational motion

of the streams becomes comparable to their radial motion. After this point, numerical calculations

indicate that the collapse follows a BKL-like behavior [86]. However, recent semiclassical calculations

suggest that quantum backreaction effects may alter or even invert the collapse [18]. Thus, one may

wish to calculate the renormalized stress-energy tensor in the conformally separable Kerr spacetime.

Such a calculation has not yet been attempted because of the complexity of Hamilton’s model;

however, here we derive a new model that considerably simplifies the conformally separable Kerr

model while still retaining its essential features of inflation and collapse. This model, dubbed the

inflationary Kasner model, will be shown to provide a reasonable continuation of the Kerr metric
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near the inner horizon through the first two Kasner epochs of its BKL collapse, and it will hopefully

allow for future quantum calculations in this region (see Chapter 5).

In Section 2.2, the inflationary Kasner metric is derived as a general solution to Einstein’s

equations for a homogeneous spacetime sourced by a null, perfect fluid. In particular, it is found

that for a line element of the form

ds2 = −α(T )2dT 2 + a1(T )2dx2 + a2(T )2dy2 + a3(T )2dz2, (2.1)

the general solution for an energy-momentum tensor whose only non-negligible components are

T00 = T11 takes the form

a1 ∝ T −p/2 exp (T 2p) , a2 ∝ a3 ∝ T p, (2.2)

for some arbitrary constant p, the arbitrariness of which reflects the gauge freedom in the choice of

the time coordinate T . This metric is dubbed the inflationary Kasner metric because it is a natural

non-vacuum extension of the Kasner metric, a vacuum solution used to model collapse to a BKL

singularity. During a BKL collapse, the spacetime undergoes a series of “BKL bounces,” between

which the evolution is described by the Kasner metric’s power law behavior. The BKL model is

described in more detail in Sec. 2.2.3, in which it is shown how the two epochs of the inflationary

Kasner solution can be reduced in certain limits to previously obtained results.

Then, in Sec. 2.3, it is shown how the inflationary Kasner model can be applied to the inner

geometry of astrophysical black holes. To do so, the model is connected to the Kerr metric in a

regime where both are valid, employing Hamilton’s conformally separable Kerr model to facilitate

the matching and to determine the degree to which the assumptions of the inflationary Kasner model

are valid near the inner horizon. Sec. 2.3.1 is devoted to reviewing the conformally separable Kerr

model and comparing it to the inflationary Kasner model, where it is found that the inflationary

exponent ξ of the conformally separable model is related to the inflationary Kasner time T via the

relation T p ∝ e−ξ. Then, in Sec. 2.3.2, the behavior of null geodesics in the model is analyzed, via

ray-tracing from an observer in the inflationary Kasner spacetime backwards until they connect to
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null geodesics in the Kerr spacetime. Such a matching allows one in Sec. 2.4 to answer the practical

question of what an observer falling toward the inner horizon of an astrophysical, classical black hole

might see.

2.2 Inflationary Kasner metric

2.2.1 Preliminaries

The present analysis uses an orthonormal tetrad formalism, in which quantities are defined

in the tetrad basis {em̂} to yield physically measured components in the local, Cartesian frame of

an observer. In such a formalism, coordinate-frame quantities can be converted into tetrad-frame

quantities through the vierbein em̂µ, which can be read off directly from a line element via

ds2 = gµνdxµdxν = ηm̂n̂e
m̂
µe

n̂
νdx

µdxν . (2.3)

Indices for abstract, Einstein-summed tetrad-frame quantities are denoted by lowercase Latin

letters with hats, while indices for abstract, Einstein-summed coordinate-frame quantities are denoted

by lowercase Greek letters. Indices for specific components of tetrad-frame quantities are denoted by

Arabic numerals, while those of coordinate-frame quantities are given by their standard Latin or Greek

letters. Thus a tetrad-frame four-vector can be expressed as km̂ = {k0, k1, k2, k3}, a coordinate-frame

one as kµ = {kt, kr, kθ, kϕ}, and the conversion between the two is given by

km̂ = em̂µkµ. (2.4)

For a more complete review of the tetrad formalism, see Müller’s “Catalogue of Spacetimes”

[134] or Chandrasekhar’s The Mathematical Theory of Black Holes [42].
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2.2.2 Derivation of the line element

The purpose of this subsection is to derive the line element for the inflationary Kasner metric,

which in its final form reads

ds2 = a21 (−dT 2 + dx2) + a22 (dy2 + dz2) , (2.5)

with

a1 =
e(T−T0)/2
√
16πΦ0T0

( T
T0
)
−1/4

, a2 =
1√

16πΦ0T0
( T
T0
)
1/2
, (2.6)

where the time coordinate T progresses backward from the positive constant T0 to 0, and the positive

constant Φ0 represents the mass-energy density of the streams of fluid seen by an observer at T = T0.

In general, the mass-energy density will be found to depend on T through the relation

Φ(T ) = Φ0√
T /T0 eT−T0

. (2.7)

The form of the inflationary Kasner line element of Eq. (2.5) relies on two main assumptions.

First, assume the metric is spatially homogeneous, so that the metric coefficients are functions only

of the time coordinate T . Such a requirement exists in a more stringent form for the Kasner metric

described in the next section, in which the metric coefficients are power laws in T during a BKL

collapse. Second, assume the solution to Einstein’s equations is sourced by a collisionless, null, perfect

fluid in the radial direction. In a tetrad frame, such a source corresponds to the energy-momentum

tensor

Tm̂n̂ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

Φ 0 0 0

0 Φ 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

, (2.8)

where Φ is the mass-energy density of the null streams. For a realistic accreting black hole, even if

the accreted material is not null and purely radial, near the inner horizon, all streams of matter and

radiation are expected to focus along the principal null directions ultrarelativistically, so that the
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energy-momentum tensor to a good approximation takes the form above.

Assume the line element (and therefore the vierbein) can be written in a diagonal basis. Thus,

the tetrad 1-forms may be written as

e0µdx
µ = a1a2a3

T
dT, (2.9a)

e1µdx
µ = a1dx, (2.9b)

e2µdx
µ = a2dy, (2.9c)

e3µdx
µ = a3dz, (2.9d)

where the scale factors ai are functions only of the time coordinate T but are otherwise left arbitrary.

The choice of the present form of e0T will help to simplify later calculations; in general, e0T may be

any function of T after a suitable transformation of the T coordinate.

Instead of working in a coordinate basis and using the metric components to find the Christoffel

connection coefficients Γµ
νρ, here we work entirely in a tetrad basis without reference to the coordinate

frame, so we must first find the analogous tetrad connection coefficients. In the tetrad basis, the

connection 1-forms ωm̂
n̂ (which are antisymmetric in their tetrad-frame indices) can be defined by

the torsion-free condition

dem̂ + ωm̂
n̂ ∧ e

n̂ = 0, (2.10)

or in component form,

ωm̂
n̂ρ = e

m̂
µ∇ρ e

µ
n̂ . (2.11)

Converting all indices of the connection 1-form components to a tetrad basis then yields the

Ricci rotation coefficients ωm̂n̂r̂, antisymmetric in their first two indices:

ωm̂n̂r̂ = ηℓ̂m̂e
ρ
r̂ ω

ℓ̂
n̂ρ = e

µ
m̂ e ρ

r̂ ∇ρ en̂µ. (2.12)

For the tetrad 1-forms of Eqs. (2.9), the six nonvanishing Ricci rotation coefficients are as follows,
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where i ∈ {1,2,3} and a dot above a variable indicates differentiation with respect to the time

coordinate T :

ω0ii = −ωi0i =
T

a1a2a3

ȧi
ai
. (2.13)

The tetrad-frame Riemann curvature tensor components Rk̂ℓ̂m̂n̂ = e
κ
k̂
e λ
ℓ̂
e µ
m̂ (∇κ∇λ −∇λ∇κ) en̂µ

can then be calculated, yielding 18 nonzero components: for i, j ∈ {1,2,3} and i ≠ j,

R0i0i = Ri0i0 = −R0ii0 = −Ri00i =
T 2

a21a
2
2a

2
3

( ȧi
ai

d ln (a1a2a3/T )
dT

− äi
ai
) , (2.14a)

Rijij = −Rijji =
T 2

a21a
2
2a

2
3

ȧiȧj

aiaj
. (2.14b)

Then, the tetrad-frame Ricci tensor Rk̂m̂ = η
ℓ̂n̂Rk̂ℓ̂m̂n̂, Ricci scalar R = ηk̂m̂Rk̂m̂, and tetrad-

frame Einstein tensor Gk̂m̂ = Rk̂m̂ −
1
2ηk̂m̂R follow naturally. The resulting four nonzero Einstein

components, where i ∈ {1,2,3} with cyclic addition, are

G00 =
T 2

a21a
2
2a

2
3

( ȧ1ȧ2
a1a3

+ ȧ1ȧ3
a1a3

+ ȧ2ȧ3
a2a3

) , (2.15a)

Gii = G00 −
T

a21a
2
2a

2
3

d

dT
(( ȧi+1
ai+1
+ ȧi+2
ai+2
)T) . (2.15b)

Under the assumption that the tetrad-frame energy-momentum tensor has the form of Eq. (2.8),

Einstein’s equations give a system of four nontrivial equations:

G00 = 8πΦ, (2.16a)

G11 = 8πΦ, (2.16b)

G22 = 0, (2.16c)

G33 = 0. (2.16d)

The most natural solution to Eqs. (2.15) and (2.16) can be obtained by setting a2 = a3, which

reduces Eqs. (2.16c) and (2.16d) to the same equation. Physically, this corresponds to the assumption



26

that the y-z plane, orthogonal to the streams of matter, remains isotropic, a reasonable assumption

close to the horizon, given that any streams will focus ultrarelativistically in the x-direction. The

remaining three equations simplify to

8πΦ = T
2H2

a21a
4
2

(2H1 +H2), (2.17a)

8πΦ = T
2H2

a21a
4
2

(2H1 +H2 −
2Ḣ2

H2
− 2

T
) , (2.17b)

0 = 2H1H2 +H2
2 −

H1 +H2

T
− Ḣ1 − Ḣ2, (2.17c)

where we have introduced the quantities

Hi ≡
ȧi
ai

Ô⇒ Ḣi =
äi
ai
−H2

i (2.18)

for i ∈ {1,2}. Combining Eqs. (2.17a) and (2.17b) to eliminate Φ yields

Ḣ2

H2
= − 1

T

Ô⇒ H2 =
p

T

Ô⇒ a2 = C2T
p, (2.19)

where p and C2 are arbitrary integration constants. Substituting this solution into Eq. (2.17c) yields

Ḣ1 −
(2p − 1)

T
H1 −

p2

T 2
= 0

Ô⇒ H1 = −
p

2T
+ qT 2p−1

Ô⇒ a1 = C1T
−p/2 exp( q

2p
T 2p) , (2.20)

where q and C1 are arbitrary integration constants and the first-order differential equation in H1 is

most easily solved with the help of the integration factor exp (− ∫ 2p−1
T dT) = T 1−2p.
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Thus, the tetrad 1-forms for the inflationary Kasner metric are

e0µdx
µ = C1C

2
2T

3p/2−1 exp( q
2p
T 2p)dT, (2.21a)

e1µdx
µ = C1T

−p/2 exp( q
2p
T 2p)dx, (2.21b)

e2µdx
µ = C2T

pdy, (2.21c)

e3µdx
µ = C2T

pdz. (2.21d)

Without loss of generality, replace the constants C1, C2, and p through a set of redefinitions

and coordinate transformations with the constants T0 and Φ0, so that the vierbein becomes

e0µdx
µ = e(T−T0)/2
√
16πΦ0T0

( T
T0
)
−1/4

dT, (2.22a)

e1µdx
µ = e(T−T0)/2
√
16πΦ0T0

( T
T0
)
−1/4

dx, (2.22b)

e2µdx
µ = 1√

16πΦ0T0
( T
T0
)
1/2
dy, (2.22c)

e3µdx
µ = 1√

16πΦ0T0
( T
T0
)
1/2
dz. (2.22d)

These tetrad 1-forms lead directly to the line element of Eqs. (2.5) and (2.6) through the relation in

Eq. (2.3). This form is chosen to illuminate the physical meaning of the constants (as described in

the next section) and to keep the exponential dependence in T as simple as possible. The radial

component of the tetrad-frame energy-momentum tensor, T00 = T11 = Φ, then reduces to Eq. (2.7).

2.2.3 Interpretation

The evolution of the inflationary Kasner geometry is visualized in Fig. 2.2. The evolution

begins at T = T0, when the mass-energy density Φ is at its small initial value of Φ0. At this point, an

observer might see such a geometry if, for example, they fall inside a rotating, accreting black hole

and approach its inner horizon. Once the observer has come close enough to the inner horizon, the

inflation epoch will begin, characterized by the rapid exponentiation of the observed stream energy
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Figure 2.2: Evolution of the inflationary Kasner geometry and radial energy-momentum from the
initial Kerr vacuum at time T = T0 through inflation and collapse. The plotted quantities are the
normalized tetrad-frame mass-energy density Φ/Φ0 (black) from Eq. (2.7) and the scale factors a1
(orange) and a2 (purple) from Eq. (2.6). The parameters chosen here are T0 = 9.09 and Φ0 = 0.209,
so as to match the parameters used in the remaining plots via Eq. (2.38).

density. As the observer’s proper time progresses forward and T progresses backward from T0, the

inflation will slow until a1 turns around (at the vertical gray line in Fig. 2.2), signaling the start

of the collapse epoch. The inflation-collapse transition occurs when T is of order unity, or more

precisely, when H1 changes sign from positive to negative at T = 1/2 (independent of the value of

T0). During the collapse epoch, Φ continues to increase as the spacetime collapses in the y- and

z-directions and the observer approaches the inflationary Kasner singularity at T = 0 where the inner

horizon would have been.

We have chosen to call the metric of Eq. (2.5) the inflationary Kasner metric because of its

similarity to a homogeneous vacuum solution first found by the mathematician Edward Kasner in
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1921 [99]. For three spatial dimensions, the Kasner metric has the line element

ds2 = −dT 2 + a21dx2 + a22dy2 + a23dz2, (2.23)

where the scale factors ai evolve purely as power laws in time, ai = T pi , for exponents pi that were

found in the vacuum solution to satisfy the following conditions:

∑
i

pi =∑
i

p2i = 1. (2.24)

From these Kasner conditions it can be shown that one of the exponents must always be

negative or zero while the other two are nonnegative. More specifically, if the Kasner exponents are

labeled in increasing order, they will satisfy the condition

−1
3
≤ p1 ≤ 0 ≤ p2 ≤

2

3
≤ p3 ≤ 1. (2.25)

This mathematical picture can be physically interpreted as an evolution in which one spacetime

axis expands while the other two collapse (assuming the time coordinate T is positive and decreases

with increasing proper time; otherwise the Kasner solution would describe a globally expanding

spacetime).

The significance and applicability of the Kasner metric for black hole interiors was explored in

the 1970s by Belinskii, Khalatnikov, and Lifschitz, who described a collapse consisting of a series

of “Kasner epochs” during which the geometry is approximated by a Kasner metric with constant

Kasner exponents pi [24]. According to the BKL model, the three spatial components of the metric

evolve in such a way so that the metric determinant decreases monotonically to zero in a finite

time, but one spatial component always increases while the other two decrease (cf. Eq. (2.25)).

Once one of the decreasing components has collapsed to a small enough value, the geometry then

undergoes a “BKL bounce,” in which one of the two collapsing components begins to grow, the

previously expanding component begins to collapse, and the angles of orientation for the collapsing
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and expanding axes change.

In 2017, the evolution of the inner horizon of a rotating, accreting black hole was explored

numerically by Hamilton, who found that the spacetime approximately undergoes a BKL collapse

as predicted a half a century earlier [86]. Here, we find that the inflationary Kasner solution is an

analytic model of such a collapse, with two Kasner epochs as described below.

The first epoch in the inflationary Kasner solution, labeled “inflation” on Fig. 2.2, begins

at T = T0. During inflation, the exponential terms in the line element of Eq. (2.5) dominate the

evolution of the geometry, so that the scale factor for the x-axis collapses while those of the y- and

z-axes remain approximately static. The behavior can thus be approximated as that of Minkowski

space with accelerated radar-like coordinates in the x-direction [130]. The inflation epoch resembles

a Kasner epoch with exponents

(p1, p2, p3) = (1,0,0), (2.26)

corresponding to a spacetime collapsing only in the radial direction (indeed, the growing streams focus

along the principal null directions during inflation). The inflation continues as the locally-measured

energy-momentum Φ grows at an absurdly fast rate with a scale factor of order ∼ e1/Φ0 (as confirmed

in the next section, in which it is found that the Kasner time T0 scales as 1/u ∼ 1/Φ0). For an

astronomically realistic black hole, in which the initial mass-energy density of accreted matter or

radiation is generally quite small after the initial collapse, Φ could reach 10100 and beyond. It is

perhaps fitting that Kasner himself (with his nine-year-old nephew) was the coiner of the term

“googol” [100].

Once the Kasner time T has grown small enough, the exponential terms in the Eq. (2.5)

freeze out, leaving the power laws in T to dominate the geometry’s evolution. The result is the

collapse epoch, beginning at around T = 1/2, in which the scale factor for the x-axis turns around

and begins to grow, the scale factors in the y- and z-directions continue to collapse, and the streams’

energy-momenta continues to grow, albeit at a slower rate in log(T ). This corresponds to a Kasner
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epoch with exponents

(p1, p2, p3) = (−
1

3
,
2

3
,
2

3
) , (2.27)

which can be found by a coordinate transformation of T from the (−1
4 ,

1
2 ,

1
2
) form of Eq. (2.5) in order

to satisfy the Kasner conditions of Eq. (2.24). This epoch approximates a Schwarzschild geometry

asymptotically close to the Schwarzschild singularity. To see why this is the case, note that in the

limit as r → 0, the Schwarzschild line element takes the form

ds2 ≈ 2M

r
dt2 − r

2M
dr2 + r2dΩ2, (2.28)

where dΩ2 = dθ2 + sin2θ dϕ2 is the 2-sphere line element.

With the coordinate transformations r → T 2/3 and t→ x (note that r is timelike and t spacelike

in this regime), the line element becomes

ds2 ≈ −dT 2 + T−2/3dx2 + T 4/3dΩ2, (2.29)

where the constants have been absorbed into the coordinates for simplicity. This is precisely the

(−1
3 ,

2
3 ,

2
3
) Kasner epoch when the θ-ϕ plane is transformed into the y-z plane.

Thus, the inflationary Kasner metric provides a simple model that encompasses all the relevant

features of the evolution of the geometry near the inner horizon of a rotating, accreting black hole as

it undergoes a BKL-like collapse. That collapse consists of two Kasner epochs, an inflationary epoch

characterized by Kasner exponents (1,0,0) that matches the behavior of the traditional Poisson-Israel

mass-inflation regime, and a subsequent collapse epoch characterized by Kasner exponents (−1
3 ,

2
3 ,

2
3
)

as the geometry approaches a spacelike singularity at T = 0.

In the next section, we confirm the applicability of this model to astrophysical inner horizons

by comparing it to a more complex model, the conformally separable Kerr model, with the eventual

goal of finding the necessary boundary conditions to attach the inflationary Kasner metric to the

Kerr metric far enough above the inner horizon.
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2.3 Matching near the inner horizon

We have yet to verify explicitly that the assumptions of the inflationary Kasner metric hold

true near the inner horizon of an astrophysical black hole. In order to do so, we employ Hamilton’s

conformally separable Kerr metric, which has already been shown to provide a reasonable classical

model of the inner workings of an accreting black hole [84, 85, 90].

In Sec. 2.3.1, we review the conformally separable model, finding that it exactly matches the

behavior of the inflationary Kasner model for asymptotically small accretion rates. Specifically, we

find in Eqs. (2.38) a set of transformations between the parameters and coordinates of the inflationary

Kasner and conformally separable Kerr models. These relations confirm the validity and applicability

of the inflationary Kasner model to an astrophysical inner horizon.

Then, in Sec. 2.3.2, we use the transformations of Eqs. (2.38) to match the inflationary Kasner

solution to the Kerr metric. Such a matching allows us to ray-trace null geodesics across both

regimes, from the Kerr background to an inflationary Kasner observer.

2.3.1 Conformally separable Kerr solution

Just as the inflationary Kasner metric provides a non-vacuum generalization of the vacuum

solution of the Kasner metric to include the effects of accretion, so too does the conformally separable

Kerr metric provide a generalization of the vacuum Kerr solution to include the effects of accretion.

Here we present the main results of the conformally separable model; a more complete review can be

found in Refs. [84, 85, 90] (or, in the Boyer-Lindquist form used here, in Ref. [86]).

Consider a rotating, accreting black hole with external mass M . For an ideal, rotating

Kerr black hole, three assumptions hold true: the black hole is axisymmetric, the spacetime is

stationary, and its Hamilton-Jacobi equations are separable [40]. The conformally separable model

presented below was developed in an attempt to find the most general metric that still satisfies

these conditions. To allow for the inclusion of accreting matter or radiation, however, the conditions

required slight modification. In particular, instead of strict stationarity, the assumption of conformal
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stationarity adopted here implies that the spacetime expands in a self-similar fashion with time at

an asymptotically small rate (this rate is the accretion rate v that is taken to be asymptotically close

to zero in Eq. (2.37)) [84]. Such a condition may not apply at the onset of a gravitational collapse

when the accretion is supplied by the bulk of the collapsing matter, but that collapse occurs within

a small proper time, and at late times, a black hole will only grow at a rate on the order of its light

crossing time divided by the age of the Universe, a very small number. However, it will still accrete,

so the assumptions of isolation and Price tail decay from models with a null weak singularity at the

inner horizon will not apply.

It should be noted that strictly speaking, there is no inner horizon in the conformally separable

model (nor in the inflationary Kasner model), since mass inflation near that region of spacetime will

give way to collapse. When we refer to the inner horizon, we thus mean the region of spacetime within

the black hole asymptotically close to the dimensionless Boyer-Lindquist radius r− ≡ 1 −
√
1 − a2, in

which crossing streams focus along the principal null directions and cause inflation and collapse. Also,

strictly speaking, the conformally separable model does not hold for extremal black holes, for which

∆′0 defined in Eq. (2.34) is zero. However, this should not be too worrisome, since astronomically

realistic black holes are expected to have spins no higher than the Thorne limit [171].

Under the assumptions of conformal stationarity, axial symmetry, and conformal separability,

the conformally separable line element takes the form [86]

ds2 = ρ2s e2(vt−ξ) ( dr2

(r2 + a2)2 e3ξ∆r

+ sin2θ

∆θ
dθ2 + −e

3ξ∆r(dt − ωθdϕ)2 +∆θ(dϕ − ωrdt)2

(1 − ωrωθ)2
) , (2.30)

where xµ = {r, t, θ, ϕ} are dimensionless Boyer-Lindquist coordinates (the radial coordinate is written

first to emphasize that r is timelike within the outer horizon). The function ∆r is the horizon

function, whose zeros define the location of the geometry’s horizons, and ∆θ is the polar function,

whose zeros define the location of the north and south poles. Additionally, ωr is the angular velocity

of the principal frame through the coordinates, and ωθ is the specific angular momentum of principal

null congruence photons. The r and θ subscripts denote functions of only r and θ, respectively, and
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ρs is the separable part of the conformal factor. Eq. (2.30) reduces to the familiar Kerr line element

when the following definitions are made:

∆r =
r2 − 2r + a2

(r2 + a2)2
, ∆θ = sin2θ, , ωr =

a

r2 + a2
, ωθ = a sin2θ, (2.31a)

ρs =M
√
r2 + a2 cos2θ, ξ = v = 0, (2.31b)

{r, t, θ, ϕ} = {rBL

M
,
tBL

M
,θBL, ϕBL} , (2.31c)

where M is the black hole’s external mass, a ≡ J/M2 is the black hole’s dimensionless spin parameter,

and {rBL, tBL, θBL, ϕBL} are the standard (dimensionful) Boyer-Lindquist coordinates.

If the vacuum Kerr form of Eq. (2.30) is generalized to include the effects of accretion, the

solution to Einstein’s equations sourced by ingoing and outgoing collisionless null streams implies

that three of the above definitions in Eqs. (2.31) are amended:

(1) The dimensionless factor v becomes an arbitrary free parameter, which can be interpreted

(with the proper gauge choice) as the black hole’s net accretion rate Ṁ , or equivalently, the

difference in the flux of outgoing and ingoing streams near the inner horizon. This factor

can be treated as very small and reduces to zero for equal streams of ingoing and outgoing

radiation.

(2) The inflationary exponent ξ, which measures the degree to which the geometry has undergone

self-similar compression, changes with the radius and accretion parameters, behaving like a

step function near the inner horizon as inflation is ignited.

(3) The horizon function ∆r strays from its Kerr value near the inner horizon, “freezing out” at

a small, negative value during collapse instead of reaching zero at r = r−.

In the conformally separable solution, ξ and ∆r are governed by the highly nonlinear pair

of relations in Eq. 88 of Ref. [84] (where x = 1
a cot

−1( r
a
), y = − cos θ, and ∆x = e3ξ∆r). To simplify

their behavior, it suffices to assume their Kerr values (Eqs. (2.31a) and (2.31b)) for all portions
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of spacetime except just above the inner horizon. In the regime near the inner horizon, ξ rapidly

increases from zero as r remains frozen at its inner horizon value of r−, and the equations governing

the evolution of ξ and ∆r simplify to

eξ = ((Ur + v)(Ur − v)
(u + v)(u − v)

)
1/4

, ∆r =∆0 (
(Ur + v)(u − v)
(Ur − v)(u + v)

)
∆′/(4v)

, (2.32)

where ∆0 is a constant of integration equal to the linear extrapolation of ∆r evaluated away from the

inner horizon when ξ = 0, Ur = u, and ∆r still equals its Kerr value. The dimensionless parameter

u, the counter-streaming velocity, represents the average of the initial accretion rates from the two

streams. The accretion parameters satisfy 0 < v < u≪ 1, and the outgoing and ingoing accretion

rates are proportional to u ± v. The function Ur is defined by

Ur ≡
dξ

dr
(r2 + a2) e3ξ∆r. (2.33)

In addition, the constant ∆′ in Eq. (2.32) is proportional to the radial derivative of the Kerr

horizon function evaluated at the inner horizon:

∆′ ≡ −d∆r

dr
∣
r−

(r2− + a2) =
2 (r3− − 3r2− + a2r− + a2)

(r2− + a2)2
. (2.34)

The conformally separable Kerr model predicts that the geometry of the inner horizon will be

divided into three distinct epochs, as shown in Fig. 2.3. The parameter ξ represents the timelike

coordinate separating these epochs, just as T does for the inflationary Kasner model (in fact, it will

be shown later, Eqs. (2.38), that the identification T ∝ e−2ξ generally holds).

Initially, the geometry resembles the Kerr vacuum when ξ is negligibly small and r is just

above its inner horizon value. Then, as r approaches r−, the mass inflation epoch begins as the

locally-measured radial energy-momentum T11 of the streams rapidly inflates (along with the internal

mass parameter and the Weyl curvature). The horizon function dominates the geometry’s evolution

during this epoch as ∆r deflates toward 0−. Throughout the inflation and collapse epochs, r remains
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Figure 2.3: Evolution of quantities in the conformally separable Kerr model. Plotted are the tetrad-
frame energy-momentum component T11 from Eq. (2.36) (black), the corresponding inflationary
Kasner energy-momentum Φ (the v → 0 limit of the conformally separable T11) (gray dashed), and
the parameter Ur (red) and horizon function ∆r (blue) from Eq. (2.32). The parameters of this
model have been chosen to avoid numerical overflow while still allowing the solution to capture the
full behavior; in particular, u = 0.02, v = 0.01, and a = 0.96. The difference in the appearance of Φ
here vis-à-vis Fig. 2.2 is solely due to a difference in the scaling of the axes.

approximately frozen at its inner horizon value of r−.

Finally, inflation is slowed once ξ grows large enough and begins to dominate, causing a

self-similar collapse of the geometry. During the collapse epoch, the curvature and T11 once again

begin to diverge, while the horizon function freezes out at an exponentially small value. The collapse

epoch then continues until Eq. (2.32) is no longer valid because of the increasing angular motion

of the streams. However, it is possible that the conformally separable solution will break down

regardless after this point, once the curvature exceeds the Planck scale.

The connections between the conformally separable Kerr model and the inflationary Kasner
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model become evident when considering the energy-momentum tensor seen in a tetrad frame. A

natural tetrad frame to choose is the one encoded by the line element in Eq. (2.30), with 1-forms

e0µdx
µ = ρs evt−5ξ/2

(r2 + a2)
√
−∆r

dr, (2.35a)

e1µdx
µ = ρs evt+ξ/2

√
−∆r

1 − ωrωθ
(dt − ωθdϕ) , (2.35b)

e2µdx
µ = ρs evt−ξ sin θ√

∆θ

dθ, (2.35c)

e3µdx
µ = ρs evt−ξ

√
∆θ

1 − ωrωθ
(dϕ − ωrdt) . (2.35d)

In the Kerr limit, the tetrad frame in Eqs. (2.35) reduces to the interior Carter frame, in which

observers at rest see the principal null directions as purely radial (in the x1-direction) as the frame

follows them freely falling and rotating inward. The interior Carter frame differs from the standard

(exterior) Carter frame only in the swapping of e0µ ↔ e1µ and
√
−∆r ↔

√
+∆r, since below the outer

horizon, r becomes timelike and ∆r becomes negative.

In this tetrad frame, Einstein’s equations yield the following non-negligible components of the

energy-momentum tensor seen by a Carter observer:

T00 = T11 =
Ur∆

′ − v2

8πρ2s e2vt+ξ(−∆r)
(2.36)

(cf. Eqs. 125-128 in Ref. [84]). These components, which rapidly diverge during inflation and

collapse (see Fig. 2.3), represent the net combination of the energy-momenta of ingoing and outgoing

collisionless streams observed in the radial direction. Their behavior is dominated by the vanishing

of ∆r during inflation and by the conformal piece e−ξ once the horizon function freezes out during

collapse. In terms of the counter-streaming velocity u, a Taylor expansion for small v yields

T00 = T11 ≈
eξu∆′

8πρ2s(−∆0)
e

∆′

2u
(1− e−2ξ) +O (v) . (2.37)

The radial energy-momentum thus grows as ∼ e1/u, so that, perhaps counterintuitively, the
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smaller the value of u, the more rapid the inflation. For astronomically realistic black holes, the

above expansion is generally valid, since v scales as the black hole light crossing time tBH divided by

the accretion (mass-doubling) time tacc, and for most of the lifetime of the black hole, tacc ≫ tBH

[91].

When comparing the energy-momentum tensor of the conformally separable Kerr metric in

Eq. (2.37) with the energy-momentum tensor of the inflationary Kasner metric in Eq. (2.7), the two

are equivalent in the limit v → 0, when the following definitions are made:

T = T0 e−2ξ, (2.38a)

T0 =
∆′

2u
, (2.38b)

Φ0 =
u∆′

8πρ2−(−∆0)
, (2.38c)

where ρ− is the value of the separable conformal factor ρs at the inner horizon.

Thus, the inflationary Kasner solution provides a simple yet precise approximation of the

conformally separable Kerr spacetime seen in the tetrad rest frame of a Carter observer, through the

matching of Eqs. (2.38). The conformally separable solution, in turn, provides an approximation of

the geometry of a rotating, accreting black hole, which reduces to the inflationary Kasner solution

near the inner horizon in the limit of an asymptotically small accretion rate v.

T00 and T11 remain the only non-negligible components of Tm̂n̂ through inflation and collapse,

and the collapse epoch of the conformally separable solution is defined to end when other components

of Tm̂n̂ (namely, T12 and T22), which initially diverge at a much slower rate, become comparable

in magnitude to the radial components. This occurs at ξ =∆′/(6u) − ln
√
−∆0 (or equivalently, at

T /T0 = −∆0 e−∆
′/(3u) ≈ 10−5 in Fig. 2.2), and beyond this point, the approximations of Eqs. (2.32)

and (2.36) are no longer valid. The classical solution can be continued numerically for higher ξ,

yielding a series of even more complex Kasner epochs and BKL bounces, although an extension of

the classical solution may fail if quantum effects become important once the curvature passes the

Planck scale [86].
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2.3.2 Null geodesic behavior

What will an observer in the inflationary Kasner spacetime see? To answer this question,

consider a Carter observer (at rest in the tetrad of Eqs. (2.35)) falling into a rotating black hole

from rest at infinity and approaching the inner horizon.

The Kerr metric provides an excellent approximation of a rotating black hole’s geometry far

above the inner horizon, so the Kerr null geodesic equations will provide the trajectory of a photon

in this regime. However, once the observer approaches the inner horizon, streams of ingoing and

outgoing matter will focus along the radial directions in the Carter tetrad and will begin to inflate,

causing the geometry to be better approximated by the inflationary Kasner metric. Thus, here we

find the equations for null geodesics in the inflationary Kasner spacetime and then connect them to

null geodesics in the Kerr spacetime in a regime near the inner horizon where both are valid.

To find null geodesic trajectories in the inflationary Kasner spacetime, note that because the

metric is homogeneous, there are three conserved quantities corresponding to each of the spatial

coordinates x, y, and z. These momenta are simply the covariant forms of the spatial components of

a photon’s coordinate-frame four-momentum,

ki = giµ
dxµ

dλ
, where i ∈ {x, y, z}. (2.39)

When Eqs. (2.39) are combined with the condition kµkµ = 0, the four components of the

four-momentum can be expressed in terms of the coordinate time T and conserved quantities kx, ky,

and kz. In the tetrad frame of Eq. (2.5), these components take the form

(kIK)0 = −

¿
ÁÁÀk2x

a21
+
k2y + k2z
a22

, (2.40a)

(kIK)1 =
kx
a1
, (2.40b)

(kIK)2 =
ky

a2
, (2.40c)

(kIK)3 =
kz
a2
, (2.40d)
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where the subscript IK denotes quantities valid in the inflationary Kasner regime. The negative sign

for (kIK)0 is chosen so that the affine parameter increases as T decreases from T0 just above the

inner horizon to 0 at the inflationary Kasner singularity.

In the coordinate frame, Eqs. (2.40) lead to the following equations of motion that can be

integrated:

dT

dλ
= − E

a1

¿
ÁÁÀ(

aobs
1

a1
)
2

cos2χ + (
aobs
2

a2
)
2

sin2χ, (2.41a)

dx

dλ
= − E

a1

aobs
1

a1
cosχ, (2.41b)

dy

dλ
= − E

a2

aobs
2

a2
sinχ cosψ, (2.41c)

dz

dλ
= − E

a2

aobs
2

a2
sinχ sinψ, (2.41d)

where aobs
i is the value of ai at the observer’s position, and the constants of motion ki have been

replaced by the observer’s viewing angles χ ∈ [0, π] and ψ ∈ [0,2π) (and the normalization factor E),

which indicate the position of the photon in the observer’s field of view. More details about the

definitions of these angles and their relations to other quantities used throughout this chapter are

given in Appendix A. The important point to note here is that χ = 0○ corresponds to an ingoing

photon reaching an observer looking in the principal null direction away from the black hole, and

χ = 180○ corresponds to an observer looking directly toward the black hole in the principal null

direction.

The evolution of null geodesics seen by an observer at Tobs looking in different directions

is shown in Fig. 2.4 during both the inflation and collapse epochs. In these plots, the positive

x-direction is aligned with the principal null direction away from the black hole. Since the inflationary

Kasner metric is isotropic in the y-z plane, the dependence on the viewing angle ψ is trivial—the

geodesics of Fig. 2.4 can be revolved around the x-axis in 3D space to obtain solutions with different

values of ψ.

The inflation epoch is characterized by the focusing of null geodesics along the principal null
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Figure 2.4: Null geodesics seen by an observer at the origin in the inflationary Kasner spacetime.
Geodesics are parametrized by the observer’s viewing angle χ at an equal spacing of 15○, from an
observer looking directly outward (χ = 0○) to one looking directly inward toward the black hole’s
center (χ = 180○). All geodesics end at the origin at T = Tobs and are ray-traced backwards via
Eqs. (2.41) to T = T0. The upper plot shows an observer at Tobs = 0.25T0 near the end of the inflation
epoch, and the lower plot shows an observer at Tobs = 10−5T0 near the end of the collapse epoch.
The parameters chosen here are T0 = 9.09 and Φ0 = 0.209.

directions. An observer in the inflation epoch (upper panel of Fig. 2.4) will thus see both ingoing

and outgoing null geodesics that have begun to align along the x-axis, so that an increasingly large

portion of the observer’s sky is taken up by a narrowing band of the inflationary Kasner background

orthogonal to the principal null axis. The same inflation power law behavior from the upper panel

of Fig. 2.4 is also seen in the lower panel, in which the photons undergo both inflation and collapse.

These photons all start at T = T0, corresponding to x = ±T0 for all but the χ = 90○ geodesic (which

begins at approximately
√
y2 + z2 ∝ (T0/Tobs)3/4, far outside the range of this plot). The photons in

this plot begin by proceeding inward toward the origin, curving toward the x-axis as they undergo

inflation. Then, once the photons reach the collapse epoch, they turn sharply, orthogonal to the

x-axis, until they reach the observer at the origin. As the observer continues farther into the collapse
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epoch, the turns sharpen even more, and the locations of the turns spread out farther in the y − z

plane as most of the background radiation from T0 reaching the observer becomes squeezed into a

band around χ = 90○. Once the observer has reached the singularity at T = 0 in the Carter tetrad

frame, the entire inflationary Kasner background in the observer’s field of view will be squashed into

the ring at χ = 90○, and photons arriving at any other position in the sky must have originated from

a vanishingly small patch of the background along one of the principal null directions.

From the behavior of the null geodesics in Fig. 2.4, one must be careful not to jump too quickly

to any conclusions about what an observer near the inner horizon would see, especially since, as we

shall see, most of the photons arriving at an observer deep in the collapse epoch tend to align almost

exactly with part of the boundary of the black hole’s shadow. To be certain about each photon’s

complete path, we must continue the ray-tracing backwards beyond T0 to r ≫ r−, where only the

Kerr solution is valid.

In the Kerr spacetime, any geodesic is characterized by three conserved quantities: the energy

E, angular momentum L, and Carter constant K, defined by

E ≡ −kt, L ≡ kϕ, K ≡ k2θ +
(kϕ + ωθkt)2

∆θ
, (2.42)

where kt, kϕ, and kθ are the covariant components of a photon’s Kerr coordinate-frame four-

momentum. Just as with the inflationary Kasner metric, these conserved quantities lead in a

straightforward way to the following four-momentum components in the Carter tetrad frame, defined

by (kK)m̂ ≡ em̂µ(dxµ/dλ):

(kK)0 = ±
1

ρs

√
K − (ωrL −E)2

∆r
, (2.43a)

(kK)1 =
ωrL −E
ρs
√
−∆r

, (2.43b)

(kK)2 = ±
1

ρs

√
K − (L − ωθE)2

∆θ
, (2.43c)

(kK)3 =
L − ωθE

ρs
√
∆θ

, (2.43d)
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where the subscript K indicates quantities valid in the Kerr regime.

In the coordinate frame, Eqs. (2.43) lead to the following equations of motion:

dr

dλ′
= ±
√
R(r), (2.44a)

dt

dλ′
= E − ωrL

∆r
+ L − ωθE

∆θ
ωθ, (2.44b)

dθ

dλ′
= ±
√
Θ(θ), (2.44c)

dϕ

dλ′
= E − ωrL

∆r
ωr +

L − ωθE

∆θ
, (2.44d)

written in terms of the Mino time dλ′ ≡ dλ/ρ2s and the effective potentials

R(r) ≡ ((ωrL −E)2 −K∆r) (r2 + a2)2, (2.45a)

Θ(θ) ≡ (K∆θ − (L − ωθE)2) csc2θ. (2.45b)

Below the outer horizon, (kK)0 must be negative, since the radial coordinate is timelike and

decreases as the affine parameter increases, so that all geodesics are necessarily infalling. Thus, only

the lower sign for Eq. (2.43a) and Eq. (2.44a) is valid below the outer horizon. However, (kK)1

may be positive or negative in this regime depending on the relative magnitudes of L and E, and a

geodesic with positive (negative) (kK)1 is said to be outgoing (ingoing). Additionally, a positive

(negative) sign for Eq. (2.43c) and Eq. (2.44c) corresponds to a geodesic whose polar angle θ increases

(decreases) as the affine parameter increases.

The Kerr and inflationary Kasner metrics are both valid in a small domain just above the

inner horizon, and we choose to match their null geodesics at the Boyer-Lindquist radius r1 and

corresponding Kasner time T1. The exact value of these parameters is not too important; the results

of matching the null geodesics are robust for a range of values as long as T is close enough to T0

that ∆r is well-approximated by the Kerr horizon function but far enough into the inflation epoch

that r has frozen out and the streams have begun to focus along the principal null directions, so

that the inflationary Kasner solution is valid. Practically, for the parameters used in the plots



44

throughout this chapter, we choose to match geodesics at r1 = 0.73 (with the inner horizon at

r− = 0.72), corresponding to T1 ≈ 0.388T0.

The assumption (kIK)m̂∣T=T1 = (kK)m̂∣r=r1 , matching Eqs. (2.40) and (2.43), leads to a direct

mapping between the orbital parameters (kx, ky, kz) and (E,L,K):

E = ρs
1 − ωrωθ

(kzωr

√
∆θ

a2
− kx
√
−∆r

a1
) , (2.46a)

L = ρs
1 − ωrωθ

(kz
√
∆θ

a2
− kxωθ

√
−∆r

a1
) , (2.46b)

K = ρ
2
s

a22
(k2y + k2z) , (2.46c)

where the functions ∆r, ∆θ, ωr, ωθ, ρs, a1, and a2 are all evaluated at the point of matching

just above the inner horizon, where T = T1, r = r1, and θ = θ1. Additionally, in order to obtain the

complete Kerr solution, the proper signs must be specified. With reference to Eqs. (2.44), one must

require:

sgn (±
√
R(r)) = −1, (2.47a)

sgn (±
√
Θ(θ)) = sgn (ky) . (2.47b)

With this matching, it is then possible to continue the inflationary Kasner geodesics of Fig. 2.4

to their points of origin in the Kerr spacetime. Here we consider two domains for the points of origin

of Kerr photons: the first source is the fixed background of stars, galaxies, and radiation traveling

inward from infinity, and the second source is the collapsing surface of the star that formed the black

hole, emitting radiation outward. By the time photons from the latter source reach the observer,

they will be so redshifted and dimmed that the star’s surface will be practically imperceptible, so

any part of the observer’s sky consisting solely of photons from this source will form the black hole’s

shadow. As an example, the schematic Penrose diagram of Fig. 2.1 shows the paths of ingoing and

outgoing photons from both of these sources reaching an observer near the inner horizon at point O.

It may seem counterintuitive that outward-directed photons from the collapsing star’s surface
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near r ≈ r+ could reach an observer near r−. The paths of these photons fall under two general cases:

if the photons were emitted during the collapse just before the formation of the event horizon (at

r > r+), they may reach a turning point below the photon sphere and travel inward until reaching the

observer. Alternatively, if they were emitted below the event horizon (at r < r+), they can remain

outgoing as their Boyer-Lindquist radius decreases, until they are detected by an observer looking

inward.

Some examples of photon paths reaching observers near the inner horizon are shown in Fig. 2.5.

To avoid the effects of any coordinate singularities at the horizons, the paths are plotted using Doran

coordinates, which are related to the Boyer-Lindquist coordinates by the transformations

rD = rBL, (2.48a)

dtD = dtBL +
√
2Mr(r2 + a2)
r2 + a2 − 2Mr

drBL, (2.48b)

θD = θBL, (2.48c)

dϕD = dϕBL +
a
√
2Mr/(r2 + a2)
r2 + a2 − 2Mr

drBL (2.48d)

[55]. We limit our analysis to two equatorial observers, one in the inflation epoch (Tobs = 0.25T0)

and one deep into the collapse epoch (Tobs = 10−5T0); a more complete analysis of which photons

arrive from which sources for different observer latitudes and radii is given in Sec. 2.4.

The two left panels of Fig. 2.5 show null geodesics in the equatorial plane, reaching an observer

at (x, y) ≈ (1.2,0) just above the inner horizon. These geodesics are the continuation of the geodesics

of Fig. 2.4 when ψ = 270○—once the inflationary Kasner geodesics have been traced back from the

observer to the point of matching at T = T1, here they are continued backward in the Kerr metric

to their point of origin at infinity (blue) or the outer horizon (red). As χ increases, the geodesics

become more and more skewed until they asymptotically wrap around the photon sphere given by

the dashed curve. The χ = 180○ geodesic is omitted from the top left panel for simplicity; its form is

identical to the χ = 180○ geodesic in the lower left panel.
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Figure 2.5: Null geodesics ray-traced backwards from an equatorial inflationary Kasner observer at
Tobs = 0.25T0 (top two panels) and Tobs = 10−5T0 (bottom two panels) to their Kerr origins. The left
panels show a slice of the equatorial plane with Doran azimuthal coordinates, viewed from over the
pole, and the right panels show a polar slice in co-rotating coordinates. In all panels, the two thin
solid black curves shows the locations of the inner and outer horizons, and the dashed curves show
the location of the null circular prograde equatorial (left) and polar (right) orbits. All geodesics are
labeled by the viewing angle of the inflationary Kasner observer, equally spaced at intervals of 15○,
and they originate either from the background at infinity (dark blue) or from the surface of the
collapsing star (dark red). The parameters chosen here are u = 0.02, r1 = 0.73, θ1 = 90○, and a = 0.96.
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The behavior of the geodesics in the left two panels of Fig. 2.5 matches that of Fig. 2.4. In

particular, when the observer has progressed deep into the collapse epoch (when Tobs ≪ T0), most

light tends to focus along the principal null directions, so that most of the observer’s field of view

contains light originating from a small patch of the background (when χ ≤ 75○) or illusory horizon

(when χ ≥ 105○). In the collapse epoch, therefore, the observer sees most of the background sky

squashed into a thin band close to χ = 90○.

The right panels of Fig. 2.5 show geodesics for a fixed value of χ instead of ψ. Here, the

observer is looking up and down instead of only looking within the equatorial plane. With this

polar view, some geodesics (ψ = 195○ to ψ = 270○) originate from infinity, but the others (ψ = 90○ to

ψ = 180○) originate at some arbitrary location below the outer horizon, where the collapsing star’s

surface existed at some point in the past. Though it may not be apparent from this view, these

geodesics become increasingly skewed in the direction of the black hole’s rotation as ψ decreases,

with the equatorial geodesic with ψ = 90○ occupying a single point in the polar view. Additionally,

note that the geodesics in this right panel can be reflected across the z = 0 line to obtain the geodesics

for ψ < 90○ and ψ > 270○.

The polar null geodesics in the right two panels of Fig. 2.5 remain unchanged for an observer

traveling from inflation to collapse, a consequence of the fact that the inflationary Kasner metric

is isotropic in the y-z plane, so that the dependence on ψ in this case is trivial. Thus, an infalling

equatorial Carter observer will see more and more of the sky flattening out and piling up toward

the edges of the black hole’s shadow, though the view at different altitudes will remain relatively

unaffected by the inflationary Kasner metric.

2.4 The Carter observer’s experience

As a brief caveat, it should be noted that the observer’s field of view and the angles (χ,ψ)

defined in this chapter are completely dependent on the choice of tetrad frame. The interior Carter

tetrad is adopted in this chapter because of its simplicity and natural alignment with the principal

null directions, but it is only a valid inertial rest frame for a free-falling observer below the outer
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horizon. In particular, an observer of mass m at rest in the Carter frame must have orbital parameters

E = 0, L = 0, and K = (ma cos2θ)2 (where E, L, and K are defined analogously to Eq. (2.42) but

for a timelike geodesic). Nevertheless, a free-falling observer can decelerate to E = 0 once they have

passed through the outer horizon in order to stay at rest in the Carter frame and reproduce the

results found here.

With that caveat out of the way, consider the complete field of view of a Carter observer

during their descent into a black hole. The relevant object of analysis here is the black hole’s shadow,

the portion of the observer’s sky void of any background photons. The perceived boundary between

the black hole’s shadow and the sky is determined by the location of the photon sphere, where

photons circulate on a null, circular orbit for an indefinitely long amount of time before peeling off

and reaching the observer. The orbital parameters of these photons (and the corresponding viewing

angles) are given by the solutions to the equations

R(r) = 0, dR(r)
dr

= 0, (2.49)

parametrized by the allowed prograde (−) and retrograde (+) photon orbital radii, whose extremes

are given by

rc = 2M (1 + cos(
2

3
cos−1(±a))) (2.50)

[22]. Though we have been working with dimensionless Boyer-Lindquist coordinates, in this section

we restore factors of M to connect our equations to physical quantities.

The black hole’s shadow is shown in Fig. 2.6 for an equatorial observer at rest in the Carter

frame at various radii and inflationary Kasner times. The observer’s sky is displayed with a Mollweide

projection, where the center corresponds to the observer’s view directly ahead toward the black hole

at χ = 180○, the leftmost and rightmost points correspond to the view directly behind the observer

at χ = 0○, and the top and bottom points correspond to the view directly above (χ = 90○, ψ = 270○)

and below (χ = 90○, ψ = 90○) the observer, respectively. More details about the projection are given

in Appendix A. The black hole’s spin axis is pointed to the right, so that the flow of spacetime is
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towards the observer above the shadow and away from the observer below the shadow.

The progression of images in Fig. 2.6 from top left to bottom right shows the view of the

black hole as a Carter observer gets progressively closer to the inner horizon. Far from the black

hole, the characteristic asymmetrical silhouette is seen in the top left image, with the background

sky slightly blueshifted and the collapsing star’s surface extremely redshifted (the color in these

images is calculated from the energy component k0 of the photon’s four-momentum, normalized

to k0 at its point of origin). Then, as the observer approaches the outer horizon at r+ = 1.28M in

the (non-inertial) exterior Carter frame, the shadow takes up more and more of the observer’s view

until the entire background sky is reduced to a single point behind the observer at the outer horizon.

Then, as the Carter frame continues inward, the background sky behind the observer begins to grow

again, until it takes up a little less than half the field of view once the observer reaches near the

inner horizon (here r− = 0.72M).

As detailed in Appendix A, the field of view in Fig. 2.6 changes orientation between the

exterior to the interior of the black hole. For r > 1.28M , the black hole is in front of the observer and

the sky is behind the observer, but for r < 1.28M , we choose the black hole to be below the observer

and the sky to be above, just as it is for the familiar case of an observer on the surface of Earth.

How does the inflationary Kasner solution modify the observer’s view as they approach the

inner horizon? The bottom two rows of Fig. 2.6 show a Carter observer’s view in the inflation and

collapse epochs. As inflation progresses, the black hole’s shadow takes up approximately half of

the equatorial observer’s field of view, and the sky becomes more and more blueshifted. Then, as

the observer continues into the collapse epoch, the black hole’s shadow changes orientation until it

appears as an infinite plane below the observer, taking up half of the field of view (in comparison, at

a Schwarzschild singularity, an observer in free-fall also sees the shadow take up exactly half the

field of view). Most of the sky above becomes squashed into a narrow band around χ = 90○ (the

horizontal midline in these images) as the observer approaches the inflationary Kasner singularity,

as shown in the previous section. The validity of these images can be at least partially verified by

comparing the points of origin of the geodesics of Fig. 2.5 in conjunction with their location in the
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Figure 2.6: Mollweide projection of the full field of view of an infalling Carter observer in the
equatorial plane at various radii and inflationary Kasner times recorded above each image. The
black hole silhouette (black curve) separates the (generally) blueshifted photons sourced from
r →∞ from the extremely redshifted photons sourced from r ≈ r+. The color represents the degree of
redshift/blueshift. Note the change in the observer’s orientation between the exterior (r > 1.28M) and
interior (r < 1.28M) regions. The parameters used here are u = 0.02, r1 = 0.73, θ1 = 90○, T1 ≈ 0.388T0
and a = 0.96.
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images of Fig. 2.6 for Tobs = 0.25T0 and Tobs = 10−5T0. To find the location of each (χ,ψ) point on

the images of Fig. 2.6, refer to Fig. A.2 in Appendix A.

What about observers outside of the equatorial plane? The final shape of the black hole’s

shadow depends on the Boyer-Lindquist latitude of the observer, as shown in Fig. 2.7. Near the end

of the inflation epoch (top image), in the black hole’s equatorial plane (θobs = 90○), the black hole

takes up a little more than half of the observer’s field of view. But at higher latitudes (θobs < 90○),

the shadow takes up more and more of the field of view, so that the sky in front of the observer

appears as a thinner and thinner band connecting the principal null directions. Then, above some

critical latitude, all photons must be ingoing, so that the shadow takes up the entire field of view at

the end of the inflation epoch. An observer approaching the inner horizon at these latitudes close

to the pole will see the sky constrict to a single point directly behind them. However, deep into

the collapse epoch (bottom image), regardless of whether the observer is above or below the critical

latitude, the black hole’s shadow will always take up half the field of view below the observer, shifted

90○ from its location during the inflation epoch.

How much time passes for an observer experiencing the inflation and collapse of a black hole’s

inner horizon geometry? In the simplest case, for an equatorial observer of mass m at rest in the

interior Carter tetrad frame, the proper time that passes from the point of matching at T = T1 to

Tobs=10
-5
T0

Figure 2.7: Black hole silhouettes for an inflationary Kasner observer near the end of the inflation
(upper panel) and collapse (lower panel) epochs, at a Boyer-Lindquist latitude ranging from the
equator at θobs = 90○ (blue) to the pole at θobs = 0○ (red). The projection is the same as that of
Figs. 2.6 and A.2b, and the parameters chosen here are u = 0.02, r1 = 0.73, and a = 0.96.
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the singularity at T = 0 is given by

τ = −M ∫
0

T1

e(T−T0)/2
√
16πΦ0T0

( T
T0
)
−1/4

dT. (2.51)

For the parameters used in Fig. 2.2, the proper time experienced by the observer is approximately

τ ≈ ( M
M⊙
) × 10−7 seconds, (2.52)

where M/M⊙ is the mass of the black hole in units of solar masses. This proper time only changes

by an order of magnitude or two at most across the physically valid domains of a, θ0, r0, and u. In

particular, the integral in Eq. (2.51) approaches a constant value in the limit of an asymptotically

small initial counter-streaming velocity u. However, in the same limit, the total time spent just in

the collapse epoch (T < 1/2) becomes exponentially tiny (for the parameters used in Fig. 2.2 the

time spent in the collapse epoch is already less than 1% of the time spent in the inflation epoch).

As a final note, the inflationary Kasner proper time calculated above is about an order of

magnitude smaller than the proper time experienced by an equivalent observer in the Kerr spacetime

traveling from the point of matching (r = r1) to the inner horizon (r = r−).

2.5 Conclusions

The general classical outcome of the effect of accreted matter and radiation on a rotating

black hole is the inflation and subsequent collapse of the spacetime near the inner horizon into

a spacelike, BKL-like singularity. Here we have developed a simplified model that connects this

collapsing geometry near the inner horizon to the Kerr exterior. The model, which we have called

the inflationary Kasner model, is derived under the assumption that streams of matter near the

inner horizon focus along the principal null directions at ultrarelativistic speeds, so that the Einstein

tensor in the Carter frame approximately corresponds to that of a null, perfect fluid streaming at

equal rates along the x-direction. Such an assumption leads to a Kasner-like form with two epochs,
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one corresponding to a purely radial collapse with Kasner exponents (1,0,0), and a subsequent

epoch with exponents (−1
3 ,

2
3 ,

2
3). The end result of the model is the termination of geodesics at a

spacelike singularity at T = 0; notably, the inner horizon and all the additional structure beyond it

never get the chance to form.

We have verified the applicability of the inflationary Kasner metric to the near-inner-horizon

geometry of rotating, accreting black holes through comparison to a previously-derived solution,

the conformally separable Kerr metric. This solution comes equipped with a natural connection to

the Kerr metric, along with a continuous evolution through the inflation and collapse epochs (and

beyond, as has been shown computationally, through several BKL bounces [86]). In the limit of

asymptotically small accretion rates (v → 0), the conformally separable solution is equivalent to the

inflationary Kasner solution during inflation and collapse, which lends credence to the validity of the

latter model and allows for a more thorough interpretation of its parameters.

During the collapse epoch, the black hole’s shadow spreads out to take up half of a Carter

observer’s field of view, exactly as in the Schwarzschild case, but the shadow is shifted 90○ from

its position at the end of the classical Poisson-Israel mass inflation epoch, and unlike that latter

case, the view is independent of the observer’s latitude. Once the collapse epoch has proceeded

long enough, the curvature will have diverged to such a large extent that the classical solution

will surely break down. A calculation of the quantum back reaction will thus be necessary if one

wishes to explore the spacetime evolution past this point in order to determine the final outcome

of the collapse. The inflationary Kasner metric will hopefully provide a simpler basis for quantum

calculations than more complicated models like the conformally separable solution.



Chapter 3

Formalism of Semiclassical Gravity

This chapter reviews the formalism used in the remainder of the thesis to understand how

quantum fields respond to the presence of curved spacetimes. Though it is often stated that a

theory of quantum gravity is still at large among the physics community (or at least that there is

no consensus what the “right” theory is), there is consensus that quantum gravity can already be

modeled in a perfectly well-posed, robust way in the context of effective field theories, as long as the

observables being studied lie below a specified cutoff energy scale.

The effective field theory of choice throughout this thesis, that of a quantized massless bosonic

field minimally coupled to a classical background gravitational field, is described in Sec. 3.1. The

theory should remain valid to one-loop order for energies up to the Planck scale at ∼1019 GeV.1

Then, the foundations for the semiclassical calculations involving Hawking radiation (the subject of

Chapter 4) and renormalization (the subject of Chapters 5 and 6) are covered in Secs. 3.2 and 3.3,

respectively.

3.1 Approach to quantization

Just as Maxwell’s theory of electromagnetism is the unique local, Lorentz-invariant field theory

of massless, spin-1 particles with two degrees of freedom (called photons), so too is Einstein’s theory

1For reference, the energy scale at the core of the hottest neutron stars is ∼10−1 GeV, the highest human-made
energies achieved by the Large Hadron Collider are ∼104 GeV, the highest energies detected from cosmic rays are
∼1011 GeV, and the energy scale where the three gauge interactions of the Standard Model are expected to unify into
a single force is ∼1016 GeV.



55

of general relativity the unique low-energy field theory of massless, spin-2 particles (called gravitons)

that satisfies locality and Lorentz invariance [176]. In order to represent gravity as a geometric

theory, the Lagrangian density for the theory (and therefore the action) should consist solely of local

scalar functions built out of a rank-2 tensor (the metric gµν) and its derivatives. As an effective field

theory, the terms with the fewest derivatives will be most important at low energies. Thus, one can

proceed by expanding in the number of derivatives. The most general terms that satisfy locality and

Lorentz invariance yield the following action:

S = ∫ dx4
√
−g (− Λ

8πG
+ 1

16πG
R + c1R2 + c2RµνR

µν + c3RµνρσR
µνρσ + . . .) , (3.1)

where g = det(gµν), the quantities involving R are specific functions of the metric and its first and

second derivatives (the Ricci scalar R = Rµ
µ, Ricci tensor Rµν = Rρ

µρν , and Riemann tensor Rµνρσ),

and the coupling constants for each term are written in terms of physically relevant quantities when

possible (in particular, Λ is the cosmological constant and G is Newton’s universal gravitational

constant).

The only term in Eq. (3.1) that is zeroth order in derivatives of the metric is the term with

the cosmological constant, which will be ignored for the remainder of this analysis, since it can be

absorbed into the as-of-yet unspecified stress-energy content from the matter sector, and further, the

cosmological constant has been measured with high precision to have an altogether negligible value

of Λ = 2.4 × 10−46 c4/(GM⊙)2 [153]. The action contains no terms that are first order in derivatives,

since doing so would leave an unpaired index ∇µ and break Lorentz invariance. At second order in

derivatives, the only term in Eq. (3.1) is the one involving the Ricci scalar curvature R, and it is

this term that defines the Einstein-Hilbert action, which leads to the theory of general relativity.

The final three terms in Eq. (3.1) are fourth order in derivatives and consist of combinations of the

Ricci scalar R, Ricci tensor Rµν , and Riemann tensor Rµνρσ, but their contributions to observable

effects are so small that the constants c1, c2, and c3 have only been constrained to values less than

about 1074 [167]. These higher-order terms beyond the Einstein-Hilbert action encompass the theory
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of Lovelock gravity and specifically form the so-called Gauss-Bonnet term when c1 = −c2/4 = c3.

In the background field method, field fluctuations are treated as perturbations about a smooth

background metric g̃µν :

gµν = g̃µν + ϵ hµν . (3.2)

The fluctuations hµν represent high-frequency ripples over a background that is slowly varying. They

could describe, for example, gravitational waves; in the context of quantum field theory, the tensor

hµν will model the spin-2 graviton.

Considering just the Einstein-Hilbert term in Eq. (3.1), the decomposition of Eq. (3.2) leads

to a perturbative expansion of the action in the order-counting parameter ϵ:

SEH =
1

16πG
∫ dx4

√
−g [L (0)

EH + ϵL
(1)
EH + ϵ

2L
(2)
EH +O(ϵ3)] , (3.3)

where

L
(0)
EH = R̃, L

(2)
EH =

1

8
∇̃µh̄∇̃µh̄ + 1

2
∇̃ρh̄µν∇̃ν h̄µρ − 1

4
∇̃ρh̄µν∇̃ρh̄µν , (3.4)

with the trace-reversed metric perturbation defined as

h̄µν = hµν − 1

2
g̃µνh. (3.5)

The term that is first order in ϵ will generally be non-zero, but after short-wavelength averaging

and integrating by parts to remove boundary terms, the odd-order terms will vanish and fail to

contribute to observables at spatial infinity [159].

The variation of the action of Eq. (3.3) with respect to the background inverse metric g̃µν

leads directly to the well-known Einstein field equations; if the expansion parameter ϵ is taken to

match the Newtonian gravitational coupling parameter, the variation yields:

R̃µν −
1

2
R̃g̃µν = −

16πG√
−g̃

δS
(2)
EH

δg̃µν
. (3.6)
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The quantity on the left hand side of Eq. (3.6) is the standard Einstein tensor for the background

field, and the quantity on right hand side of Eq. (3.6) represents the stress-energy content of

the spacetime. In the case of classical perturbations, one can define a stress-energy pseudotensor

tµν ≡
√
−g̃−1δS(2)EH/δg̃

µν , such that the total stress-energy tensor sourced by the perturbations is

proportional to the short-wavelength-averaged pseudotensor, Tµν = −2⟨tµν⟩ [159]. One could also do

without the perturbative analysis of Eqs. (3.2)–(3.5) and instead add to the original Einstein-Hilbert

action a separate matter field of any spin, in which case the stress-energy would be defined in terms

of the variation of that matter field’s Lagrangian. But even in the absence of such a field, metric

perturbations themselves can be treated as a source of stress-energy.

Up until now, the discussion has been entirely classical. Now, consider how the above analysis

might be adapted to allow for quantized metric perturbations ĥµν . The quantization of an effective

field theory in the path-integral framework is an entirely straightforward albeit involved process. To

quantize hµν , one first needs to fix the gauge, which necessitates adding a term to the action that is

invariant under background gauge transformations but breaks gauge transformations of the quantum

fluctuations [171]. Then, a second term must be added to the action to accommodate the complex

Faddeev-Popov ghost field. These terms will not be written explicitly here; see [54] for details of

their construction.

The resulting action to zeroth order is the same Einstein-Hilbert action as in the classical

case, once again yielding the Einstein tensor of the background field on the left hand side of the

field equation. However, the right hand side is a bit more troublesome. In considering the action to

quadratic order with the additional gauge-fixing and ghost terms, the integration to average over

the gravitational degrees of freedom yields a functional that in general is nonlocal and divergent.

One would like to find an effective action W associated with this quadratic term, such that

− 2√
−g̃

δW

δg̃µν
≡ ⟨Tµν⟩, (3.7)

where the angle brackets ⟨⟩ here and in what follows denote a sense of “quantum averaging,” defined
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explicitly as the renormalized vacuum expectation value of an operator-valued quantity.

The definition of the effective action W will depend on the Feynman diagram loop cutoff, as

expected for any effective field theory. Consider diagrams with up to one loop. Though the bare

action is nonlocal and divergent, the one-loop effective action can be constructed by subtracting out

the one-loop divergences, which are local and readily calculated using dimensional regularization:

L
{1}
div =

1

8π2(4 − d)
( 1

120
R̃2 + 7

20
R̃µνR̃

µν) , (3.8)

where d is the number of dimensions [171]. Herein lies the problem with quantum gravity as a

complete quantized field theory: in other field theories, the divergent term in the quantized action

has the same order as the original terms in the action, so that the divergence can simply be absorbed

into the coupling constant. But for gravity, the divergences that arose from the Einstein-Hilbert

action are not proportional to R (second order in derivatives of the metric) but instead are fourth

order in derivatives of the metric, so that the divergences cannot simply be absorbed by renormalizing

the coupling constant G. Instead, one must add to the Einstein-Hilbert action the fourth order

terms of Eq. (3.1) and absorb the one-loop divergent term into the coupling constants c1, c2, and c3.

However, quantization of the extended action of Eq. (3.1) would then introduce new divergent terms

that are sixth order in derivatives of the metric, which would need to be absorbed into renormalized

coupling constants from an even further extended action, and the process would keep repeating ad

nauseam. As a result, gravity is said to be non-renormalizable.

Nonetheless, each iteration in the process described above will increase the accuracy of the

one-loop effective action, controlled by the order of the graviton’s coupling parameter (the Planck

mass), so that even to the lowest order in the metric derivatives, observables will remain valid up to

∼1019 GeV. The precise details of how the one-loop effective action is derived and leads to a finite

stress-energy ⟨Tµν⟩ will not be covered here; for a review, see, e.g., Chapter 6 of [29]. The result is

the following field equations:

R̃µν −
1

2
R̃g̃µν = 8πG⟨Tµν⟩. (3.9)
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Eq. (3.9) is often named for its pioneers, Møller [132] and Rosenfeld [158]; here it will usually be

referred to by a more descriptive title, the semiclassical field equations. The left hand side dictates

that the spacetime geometry of a background field should be treated classically as in general relativity,

while the right hand side indicates that quantum fluctuations on top of that background will produce

gravity of their own through the graviton’s renormalized stress-energy tensor. Though here it is only

stated how the field’s stress-energy content can be formally renormalized at the level of the effective

action, details of how renormalization calculations can be done in practice will be given in Sec. 3.3.

Now that it can be seen how gravity itself can be quantized and graviton perturbations can

source stress-energy in the same way that an independent matter field would source stress-energy, the

remainder of this thesis will assume an action with a classical background coupled to a separate field,

so that focus can be shifted away from any complications with path-integral quantization and ghost

fields. Many such separate fields are expected to exist in nature; massless spin-2 fields represent the

effects of gravitons, massless spin-1 fields represent the electromagnetic effects of photons, spin-1/2

fields describe fermionic fields (historically, neutrinos for the massless fields and electrons for the

massive fields), and massive spin-0 fields represent the effects of the Higgs boson. The contributions

from all these fields are in principle important, but practically, it suffices to consider the effects of

the simplest choice, a massless spin-0 (scalar) field, since fields with other spins generally lead to

similar behavior. A brief comparison and analysis of higher-spin fields to that of scalar fields will be

given in Sec. 4.5.2.2.

The semiclassical action will thus be written as

S = ∫ dx4
√
−g [ 1

16πG
R − 1

2
∂µϕ∂

µϕ − 1

2
(m2 + ξR)ϕ2] , (3.10)

where ϕ is a quantized scalar field with mass m (taken to be zero in the remaining chapters) coupled

to gravity with a coupling strength ξ. The case of a minimally coupled field corresponds to the

choice ξ = 0, and the case of a conformally coupled field (where the field equations become invariant

under conformal transformations in the massless case) corresponds to the choice ξ = (d − 2)/(4d − 4),
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which reduces to ξ = 1/6 for 4-dimensional spacetimes.

Variation of this action with respect to the inverse metric gµν leads directly to the semiclassical

field Eqs. (3.9). Conversely, variation of the action with respect to the field ϕ leads to a different

equation, which is often confusingly called a field equation but here will be referred to as a wave

equation (or, in the case of a scalar field, the Klein-Gordon equation):

(◻ −m2 − ξR)ϕ = 0, (3.11)

where ◻ ≡ ∇µ∇µ is the d’Alembert operator, which for a scalar field takes the form

◻ϕ = 1
√−g

∂µ (
√
−g ∂µϕ) . (3.12)

Eq. (3.11) encodes all the dynamics of the field and is a crucial starting point for the calculations of

both Hawking radiation and the renormalized stress-energy tensor, as detailed in the following two

sections, respectively.

3.2 Bogoliubov coefficients

The black hole spacetimes considered in this thesis possess a high degree of symmetry, including

azimuthal and time-translation invariance. As such, the wave Eq. (3.11) can be most easily solved

by performing a mode decomposition of the field. Since the field is quantized, it can be expressed as

a mode sum of ladder operators âωℓm and their Hermitian conjugates:

ϕ̂(x) = ∫
∞

0
dω

∞
∑
ℓ=0

ℓ

∑
m=−ℓ

(ϕωℓm(x)âωℓm + ϕ∗ωℓm(x)â
†
ωℓm) , (3.13)

where the modes ϕωℓm(x) as a function of the spacetime coordinate x can then be further decomposed

by separation of variables and can be treated classically as solutions to the wave Eq. (3.11) [29].
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Quantization necessitates that the ladder operators satisfy the commutation relations

[âωℓm, â†
ω̄ℓ̄m̄
] = δω̄ℓ̄m̄ωℓm , [âωℓm, âω̄ℓ̄m̄] = [â

†
ωℓm, â

†
ω̄ℓ̄m̄
] = 0. (3.14)

In the Heisenberg picture, the quantum states of the theory span a Hilbert space, which in the

Fock representation can be expressed as a basis built out of a no-particle (vacuum) state ∣0⟩ that is

annihilated by all the operators âωℓm:

âωℓm∣0⟩ = 0 ∀ ω, ℓ,m. (3.15)

A fundamental problem with the above treatment is that for a general curved spacetime,

in the absence of Poincaré invariance, there is no privileged set of coordinates, no natural mode

decomposition, and no universal vacuum state shared by all inertial observers. Thus, one can just as

easily use a different complete set of orthonormal mode functions ϕ̄ω̄ℓ̄m̄, defined by

ϕ̂(x) = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

(ϕ̄ω̄ℓ̄m̄(x)ˆ̄aω̄ℓ̄m̄ + ϕ̄
∗
ω̄ℓ̄m̄(x)ˆ̄a

†
ω̄ℓ̄m̄
) , (3.16)

with a new vacuum state ∣0̄⟩ defined by

ˆ̄aω̄ℓ̄m̄∣0̄⟩ = 0 ∀ ω̄, ℓ̄, m̄. (3.17)

The goal of this section is to see how these two vacuum states compare. Physically, one can imagine

an asymptotically flat spacetime with a well-defined initial vacuum state ∣0̄⟩, which subsequently

undergoes a gravitational collapse to form a black hole. Long after the black hole has formed, an

inertial observer will have their own definition of the vacuum ∣0⟩ in their own rest frame, but in terms

of the original vacuum ∣0̄⟩, the observer will see particles. These particles are known as Hawking

radiation.

To relate the two vacua in a general curved spacetime, the new barred modes can be expanded
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in terms of the original ones:

ϕ̄ω̄ℓ̄m̄ = ∫
∞

0
dω

∞
∑
ℓ=0

ℓ

∑
m=−ℓ

(αωℓm
ω̄ℓ̄m̄ϕωℓm + β

ωℓm
ω̄ℓ̄m̄ϕ

∗
ωℓm) , (3.18)

or equivalently, the ladder operators can be related:

âωℓm = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

(αωℓm
ω̄ℓ̄m̄

ˆ̄aω̄ℓ̄m̄ + β
ωℓm∗
ω̄ℓ̄m̄

ˆ̄a†
ω̄ℓ̄m̄
) . (3.19)

The coefficients α and β are known as Bogoliubov2 coefficients.

Observable quantities in quantum field theory arise as the expectation value of operators. One

particularly useful operator in the Fock representation is the number operator N̂ωℓm = â†
ωℓmâωℓm,

which encodes the number of ϕωℓm-mode particles in a given quantum state. One can show that this

operator is related directly to the Bogoliubov coefficient β via the relation [29]

⟨0̄∣N̂ωℓm∣0̄⟩ = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

∣βωℓmω̄ℓ̄m̄
∣2 . (3.20)

Thus, if one wishes to calculate the number of particles seen in an inertial observer’s rest frame state

with respect to an initial vacuum state ∣0̄⟩, one must calculate the Bogoliubov coefficients between

the two states.

In order to proceed any further, the field modes ϕωℓm must be normalized with respect to

some inner product. The natural choice for such an inner product is the one whose kernel is the

Wronskian operator for the field’s wave equation, in analogy to the scalar product required of the

inverse transform for the Fourier coefficients aωℓm = ⟨ϕ∣ϕωℓm⟩:

⟨ϕ1∣ϕ2⟩ ≡ −i∫
Σ
dΣ nµ

√
−gΣ ϕ1

↔
∂µϕ

∗
2 , (3.21)

2Nikolay Bogoliubov and John Valentin both independently developed these transformations in 1958 in the context
of BCS theory. Bogoliubov, the son of a priest and faithful Christian throughout his life, has a last name that is the
Russian equivalent of the Latin “Amadeus” and the Hebrew “Jedediah,” meaning “lover of God.”
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where Σ is an arbitrary spacelike Cauchy hypersurface that terminates at spacelike infinity and is

orthogonal to a future-directed unit vector nµ, and where the bidirectional derivative
↔
∂µ is defined

below Eq. (C.6). With this Klein-Gordon inner product, the Bogoliubov coefficients can be calculated

via

αωℓm
ω̄ℓ̄m̄ = ⟨ϕ̄ω̄ℓ̄m̄∣ϕωℓm⟩, βωℓmω̄ℓ̄m̄ = −⟨ϕ̄ω̄ℓ̄m̄∣ϕ

∗
ωℓm⟩. (3.22)

Therefore, the number of particles seen by any observer in a spacetime can in principle be

calculated using Eqs. (3.20) and (3.22), once the mode solutions ϕωℓm to the wave Eq. (3.11) are

found. Unfortunately, even for the simplest black hole spacetime (Schwarzschild), the Klein-Gordon

equation’s radial mode solutions belong to a class of special functions known as confluent Heun

functions, a generalization of hypergeometric functions, whose analytic properties are still being

explored in the mathematical literature (see Appendix B for details).

Nonetheless, radial eigenmode solutions to Eq. (3.11) exist in simple form in the limit as

r →∞, and Hawking was able to compute the Bogoliubov coefficients for an arbitrary collapsing

black hole spacetime by considering a late-time observer asymptotically far from the black hole, with

a vacuum state initialized by modes asymptotically far in the past [93, 94]. In that case, since the

observer’s modes correspond precisely to radial plane waves with frequencies uniquely determined by

the spacetime’s Killing vector, the inner product between the observer’s modes and the modes of

the vacuum state reduce to a Fourier transform over the vacuum state’s exponentially redshifted

modes. The result (see Appendix C for the full derivation) is a number operator spectrum governed

by Planck’s law (i.e., a blackbody spectrum).

The goal of the present work is to extend Hawking’s results so that the particle content of the

pre-collapse vacuum can be found for any freely falling observer, whether they are asymptotically

far from the black hole, approaching the event horizon, or even inside the black hole. The above

approach using the vacuum expectation value of the particle number operator N̂ωℓm should continue

to represent the notion of physical particle detection for any inertial observer’s rest frame state, with

a few caveats. First, the usual definition of a physical, no-particle state only matches that of ⟨N̂⟩
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in an asymptotically flat, static region, where all inertial observers can agree on the definition of

positive frequency. But for general dynamical, non-Minkowski regions of spacetime, each inertial

observer will see a different vacuum state, so that the very concept of a particle is ill-defined in

semiclassical gravity. Additionally, the number operator measures values for definite frequencies,

and therefore the uncertainty principle dictates that the result can only be treated in an averaged

sense over an infinite amount of time—the entirety of future null infinity, in the case of Hawking,

though one can then take the time u →∞ due to asymptotic flatness. A discussion of how wave

packets can ameliorate this issue in non-Minkowski regions is given in Appendix C. Finally, ⟨N̂⟩ is a

globally defined quantity, relying on information about the behavior of modes long before before

the observer ever existed. One may wish to work with a local notion of particle detection via, e.g.,

renormalized Unruh-deWitt detectors [135, 162], but alternatively, the path taken in this thesis after

calculating ⟨N̂⟩ is to move on to the renormalization of ⟨T̂µν⟩, a locally-defined quantity that is

Lorentz covariant by construction (if ⟨T̂µν⟩ = 0 for one observer, it will remain zero for any inertial

observer at that point in spacetime).

With these caveats out of the way, consider how the Bogoliubov coefficients might be calculated

for inertial observers that are not asymptotically far from a black hole. As it turns out, the limit

r →∞ is not the only instance where the mode solutions to the wave Eq. (3.11) reduce to simple

plane-wave eigenmodes; the Klein-Gordon potential also vanishes at the inner and outer horizons of

the black hole. Using this fact, one can then set up a quantum scattering problem, determine the

reflection and transmission coefficients between an initial vacuum state and the state of an observer

at one of these horizons, and use this information to find the full Hawking spectrum. The details

of this calculation for the Kerr spacetime are given in Appendix C, and the numerical results are

presented in Sec. 4.5.

However, one may further wish to analyze the production of Hawking radiation for observers

who are at an arbitrary radial coordinate rob in the spacetime, not precisely at one of the horizons.

To do so, consider the details of Hawking’s calculation for asymptotically distant observers. These
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observers have eigenmodes of the form

ϕωℓm ∝ e−iωu, (3.23)

where u = t − r∗ is the outgoing Eddington-Finkelstein coordinate and r∗ is the radial tortoise

coordinate. The vacuum state, however, has different modes. Though they begin in the above

form asymptotically far into the past, once the black hole has formed from a gravitational collapse,

these modes are scattered by the gravitational Klein-Gordon potential. By the time the vacuum

state’s modes reach the asymptotic future where the observer is located,3 Hawking showed that they

generically take the form

ϕ̄ω̄ℓ̄m̄ ∝ e−iω̄U , (3.24)

where U ∝ exp(−κ+u) is the outgoing Kruskal-Szekeres coordinate and κ+ is the surface gravity

of the event horizon,4 which in the limit u →∞ measures the rate of redshift (or the “peeling” of

null geodesics). The number operator’s vacuum expectation value is then calculated as the squared

modulus of the Bogoliubov coefficient β via Eqs. (3.20) and (3.22):

⟨0̄∣N̂ωℓm∣0̄⟩∝ ∫
∞

0
dω̄ ∣⟨e−iω̄U ∣eiωu⟩∣2 , (3.25)

which, after some calculus, yields a Planckian spectrum in ω with temperature κ+/(2π).

If one wishes to generalize this calculation so that the observer is no longer at rob →∞, the

3Recall that the inner product of Eq. (3.21) must be performed along a spacelike hypersurface where both the
observer’s modes and the vacuum state’s modes are known, so one must propagate one set of modes through the
spacetime to reach the surface along which the other set of modes was initialized.

4The surface gravity κ+c
2 has units of acceleration and is the black-hole generalization of the Earth’s surface gravity

g ≈ 9.8 m/s2, with the additional complication that a stationary observer at the event horizon would technically measure
an infinite acceleration, so κ+c

2 is actually defined as the acceleration redshifted to infinity; i.e., the gravitational
acceleration measured by dangling an ideal string from r →∞ down to r = r+.
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only change will be to replace the observer’s modes exp(−iωu) with modes of the form

ϕωℓm ∝ e−iωp
−1(U), (3.26)

where p(u) = U is a function connecting the observer’s state and the vacuum state with a null

geodesic. Why use null geodesics instead of waves moving through the scattering potential? The

answer is that Hawking’s original calculation makes use of the geometric optics approximation.

In the geometric optics (or eikonal, or high-frequency) approximation, the field’s wave Eq. (3.11)

is solved with the Ansatz

ϕωℓm(x) = A(x) eiωΘ(x), (3.27)

which leads to an equation for the eikonal phase function Θ(x) when the result is expanded to

leading order in inverse powers of the frequency ω:

∂µΘ∂µΘ = 0. (3.28)

It can be shown by covariant differentiation of Eq. (3.28) that it is a geodesic equation for a null

vector field kµ ≡ ∂µΘ normal to the family of constant-Θ hypersurfaces. Thus, any wave scattering

problem can be reduced in the geometric optics limit to a ray-tracing problem along the eikonal

hypersurface-orthogonal null congruence.

Thus, imagine that the observer (at an arbitrary spacetime event xob) is watching a null ray

originating from some emitter located at xem in the asymptotic past, where the vacuum state was

initialized. The emitter itself is not the source that is creating Hawking radiation; rather, it is a

proxy to help determine how the modes from an initially empty, no-particle state will be mixed and

redshifted by the time they reach an observer. Sec. 4.2 will go into further details of how the vacuum

state can be constructed in terms of such emitters for both spherical and rotating black holes.

Progress toward the calculation of Hawking radiation for an arbitrary observer was made in

Refs. [20, 21] with the realization that one can define an “effective temperature” function κeff that
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reduces to the surface gravity κ+ when it is sufficiently adiabatic over an interval. This effective

temperature is simply a measure of the rate of exponential redshifting seen by an observer from

modes climbing out of collapsing matter’s gravitational potential. Mathematically, it is defined as

κeff(u) ≡ −
d

du
ln(dU

du
) = − p̈(u)

ṗ(u)
. (3.29)

where the outgoing null coordinate u gives the observer’s position and the null coordinate U = p(u)

gives the position of an emitter that defines the vacuum state. By a slight abuse of notation, the

two worldlines labeled by coordinates U and u are connected by a null ray encoded by the function

U(u). The key insight is that as long as κeff(u) remains approximately constant over a small interval

around some point u∗, Eq. (3.29) can be integrated to yield

U = U∗ +C∗∫
u

u∗
dū exp [−∫

ū

u∗
dũ κeff(ũ)] = U∗ +C∗ eκeff(u∗)(ū−u∗) +O(ϵ2), (3.30)

where the parameter ϵ is known as the adiabatic control function and is defined by

ϵ(u) ≡ 1

κ2eff
∣dκeff

du
∣ . (3.31)

If ϵ(u∗) ≪ 1, then Eq. (3.30) reduces to the same mode definition used by Hawking to calculate

the Bogoliubov coefficient of Eq. (3.25), and a thermal Hawking flux will be detected at u∗ with

temperature [16]

TH(u∗) =
κeff(u∗)

2π
. (3.32)

However, even if the adiabatic condition is not satisfied, a nonzero κeff still implies the detection of

particles corresponding to a nonzero Bogoliubov coefficient β; the only difference is that the spectral

content will generally be non-Planckian.

Instead of working in null coordinates u and U , the analysis in Chapter 4 will work in a slightly

more tangible coordinate frame. Since both the observer and emitter can naturally use their proper
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times τob and τem to label the different null rays they encounter throughout their journey, Eq. (3.29)

can be recast in a more intuitive form:

κeff = −
d

dτob
ln( ωob

ωem
) , (3.33)

where the frequency ωi (i = “ob” or “em”), defined by

ωi ≡ −kµẋµ, (3.34)

is the temporal component of a null particle’s coordinate 4-velocity kµ ≡ dxµ/dλ, measured in the

frame of an observer or emitter with coordinate 4-velocity ẋµ ≡ dxµ/dτ . The mathematical details of

how this formula is derived and how it can be extended for non-radial viewing directions is given in

Appendix D.

Eq. (3.33) makes it apparent that the effective temperature κeff is nothing more than a measure

of the rate of frequency redshifting seen by an observer, an indicator of the exponential peeling of

null rays first noted by Hawking as the crucial feature of black hole horizons responsible for particle

creation [93, 94]. For black hole spacetimes with a Killing horizon, in the limit as an observer

approaches future timelike infinity, the notion of the effective temperature κeff(τ) defined above

coincides precisely with the notion of the surface gravity κ+ used to define a black hole’s Hawking

temperature [20]. But even in the absence of a true event horizon, an adiabatic rate of redshifting

governed by κeff(τ) implies the existence of Hawking radiation for any observers around or inside of

a black hole.

The perception of Hawking radiation for an arbitrary observer was first calculated more than

a decade ago for observers in the Schwarschild spacetime, outside of the event horizon [16, 79].

Then, the perception of Hawking radiation inside of the Schwarzschild radius was analyzed [87,

160], with the general conclusion that the effective temperature steadily rises for a free-faller until

diverging at the black hole’s central singularity. This thesis then takes the next natural step into
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non-Schwarzschild spacetimes—Chapter 4 will tackle the problem of how Hawking radiation is

perceived for black holes with an inner horizon.

One additional contribution made by Hamilton in Ref. [87] was to extend the analysis of

the effective temperature to an observer looking in an arbitrary direction. Hawking and most

others after him focused solely on scattering from radial modes, though in general, vacuum-state

modes will be reaching the observer from all directions with angular momentum mode numbers

ℓ ≥ 0. Additional subtleties arise when considering non-radial modes (see Appendix D) that will be

addressed throughout Chapter 4.

3.3 Renormalization techniques

The vacuum expectation value of the number operator ⟨0∣N̂ωℓm∣0⟩ considered in the previous

section is not the only quantity that can be calculated for black hole spacetimes in the context

of quantum field theory in curved spacetimes. Here, two more quantities will be considered: the

vacuum expectation value of the squared field operator, ⟨0∣ϕ̂2∣0⟩ (the subject of Chapter 5), and the

vacuum expectation value of the field’s stress-energy tensor, ⟨0∣T̂µν ∣0⟩ (the subject of Chapter 6).

These two quantities have the additional complication that they are formally divergent, as a result

of singular behavior within their Hadamard parametrices, so that they must be renormalized to

yield finite observables. In Sec. 3.1 it was shown how renormalization is formally accomplished at

the level of the one-loop effective action; now focus will be placed on how renormalization may be

practically carried out when calculating these quantities.

Just as in Sec. 3.2, the vacuum expectation values for ⟨0∣ϕ̂2∣0⟩ and ⟨0∣T̂µν ∣0⟩ will be calculated

by first breaking down the field operator into an expansion in ωℓm-modes. Then, the contributions

from the creation and annihilation operators conspire to convert the quantum field theoretic problem

into a completely analogous classical problem, with mode solutions ϕωℓm to the wave Eq. (3.11)
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equipped with Cauchy boundary conditions defined by the choice of vacuum:

⟨0̄∣ϕ̂2(x)∣0̄⟩ = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

[ϕω̄ℓ̄m̄(x)ϕ
∗
ω̄ℓ̄m̄(x)] , (3.35)

⟨0̄∣T̂µν(x)∣0̄⟩ = ⟨0̄∣Dµν ϕ̂(x)∣0̄⟩ = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

[Dµνϕω̄ℓ̄m̄(x)] , (3.36)

where Dµν is a second-order, bilinear differential operator, which for the scalar field in the action of

Eq. (3.10) can be obtained by the functional differentiation of the action, Tµν ≡ 2
δSϕ

δgµν , yielding

Dµνϕ = (
1

2
− ξ){∇µϕ,∇νϕ} − (

1

4
− ξ) gµν {∇σϕ,∇σϕ}

+ ξ (−{∇µ∇νϕ,ϕ} + gµν {∇σ∇σϕ,ϕ} + 1

2
Gµν {ϕ,ϕ}) −

1

4
m2gµν {ϕ,ϕ} , (3.37)

where ∇µ denotes covariant differentiation, Gµν is the Einstein tensor, and the symbol {,} represents

anticommutation. In the massless, minimally coupled limit, m = ξ = 0, the second line in Eq. (3.37)

vanishes, simplifying calculations greatly.

When performing the mode integral and mode sums in the above equations, the resulting

quantities diverge, quadratically for ⟨ϕ̂2⟩ and quartically for ⟨T̂µν⟩. Students of quantum field theory

learn a variety of regularization and renormalization5 techniques to “subtract away” these infinities

and leave a finite, physical result, but unfortunately, many of these techniques are only applicable in

Minkowski (or in some cases, Euclidean) spacetimes and will not work for black hole geometries.

One could imagine regularizing the integrals with a finite UV cutoff parameter Λ, but such a cutoff

would violate Lorentz invariance. Other techniques like dimensional regularization and zeta function

regularization rely on analytic continuations that only apply for specific Feynman propagators with

the wave equation for a flat spacetime, but for black hole metrics equipped with a pre-collapse

5Regularization refers to the introduction of new parameters so that a formally divergent theory can be evaluated
in an explicit form (e.g., solving a divergent integral in terms of a cutoff parameter instead of simply writing “∞”)
and the divergent pieces can be identified. Renormalization refers to the process of combining those regularization
parameters with the theory’s original bare quantities so that any physical observables will only depend on finite,
physical parameters.
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vacuum state, the mode solutions to the wave Eq. 3.11 are not simply plane-wave eigenmodes

and must either be computed numerically or written in terms of special functions that possess no

known analytic continuations. Even more fundamentally, renormalization in flat spacetime utilizes

normal-ordering, by which the energy of the vacuum state is set to zero, but for a general curved

spacetime, there is no invariant vacuum.

Instead of searching for another method to isolate and remove divergences specific to the case

at hand and see whether it matches other renormalization techniques for validation (which is how the

renormalization program initially progressed in an ad hoc fashion), in the late 1970s Wald attempted

to remove ambiguities by taking an axiomatic approach to the problem of renormalization [175].

The goal was to understand what constraints must be placed on the method of renormalization

(specifically in the context of the stress-energy tensor operator) when a set of five general axioms are

imposed, including causality, covariant conservation, and consistency with normal ordering in the

Minkowski limit. The general conclusion of the study pointed toward a specific unique approach

based around covariant point-splitting renormalization.

The point-splitting approach, pioneered by DeWitt [52], is motivated by the fact that while the

field operator ϕ̂(x) on its own evaluated at a single spacetime point makes complete mathematical

sense as an operator-valued distribution smeared over the entire spacetime (along with any operations

that are linear in the field), nonlinear combinations of field operators like ϕ̂(x)ϕ̂(x) and T̂µν(x)

have no natural mathematical meaning (since products of distributions generally do not result in

distributions) [175]. However, a quantity that makes perfect sense mathematically is the 2-point

distribution ϕ̂(x)ϕ̂(x′), where the smearing occurs separately in two independent spacetime events

x and x′. If one begins with such bilinear operators and then subsequently takes the coincidence

limit as x′ → x, then it immediately becomes apparent where renormalization must come into play.

Hadamard [80] showed that a solution H to a bilinear wave equation of the form of Eq. (3.11) must

always possess the following singularity structure near the point x′ in a 4-dimensional, analytic

spacetime:

H (x,x′) = U
σ
+ V logσ +W, (3.38)
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where 2σ is the square of the geodesic distance between x and x′ (which goes to zero in the coincidence

limit), and U , V , and W are well-behaved functions of x. In other words, every curved spacetime

appears locally flat if one zooms in enough, and so the two-point function will always locally diverge

in the same way as it does for the Minkowski spacetime, via Eq. (3.38). Thus, the divergence can be

isolated and renormalized in the coincidence limit to yield a finite result, and this procedure ends up

providing the unique method of renormalization that satisfies Wald’s axioms.6

Exact values for the functions U and V in Eq. (3.38) were soon found as a function of the

metric tensor and its derivatives in a set of works by DeWitt and Christensen [43, 44, 53] so that the

divergent pieces of the stress-energy tensor for an arbitrary spacetime metric could be isolated and

renormalized (the additional function W is not purely geometric and instead is fixed by the choice

of vacuum state). Thus, whenever the wave equation’s mode solutions ϕωℓm can be summed over all

modes and expressed in terms of the spacetime’s square geodesic distance 2σ, then a counterterm in

the form of Eq. (3.38) can be constructed and subtracted from the stress-energy tensor to field a

finite, renormalized result.

Two different renormalization techniques will be used in this thesis, both with connections

to the Hadamard point-splitting approach. The first, used in Chapter 5 to calculate ⟨ϕ̂2⟩ in the

inflationary Kasner spacetime, is adiabatic regularization. This technique is motivated by the fact

that while a divergent counterterm can in theory always be constructed and subtracted from the

two-point function to yield a finite, renormalized result, in practice, the two-point function often

cannot be cast in a form where the singularity structure of Eq. (3.38) is analytically manipulable.

Instead, the two-point function (refer to Eq. (3.35)) is usually expressed as a mode sum where the

mode solutions to the wave Eq. (3.11) are only known numerically or as intractable special functions.

Thus, one would be forced to perform a divergent integral numerically and subtract the infinite

6As a mild technical note, Wald [175] was only able to show that the renormalized stress-energy tensor satisfying
all five of his axioms would be unique if it existed, but he could only prove existence in the form of the Hadamard
point-splitting prescription for four of the five axioms. The sticking point, the fifth axiom concerning point-wise
convergence in the classical limit, requires knowledge of metric variations that is generally not easily derived.
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result from another divergent counterterm (a computational impossibility).

The way adiabatic regularization gets around this issue is by performing an adiabatic (Wentzel-

Kramers-Brillouin, or WKB) expansion of the field modes in powers of the inverse frequency ω−1.

This expansion will match the exact mode sum in the limit of large ω (where the integral diverges),

but with the advantage that it is built out of analytic functions that can be matched to the Hadamard

counterterm explicitly. The renormalized vacuum expectation value of the squared field operator

then takes the form

⟨ϕ̂2⟩ren = lim
x′→x
[⟨ϕ̂(x)ϕ̂(x′)⟩ − ⟨ϕ̂WKB(x)ϕ̂WKB(x′)⟩]

+ lim
x′→x
[⟨ϕ̂WKB(x)ϕ̂WKB(x′)⟩ −H (x,x′)] (3.39)

The first line in Eq. (3.39) can be calculated numerically by bringing both the bare mode solutions

ϕωℓm and the approximate WKB-type solutions ϕWKB
ωℓm under the same integral, so that the coincidence

limit can be taken at the beginning of the calculation and the integral up to ω →∞ will be guaranteed

not to diverge. The second line in Eq. (3.39) can then be derived analytically for any particular

spacetime. This second line is treated as negligible in Chapter 5, so that focus can be placed on the

part of ⟨ϕ̂2⟩ directly connected to the low-energy modes instead of on the minutiae of point-splitting,

but in principle, both lines in Eq. (3.39) can be computed with effort.

The second technique, used in Chapter 6, is state subtraction. It can be viewed as a generalized

form of adiabatic regularization, in the following sense: instead of performing an adiabatic expansion

of the modes, the terms labeled “WKB” in Eq. (3.39) can be treated as another mode-summed

two-point function, only for a different vacuum state. The original two-point function of interest is

the expectation value in the Unruh vacuum state (the late-time limit of the pre-collapse Minkowski

vacuum introduced in Sec. 3.2), but one can also define other vacuum states in black hole spacetimes

(like the Boulware state corresponding to the experience of a stationary observer, or the Hartle-

Hawking state corresponding to a black hole in thermal equilibrium with a bath of radiation).

These other vacuum states may not necessarily be physically relevant, but when subtracted from
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the Unruh state, they should make the integral in first line of Eq. (5.34) finite and calculable.

A further simplification throughout Chapter 6 is to choose a state such that the second line of

Eq. (3.39) vanishes, or equivalently, to choose a difference state where the renormalized vacuum

expectation value ⟨ϕ̂2diff⟩ren is already known (and therefore the renormalized value of interest,

⟨ϕ̂2⟩ren = ⟨ϕ̂2 − ϕ̂2diff⟩ren + ⟨ϕ̂
2
diff⟩ren, can be known exactly).

In this way, the vacuum expectation values of ⟨ϕ̂2⟩ and ⟨T̂µν⟩ can be computed as finite

numerical integrals over sets of modes. All other details related to the computation of scattering

coefficients for the mode solutions, the numerical integration schemes, and the interpretation of the

results are presented in Chapters 5 and 6.



Chapter 4

Hawking Radiation: ⟨N̂⟩

The contents of this chapter have been published as Ref. [127] (Secs. 4.2.1, 4.3.1, 4.4.1, 4.5.1,

and 4.6), part of Ref. [123] (Secs. 4.3.1.5 and 4.3.2.3), and Ref. [128] (Secs. 4.1, 4.2.2, 4.3.2, 4.4.2,

and 4.5.2).

4.1 Introduction

If a classical black hole that formed from a gravitational collapse is immersed within a

quantum field initially in a vacuum state, someone far away from that black hole will eventually

detect excitations of that quantum field in an effect known as Hawking radiation [93]. This radiation

was found to follow a thermal distribution in the geometric optics (high-frequency) limit, with a

temperature proportional to the surface gravity κ+ of the black hole at the event horizon. The key

feature required for such radiation to exist is a characteristic exponential redshifting of modes near a

(quasi-)trapping horizon. As a result, the Hawking effect can also be related to the radiation seen by,

e.g., an accelerating observer or a moving mirror model, where such a redshifting also occurs [20, 21].

The Hawking radiation detected asymptotically far from a black hole is negligibly small for

all known astrophysical black holes, orders of magnitude below current observational capabilities.

However, the radiation can take on a substantially different form when an observer approaches

and/or falls into a black hole. For such an observer, instead of seeing a Hawking temperature

proportional to the surface gravity κ+, one can define an effective temperature function κeff that

tracks the rate of redshifting they perceive, and this κeff reproduces the thermal Hawking result
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when a suitable adiabatic condition is met (see Sec. 3.2 for more details) [20, 21]. One may wonder

whether the Hawking temperature closer to a black hole’s event horizon may be high enough to

observe secondary astrophysical effects, but more importantly, the Hawking flux detected inside

a black hole can be enormous and has profound implications for the self-consistency of black hole

models in semiclassical gravity (i.e., quantum field theory placed over a classical background).

The perception of Hawking radiation has been analyzed for various classes of observers during

and after gravitational collapse in the Schwarzschild exterior [16, 79] and the Schwarzschild interior

[87, 160]. The goal of the present chapter is to extend this analysis to the late-time behavior of black

holes with inner horizons, described by the Reissner-Nordström and Kerr metrics.

What should one hope to see when analyzing the Hawking content in black hole spacetimes

with inner horizons? Here are some key takeaways:

(1) For an inertial observer in the vicinity of the event horizon, the effective temperature has

roughly the same order of magnitude as the standard tiny Hawking temperature at infinity

(i.e., the event horizon is semiclassically well behaved) [16, 79, 87, 160].

(2) For an observer in the vicinity of the inner horizon, the effective temperature is negative

and diverges in the same manner as the Penrose blueshift perturbation singularity [127, 128,

152, 165].

(3) Hawking radiation is not confined to the radial direction—an observer looking in an arbitrary

direction in their field of view will still see the characteristic exponential redshifting of

modes, with higher Hawking temperatures toward the edge of the black hole’s shadow and

an increasingly isotropic distribution as they approach the inner horizon [87, 127, 128].

(4) The Hawking temperature can become negative even outside of the event horizon for a

black hole close enough to extremality (e.g. for a Reissner-Nordström charge Q/M >
√
8/9,

although adiabaticity may not necessarily be satisfied there) [127, 128].

(5) Though the spectral distribution of Hawking radiation appears as a blackbody from asymp-
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totically far away (in the eikonal limit), graybody corrections to the spectrum become more

important as one falls into the black hole [127, 128].

The results of this chapter confirm through entirely analytical means the same semiclassical

divergence recently seen numerically for the renormalized stress-energy tensor at the Kerr Cauchy

horizon [178] (see Chapter 6). This divergence points towards a semiclassical form of the cosmic

censorship conjecture, that quantum effects will always act to close off Cauchy horizons that would

otherwise serve as entryways to wormholes and timelike singularities. Though the true quantum

gravitational nature of a black hole interior remains elusive, these first-order results from quantum

field theory over curved spacetime imply either that the Cauchy horizon is the source of a roiling

quantum atmosphere that marks the boundary endpoint of spacetime itself, or that the Cauchy

horizon is so unstable that it will evaporate outward to meet the event horizon within a matter of

seconds to form an extremal black hole or a compact horizonless object [18].

The perception of Hawking radiation for various infalling observers looking in the radial

direction is explored in Sec. 4.3 using the geometric optics effective temperature formalism, first for

spherically symmetric black holes and then for rotating black holes. Then, the effective temperature

for observers looking in an arbitrary direction in their field of view is explored in Sec. 4.4. However,

these results not only are unreliable at low frequencies, but they also depend crucially on the

adiabaticity of the observer at each point of interest. To address both of these concerns, in Sec. 4.5

a full numerical analysis of the wave scattering problem is performed in order to calculate the

Bogoliubov spectrum of Hawking radiation in the limits where such a calculation can be feasibly

done; in particular, for an observer at infinity, at the event horizon, and at the ingoing and outgoing

portions of the Cauchy horizon. For a Reissner-Nordström black hole, the calculations show that the

Hawking spectrum appears as a graybody at the event horizon but becomes ultraviolet-divergent at

the Cauchy horizon, in accord with the geometric optics effective temperature results that predict an

infinite negative κeff there. The Kerr spectra follow the same trends as in the spherically symmetric

case, except that the calculations are able to be extended to high enough frequencies to show that
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the Cauchy horizon radiation does not actually diverge in the ultraviolet regime in most cases (nor

should it be expected to—see Sec. 4.5.2.1 for more details). However, as an observer approaches the

Cauchy horizon, they should in general see Hawking radiation glowing brightly in every direction

they look, as if they are diving into a thick quantum atmosphere with ever-increasing energy.

Despite the success and relative robustness of Hawking’s calculation, much debate has continued

to this day concerning the nature, origin, and implications of Hawking radiation. From the perspective

of quantum information theory, a driving question has been to understand how black holes evolve

unitarily in spite of their seemingly thermal, information-free radiation. Though the calculations

given in this chapter give no quantitative measure of entropy and thus cannot address this problem

directly, it may be that the increasing (and eventually diverging) presence of Hawking radiation

found here as one ventures farther into a black hole’s interior is closely tied to the mediation of

unitary evolution, or at the least helps explain the vast number of degrees of freedom a black hole is

expected to host in its interior.

Before diving into the bulk of the chapter, it is worth pausing to comment on the implications

(and especially the nonimplications) of a negative Hawking temperature. Hawking radiation is

often pictured as a positive flux of particles escaping a black hole’s horizon, coinciding with a

negative flux of partner particles traveling inward to the black hole’s singularity [94]. However, the

negative-temperature Hawking flux analyzed here is not simply an observation of the inward-traveling

negative-energy Hawking partners. In contrast, these negative temperature will be found in both the

ingoing and outgoing radiation sectors, and further, these calculations do not involve any tunneling

across horizons. It may still be possible to formulate a local picture for the global calculations

done here, but instead of the simple pair splitting at the outer horizon, one should imagine that

virtual particle pairs created anywhere near and inside the black hole will be perturbed by radial

gravitational tidal forces, and a negative temperature is realized because these forces will begin

compressing instead of stretching once an observer comes close enough to the inner horizon [45, 136].

For more details, see my short study of these “pancakifying” forces in the essays for the Gravity

Research Foundation [122].
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How then should one interpret a negative Hawking temperature under the present formalism?

The most straightforward answer is that the modes reaching an observer are blueshifting instead

of redshifting, and this blueshift will result in a change in sign of the effective temperature of

Eq. (3.33) below. However, the thermodynamic implications of such a change in sign are less

apparent. Ref. [47] was the first to comment on the implications of the fact that the surface gravity

κ− defined at the inner horizon is negative, and many authors since have attempted to provide a

consistent thermodynamic picture of a black hole with a negative-temperature inner horizon [48,

146, 149, 172]. However, here no claims will be made based on the Bekenstein-Hawking entropy nor

any thermodynamic laws, and there will also be no assumptions made about what happens beyond

the inner horizon. It may well be that the negative surface gravity has some implication for the

temperature of a purely mathematical, analytically extended white hole emerging from an inner

horizon. Nonetheless, the inner horizon effective temperature κeff describing the experience of an

infalling observer is distinct from the global surface gravity κ−, and in fact κeff will be found either

to diverge at the inner horizon or to equal some constant multiple of κ− (see Sec. 4.3.1.2), depending

on whether the observer looks up or down.

4.2 Construction of the Unruh vacuum state

Instead of performing calculations in a fully dynamical collapse spacetime, it is common to

formulate an equivalent problem in an empty, eternal black hole spacetime like the Schwarzschild

metric [173]. As a result, the collapsing body must be replaced by appropriate boundary conditions

on the past horizon, and these boundary conditions define the quantum field’s vacuum state in that

spacetime. Three options are generally discussed in the literature: the Boulware state, in which the

quantum field’s modes are defined to be positive frequency with respect to the Killing vector ∂/∂t on

both the past horizon and past null infinity; the Hartle-Hawking state, in which modes are defined
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to be positive frequency with respect to the past boundaries’ canonical affine coordinates1 ∂/∂U

and ∂/∂V ; and the (past) Unruh state [173], in which modes are defined to be positive frequency

with respect to ∂/∂U on the past horizon and ∂/∂t at past null infinity. The last of these states

is the one that is most physically relevant to the production of a Hawking flux to the future of a

collapsing black hole and is the state that will be employed here.

In the effective temperature framework, the vacuum state is specified by the spacetime position

and state of motion (the orbital parameters) of the emitter. For example, the Boulware state

corresponds to a static emitter maintaining a constant radius r0. This state is thus only defined

for the exterior portion of the black hole, since an emitter cannot remain static below the event

horizon. A freely falling observer measuring in the Boulware state will see diverging stress-energy at

the horizon, as a result of the diverging acceleration required for the Boulware emitter to remain

static there.

In contrast, the Unruh state is associated with a freely falling emitter, positioned either at the

black hole’s horizon or at infinity. The outgoing Unruh modes correspond to the limit rem → r+, so

that the observer sees the emitter frozen on the past horizon (one may equivalently take the Unruh

emitter’s descent into the black hole to have occurred sufficiently far into the past), and the ingoing

Unruh modes correspond to the limit rem →∞, so that the observer sees the emitter safely resting

in the sky above. Since the observer and the Unruh emitter are generally not located at the same

spacetime coordinate (as in the Boulware state), their modes must be connected via a null geodesic,

null because the quantum field under study here is massless.

In Sec. 4.2.1, it will be shown that in spherically symmetric spacetimes, the freely falling

emitters described above see modes in their own proper time that tick at the same rate as the modes

used to define the Unruh state, and therefore that they are the right choice of emitters in the effective

temperature formalism to describe the Hawking content of dynamically formed black holes. Then in

1For example, for a Schwarzschild black hole, U = −4Me−u/(4M) is the outgoing Kruskal-Szekeres coordinate,
whose vector field ∂/∂U is of Killing type on the past horizon. Positive frequency modes are then defined to be the
eigenfunctions of the Lie derivative of the field in the ∂/∂U direction.
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Sec. 4.2.2, the equivalent analysis will be carried out for black holes with only azimuthal symmetry

(i.e., the rotating Kerr spacetime). Once these foundations for constructing the vacuum state are

laid out, the analysis will proceed with the radial effective Hawking temperature κeff in Sec. 4.3.

4.2.1 Spherical black holes

To see how the choice of vacuum corresponds to the specification of the emitter’s worldline,

consider an emitter radially free-falling from rest at infinity2 into a static, asymptotically flat,

spherically symmetric black hole, which is given by the line element

ds2 = −∆(r) dt2 + dr2

∆(r)
+ r2 (dθ2 + sin2θdϕ2) . (4.1)

The horizon function ∆(r) has the property that it vanishes linearly as r approaches a horizon,

and it asymptotes to unity as r →∞. For the Reissner-Nordström metric, the horizon function is

∆ = 1 − 2M/r +Q2/r2, but for now it will be left arbitrary.

Such an emitter will have coordinate 4-velocity with nonzero components

ṫ ≡ dt
dτ
= 1

∆
, (4.2a)

ṙ ≡ dr
dτ
= −
√
1 −∆. (4.2b)

When the emitter is at infinity (∆→ 1) sending modes inward, Eq. (4.2a) implies that the

emitter’s proper time τ will tick at the same proportionate rate as the global timelike Killing

coordinate t. Thus, t will be the coordinate the emitter uses to define positive frequency, just as

expected for ingoing Hawking modes originating from past null infinity.

However, when the emitter reaches a horizon (∆→ 0), Eq. (4.2a) implies that the static

Schwarzschild time t will tick at an infinitely faster rate than the emitter’s proper time τ . So

2The same arguments should hold for any inertial free-faller; here, the radial, E = 1 case is presented for simplicity.
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heuristically, instead of seeing wave modes of the form exp(−iωt), the emitter should end up seeing

modes of the form exp[−iω exp(−kt)] (for some constant k), so that even when t diverges, the

emitter’s proper time will still remain finite. The new time coordinate defined by these modes will

be found to coincide with the oft-studied Kruskal-Szekeres coordinate U .

To make the above arguments more precise, and to extend the discussion to distinguish ingoing

and outgoing modes (which depend on both the emitter’s proper time and the proper distance

between wavefronts), consider a set of eikonal waves in the emitter’s locally orthonormal tetrad frame

{γ0,γ1,γ2,γ3}, whose tangent-space coordinates will be labeled ξ0, ξ1, ξ2, and ξ3. This tetrad frame

is constructed so that it is continuous across the event horizon and so that the time axis γ0 is always

timelike and future-directed, while the radial axis γ1 is always spacelike and outward-directed. In the

limit of large frequency ω, to leading order in 1/ω, the ingoing (+) or outgoing (−) components of the

eikonal wavefront will follow a null geodesic congruence with tetrad-frame 4-momentum (neglecting

any normalization factors)

km̂ ≡ dξ
m̂

dλ
= (1, ±1, 0, 0) . (4.3)

The transformation from the emitter’s local tetrad frame to a coordinate frame can be accomplished

through the use of the appropriate vierbein. For an external3 radial free-faller with specific energy

E (where E = 1 corresponds to rest at infinity), in the static polar spherical chart this vierbein reads

em̂µ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

E
√
E2 −∆ 0 0

√
E2 −∆ E 0 0

0 0 r 0

0 0 0 r sin θ

⎞
⎟⎟⎟⎟⎟⎟
⎠

(4.4)

(where rows label the coordinates ξ0, ξ1, ξ2, ξ3 of the emitter’s locally inertial frame, and columns

3The case of a free-faller in the black hole interior follows the same line of reasoning as the exterior case presented
here, mutatis mutandis.
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label the global coordinates t, r∗, θ, φ). Here we define the tortoise coordinate r∗ by

dr

dr∗
=∆. (4.5)

The coordinate-frame 4-momentum kµ = km̂e µ
m̂ then follows immediately:

kµ = (E ∓
√
E2 −∆
∆

, ±E ∓
√
E2 −∆
∆

, 0, 0) . (4.6)

If the emitter defines some positive frequency ω (along with the corresponding wave number ω/c),

then their natural choice of ingoing (upper sign) or outgoing (lower sign) modes will take the form

exp[−iω(ξ0 ± ξ1)], which can be written in coordinate form by matching the affine distances of

Eqs. (4.3) and (4.6):

dξ0 ± dξ1 = ∆

E ∓
√
E2 −∆

(dt ± dr∗) . (4.7)

Asymptotically, as a unit-energy emitter approaches infinity (∆→ 1), the fraction in Eq. (4.7)

reduces to unity, so that the proper choice of coordinates to define Unruh modes at infinity is the

Eddington-Finkelstein double null coordinate system, defined in both the exterior and interior as

u ≡ t − r∗, v ≡ t + r∗, (4.8)

where u here is the same outgoing null coordinate as in Eq. (3.29).

When the emitter is at a horizon (∆→ 0), the mode behavior depends on whether the waves

are ingoing or outgoing. For the ingoing modes of a positive-energy free-faller or the outgoing modes

of a negative-energy free-faller (neither of which are needed to define an Unruh emitter but will prove

useful later to define the natural modes seen by horizon observers), the fraction in Eq. (4.7) reduces

to 2E, so that the proper modes (after ω is properly scaled) are once again the Eddington-Finkelstein

modes exp[−iω(t ± r∗)].

But for the outgoing modes of a positive-energy free-faller or the ingoing modes of a negative-
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energy free-faller at the horizon, the fraction in Eq. (4.7) vanishes, so a more appropriate coordinate

choice must be found. Define a new coordinate Ū such that the outgoing Unruh modes at the horizon

will be written as exp[−iωŪ]. Then Eq. (4.7) implies that Ū must satisfy

dŪ

du
=

∆→0

∆

2E
≈ r − r±

2E

d∆

dr
∣
r±

(4.9)

in the near-horizon limit. From this expression one can identify the quantity

κ± ≡
1

2

d∆

dr
∣
r±

(4.10)

as the outer (+) or inner (−) horizon’s surface gravity. For an emitter with E = 1, since from Eqs. (4.3),

(4.5), and (4.6), the radius r is related to the horizon-limit outgoing proper null coordinate Ū by

dr

dŪ
= −1 +

√
1 −∆
2

=
∆→0
−1, (4.11)

then Eq. (4.9) solves as

Ū ∝ exp (−κ±u) . (4.12)

Eq. (4.12) assumes that Ū is chosen to begin at 0 at the event horizon, when u→∞. This form

of the emitter’s proper time (up to an irrelevant normalization factor) is precisely the form of the

outgoing Kruskal-Szekeres coordinate U used by Unruh to define positive frequency on the past

horizon [173]. Thus, the outgoing modes of the Unruh state correspond to those seen as positive

frequency by an emitter in free fall asymptotically close to the past horizon.

In some sense, nothing more has been done than to “rederive the obvious” in showing how one

may obtain past Unruh null boundary conditions. However, in addition to providing yet another way

of understanding the validity of this choice of vacuum state, the generalized derivation above also

provides a natural specification of ingoing and outgoing modes for freely falling observers at either

horizon, without any reliance on global Killing vector fields or asymptotically Minkowski regimes.
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This idea will return when considering solutions to the wave equation in Sec. 4.5.

As a final comment concerning the choice of vacuum state, an additional family of vacuum

states was used by Ref. [16] to mimic the switching on of Hawking radiation as a black hole first forms

during a collapse. These “collapse vacua” correspond to emitters in free fall from rest at infinity, each

separated from the observer by a time delay δτ (as in the Unruh state), but not necessarily in the

limit as they approach the horizon or infinity. However, this chapter is not concerned with the initial

transient collapse dynamics of a black hole; rather, focus is placed on the late-time steady-state

behavior once the black hole has settled down into the Unruh state, which should occur only a few

light-crossing times after the black hole’s formation.

4.2.2 Rotating black holes

Rotating, empty black holes are modeled with the Kerr spacetime, which is given by the line

element (in Boyer-Lindquist coordinates) [40]

ds2 = ρ
2

∆
dr2 − ∆

ρ2
(a sin2θ dφ − dt)2 + ρ2dθ2 + sin2θ

ρ2
(R2dφ − a dt)2 , (4.13)

where R2 ≡ r2 + a2, where a ≡ J/M is the black hole’s spin parameter (in terms of the black hole’s

angular momentum J and mass M), the conformal factor ρ2 ≡ r2 + a2 cos2θ contains zeros at the

black hole’s ring singularity, and the horizon function ∆ ≡ r2 + a2 − 2Mr contains zeros at the black

hole’s event (r = r+) and Cauchy (r = r−) horizons.

The geodesic equations of motion in this spacetime are separable [40]:

ṫ = 1

ρ2
(R

2Pr

∆
+ aPθ) , (4.14a)

ṙ2 = 1

ρ4
(P 2

r − (K + r2δ)∆) , (4.14b)

θ̇2 = 1

ρ4
(K − a2 cos2θ δ −

P 2
θ

sin2θ
) , (4.14c)

φ̇ = 1

ρ2
(aPr

∆
+ Pθ

sin2θ
) , (4.14d)
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where

Pr(r) ≡ R2E − aL, (4.15a)

Pθ(θ) ≡ L − aE sin2θ, (4.15b)

with an overdot representing differentiation with respect to affine time (τ for massive geodesics

and λ for massless geodesics), with constants of motion written in terms of the Killing energy per

unit mass E, Killing angular momentum along the axis of rotation per unit mass L, and Carter

constant K = Q + (aE −L)2, and where δ = 1 for massive particles while δ = 0 for massless particles

(which will be denoted with scripted constants of motion E , L, K in contrast to the massive particle’s

constants E, L, K).

As a reminder, in the effective temperature formalism, the appropriate choice of vacuum state

for gravitational collapse leading to the formation of a black hole is that of an inertial emitter in the

asymptotic past, when the spacetime is still flat and the black hole has not yet formed. However, the

Kerr metric models an eternal black hole (or, by analytic extension, a white hole-black hole system),

not a dynamical collapse. Thus, instead of starting with a Minkowski vacuum in the asymptotic

past, one must specify boundary conditions on the Kerr past horizon that match the exponential

redshifting one would expect near a collapsing shell of matter, and these boundary conditions are

precisely the ones used to define the (past) Unruh vacuum state used here. This state exactly mimics

the physical state coming from gravitational collapse in all portions of the spacetime except along

the (now singular) past horizon and along the left leg of the inner horizon (which in the dynamical

case may not be a Cauchy horizon as it is in Kerr; see Ref. [107] for a proposed construction in the

analogous charged case).

The Unruh state is formally defined by taking modes to be positive frequency with respect

to the Killing vector field ∂t along past null infinity and with respect to the Kruskalized canonical

affine field ∂U along the past horizon [173]. The latter coordinate is defined in the physical regions
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of interest by

U ≡ sgn(r+ − r)
κ+

e−κ+u, (4.16)

where

κ± ≡
1

2R2
±

d∆

dr
∣
r±

= ±r+ − r−
2R2
±

(4.17)

is the surface gravity at the Kerr black hole’s event horizon (κ+) or Cauchy horizon (κ−) with the

definition R2
± ≡ r2± + a2, and once again,

u ≡ t − r∗, v ≡ t + r∗ (4.18)

are the outgoing and ingoing Eddington-Finkelstein coordinates, defined in the same way for both

the interior and exterior portions of the spacetime.

Since the definition of a vacuum state primarily concerns the choice of positive frequency with

respect to a timelike coordinate, the choice of angular modes will not substantially influence the final

results of the calculations done here [179]. For the Unruh modes along past null infinity, azimuthal

modes of the form exp(im̄φ) are used, while the Unruh modes along the past horizon are taken to

be exp(im̄φ+), where

φ± ≡ φ −Ω±t, (4.19)

with the angular velocity Ω± of the horizon at r = r± defined in Eqs. (4.61) and (4.137). The azimuthal

coordinate φ+ is regular at the horizon, and additionally, it defines the Killing vector ∂t +Ω+∂φ that

generates the Killing horizon at r = r+.

In what follows, it will be shown that the Unruh state can be encoded in the geometric optics

framework by a family of phase-aligned, freely falling emitters placed at r →∞ for ingoing modes

and r → r+ for outgoing modes. Consider first the ingoing Unruh sector, which is defined with no

mode contributions from the past horizon and with modes of the form exp(−iω̄v) along past null

infinity [173]. In the geometric optics limit, these ingoing modes should follow a null congruence

hypersurface-orthogonal to the eikonal phase front defined by taking Θ = v along past null infinity;
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recall Eq. (3.28). However, these null geodesics could just as easily be labeled by the proper time

of an infaller asymptotically far from the black hole: from Eqs. (4.14), (4.18), and (4.134), as an

infaller’s radius r is taken to infinity, the ingoing time behaves as

lim
r→∞

dv

dτ
= lim

r→∞
(ṫ + R

2

∆
ṙ) = E −

√
E2 − 1. (4.20)

If the infaller is taken to be at rest asymptotically far from the black hole (E = 1), then Eq. (4.20)

implies that dτ = dv; i.e., the infaller’s proper time will tick at the same rate as the null coordinate

used to define the Unruh state at past null infinity.

Now consider the outgoing Unruh sector, which is defined with no mode contributions from

past null infinity and with modes of the form exp(−iω̄U) along the past horizon [173]. At the past

horizon, when r → r+ (and ∆→ 0), the rate of change of an infaller’s outgoing Eddington-Finkelstein

coordinate u with respect to their proper time will diverge:

lim
r→r+

du

dτ
= 2R2Pr

ρ2∆
+O(1). (4.21)

In order to show that the appropriate choice of coordinate is actually U instead of u, consider

how u explicitly depends on an infaller’s proper time. First, define the Mino time τ̃ [131] by the

relation
dτ

dτ̃
= ρ2 (4.22)

so that as r → r+, Eq. (4.14b) can be integrated to yield the asymptotic timelike geodesic solution

lim
r→r+

τ̃ = τ̃0 −
r − r+
∣Pr ∣

+O [(r − r+)2] , (4.23)

with an integration constant τ̃0. Similarly, Eq. (4.14a) can be integrated in the same asymptotic
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limit to yield the timelike geodesic solution

lim
r→r+

t = lim
r→r+
(∫ dr

R2Pr

(dr/dτ̃)∆
+ ∫ dθ

aPθ

dθ/dτ̃
)

= ∫ dr
R2

∆
+O(1)

= r∗ +O(1), (4.24)

where the final O(1) term encompasses terms at least constant in r, including terms dependent

on the latitude θ. The outgoing Eddington-Finkelstein coordinate u can therefore be written from

Eqs. (4.18) and (4.24) as

lim
r→r+

u = −2r∗ +O(1) = − 1

κ+
ln ∣r − r+∣ +O(1), (4.25)

with the surface gravity κ+ from Eq. (4.17). Inverting Eq. (4.25) and substituting in the inverse of

Eq. (4.23) gives the well-known exponential relation

lim
r→r+

τ̃ ∝ e−κ+u +O(1), (4.26)

which is precisely the relation used to define the Kruskalized coordinate U in Eq. (4.16). Thus, the

proper time of an ingoing infaller asymptotically close to the event horizon labels outgoing null

geodesics in the same fashion as the Kruskalized coordinate U used to define the Unruh state.

As can be seen from the analysis above, the choice of the infaller emitting null rays to define

the Unruh state is independent of that infaller’s orbital parameters and angular position, as long as

they begin at rest asymptotically far from the black hole, follow along an ingoing timelike geodesic,

and reside either at r →∞ (for ingoing modes) or r → r+ (for outgoing modes).

When considering the geometric optics Unruh state in the Kerr geometry, an additional

subtlety arises that is not present in the Schwarzschild or Reissner-Nordström geometries. For those

simpler, spherically symmetric cases, an observer in radial free-fall looking down at an Unruh emitter
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δ ob

λ

emr
δrem

Figure 4.1: An inertial observer (blue) cannot follow outgoing null geodesics from one emitter (solid
red) without rotating their frame of reference. But if they stare in a fixed direction, the new emitter
they see (dashed red) after an infinitesimal proper time δτob must be shifted by a radial distance
δrem so that all emitters remain in phase. Then, the total affine distance λ will change, but the
affine distance weighted by the emitter’s frequency ωem, Eq. (4.28), will stay constant.

asymptotically close to the event horizon is able to watch the same emitter for their entire journey

into the black hole. However, for a Kerr black hole, an observer in free-fall generally (except for a

few privileged frames analyzed in Sec. 4.3.2) cannot watch the same emitter at the horizon without

rotating their field of view or otherwise accelerating. The reason for the complication is that the

emitter for the outgoing Unruh state is within the ergosphere and must orbit the black hole with

the geometry. An observer would therefore not see the redshifting emitter freeze in place as they

approach the horizon, but instead at late times they would see the emitter steadily moving across

the surface of the past horizon until reaching the edge of the black hole’s shadow, becoming heavily

distorted, and reappearing on the opposite side.

As has been argued in previous studies [87], an observer who rotates their frame of reference

to follow a single emitter will induce undesired non-inertial particle creation effects, which are

fundamentally distinct from the particle creation due to the Hawking effect. For the Kerr geometry,

one must therefore consider a family of Unruh emitters at the event horizon, all chosen to lie along

the same eikonal wave front, so that as the observer falls toward the black hole, their non-rotating
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(Fermi-Walker transported) view will sweep across different emitters all remaining in phase with

each other (see Fig. 4.1).

The implementation of a family of phase-aligned Unruh emitters is carried out in Sec. 4.4.2.

The key constraint imposed on the calculation of the effective temperature of Eq. (3.33) is that the

affine distance of the null geodesic measured in the frame of the emitter must be held constant for

fixed observer position as the emitter’s position is varied along the horizon. The affine distance λ

along a Kerr null geodesic, analogous to the proper time τ for timelike geodesics, can be obtained by

quadrature of Eqs. (4.14b) and (4.14c):

λ = ∫
rob

rem

r2 dr

±
√
P 2
r −K∆

+ ∫
θob

θem

a2 cos2θ dθ

±
√
K − P 2

θ csc2θ
. (4.27)

This affine distance can be scaled by the null particle’s frequency ωi to yield proper distances in the

frames of the emitter (λem) or the observer (λob):

λ = λem

ωem
= λob

ωob
. (4.28)

Eq. (4.28) can then be substituted into Eq. (3.33) to give a new expression for the effective temperature

κeff, with the constraint that λem be kept constant:

κeff(τob) = −
d

dτob
ln(ωobλ

λem
) = −d lnωob

dτob
− d lnλ
dτob

. (4.29)

Now that it has been shown how the Unruh vacuum state in the effective temperature formalism

can be encoded by a family of freely falling emitters skimming the appropriate past null boundaries,

the calculation of the effective temperature can commence in the following sections.
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4.3 Effective Hawking temperature κeff (radial modes)

4.3.1 Spherical black holes

Here, the effective temperature seen by a freely falling inertial observer in a charged black hole

spacetime with a quantized scalar field is examined. First, the effective temperature κeff is calculated

for an observer looking in the radial direction via Eq. (3.33), then in Sec. 4.3.1.4 the adiabaticity

condition on κeff is analyzed.

Consider the line element of Eq. (4.1), which describes the geometry of a charged, spherically

symmetric black hole when the horizon function ∆ takes the form

∆ = (1 − r+
r
)(1 − r−

r
) , r± ≡M ±

√
M2 −Q2. (4.30)

The black hole modeled by this geometry is known as the Reissner-Nordström black hole, which

possesses a mass M and a charge Q. The length scales r+ and r− are referred to respectively as the

outer (event) horizon and the inner (Cauchy) horizon.

The rate of redshift seen by a radially infalling observer has already been calculated for the

spacetime of Eq. (4.1) for arbitrary ∆ (see Appendix B of Ref. [87]), though that analysis was only

carried out explicitly for Schwarzschild (Q/M = 0). Here the main results are quoted, and special

attention is then drawn to Reissner-Nordström with a focus on the inner horizon.

The frequency ω measured in the frame of an observer (≡ ωob) or emitter (≡ ωem) with specific

energy E, normalized to the frequency ω∞ seen at rest at infinity, is

ω

ω∞
= E ±

√
E2 −∆
∆

, (4.31)

where the upper (lower) sign applies to outgoing (ingoing) null rays. The effective temperature κeff
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can then be calculated with the help of the chain rule:

κeff = −
d

dτob
ln( ωob

ωem
)

= −ωob (
ṙob

ωob

∂ lnωob

∂rob
− ṙem
ωem

∂ lnωem

∂rem
)

= ∓1
2

ωob

ω∞
(d∆ob

drob
− d∆em

drem
) , (4.32)

where an overdot signifies differentiation with respect to the observer’s or emitter’s proper time τ .

For outgoing modes (upper sign), the Unruh emitter must be placed at the event horizon

(rem → r+), and for ingoing modes (lower sign), the Unruh emitter resides at infinity (rem →∞). The

result, for an observer in free fall from rest at infinity (Eob = 1), is the sensation of two independent

effective temperatures corresponding to the outgoing (κ+eff) and ingoing (κ−eff) Hawking modes

(throughout the rest of this paper, ± superscripts will always refer to outgoing/ingoing quantities,

while ± subscripts will always refer to outer/inner horizon quantities):

κ+eff =
Mrob (1 − r2ob/r

2
+) −Q2 (1 − r3ob/r

3
+)

r2ob (−rob +
√
2Mrob −Q2)

, (4.33a)

κ−eff =
Mrob −Q2

r2ob (rob +
√
2Mrob −Q2)

. (4.33b)

The rest of this Sec. 4.3.1 will be devoted to exploring the implications of Eqs. (4.33). As a

first comment, because of the square root in the denominator, both temperatures become imaginary

when the observer is located close enough to the origin, specifically when rob < Q2/(2M). However,

such values of rob are strictly less than the inner horizon radius r− for all choices of Q, and the

failure of Eqs. (4.33) in this region coincides with the failure of Gullstrand-Painlevé coordinates in

the same region, indicative of the presence of an unphysical negative interior mass M(r) (i.e., this is

where an infaller would bounce back due to the effects of the repulsive charged singularity on the

spacetime) [88]. Since the region below the inner horizon should be physically disregarded due to the

semiclassical singular behavior examined below, that region will not be explored any further here.
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Second, it should be noted that for an observer asymptotically far from the black hole, the above

formulas reproduce familiar results: the outgoing sector’s temperature asymptotically approaches

the black hole’s surface gravity κ+ defined by Eq. (4.10), and the ingoing Hawking sector vanishes:

lim
rob→∞

{κ+eff, κ
−
eff} = {

r+ − r−
2r2+

, 0} . (4.34)

As expected, κ+eff approaches 1/(4M) in the Schwarzschild Q/M = 0 limit and vanishes in the extremal

Q/M = 1 limit. These limits can be seen in the respective panels of Fig. 4.2, which shows the full

behavior of κ+eff(rob) and κ−eff(rob) for different choices of the black hole’s charge-to-mass ratio.

4.3.1.1 Negative κeff at the event horizon and beyond

As an observer freely falling from infinity approaches the Reissner-Nordström event horizon

and enters the black hole, the effective Hawking temperatures κ+eff and κ−eff grow from their initial

values at infinity until reaching a maximum value, after which they quickly drop to zero and become

negative (excepting the special cases Q/M = 0,1). When the observer crosses the event horizon, the

effective temperatures in the outgoing and ingoing sectors are

lim
rob→r+

{κ+eff, κ
−
eff} = {

2 (r+ − 2r−)
r+(r+ − r−)

,
r+ − r−
4r2+

} . (4.35)

The most notable feature of Fig. 4.2 is the fact that κ+eff and κ−eff become negative (indicated by the

dashed lines) if the observer is close enough to the inner horizon, corresponding to a blueshifting of

the observed modes instead of the usual exponential redshifting. The exact regions with negative

temperature depend heavily on the charge Q, generally extending farther outward with increasing

charge. The ingoing radiation (the blue curve) has negative temperature only below the event horizon,

coinciding exactly with the change in sign of the Weyl scalar at r = Q2/M , but curiously enough,

the outgoing radiation (red) can have negative temperature even above the event horizon, and in

the extremal case, the effective temperature in the entire exterior is negative. How large a charge is
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Figure 4.2: Outgoing effective temperature κ+eff (red curve) and ingoing effective temperature κ−eff
(blue curve) as a function of observer radius rob for various choices of the Reissner-Nordström black
hole charge Q, all in units of the black hole mass M . Solid curves indicate positive values on the log
plot, and dashed curves indicate negative values. The inner and outer horizons are shown with gray,
dotted vertical lines, and the unphysical region below the inner horizon is grayed out.

necessary for a negative temperature to be detected outside the black hole? From Eq. (4.35), κ+eff

will be negative above the event horizon if the event horizon is less than double the inner horizon’s

radius, which occurs when (Q/M)2 > 8/9. This special value of Q is shown in Fig. 4.3 with a red

dot marking the intersection of the solid red and dotted black curves.

The value (Q/M)2 = 8/9, where the event horizon coincides with the radial inflection point in
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Figure 4.3: Regions of negative effective temperature in the Reissner-Nordström charge-radius
parameter space. The black dotted curve shows the inner and outer horizons, which converge in
the extremal limit Q/M = 1. The red (blue) curve shows regions where the effective temperature
in the outgoing sector κ+eff (ingoing sector κ−eff) equals zero, and the red (blue) hatched shading
shows regions where the effective temperature κ+eff (κ−eff) is negative. The red dot marks the charge
Q/M =

√
8/9 above which the effective temperature κ+eff becomes negative outside the event horizon.

As in Fig. 4.2, the unphysical region below the inner horizon is shaded out gray.

the black hole’s horizon function ∆, has shown up previously in the literature for Reissner-Nordström

black holes in varying contexts. Ong and Good [136] used a heuristic gravitational analog of the

Schwinger effect to show that the energy of two Hawking quanta split apart from tidal forces will be

negative near the horizon when (Q/M)2 > 8/9. This change in sign can be traced to the change in

the radial tidal force, as measured by the proper acceleration of the free-fall-frame geodesic deviation

vector, from the usual stretching force into a compressing force as Q is increased [45]. Similarly, the

square of the free-fall temperature obtained by embedding the black hole in a six-dimensional flat

spacetime and finding the Unruh temperature of the analogous observer was found to be negative

for (Q/M)2 > 8/9 [33], which those authors interpreted as a failure to detect any radiation. Finally,

in the 1+1D case, the renormalized expectation values of the temporal and radial components of

a scalar field’s stress-energy tensor ⟨T ν
µ ⟩ become negative at the event horizon in the exact same
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range [117]. These studies apply to a variety of different semiclassical effects that all point toward

similar semiclassical behavior, but in the present case, the physical interpretation of a negative

effective temperature κeff is not so clear-cut, especially given the lack of adiabaticity in some regions

of interest (described in Sec. 4.3.1.4). A more robust physical interpretation is therefore deferred

until the spectral analysis of Sec. 4.5.

4.3.1.2 Diverging κeff at the inner horizon

Now, consider the effective temperature seen when the observer reaches the inner horizon.

As can be seen from Figs. 4.2 and 4.3, both the outgoing and ingoing effective temperatures κ+eff

and κ−eff are always nonpositive at the inner horizon.4 The effective temperature κ−eff for the ingoing

sector remains finite for all nonzero values of Q, but the outgoing temperature κ+eff always diverges at

the inner horizon. Defining a new coordinate zob ≡ (rob − r−)/(r+ − r−) representing the observer’s

dimensionless distance above the inner horizon, in the limit of small zob ≪ 1, one has (to leading

order in zob):

lim
zob→0,

Eob→1

{κ+eff, κ
−
eff} = {−

r2+ + r2−
r2+(r+ − r−)zob

, −r+ − r−
4r2−

} . (4.36)

From Eq. (4.36), one can see that the perceived temperature from outgoing radiation at the inner

horizon (when the observer looks straight down at the past horizon) quickly approaches negative

infinity, while the practically irrelevant perceived temperature from ingoing radiation (when the

observer looks up at the sky above) equals half the inner horizon’s surface gravity κ− of Eq. (4.10).

Note that the above analysis applies only to an ingoing observer, who must pass through

the left leg of the inner horizon (labeled H−r− in Fig. 4.13). In order to reach the right leg of the

inner horizon, an infalling observer must accelerate outward until they acquire negative energy as

measured by another observer at infinity. For an observer with specific energy Eob = −1 (who can

exist only inside the event horizon, where the Killing time coordinate t is spacelike), the only change

4Here values of κeff → ±∞ are treated as equivalent to maintain consistency with the standard entropic definition
of temperature, where both coincide with zero inverse thermodynamic temperature β.
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to Eqs. (4.33) that is needed is to swap their denominators. With this change, the resulting effective

temperatures for an outgoing observer at the inner horizon are

lim
zob→0,

Eob→−1

{κ+eff, κ
−
eff} = {−

r+ − r−
4r2−

(1 − r+ − r−
r2+

) , − 1

(r+ − r−)zob
} . (4.37)

Both effective temperatures are still negative. The main change to be noticed when traveling

through the right portion of the inner horizon instead of the left portion is that the ingoing effective

temperature κ−eff seen from the sky above diverges instead of the outgoing temperature seen from the

past horizon below. This divergence of κ−eff is consistent with the inner horizon blueshift divergence

first noted by Penrose [152]. In contrast, the outgoing effective temperature κ+eff remains finite for

large Q, vanishing as Q/M → 1, though as Q/M → 0, κ+eff diverges (just as κ−eff does in the case of

an ingoing observer at the inner horizon).

One final special case is an observer with zero energy, who passes through the intersection

of the left and right legs of the inner horizon (the uppermost point in Fig. 4.13). At this special

location, the ingoing and outgoing effective temperatures both diverge:

lim
zob→0,

Eob→0

{κ+eff, κ
−
eff} = {−

r2+ + r2−
2r2+r−

√
zob

, − 1

2r−
√
zob
} . (4.38)

Thus, no matter what portion of the inner horizon the observer reaches, at least one of the Hawking

sectors will always feature a divergent, negative temperature.

Divergent semiclassical behavior at the Reissner-Nordström inner horizon is already well

anticipated in the literature. As early as 1980, it was argued that the renormalized expectation value

of the stress-energy tensor in regular coordinates must diverge on at least one of the two legs of

the inner horizon [95]. More recently, the renormalized stress-energy tensor in the Unruh state was

computed explicitly at the inner horizon, and it was found generically to diverge [180]. There are a

few differences between that study’s results and the results found here; namely, the sign of ⟨Tuu⟩Uren

and ⟨Tvv⟩Uren at the inner horizon can be either positive or negative depending on the charge Q (as
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opposed to the purely negative κ±eff found here), and those stress-energy tensor fluxes both vanish in

the extremal limit (while only κ+eff vanishes as Q/M → 1 for outgoing observers) [181]. However, the

effective temperature and the renormalized stress-energy tensor should not be expected to agree,

since the former describes the perception by an infaller of a spectral distribution while the latter

describes the tensorial flux and energy density of that radiation—a perceptual formulation of ⟨Tµν⟩

would depend not only on κeff but also on κ̇eff [17].

4.3.1.3 Dependence of κeff on the observer’s energy

Finally, consider how the effective temperatures κ±eff given by Eq. (4.32) change for arbitrary

observer energies. Can an observer eliminate the detection of Hawking radiation, or perhaps even

change its sign, simply by Lorentz-boosting to a different frame?

The only contribution to the effective temperatures of Eq. (4.32) that depends on the observer’s

specific energy Eob is the factor ωob, the observer-frame frequency. Thus, any Lorentz-boosting

effects on the effective temperature seen by a radial observer are solely confined to those caused

by a Doppler factor shift. This shift will never change the sign of κ±eff for an observer at a given

radius; it will only change the overall magnitude. In particular, as the observer speeds up, in the

limit Eob ≫ 1 (or Eob ≪ −1), the magnitude of κ+eff (or κ−eff, respectively) will increase linearly with

Eob. Similarly, in the limit Eob ≪ −1 (or Eob ≫ 1), the magnitude of κ+eff (or κ−eff, respectively) will

drop reciprocally to zero. Between these two limits, κ±eff varies monotonically with Eob, so even if an

interior observer’s energy passes through zero, κ±eff will always remain the same sign.

The change in sign in the radial effective temperature for an inertial observer is thus purely

geometrical in origin. As an observer changes their energy (or even their viewing direction in a given

patch of sky, as shall be seen in Sec. 4.4), they can never fully eliminate the presence of Hawking

radiation, and the effective temperature will always change sign once they have entered into a region

of the spacetime geometry where their local surface gravity (governed by radial gradient of the

black hole’s horizon function ∆, Eq. (4.10)) exceeds that of the Unruh emitter (or vice versa). This

radiation in the radial direction can thus be regarded as “real” in the sense that it behaves in the
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same Lorentz-covariant way as any classical radiation detected by a free-faller would.

4.3.1.4 Adiabaticity

As mentioned in Sec. 3.2, the identification of the effective temperature κeff with a thermal

Hawking flux is strictly only valid in conjunction with the adiabatic condition, that κeff must remain

approximately constant over enough e-folds of the arriving modes [20, 21]. This condition is quantified

by the adiabatic control function ϵ, which for radial modes in a static, spherically symmetric black

hole can be written as

ϵ(rob) ≡ ∣
κ̇eff

κ2eff
∣ = ∣ ṙob

κ2eff

dκeff

drob
∣ . (4.39)

Whenever ϵ≪ 1, the adiabatic condition is satisfied and a thermal Hawking spectrum is perceived

by the observer.

The exact analytic form of ϵ(rob) for the Reissner-Nordström free-faller in the Unruh state is

not too illuminating; nonetheless, several key features can be identified. As rob →∞, the adiabatic

control function for the outgoing modes drops to zero (as anticipated to recover Hawking’s original

thermal calculation), except in the extremal case where κeff itself is already zero and ϵ therefore

diverges. Similar diverging behavior in ϵ is observed whenever the effective temperature κeff vanishes,

as a result of the κ2eff term in the denominator of Eq. (4.39), since it is meaningless to define a

thermal flux at zero temperature.

Based on the above observations, one might expect that ϵ would drop to zero whenever κeff

diverges (e.g. when one observes outgoing modes at the inner horizon). However, the adiabatic

control function at the inner horizon instead passes through a finite, nonzero value, which nonetheless

is still usually smaller than unity for outgoing modes. Specifically, for an ingoing observer,

lim
rob→r−

{ϵ+, ϵ−} =
⎧⎪⎪⎨⎪⎪⎩

r2+
2(2M2 −Q2)

,
5Q2 + 4M

√
M2 −Q2 − 3M2

M2 −Q2

⎫⎪⎪⎬⎪⎪⎭
. (4.40)

This equality technically only holds when Q ≠ 0; in the Schwarzschild case, instead of approaching

unity, both ϵ+ and ϵ− will asymptotically approach 3 (see the left panel of Fig. 4.4). But for Q > 0,
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Figure 4.4: Outgoing and ingoing adiabatic control functions ϵ+ (red curve) and ϵ− (blue curve),
respectively, as a function of an ingoing observer’s position rob for two choices of the Reissner-
Nordström black hole charge Q, in units of the black hole mass M . As in Fig. 4.2, the inner and
outer horizons are shown with gray, dotted vertical lines, and the unphysical region below the inner
horizon is grayed out.

the value of ϵ+ at the inner horizon is always less than 1, and ϵ− is always greater than 1. For large

enough charge Q, Eq. (4.40) thus implies that the outgoing temperature should be approximately

thermal for an ingoing observer close enough to the inner horizon. This behavior holds even (and

especially) for Q/M = 1, where the inflating negative temperature just above the merged horizons

occurs in the black hole’s exterior.

For reference, the behavior of ϵ+(rob) and ϵ−(rob) are plotted in Fig. 4.4 for two of the same

values of Q used in Fig. 4.2. One may observe that for many choices of rob, κeff behaves adiabatically

and the thermal results fall into place. However, for much of the observer’s trajectory, ϵ far exceeds

unity, and deeper analysis is required, as examined in Sec. 4.5.

One final technical point related to the discussion of adiabaticity is the comment made by the

authors of Ref. [20] that the effective temperature adiabaticity formalism described above is valid

“under mild technical assumptions.” These assumptions are related to the more generalized, precise
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form of the adiabaticity condition, which assumes the existence of a finite quantity

D ≡ sup
n>0

⎡⎢⎢⎢⎢⎣

1

(n + 1)!
∣κ(n)eff ∣
κn+1eff

⎤⎥⎥⎥⎥⎦

1/(n+1)

(4.41)

such that adiabaticity is implied by the condition 2D2 ≪ 1 (instead of ϵ≪ 1). Usually, the n = 1

term in the definition of Eq. (4.41) dominates so that the quantity 2D2 is equivalent to the adiabatic

control function ϵ of Eq. (4.39). But in certain special cases, such as the dip observed in the blue

curve in the right panel of Fig. 4.4 as ϵ− goes to zero just above the outer horizon, higher-n terms in

Eq. (4.41) dominate. As a result, adiabaticity is not satisfied there, even though κ̇−eff (and therefore

ϵ−) vanishes.

4.3.1.5 Inner-extremal regular black holes

To close this Sec. 4.3.1 on κeff in spherically symmetric black holes, consider how the above

results might be generalized beyond the Reissner-Nordström spacetime. In order to circumvent the

mass inflation problem, a number of regular black hole solutions have been recently developed that

possess an inner horizon with zero surface gravity, first in the spherical case [38] and subsequently in

the rotating case [67]. For a static, spherically symmetric black hole with line element of Eq. (4.1),

the horizon function ∆(r) contains zeros at the locations of the horizons (at r = r+ for the outer

horizon and r = r− for the inner horizon) and asymptotes to unity as r →∞ (assuming the spacetime

is asymptotically flat). The (generalized) surface gravity κ at any radius r in this spacetime is

defined by

κ(r) ≡ 1

2

d∆

dr
, (4.42)

so in order for κ to vanish at the inner horizon, the horizon function must contain a degenerate

root at that horizon. Such a condition is satisfied for extremal black holes, where the inner horizon

coincides with the outer horizon (r+ = r−), but if one wishes to keep the outer horizon sufficiently

separated from any exotic quantum gravitational physics modifying the inner horizon (and indeed,

neither have extremal black holes been observed in nature nor should be they theoretically possible
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by the third law of black hole thermodynamics), the next-simplest choice for the horizon function is

a triple root at r−:

∆(r) = (r − r+)(r − r−)
3

F (r)
, (4.43)

where

F (r) ≡ (r − r+)(r − r−)3 + 2Mr3 + (a2 − 3r−(r+ + r−)) r2

[38]. Here M is the mass of the black hole and a2 is a real parameter that must satisfy

a2 ≳
9

4
r+r− (4.44)

in order for the horizon function to contain no poles along the real axis. The authors of Ref. [38]

additionally assume that r+ lies in the vicinity of 2M , while r− lies in the vicinity of 0. With

these choices, one thus has an “inner-extremal” regular black hole that behaves approximately like

Schwarzschild outside the outer horizon but contains a regular de Sitter core within, fine-tuned so

that κ(r−) = 0. In particular, near r = 0, the spacetime possesses a cosmological constant

Λ = 3 a2 − 3r−(r+ + r−)
r+r3−

, (4.45)

while all remaining stress-energy contributions to the spacetime curvature vanish.

As mentioned in Sec. 4.2, for outgoing modes (upper sign), the Unruh emitter must be placed at

the outer horizon (rem → r+), and for ingoing modes (lower sign), the Unruh emitter resides at infinity

(rem →∞). The result is the sensation of two independent effective temperatures corresponding to

the outgoing (κ+eff) and ingoing (κ−eff) Hawking modes originating from the past horizon below and

the sky above the observer, respectively. These effective temperatures for an inertial observer at

radius r looking in a radial direction take on the following forms, consisting of a Doppler factor
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multiplied by an observer-dependent surface gravity and a state-dependent surface gravity:

κ+eff(r) =
−E −

√
E2 −∆(r)

∆(r)
(κ(r) − κ(r+)) , (4.46a)

κ−eff(r) =
E −
√
E2 −∆(r)
∆(r)

κ(r), (4.46b)

where κ(r) is the generalized surface gravity defined by Eq. (4.42).

For an observer at rest far away from the black hole, if the spacetime is asymptotically flat,

the outgoing effective temperature κ+eff of Eq. (4.46a) approaches κ(r+), while the ingoing effective

temperature κ−eff of Eq. (4.46b) vanishes, as predicted by Hawking. But for an observer near one of

the black hole’s horizons, Eqs. (4.46) warrant closer examination.

First, consider the effective temperatures seen at the outer horizon r+. An observer crossing

the event horizon must have E > 0, so that in the limit ∆→ 0, the outgoing and ingoing effective

temperatures simplify to

lim
r→r+

κ+eff(r) = −
Eκ′(r+)
κ(r+)

, (4.47a)

lim
r→r+

κ−eff(r) =
κ(r+)
2E

, (4.47b)

where a prime denotes differentiation with respect to r. Eq. (4.47a) makes the same assumption

as Ref. [38] that the surface gravity κ(r+) of the spherical inner-extremal regular black hole’s

outer horizon is non-zero; if on the contrary the outer horizon is degenerate, the outgoing effective

temperature κ+eff will depend heavily on the choice of how limits are taken: if the collapse occurred

far enough into the past that the Unruh emitter’s position can be treated as fixed at r+, the outgoing

effective temperature κ+eff will diverge as a power law when the outer horizon is degenerate, but once

the observer reaches and passes below r+, the effective temperature will instantaneously drop to zero.

While the outer horizon’s ingoing effective temperature seen from the sky above is always

positive, the sign of the outer horizon’s outgoing effective temperature originating from the past

horizon below depends on the radial gradient of the outer horizon’s surface gravity. Assuming κ(r+)
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takes on a positive, non-zero value, if the horizon function is concave down at the outer horizon,

∆′′(r+) < 0, then the effective temperature from the horizon will be positive just like that of the

sky. But if ∆′′(r+) > 0, as occurs for Reissner-Nordström black holes with a charge-to-mass ratio

Q/M >
√
8/9 and for the inner-extremal regular black holes of Eq. (4.43) with sufficiently large a2,

the outgoing effective temperature will become negative. As mentioned in Sec. 4.3.1.1, such a sign

change coincides with the change in sign of the radial tidal force at the outer horizon from geodesic

deviation [45] and is a commonly found semiclassical feature (see, e.g., Ref. [127] and sources therein).

At the inner horizon, the effective temperatures depend strongly on the sign of the observer’s

energy—note that ingoing (E > 0) and outgoing (E < 0) observers passing through the inner horizon

will enter into causally separated sectors of the spacetime. For an ingoing, positive-energy observer

passing through the left leg of the inner horizon,

lim
r→r−, E>0

κ+eff(r) =
E n!

(r − r−)n
(κ(r+) − κ(r−)

κ(n−1)(r−)
) +O ( 1

(r − r−)n−1
) , (4.48a)

lim
r→r−, E>0

κ−eff(r) =
κ(r−)
2E

, (4.48b)

where n denotes the lowest non-zero order of the Taylor expansion for the horizon function ∆(r)

about the inner horizon; if ∆(r) can be expanded close to a horizon r± as

∆(r) ≈∆′(r±)(r − r±) +
1

2
∆′′(r±)(r − r±)2 +

1

6
∆(3)(r±)(r − r±)3 + ..., (4.49)

then, e.g., the Reissner-Nordström inner horizon corresponds to n = 1, while the horizon function of

Eq. (4.43) corresponds to n = 3, since for that inner-extremal regular black hole, the first derivative

∆′(r−) = 0, the second derivative ∆′′(r−) = 0, but the third derivative

∆(3)(r−) = −
6(r+ − r−)

2Mr3− + (a2 − 3r−(r+ + r−)) r2−
. (4.50)

Conversely, an outgoing, negative-energy observer passing through the right leg of the inner



106

horizon has

lim
r→r−, E<0

κ+eff(r) =
κ(r+) − κ(r−)

2E
, (4.51a)

lim
r→r−, E<0

κ−eff(r) =
E n

r − r−
+O ((r − r−)0) . (4.51b)

Finally, in the special case E = 0, where the observer passes through the central intersection of

the ingoing and outgoing portions of the inner horizon, κ+eff always diverges, while κ−eff vanishes when

n > 2, remains finite when n = 2, and diverges when n = 1.

The conclusion of the above asymptotic forms of the inner horizon effective temperatures is

that at least one component of κeff will always diverge for any choice of inertial observer at the inner

horizon. This occurs even when the inner horizon’s surface gravity κ(r−) vanishes—the divergence

is a direct result of the Penrose blueshift singularity (the divergence of ωob/ωem for an outgoing

observer watching ingoing modes while crossing a horizon with ∆ → 0), which does not depend

on the surface gravity. For an inertial observer falling in from infinity, even if they reach an inner

horizon with zero surface gravity, they will still encounter diverging semiclassical radiation because

the surface gravity of the outer horizon (which governs the exponential peeling of modes from the

initial collapse and can be regarded in some sense as the “source” of Hawking radiation) is non-zero.

The semiclassical instability of the inner horizon is thus seen to be an even stronger effect than

the classical mass inflation instability, since the effective temperature in the Unruh vacuum from

quantum radiation at the inner horizon depends not only on the inner horizon’s surface gravity, but

also on the outer horizon’s surface gravity. Even if κ(r−) vanishes, a non-zero κ(r+) will prevent an

ingoing observer’s effective temperature from vanishing at the inner horizon; instead, the observer’s

modes will become ultraviolet-divergent. The only feasible way to prevent such a divergence for an

ingoing observer is to require κ(r−) = κ(r+), and a quick parity check shows that this can only occur

if both surface gravities are identically zero.
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4.3.2 Rotating black holes

In the case of rotating black holes, it was noted in Sec. 4.2 that a constant-phase constraint

would be necessary for general Kerr observers sweeping across a family of horizon-limit emitters.

This constraint will be utilized in the following Sec. 4.4, but for now, consider the special cases

where an observer is able to stare at a single emitter throughout their entire free-fall descent. Such

privileged frames give rise to feasible analytic calculations of the effective temperature, and while

they are usually non-inertial and require an observer to accelerate radially or azimuthally, two

exceptional cases will be considered here: on-axis observers free-falling along the θ = 0 pole, and

“horizostationary” observers orbiting the black hole at the same angular speed as the event horizon.

4.3.2.1 On-axis observers

Geodesics along the rotational axis of a Kerr black hole, where θ = 0 and θ̇ = 0, must have

constants of motion L = 0 and K = a2, leading to the geodesic equations

ṫ = R
2

∆
E, (4.52a)

ṙ2 = E2 − ∆

R2
(r

2δ + a2

R2
) , (4.52b)

θ̇2 = 0, (4.52c)

φ̇ = ( 1
∆
− 1

R2
)aE, (4.52d)

with the same notation as in Eqs. (4.14). A null particle traveling outward (+) or inward (−) along

this axis will be detected by a freely falling observer (i =“ob”) or emitter (i =“em”) with frequency

ωi = −kµẋµ =
R2

∆

⎛
⎜
⎝
E ±

¿
ÁÁÀ(E2 − ∆

R2
)(1 − a

2∆

R4
)
⎞
⎟
⎠
, (4.53)

normalized to the frequency seen by someone at rest asymptotically far away. This frequency is

independent of the rate φ̇ at which the infaller is rotating with the geometry as they make their
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descent.

A freely falling observer on the symmetry axis will then detect two independent effective

temperatures: if they look directly downward into the pole of the black hole they will see outgoing

Hawking modes redshifting from an emitter near the past horizon, and if they look directly upward

into the sky they will see ingoing Hawking modes redshifting from an emitter near past null infinity.

The calculation of these effective temperatures then proceeds from an application of the chain rule

to Eq. (3.33):

κ±eff = −ωob (
ṙob

ωob

d lnωob

drob
− ṙem
ωem

d lnωem

drem
) , (4.54)

which makes use of the relation
dτem
dτob

= ωob

ωem
. (4.55)

An intermediate result is

d lnωi

dr
=

2r
R2 (1 − 2ωiE + a2∆

R4 ) − ∆′

∆ (1 − 2ωiE + a2E2

R2 )

2 (1 − ωiE + a2

R2 (E2 − ∆
R2 ))

, (4.56)

where a prime denotes differentiation with respect to the Boyer-Lindquist radial coordinate r.

The effective temperature’s dependence on the observer’s position r and energy E can then be

calculated with the help of Eq. (4.56). The part of Eq. (4.54) that depends on the emitter reduces to

lim
rem→∞

ṙem
ωem

d lnωem

drem
= 0 (4.57)

for ingoing modes originating from an Unruh emitter asymptotically far from the black hole (i.e., an

observer looking straight up at the sky, measuring an effective temperature κ−eff), while it reduces to

lim
rem→r+

ṙem
ωem

d lnωem

drem
= κ+ (4.58)

for outgoing modes originating from an Unruh emitter asymptotically close to the past horizon (i.e.,
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Figure 4.5: Effective Hawking temperatures κ±eff seen by an observer freely falling along the Kerr
θ = 0 rotational axis looking directly inward (κ+eff, red curve) or outward (κ−eff, blue curve) at different
radii rob, for two choices of the Kerr black hole spin parameter a, all in units of the black hole mass
M . Solid curves indicate positive values on the log plot, and dashed curves indicate negative values.
Lighter colors indicate higher values of the adiabatic control function ϵ±, which imply less confidence
in the validity of the geometric optics approximation. The inner and outer horizons are shown with
gray, dotted vertical lines, and the unphysical region below the inner horizon is grayed out. When
the observer is asymptotically far away, the effective Hawking temperature κ+eff approaches a constant
equal to the surface gravity, but as the observer reaches the inner horizon, the effective temperature
becomes negative and diverges.

an observer looking straight down at the black hole, measuring an effective temperature κ+eff).

For an infalling observer with unit energy (E = 1) descending along the rotational axis, the

effective temperatures seen above and below are shown in Fig. 4.5 for a slowly spinning black hole

(a/M = 0.1) and a near-extremal one (a/M = 0.96). Some analytic limits are worth mentioning
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explicitly:

κ+eff =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ+, rob →∞

8r+R
2
+ − a2∆′(r+)
2R4
+

− 2

∆′(r+)
, rob → r+

−R
2
+ +R2

−
R2
+

1

r − r−
+O(1), rob → r−

, (4.59a)

κ−eff =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, rob →∞

κ±r
4
± − 4a2r±

2R2
±(r2± + 2a2)

, rob → r±

. (4.59b)

From Eqs. (4.59), one can see that an on-axis infaller looking downward will see a Hawking

temperature proportional to the surface gravity κ+ from Eq. (4.17) when they are asymptotically

far away, as expected. However, this effective temperature will change as they approach the black

hole—as they cross the event horizon, the effective temperature will generally increase by a factor of

two or so, depending on the black hole’s spin a (in accordance with assertion #1 in Sec. 4.1). But

just as was seen for an electrically charged black hole in Sec. 4.3.1, an event horizon-crossing observer

will see a negative temperature κ+eff(r+) < 0 when the black hole is close enough to extremality (in

accordance with assertion #4 in Sec. 4.1). In the Reissner-Nordström case, a radial free-faller will see

a negative temperature outside the event horizon when Q/M >
√
8/9 ∼ 0.943, but in the Kerr case, an

on-axis free-faller will see a negative temperature outside the event horizon when a/M ≳ 0.860.5 This

limiting value is similar but not equal to the spin a/M =
√
3/2 at which tidal forces change sign for

an on-axis observer crossing the Kerr event horizon [116]. However, there is no reason a priori why

the tidal forces and effective temperatures should agree (though they do in the Reissner-Nordström

case)—the tidal forces are calculated from the locally measured Riemann curvature tensor and

the geodesic deviation equation, which uses a different expansion order compared to the eikonal

Eq. (3.28) used to calculate the effective temperature.

5From Eq. (4.59), the exact value of (a/M)2 ≡ α corresponding to κ+eff(r+) = 0 is the positive root of the polynomial
α3 + 38α2 − 7α − 16.
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Once the on-axis infaller dips below the event horizon, the effective temperature κ+eff decreases

until, as shown in Eq. (4.59) and Fig. 4.5, the effective temperature diverges to negative infinity (in

accordance with assertion #2 in Sec. 4.1). Such a divergence will always occur at the inner horizon

of a stationary, rotating black hole in the Unruh state, as will be shown explicitly in Sec. 4.3.2.3.

Even if the observer turns around inside the black hole and acquires E < 0, the outgoing temperature

κ+eff will become finite, but the ingoing temperature κ−eff will then diverge to negative infinity. The

inner horizon is thus the surface beyond which the semiclassical approximation can absolutely no

longer be trusted.

4.3.2.2 Horizostationary observers

The second class of privileged observers to be analyzed are those observers who orbit the black

hole with the same angular velocity as an infaller at the event horizon. Much like a satellite in a

geostationary orbit above Earth, these “horizostationary” observers will hover above the same spot

on the event horizon as the black hole rotates, so that they can track the same null ray originating

from an Unruh emitter as they travel along their own worldline.

Focusing on a stationary observer orbiting a Kerr black hole in the equatorial plane (θ = 90○),

it is known that such an observer will only be freely falling (4-acceleration Dẋµ/dτ = 0) if their

angular velocity is [164]

Ω ≡ dφ
dt
=

√
M

a
√
M ± r3/2

. (4.60)

Geodesic horizostationary observers can thus exist only at a single spin-dependent radius, found by

matching Eq. (4.60) with the angular velocity of an Unruh emitter at the event horizon, which can

be found from Eqs. (4.14) to equal

Ω+ ≡
a

R2
+
. (4.61)

While observers can orbit with this angular velocity at any radius above the event horizon, most will
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be forced to accelerate radially unless they are at the radius

rHO = (
r4+M

a2
)
1/3

. (4.62)

This radius tends to infinity in the Schwarzschild a = 0 limit and to the event horizon in the extremal

a =M limit.

A horizostationary observer at radius rHO in the equatorial plane will have geodesic equations

of motion

ṫ = 1

r2
(R

2Pr

∆
+ aPθ) , (4.63a)

ṙ2 = 0, (4.63b)

θ̇2 = 0, (4.63c)

φ̇ = 1

r2
(aPr

∆
+ Pθ) , (4.63d)

where the constants Pr and Pθ, defined by Eqs. (4.15) evaluated at r = rHO and θ = 90○, are fixed by

the constraints Ω+ = φ̇/ṫ and P 2
r = (P 2

θ + r
2)∆.

Since the horizostationary observer only moves along the Kerr metric’s Killing fields ∂t and

∂φ, the frequency ωob of an outgoing null geodesic seen by the observer will not change with the

observer’s proper time τob. Thus, from Eq. (3.33), the only dynamic contribution to the outgoing

effective temperature κ+eff will be from the freely falling emitter at the event horizon:

κ+eff =
ωob

ωem

d lnωem

dτem
. (4.64)

The frequency ωem of an outgoing equatorial null particle with dimensionless orbital parameters

L/E and K/E2 = (a −L/E)2, measured in the frame of an infalling equatorial emitter with constants
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of motion E, L, and K = (aE −L)2, is

ωem =
1

∆

⎛
⎜
⎝
R2E −LL + 2

r
(aE −L)(a −L) +

¿
ÁÁÀ(R2 −L2 + 2

r
(a −L)2)(P

2
r

r2
− (1 +

P 2
θ

r2
)∆)

⎞
⎟
⎠
, (4.65)

where the photon energy E is set to unity without loss of generality. Even though this frequency ωem

depends on the emitter’s orbital parameters via E, L, Pr, and Pθ, the effective temperature κ+eff will

be independent of the emitter’s motion once the emitter is taken to be asymptotically close to the

event horizon, as argued in Sec. 4.2. If the Unruh emitter sends a null particle along the outgoing

principal null congruence (L/E = a), the frequency ωob seen by the observer simplifies to

ωob = ṫ − a φ̇ =
Pr(rHO)
∆(rHO)

, (4.66)

and the effective temperature of Eq. (4.64) becomes

κ+eff = ωob
∆′(r+)
2r2+

. (4.67)

The outgoing effective temperature seen by a horizostationary observer looking in the principal null

direction, given by Eq. (4.67), depends only on the black hole’s spin-to-mass ratio a/M , varying

monotonically from κ+eff = 1/(4M) when a = 0 to κ+eff =
√
3/M when a =M .

Because the effective temperature given by Eq. (4.67) does not change with the observer’s

proper time, the adiabatic control function ϵ+ is identically zero, so one may be assured that in

the geometric optics (high frequency) limit, an inertial observer orbiting at a radius rHO will see

a Planckian blackbody spectrum of Hawking radiation originating from the direction of the black

hole’s past horizon.

The horizostationary observer may also look in a variety of other directions along the equatorial

plane, by changing the photon angular momentum L in Eq. (4.65), to yield a straightforward change

in the effective temperature (in accordance with assertion #3 in Sec. 4.1). But regardless of which

direction they look along the past horizon, they will always see some non-vacuum state caused by
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the exponentially redshifting Hawking modes originating from that horizon.

As a final comment, it should be noted that while the horizostationary observer has zero

4-acceleration, they will still experience a twisting force corresponding to non-Fermi-Walker transport.

The only non-zero component of their 4-rotation Oµ (the angular velocity of their spatial basis

vectors with respect to comoving inertial gyroscopes) is the polar component [164]

Oθ = ṫ
2

r6
(M (1 − aΩ+) ((3r2 + a2)Ω+ − a) − r3Ω+) , (4.68)

which is of order unity in the extremal case, falls below 0.1 in black hole mass units when a/M ≲ 0.9,

and vanishes as a/M → 0. This rotation will in principle induce particle creation via the non-inertial

Unruh effect; however, its contribution to the effective temperature calculated in Eq. (4.67) should

be negligible for all black hole spins except those near enough to extremality.

4.3.2.3 Inner-extremal regular black holes

Finally, consider how the above results for Kerr black holes might be generalized in other

azimuthally symmetric spacetimes, using as a case study the rotational analog of the spherical

inner-extremal black holes described in Sec. 4.3.1.5. For a rotating inner-extremal regular black hole,

the authors of Ref. [67] considered two modifications to the Kerr line element in Boyer-Lindquist

[31] coordinates: first, a conformal factor is included so that the metric is regular at r = 0, and

second, the radial horizon function ∆(r) = r2 + a2 − 2m(r)r is modified from its vacuum Kerr value

(m(r) =M) in order to fine-tune the inner horizon’s surface gravity. The line element can be written

in the same form as the standard Kerr line element [40] times a conformal factor Ψ(r, θ):

ds2 = Ψ( 1
∆
dr2 + dθ2 + sin2θ

Σ2
((r2 + a2) dφ − a dt)2 − ∆

Σ2
(a sin2θ dφ − dt)2) , (4.69)

where the zeros of the function

Σ(r, θ) ≡ r2 + a2 cos2θ (4.70)
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give the location of the Kerr ring singularity, which becomes regularized when the conformal factor

Ψ(r, θ) ≡ Σ(r, θ) + b

r2z
(4.71)

contains positive, non-zero constants b and z such that z ≥ 3/2. The horizon function ∆(r) now has

dimension [M]2 and in the minimal case contains a degenerate root at the inner horizon:

∆(r) = (r − r+)(r − r−)
3

F (r)
, (4.72)

where now

F (r) ≡ r2 + r(2M − r+ − 3r−) +
r+r

3
−

a2
. (4.73)

Though the exact positions of the inner and outer horizons will not directly affect the results of the

present analysis, for completion’s sake, the following forms are assumed in Ref. [67] for the outer

and inner horizon radii:

r+ =M +
√
M2 − a2, r− =

a2

M + (1 − e)
√
M2 − a2

, (4.74)

such that the outer horizon radius r+ coincides with its standard Kerr value while the inner horizon

radius r− is modified by the parameter e, which must satisfy

−3 − 3M√
M2 − a2

< e < 2 (4.75)

to maintain regularity. If e is negative, the inner horizon radius will lie below its Kerr value of

M −
√
M2 − a2, while if e is positive, the inner horizon radius will lie above its Kerr value.

If a test particle has Killing energy per unit mass E, Killing angular momentum along the

axis of rotation per unit mass L, and Carter constant K = Q + (aE −L)2 [40], its 4-velocity will take
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the form

ṫ = 1

Ψ
(r

2 + a2

∆
Pr + aPθ) , (4.76a)

φ̇ = 1

Ψ
(aPr

∆
+ Pθ

sin2θ
) , (4.76b)

ṙ2 = 1

Ψ2
(P 2

r − (K + (r2 +
b

r2z
) δ)∆) , (4.76c)

θ̇2 = 1

Ψ2
(K − a2 cos2θ δ −

P 2
θ

sin2θ
) (4.76d)

[67], where

Pr(r) ≡ (r2 + a2)E − aL, (4.77a)

Pθ(θ) ≡ L − aE sin2θ, (4.77b)

and where δ = 1 for massive particles while δ = 0 for massless particles (which will be denoted with

scripted constants of motion E , L, K in contrast to the massive particle’s constants E, L, K).

For simplicity, consider an infalling (ṙ < 0) equatorial (θ = π/2, θ̇ = 0) observer, whose Carter

constant must satisfy

K = P 2
θ = (L − aE)

2. (4.78)

Additionally, as a natural generalization from the spherical case, assume the observer is looking at a

photon which is purely radial in the zero angular momentum frame (L/E = 0, K/E2 = a2). Such a

photon will be detected by the observer with a frequency normalized to the frequency ω∞ = E seen

by an observer at rest at infinity, which can be written as

ω

ω∞
= aPθ

Ψ
+ r

2 + a2

Ψ
⋅
Pr ±

√
(P 2

r − (K +Ψ)∆) (1 − a2∆
(r2+a2)2 )

∆
, (4.79)

where outgoing (ingoing) null geodesics are given by the upper (lower) sign.

The effective temperature of Eq. (3.33) can then be calculated with the same chain rule
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expansion as in Eq. (4.32):

κeff = −ωob (
ṙob

ωob

∂ lnωob

∂rob
− ṙem
ωem

∂ lnωem

∂rem
) . (4.80)

The above form of κeff assumes that the photon’s impact parameters L/E and K/E2 remain constant

as the observer moves along their trajectory, which may induce additional non-inertial radiative

effects as the observer rotates their field of view, as first discussed in Ref. [87]. However, the presence

or absence of such effects will not significantly change the asymptotic behavior of κeff as the observer

approaches a horizon; nor will the particular choice of the (inertial) observer’s conserved angular

parameters L and K. A more exhaustive analysis of all these effects will be presented in Sec. 4.4.2.

For the present study, assume a freely falling zero angular momentum observer (ZAMO), with

constants of motion L = 0, K = a2, and E = 1 or -1 (ingoing or outgoing, respectively).

A useful intermediate result with the above simplifications (suppressing factors of ω∞) is

∂ lnω

∂r
= ω ∓ 1/2

ω ∓ 1
⎛
⎝
( 4r

r2 + a2
− ∆′

∆
)(1 − a2∆

(r2 + a2)2
)
−1

− Ψ′

Ψ

⎞
⎠
, (4.81)

where primes denote differentiation with respect to r and the upper (lower) sign applies to an ingoing

(outgoing) observer with positive (negative) energy E.

Just as in the spherical case, the Hawking modes contributing to the effective temperature can

be divided into two sectors, the ingoing modes originating from an Unruh emitter at rem →∞ in the

sky above the observer, and the outgoing modes originating from an Unruh emitter at r → r+ seen

at the past horizon below the observer. In the ingoing case (κ−eff), the subtracted term in Eq. (4.80)

(i.e. the limit of Eq. (4.81) as an emitter’s position r = rem asymptotically tends to infinity) vanishes,

just as it does for spherically symmetric black holes. In the outgoing case (κ+eff), the subtracted term

in Eq. (4.80) simplifies to

lim
rem→r+

ṙem
ωem

∂ lnωem

∂rem
= κ(r+), (4.82)

where κ(r) is the black hole’s generalized surface gravity analogous to Eq. (4.42), which for a rotating



118

black hole with Boyer-Lindquist radius r takes the form

κ(r) ≡ 1

2(r2 + a2)
d∆

dr
. (4.83)

Though the full expression for the effective temperature κeff for an arbitrary observer is too

complicated to be presented in a meaningful way here, some useful limits can be shown. As the

observer’s position is taken asymptotically far from the black hole, the observer’s frequency ωob

tends to unity while the first term in the parentheses of Eq. (4.80) vanishes. As a result,

lim
r→∞

κ+eff(r) = κ(r+), (4.84a)

lim
r→∞

κ−eff(r) = 0; (4.84b)

i.e., the Hawking effect is exactly reproduced for this particular choice of observer and Unruh

emitter. When this observer is taken to the event horizon at r = r+, assuming the outer horizon is

not degenerate,

lim
r→r+

κ+eff(r) = −
r2+ + a2

Ψ(r+)
⋅ κ
′(r+)
κ(r+)

, (4.85a)

lim
r→r+

κ−eff(r) =
κ(r+)
2

, (4.85b)

in exact analog to the spherical case; compare Eqs. (4.47). The conformal factor here is defined as

Ψ(r) ≡ Ψ(r, π/2) from Eq. (4.71).

The effective temperatures seen at the inner horizon then follow suit. The choice of whether

an observer enters the ingoing or outgoing portion of the inner horizon depends on the sign of the

Hamilton-Jacobi parameter Pr, which for a ZAMO is equivalent to the sign of the observer’s energy

E. For an observer with positive energy, with the horizon function ∆ and quadratic function F from
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Eqs. (4.72) and (4.73), respectively, the inner horizon effective temperatures are

lim
r→r−, E>0

κ+eff(r) = −
r2− + a2

Ψ(r−)
⋅ F (r−)(r

2
− + a2)(r+ − r−)2

F (r+)(r2+ + a2)(r − r−)3
+O ( 1

(r − r−)2
) , (4.86a)

lim
r→r−, E>0

κ−eff(r) = 0, (4.86b)

while for an observer with negative energy, the inner horizon effective temperatures are

lim
r→r−, E<0

κ+eff(r) = −
(r+ − r−)3

4(r2+ + a2)F (r+)
, (4.87a)

lim
r→r−, E<0

κ−eff(r) = −
r2− + a2

Ψ(r−)
⋅ 3

r − r−
+O ((r − r−)0) . (4.87b)

Thus, an inertial, zero angular momentum observer approaching the classically stable inner horizon

of a rotating regular black hole will experience a diverging, negative effective Hawking temperature

in at least one direction, just as in the spherical case. If the observer is ingoing, the divergence will

be seen from the past horizon below them, and if the observer is outgoing, the divergence will be

seen from the sky above them.

One may wonder about the generality of these results when different choices for observers

and photon trajectories are used, especially since Eq. (4.80) does not guarantee the constant phase

condition that usually warrants a numerical treatment as in Refs. [87, 127]. But as it turns out, it

can be proven that regardless of the choice of observer or emitter, if the effective temperature seen

at the outer horizon is finite, then the effective temperature seen at the inner horizon must diverge

somewhere in the observer’s field of view. To see why this is the case, a sketch of the proof is given

below for an ingoing observer with positive Hamilton-Jacobi parameter Pr (a similar argument can

be made for an outgoing observer, mutatis mutandi).

The effective temperature κeff can be written in the form

κeff = −ωob (
ω̇ob

ω2
ob
− ω̇em

ω2
em
) , (4.88)
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where an overdot denotes differentiation with respect to proper time; compare Eq. (4.32). The precise

assumptions about the differentiation (e.g. keeping the emitter’s affine distance or the observer’s

viewing angles on the sky fixed) can be left arbitrary. There may in general be extra terms in the

parentheses of Eq. (4.88) that nontrivially couple the observer’s and emitter’s motions, but one may

assume that such terms (e.g. ones involving derivatives of the emitted photon’s impact parameters

with respect to the observer’s position) can always be chosen to vanish or cancel out by a suitable

choice of viewing direction in the observer’s sky (e.g. in the spherical case this choice is radially

inwards or outwards). The remaining terms in Eq. (4.88) will then be separable in the observer’s

and emitter’s coordinates.

For an Unruh emitter sending outgoing modes from the outer horizon to the observer, assume

that the effective temperature in the direction the observer is looking will be finite when the observer

reaches the outer horizon:

lim
rob→r+

κeff = O (∆(rob)0) . (4.89)

The key assumption one must make is that the observer’s frequency ωob for outgoing modes

classically diverges at either horizon when normalized to the rest frequency at infinity. At the inner

horizon, such a divergence manifests as the Penrose blueshift singularity [152, 165], while at the

outer horizon, the emitter’s modes will be infinitely redshifted with respect to the observer. In both

cases, the effect can be attributed to the fact that the observer can pass through a horizon in finite

proper time while an emitter’s tortoise coordinate becomes infinite, which is a feature of any black

hole spacetime regardless of the surface gravities at the horizons. The divergence of ωob, governed

by the timelike component of the line element, asymptotically behaves as ∆(rob)−1.

Thus, if the frequencies of Eq. (4.88) are expressed as ratios to the rest frequency at infinity,

then Eqs. (4.88) and (4.89) imply that

lim
rob→r+

ω̇ob

ω2
ob
= ω̇em

ω2
em
+O (∆(rob)) . (4.90)

Now, if the observer is taken to the inner horizon, the normalized frequency ωob will still diverge
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as ∆(rob)−1, and the emitter’s contribution to the effective temperature will remain unchanged.

Substituting the emitter’s contribution to the effective temperature from Eq. (4.90) back into

Eq. (4.88) then reveals that the effective temperature at the inner horizon will always diverge unless

the value of ω̇ob/ω2
ob for an infalling observer at the outer horizon is the same as that of the inner

horizon:

lim
rob→r−

κeff = −ωob(r−)( lim
rob→r−

ω̇ob

ω2
ob
− lim

rob→r+

ω̇ob

ω2
ob
) , (4.91)

since ωob(r−) is of order Θ(∆(rob)−1). For both spherical and rotating inner-extremal regular black

holes, the term ω̇ob/ω2
ob corresponds precisely to the black hole’s surface gravity at each horizon,

and this quantity is assumed to be non-zero at the outer horizon. As argued for the spherical case,

the only way for these quantities to be equal at the outer and inner horizons is if the black hole is

extremal, so that the outer horizon is degenerate and both surface gravity terms vanish. But more

generally, the sign of ω̇ob/ω2
ob at the outer horizon will always be opposite to the sign of ω̇ob/ω2

ob

at the inner horizon—since the observer’s normalized frequency at the outer horizon diverges as

∆(rob)−1 (which is positive as the infaller approaches r+ and, more importantly, has a positive slope),

the rate of change of this frequency with respect to the observer’s proper time will also be positive

at the outer horizon. But at the inner horizon, ∆(rob) is negative and further has a negative slope,

so that the rate of change of the frequency will always be negative. Thus, the only way that ω̇ob/ω2
ob

will match at both the outer and inner horizons is if it identically vanishes at both hypersurfaces,

which necessarily assumes that both horizons are degenerate.

4.4 Effective Hawking temperature κeff (non-radial modes)

The results of Sec. 4.3 apply to an infaller observing modes purely in the radial direction.

Since the mass inflation instability involves radial focusing of all null geodesics, one may wonder

whether the diverging acceleration seen by an infaller is confined to a single radial point on the sky.

An observer has an entire 4π solid angle field of view to access; what will they see when not looking

straight up or down?
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Observers falling into a Reissner-Nordström black hole are analyzed in Sec. 4.4.1, then observers

falling into a Kerr black hole are analyzed in Sec. 4.4.2.

4.4.1 Spherical black holes

The goal of this section is to provide a generalization of Eq. (4.32) to account for photons

reaching the observer from any direction. The photon’s 4-momentum will now include additional

angular terms with the conserved quantity L/E ≡ kϑ/kt, the photon’s impact parameter, which equals

0 for radial trajectories but in general can take any real value up to infinity (in what follows, the

photon energy E will be taken to unity without loss of generality). To translate L into a viewing

angle on the observer’s sky, it suffices to define a single parameter χ that measures the angle in the

observer’s local tetrad frame between the radial direction and the direction the observer is facing.

This viewing angle χ ranges from 0 degrees (facing radially inward toward the past horizon) to 180

degrees (facing radially outward toward the sky above, at past null infinity). For an observer with

specific energy Eob at radius rob, the impact parameter L is related to the viewing angle χ by [87]

L =
RRRRRRRRRRRRRR

rob sinχ

Eob −
√
E2

ob −∆(rob) cosχ

RRRRRRRRRRRRRR
. (4.92)

The frequency ω measured in the frame of an observer (≡ ωob) or emitter (≡ ωem) with specific

energy E, normalized to the frequency ω∞ seen at rest at infinity, then generalizes to

ω

ω∞
=
E ±
√
(E2 −∆) (1 −L2∆/r2)

∆
, (4.93)

where, as in the radial case, the upper (lower) sign applies to outgoing (ingoing) null rays. The

calculation of κeff then follows as in the radial case, though great care must be taken to account for

turnaround radii and ensure the correct sign for different viewing angles and observer positions.

Since the perception of particle production is highly dependent on the choice of observer,

one must take care to make an appropriate choice depending on the context of the calculation.
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For example, an observer staring in a fixed direction χ as they fall inward is not the same as an

observer staring at a single infalling emitter, whose position will constantly change in the observer’s

field of view. As argued in Ref. [87], the choice of observer that will introduce the least amount of

noninertial radiative effects (e.g. from the rotation of the observer’s frame) and will reveal the most

“pure” Hawking radiation is an observer staring in a fixed direction χ. Such an observer will see a

family of infalling emitters as they fall inward, with each emitter connected to the observer by a null

path with the same phase.

If an observer stares at the sky above (corresponding to the ingoing Hawking sector, with a

family of Unruh emitters at rem →∞), the generalization of Eq. (4.32) to account for the frequency

of Eq. (4.93) seen from any viewing angle χ is sufficient to satisfy the requirement from the previous

paragraph of an inertial observer with fixed χ. However, if the observer stares at the past horizon

below them (corresponding to the outgoing Hawking sector, with a family of Unruh emitters at

rem → r+), the frequency seen by the emitter or the observer will diverge, as will the affine distance

of the null geodesics connecting the two infallers. In order to ensure that the observer is seeing the

same emitted in-modes as they follow along a geodesic staring in a fixed direction χ, the emitted

affine distance

λem ≡ ωemλ = ωem∫
rob

rem

dr

kr
(4.94)

(where kr ≡ dr/dλ is the radial component of photon’s coordinate-frame 4-momentum, given by

Eq. (80) of Ref. [87]) must be held constant. The resulting effective temperature then takes the form:

κeff = −
∂

∂τob
ln(ωobλ

λem
) ∣

χ,λem

= −ṙob
⎛
⎝
∂ lnωob

∂rob
∣
χ

+ ∂ lnλ
∂rob

∣
χ

⎞
⎠
− ṙem

ωob

ωem

∂ lnλ

∂rem
∣
χ

, (4.95)

where the derivatives of the affine distance (at constant χ) can be expanded with the Leibniz integral
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rule:

∂ lnλ

∂rob
∣
χ

= 1

λ

⎛
⎝

1

krob
+ ∂L
∂rob

∣
χ
∫

rob

rem
dr

∂

∂L
1

kr
⎞
⎠
, (4.96a)

∂ lnλ

∂rem
∣
χ

= − 1

λkrem
. (4.96b)

The numerical solution to Eq. (4.95) for various values of rob and Q is shown in Fig. 4.6.

These plots show similar trends to that found in Ref. [87] for Schwarzschild black holes. First, the

outgoing Hawking radiation seen from the past horizon (left two panels) is actually weakest in the

radial direction (except when the observer is very close to the inner horizon). As χ increases from 0○

and the observer looks farther away from the center of the black hole’s shadow marking where the

past horizon would be, κ+eff increases until it diverges at the edge of the shadow.6 As the observer

falls closer and closer to the inner horizon, the area of sky across which Hawking radiation is visible

becomes larger (in conjunction with the growing apparent size of the black hole’s shadow), and the

Hawking radiation becomes more and more isotropic across the surface of the shadow. But once the

observer falls close enough to the inner horizon, the apparent black hole size begins to decrease as

the Hawking area shrinks to a small patch of sky ahead of the observer (this effect is most apparent

in the lower left panel of Fig. 4.6, but even in the upper left panel, additional curves for smaller

radii rob would begin to shrink since the maximum angle χ shifts down to 0○ as r → r−).

When the black hole’s charge Q is nonzero, the main effect on the outgoing effective temperature

at arbitrary viewing angle is the same result found throughout Sec. 4.3; namely, an observer close

enough to the inner horizon will see a negative κ+eff, corresponding to modes that are exponentially

blueshifting instead of redshifting. The higher the charge Q, the farther out in physical space this

blueshifting zone becomes, until it extends beyond the outer horizon and reaches infinity in the

extremal case (as already seen in the radial case of Fig. 4.3).

6This divergence is an artifact of the unphysical metric used; for an astrophysical black hole formed by gravitational
collapse a finite time in the past, the Hawking radiation would still exponentially limb brighten but would remain
finite before dropping to zero outside of the black hole’s shadow [87].
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Figure 4.6: Effective temperatures κ+eff (left two panels) and κ−eff (right two panels) seen by a radial,
inertial, nonrotating observer falling from infinity to the left leg of the inner horizon, as a function of
the observer’s viewing angle χ on the sky. Curves from green to magenta indicate radiation observed
at radii rob →∞, 8r+, 4r+, 2r+, r+ (thick line), r− +0.5(r+ − r−), r− +0.25(r+ − r−), r− +10−1(r+ − r−),
and r− + 10−3(r+ − r−). All curves are normalized so that the magnitude of κ+eff or κ−eff for a given
radius when looking, respectively, straight down (χ = 0○) or up (χ = 180○), is 1. Solid curves indicate
positive values on the log plot, and dashed curves indicate negative values.

Similarly, ingoing Hawking radiation seen from an observer looking up at the sky above (right

two panels of Fig. 4.6) reproduces the same behavior found in Ref. [87] for the Schwarzschild case,

with minimal modifications when Q is nonzero. The rate of redshifting in the upper hemisphere is
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strongest when the observer looks straight up to the sky (in the outward radial direction, χ = 180○),

and κ−eff changes sign at 90○, reflecting the fact that the infaller is accelerating away from the sky

above (so that the upper hemisphere is redshifting) and accelerating toward the black hole below (so

that the lower hemisphere is blueshifting).

However, as with the outgoing effective temperature, the ingoing effective temperature changes

sign once the observer falls close enough to the inner horizon (seen, e.g., with the dashed pink line

at rob = r− + 10−3(r+ − r−) on the right half of the top right panel of Fig. 4.6), so that the upper

hemisphere is blueshifting and the lower hemisphere is redshifting. But unlike the outgoing radiation,

the sign change in the ingoing effective temperature is restricted only to infallers within the event

horizon, regardless of the value of Q.

Aside from the sign reversal in every direction for observers close enough to the inner horizon,

the main contribution that an addition of charge has on the angular distribution of Hawking radiation

(for both κ+eff and κ−eff) is to smooth out the perceived temperature gradients across the sky—the

higher the charge Q, the less sharp the temperature cutoff is at the black hole shadow’s boundaries,

and therefore the less isotropic the temperature is across the observer’s field of view for a given

distance above the inner horizon.

4.4.1.1 Dependence on the observer’s energy

The dependence of the ingoing and outgoing effective temperatures κ−eff and κ+eff on the

observer’s specific energy Eob is shown in the upper two plots of Fig. 4.7. These plots only show

one choice of black hole charge (Q/M = 0.1) and observer position (rob/M = 1) so that the relevant

qualitative trends can be observed.

As a check on the consistency of the upper two plots in Fig. 4.7, one can find that the presence

or absence of different constant-χ curves at different observer energies exactly matches the position

of the black hole silhouette in the observer’s field of view. For example, for a black hole with

Q/M = 0.1, an observer at rob/M = 1 with Eob = 1 will see the past horizon below them (the black

hole’s “shadow”) spanning from χ = 0○ to its border at approximately χ ≈ 53.2○, and in both upper
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Figure 4.7: Effective temperatures κ+eff (left plots) and κ−eff (right plots) in units of M−1 as a function
of the observer’s specific energy Eob, for various choices of the observer’s viewing direction χ, with
intervals of 15○ from χ = 0○ (blue) to χ = 180○ (orange) (note that the left plots contain no χ = 180○
curves and the right plots contain no χ = 0○ curves). Solid curves indicate positive values and
dashed curves indicate negative values. The black hole’s charge-to-mass ratio is Q/M = 0.1, and the
radiation is seen from an observer halfway between the inner and outer horizons, at rob/M = 1. The
upper two plots show the effective temperatures calculated from Eq. (4.95) directly as a function of
Eob, while the lower two plots calculate the effective temperatures only for Eob = 0 and infer the
effective temperatures at other observer energies by Lorentz-boosting to the appropriate frame.

plots at Eob = 1, the radiation κ−eff from the sky exists only for χ > 53.2○ while the radiation κ+eff from

the horizon exists only for χ < 53.2○. This holds true for all observer energies—as an observer is
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Lorentz-boosted to Eob →∞, the past horizon shrinks to a single point below them, and as they are

boosted in the other direction (Eob → −∞), the sky shrinks to a single point above them.

The lower two plots of Fig. 4.7 give a further check on the consistency of the formalism and

help to show the degree to which the effective temperatures satisfy Lorentz covariance. As the

observer’s energy Eob changes, the observer is effectively Lorentz-boosting to a different frame, even

though no restriction was imposed a priori for the effective temperature to transform under the

Lorentz group. As a test, the lower two plots of Fig. 4.7 start with the same calculations of κ+eff

and κ−eff at Eob = 0, but instead of varying Eob in Eq. (4.95) to find the effective temperature at

other observer energies, a Lorentz boost is applied to the observer and matched to the different

energies. When beginning in the Eob = 0 frame, an interior observer boosted to a frame where they

have energy E′ob will possess the Lorentz factor

γ =

√
E′2ob −∆

∆
. (4.97)

Such a boost will entail two important effects. First, the effective temperature will be Doppler-shifted

by the frequency factor ωob from Eq. (4.93), normalized to the frequency seen in the Eob = 0 frame.

And second, the observer’s field of view will experience relativistic aberration, such that photons

arriving at an angle χ for the Eob = 0 observer will be shifted to the angle

χ′ = cos−1 ( cosχ + β
1 + β cosχ

) (4.98)

in the boosted frame (where β =
√
1 − γ−2 is the observer’s speed). If the Hawking radiation seen by

the observer behaved purely classically and in a Lorentz-covariant fashion, the upper two plots of

Fig. 4.7 would exactly match their lower counterparts.

As anticipated by the radial case (see Sec. 4.3.1.3), the Hawking radiation seen from the

sky above (κ−eff, upper right plot in Fig. 4.7) in every direction varies reciprocally with Eob as the

observer’s energy asymptotically increases and varies approximately linearly as Eob → −∞. Such
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a behavior is similar to what is expected for a Lorentz-boosted observer as in the lower right plot

of Fig. 4.7. And just as in the radial case, changing the observer’s specific energy Eob for fixed χ

will never change the sign of κ−eff. The ingoing effective temperature is always zero when χ = 90○,

always positive (with this specific choice of observer halfway between the outer and inner horizons)

for larger χ, and always negative for smaller χ. Such a delineation can be noticed in the upper right

plot of Fig. 4.7 from the fact that the χ < 90○ curves (blue) are always negative (dashed), while the

χ > 90○ curves (orange) are always positive (solid). This behavior is a consequence of forcing the

observer to stare in a fixed direction; such an infaller will classically always see null geodesics from

infinity blueshifting below them (when χ < 90○) and redshifting above them as they decrease their

radius.

What about the outgoing Hawking radiation from the horizon? As shown in the upper left

plot of Fig. 4.7, an interior observer can change the sign of κ+eff by changing their energy Eob

enough. When Eob = 1, the results of the upper left panel of Fig. 4.6 are reproduced; namely, a

positive-temperature horizon is seen with brighter radiation at the edges (i.e. larger κ+eff for larger χ).

However, as the observer boosts to smaller and smaller energies, the temperature at the ever-growing

edge of the horizon begins to decrease until it drops below zero. The negative-temperature outer

portion of the black hole’s shadow then begins to grow inward until the entire horizon has a negative

temperature, once again with the largest magnitude at the edges. Though only one specific case

is shown, an outgoing (i.e. negative-energy) observer in a black hole’s interior will always see a

completely negative-temperature horizon below them.

One way that the upper left plot of Fig. 4.7 differs from the results of Sec. 4.3.1.3 (and from

the lower left plot of Fig. 4.7) is that κ+eff diverges linearly as Eob → −∞ instead of dropping to zero.

As a reminder, the difference in the calculation done here versus that of Sec. 4.3 is that here the

affine distance is kept constant so that the family of emitters seen by the observer will always have

the same phase, since the emitted wave’s frequency appears to diverge as the emitter is taken to

the horizon. Evidently such a restriction has a big impact not just in the evaluation of the horizon

temperature for nonzero χ, but also for the evaluation of the horizon temperature for negative
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observer energies, even when χ = 0○.

Finally, special attention will briefly be given to the case of an interior observer with Eob = 0.

Classically, such an observer will begin at the event horizon seeing nothing but the past horizon in

all directions, excepting a vanishingly small patch of sky directly above them at χ = 180○. Then, as

they fall inwards, the sky above them will grow until it almost takes up a full hemisphere of the

observer’s field of view, after which the sky will quickly collapse back to a single point as the horizon

grows (compare the visualization in Fig. 2.6). Semiclassically, in Sec. 4.3.1.2 it was argued that

the Hawking radiation in the Eob = 0 frame diverges as z−1/2ob as an observer approaches the inner

horizon looking both up (χ = 180○) and down (χ = 0○). What happens in other directions?

When Eob = 0, the effective temperature from the sky above becomes isotropic and simplifies

considerably:

lim
Eob→0

κ−eff(χ) =
1

2
√
−∆

d∆

drob
. (4.99)

This radiation extends across the entire sky visible to the observer, from χ = 180○ to the edge of the

black hole shadow at

cosχ = −(1 − ∆(r)
r2

r2c
∆(rc)

)
−1/2

, (4.100)

where rc ≡ 3M
2 (1 +

√
1 − 8Q2

9M2) is the critical radius of the photon sphere. This isotropicity can be

seen by the convergence of all the curves in the right plots of Fig. 4.7 as Eob → 0.

The effective temperature κ+eff from the horizon does not take on a simple analytic form like

κ−eff does, but its dependence on χ for an observer with rob/M = 1 can be ascertained from the left

plots of Fig. 4.7. For various charges Q and observer positions rob, the effective temperature is

usually negative in all directions, with the smallest magnitude for κ+eff occurring when looking straight

downward (χ = 0○). Notably, as the observer reaches the inner horizon, while the temperature κ−eff

from Eq. (4.99) diverges isotropically as (−∆)−1/2 (and therefore as z−1/2ob ), the temperature κ+eff from

the horizon also diverges as (−∆)−1/2, with an even stronger divergence when χ > 0○.
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4.4.2 Rotating black holes

For an arbitrary freely falling observer in the Kerr spacetime, as mentioned in Sec. 4.2, they

must generally watch a family of Unruh emitters at different angular positions along the black hole’s

past horizon. To see why this is the case, consider an equatorial infaller observing a single emitter

near the past horizon with an angular velocity asymptotically approaching Ω+ from Eq. (4.61). This

observer must possess
dφ

dt
= Ω+ − δΩ,

dr

dt
= −k

rδΩ

kφ
, (4.101)

where kµ ≡ dxµ/dλ is the 4-momentum of the null geodesic, and δΩ is the observer’s differential

change in their angular velocity as they fall inwards and “catch up” with the azimuthally varying null

geodesic. This system of equations has no apparent solution that does not involve position-dependent

constants of motion from either the observer or the null ray. Therefore, no infalling observer can

both follow a timelike geodesic path and keep up with a single emitter’s null ray.

Thus, in calculating the effective temperature seen by an observer watching a family of Unruh

emitters along the past horizon, one must impose an additional constraint so that those emitters

all lie along the same eikonal wavefront. Namely, the null affine distance, scaled by the frequency

measured in the emitter’s frame, Eq. (4.28), must be held constant. Assuming in what follows that

the observer and the emitter remain fixed at the same angular position θ throughout the course of

their trajectories, variations with respect to the observer’s proper time from Eq. (4.29) can come

only from the observer’s and emitter’s radial coordinates. Therefore,

κeff = −ṙob (
∂ lnωob

∂rob
+ ∂ lnλ
∂rob

) − ṙem
ωob

ωem

∂ lnλ

∂rem
, (4.102)

with the affine distance λ given by Eq. (4.27). One additional assumption, as first argued in Ref. [87],

is that the observer should stare in a fixed direction, instead of rotating their frame of reference

and inducing non-inertial effects. The direction an observer looks in their field of view can be

parameterized by two viewing angles χ and ψ, where χ ∈ (−π,π) is the azimuthal angle in their local
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tetrad frame along the γ1-γ3 plane (zeroed along the positive γ1 axis), and ψ ∈ [0, π) is the polar

angle from the γ2 axis. The viewing angles (χ,ψ), in turn, can be expressed as a function of the

4-momentum of the null particle arriving at the specified point in the observer’s field of view, which

depends on the observer’s position, the emitter’s position, and the photon’s energy-normalized orbital

parameters L/E and K/E2. In what follows, as in the spherical case, it is assumed without loss of

generality that E = 1. Then, when the viewing angles (χ,ψ) are kept constant during differentiation,

the λ-dependent terms in Eq. (4.102) can be expanded with the Leibniz integral rule:

∂ lnλ

∂rob
= 1

λ
( 1

krob
+ ∂L
∂rob

∫
rob

rem
dr

∂

∂L
1

kr
) , (4.103a)

∂ lnλ

∂rem
= − 1

λkrem
. (4.103b)

Eqs. (4.103) apply to equatorial geodesics with constant polar coordinate θ = π/2; the more general

case will involve derivatives of both L and K applied to the affine distance integrands of Eq. (4.27).

If the photon’s angular momentum is large enough that its trajectory contains a turning point,

the integration over the affine distance must be split in two, and as a consequence, the derivatives

with respect to the constants of motion L and K in Eq. (4.103a) cannot be brought inside the integral

without also introducing a divergent boundary term. In these cases, the derivatives are evaluated

numerically with the aid of Richardson extrapolation.

In what follows, two different classes of observers will be considered, as depicted in Fig. 4.8.

The first is an equatorial observer in free-fall, with zero angular momentum (ZAMO), beginning

from rest at infinity. Such an observer has equations of motion given by Eqs. (4.14) with constant of

motion E = 1, L = 0, and K = a2. The second observer, who can exist only in the interior portion of

the black hole, is defined to be at rest in the interior Carter tetrad frame of Eqs. (2.35). Such an

observer has constants of motion E = 0, L = 0, and K = a2 cos2θ [125].
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Figure 4.8: Worldlines of the two observers considered in Sec. 4.4.2: a freely falling equatorial ZAMO
(orange path) beginning at rest at infinity and ending at the left portion of the inner horizon, and
an interior Carter observer (blue path) beginning at the intersection of the outgoing and ingoing
portions of the r+ surface and ending at the intersection of the outgoing and ingoing portions of the
r− surface.

4.4.2.1 Freely falling equatorial ZAMO

A null particle seen in the locally orthonormal tetrad frame of an observer falling freely

with zero angular momentum in the equatorial plane will have the following 4-momentum tetrad

components:

k0ob =
1

r2∆
(R2(R2 − aL) + a(L − a)∆ + sgn(kr)

√
R2(R2 −∆) ((R2 − aL)2 − (L − a)2∆)) (4.104a)

k1ob =
R2k0obs − (R

2 − aL)
√
R4 − r2∆

(4.104b)

k2ob = 0 (4.104c)

k3ob =
1

r
√
R4 − r2∆

( (L − a)
√
R2(R2 −∆) − sgn(kr) a

√
(R2 − aL)2 − (L − a)2∆), (4.104d)

where, as before, all quantities are normalized to unit photon energy E .

The temporal component k0ob of Eq. (4.104a) is equivalent to the frequency ωob = −kµẋµ seen

in the frame of the observer. The spatial components of km̂ob give the angular position of the geodesic

in the observer’s field of view. This position can be expressed with the viewing angles χ and ψ,
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defined by Eq. D.11. The angle χ gives the observer’s azimuthal viewing angle away from the inward

radial direction within the equatorial plane, while the polar angle ψ extends to the view out of the

plane (here ψ is trivially constant since the observer and emitter are both restricted to the equatorial

plane; this condition will be relaxed in the next subsection).

If the observer stares in a fixed direction χ, the null geodesic’s angular momentum L will be

found to vary with r as determined from the relation

cosχ =
k1ob
k0ob
=
R2 − (R2 − aL)(k0ob)

−1
√
R4 − r2∆

. (4.105)

In the Reissner-Nordström case, the analog of Eq. (4.105) could be inverted to find an expression

for the photon angular momentum L in terms of the viewing angle χ, Eq. (4.92). Then, the effective

temperature κeff could be calculated directly as a function of χ. However, in the present case, no

such analytic inversion is possible; instead, the effective temperature will be parameterized by values

of L separately for both ingoing and outgoing photons, and any additional needed quantities like

dL/drob will be found by implicit differentiation of Eq. (4.105).

Fig. 4.9 shows the relation between L and χ from Eq. (4.105) for observers at various radii

when the black hole spin is fixed to a/M = 0.96 (different values of a/M yield qualitatively similar

plots). For asymptotically distant observers (redder colored curves), the function L(χ) approaches

an exact sinusoid. For a Reissner-Nordström radial free-faller, this function remains odd for all

radii r, but for a Kerr ZAMO free-faller, the symmetry is broken by the non-zero spin, so that null

geodesics with zero angular momentum are not necessarily aligned with the observer’s definition of

χ = 0○.

For reference, the location of the edges of the black hole shadow is indicated in Fig. 4.9 by the

intersection of any given curve with the two gray horizontal lines, which lie at the values of L that

solve the equations

ṙ = 0, dṙ

dr
= 0, (4.106)

parameterized by the allowed prograde (−) and retrograde (+) photon orbital radii at the critical
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values [22]

rc = 2M (1 + cos(
2

3
cos−1(±a))) . (4.107)

In terms of the photon’s orbital parameters L and K, the edges of the black hole shadow occur at

L = R
2∆′ − 4r∆
a∆′

, (4.108a)

K = 16r2∆

(∆′)2
. (4.108b)

Once the observer is close enough to the black hole to pass within the outermost photon orbit,

they begin receiving both outgoing and ingoing photons originating from an emitter just above the

event horizon, as shown respectively by the thick and thin portions of each curve in Fig. 4.9. Then,

once the observer falls within the ergosphere bounded by r = 2M , they begin receiving photons with

divergent normalized angular momentum L/E , as shown in Fig. 4.9 by the green curves that dip

to negative infinity and reappear in the positive region. In the spherically symmetric case, such
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Figure 4.9: Azimuthal viewing angle χ from Eq. (4.105) for a freely falling equatorial ZAMO as a
function of a null geodesic’s conserved angular momentum L/E , for a black hole with spin parameter
a = 0.96M . A selection of different observer radii r are shown, from distant observers (red) to
observers crossing the event horizon at r+ = 1.28M (blue) to observers crossing the Cauchy horizon
at r− = 0.72M (purple). Thick (thin) curves indicate geodesics that are outgoing (ingoing) once they
reach the observer.
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Figure 4.10: Effective Hawking temperature κ+eff for outgoing Unruh modes as a function of a freely
falling equatorial ZAMO’s azimuthal viewing angle χ, for a selection of different observer radii r.
The parameters are identical to that of Fig. 4.9.

divergences happen only below the event horizon and correspond only to a single cusp in χ instead of

a finite swath of χ values where L/E changes sign. Such a rich structure of allowed photon geodesics

exists because the Kerr ergosphere extends above the event horizon.

Once the observer reaches the event horizon and proceeds to the inner horizon, the size of

the black hole shadow in their field of view remains finite, still governed by the intersections of

each colored curve with the two horizontal gray lines in Fig. 4.9. This black hole shadow marks

the position of the past horizon, which sources the Unruh modes contributing to the perception of

Hawking radiation.

The effective Hawking temperature seen by the freely falling equatorial ZAMO, calculated

from Eq. (4.102), is plotted in Fig. 4.10 for a selection of observer positions from r/M = 10 down to

r/M = 0.73 just above the inner horizon. This temperature depends strongly on the specific choice

of observer and exhibits a wide range of behaviors throughout the observer’s descent, but a few

general trends are worth mentioning.

When the observer is far from the black hole (red curves), the effective temperature is small
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but non-zero, as expected. As the observer’s viewing angle χ across the equatorial plane changes, so

does the effective Hawking temperature, with a minimum value near the center of the black hole

shadow and maximum values at the edges. Such behavior is in accordance the limb-brightening

assertion #3 in Sec. 4.1, with the only modification that in the Kerr case, the distribution is no

longer symmetric about χ = 0○.

As the observer approaches the black hole, the effective Hawking temperature increases in all

directions across the black hole shadow, until it becomes negative for certain values of the viewing

angle χ. Just as in the case of the on-axis observer of Fig. 4.5, the effective temperature can be

negative even for an observer above the event horizon, as anticipated by assertion #4 in Sec. 4.1.

As the observer approaches the inner horizon, the effective temperature calculated in Fig. 4.10

diverges to positive infinity (in contrast to the on-axis observer’s negative-infinite temperature

from Fig. 4.5). As such, the value of κ+eff for an observer crossing through the inner horizon at

r/M = 0.72 is not shown; instead, the value for an observer just above the inner horizon (r/M = 0.73)

is displayed, and the effective temperature for any observer closer to the inner horizon will be

inversely proportional to the distance above the horizon.

Though not shown explicitly in Fig. 4.10, as the effective temperature diverges at r → r− (when

r/M < 0.73 in that plot), the angular distribution across χ becomes more and more isotropic. Such

behavior has been previously noted in both the Schwarzschild [87] and Reissner-Nordström [127]

cases. The key takeaway here and from these prior studies is that the diverging Hawking radiation

at the Cauchy horizon is not confined to the single radial point in the observer’s field of view where

classical radiation diverges via mass inflation, but instead, the diverging semiclassical radiation is

distributed uniformly across the entire surface of the black hole’s past horizon.

4.4.2.2 Interior Carter observer

The interior Carter observer, who will also be called the zero-energy observer, is the observer

who is at rest in the Carter frame defined by Eqs. (2.35). This observer moves along the blue path

in Fig. 4.8 and will travel along a constant latitude θ, not necessarily in the equatorial plane as in
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the previous subsection. In the coordinate frame, the only non-zero component of their 4-velocity is

the timelike component ṙ = −
√
−∆/ρ, and in their locally orthonormal tetrad frame, they will see

null particles travel with the following 4-momentum components:

k0ob =
1

ρ

√

K − (R
2 − aL)2

∆
(4.109a)

k1ob = −
R2 − aL
ρ
√
−∆

(4.109b)

k2ob =
sgn(kθ)

ρ

¿
ÁÁÀK −

(L − a sin2θ)2

sin2θ
(4.109c)

k3ob = −
L − a sin2θ
ρ sin θ

. (4.109d)

As in the previous subsection, the temporal component k0ob of Eqs. (4.109) is equivalent to the

frequency ωob = −kµẋµ seen in the frame of the observer, and the spatial components of km̂ob give the

angular position of the geodesic in the observer’s field of view, parameterized by the viewing angles

χ and ψ defined by Eqs. (D.11).

Eqs. (D.11) can be solved for the photons of Eqs. (4.109) to yield the following relations

between the viewing angles (χ, ψ) and the photon’s orbital parameters (L, K):

L = a sin
2θ
√
−∆ +R2 sin θ tanχ√

−∆ + a sin θ tanχ
, (4.110a)

K =
ρ4 (sec2χ csc2ψ − 1)

(
√
−∆ + a sin θ tanχ)2

. (4.110b)

Eqs. (4.110) can be used together with Eq. (4.102) to calculate the effective Hawking tem-

perature κeff directly as a function of the observer’s azimuthal and polar viewing angles χ and

ψ, respectively. Before presenting the results, two modifications from the previous subsection are

worth noting. First, the integration of Eq. (4.27) to calculate the affine distance will now include

both r-dependent and θ-dependent terms, since the observer can now look outside of the equatorial

plane. Derivatives with respect to both L and K must then be applied to both the r-dependent and

θ-dependent integrands, in contrast to the simpler case of Eq. (4.103a).
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Second, while the emitter’s radius rem can always be fixed at the value r+ (for κ+eff) or ∞ (for

κ−eff), the emitter’s polar angle θem will change for different values of the photon’s orbital parameters

L and K. It must therefore be calculated via the same ray-tracing techniques used throughout this

section. If the back-propagated null geodesic originating from an equatorial observer exceeds a Mino

time λ̃ (defined in Eq. (4.22)) of

λ̃ >K
⎛
⎝
1

2
+ a(a −L) −K√
(K + 4aL)K

⎞
⎠
((K + 4aL)K)−1/4 , (4.111)

where K is the complete elliptic integral of the first kind, then the photon will experience a turning

point at

sin θ =
√
K + 4aL −

√
K

2a
. (4.112)

Since the emitter’s polar angle θem will vary as the observer varies their proper time τob while

staring in the same fixed direction parametrized by angles (χ,ψ), Eq. (4.102) will in principle include

additional terms with derivatives with respect to θem, even if both the observer’s and emitter’s polar

velocities θ̇ob and θ̇em are individually assumed to be zero (as is the case here). To address this

complication, the dependence of θem on rob and rem is explicitly included when evaluating the r

derivatives of Eq. (4.102).

A freely falling observer in the interior of a Kerr black hole with zero energy will see the black

hole shadow grow over time, as shown in Fig. 4.11. As the interior Carter observer begins at rob = r+

at the bifurcation point of the past horizon and the event horizon, they initially see the black hole

shadow emerge from a single point in their field of view along the principal null direction at χ = 0○,

ψ = 90○ (the upper-left point in Fig. 4.11). Then, the black hole shadow appears to grow in their field

of view until taking on the yellow shape in Fig. 4.11 when the observer reaches the inner horizon.

These are the regions that appear as the source of outgoing Hawking modes in the observer’s field of

view.

The calculation of the effective Hawking temperature κ+eff via Eq. (4.102) for an interior Carter

observer, who follows the blue path in Fig. 4.8, is presented in Fig. 4.12. In the left panel of Fig. 4.12,
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Figure 4.11: Fields of view of the black hole shadow, with edges parametrized by Eqs. (4.108),
for the viewing angles χ and ψ defined by Eqs. (D.11). The view is from the perspective of a
freely falling equatorial interior zero-energy observer at different radii r within a Kerr black hole
with spin parameter a = 0.96M . The shadow initially appears as an infinitesimally small point at
(χ,ψ) = (0○,90○) when the observer is at the event horizon (dark blue), then grows along both
angular directions as the observer approaches the inner horizon (yellow). The three black points
correspond to the three curves shown in Fig. 4.12.

three specific viewing directions are chosen to track how κ+eff changes as the observer travels from

the event horizon to the inner horizon. These three directions are denoted by the black points in

Fig. 4.11: at the approximate center of the shadow at (χ,ψ) = (90○,45○), closer to the edge at

(χ,ψ) = (15○,60○), and at the point of emergence at (χ,ψ) = (0○,90○).

When staring along the three directions shown in the left panel of Fig. 4.12, the observer sees

a wide range of effective temperatures. The temperature appears to converge to a negative, infinite

value as rob → r+, since at this point, the observer is coincident with the past horizon singularity

imposed by the Unruh vacuum state. However, most directions the observer might look in the sky

(in fact, all but a set of zero measure) do not actually reach this pathological divergence, since the

black hole shadow falls out of their range above a certain radius.

As the interior Carter observer approaches the inner horizon, the effective temperature does

not diverge in every direction, as it did for the equatorial ZAMO in the previous Sec. 4.4.2.1 and for

the Reissner-Nordström radial infallers of Sec. 4.4.1. Instead, κ+eff approaches a finite value in every



141

0.7 0.8 0.9 1.0 1.1 1.2
-5

-4

-3

-2

-1

0

rob/M

κ+
·M

χ=15 °, ψ=60 °

χ=90 °, ψ=45 °

χ=0 °, ψ=90 °

κ+·M

-10

-5

0

5

10

Figure 4.12: Effective Hawking temperature κ+eff for outgoing Unruh modes seen by a freely falling
zero-energy equatorial observer in the interior of a Kerr black hole with spin parameter a = 0.96M .
Left plot: The three curves show the effective temperature when looking in the three specific
directions labeled in the plot and marked by the black points in Fig. 4.11. Right plot: The effective
temperature when looking in all directions in the limit as the observer approaches the inner horizon;
κ+eff is mostly (but not completely) isotropic and diverges to ±∞ along the principal null directions.

direction along the black hole shadow except along the principal null directions at χ = 0○ and χ = 180○,

where κ+eff does diverge to −∞ and +∞, respectively. One of these divergences (χ = 0○, ψ = 90○) is

shown in the left panel of Fig. 4.12.

The full view of the effective Hawking temperature seen just above the inner horizon is shown

in the right panel of Fig. 4.12. The effective temperature becomes approximately isotropic and

negligibly small across most of the surface of the past horizon, but it diverges to ±∞ and exceeds

the saturation limit of the color scale along the ingoing and outgoing principal null directions at the

top left and top right corners of the figure.

In conclusion, the effective temperature of Hawking radiation can be calculated in the geometric

optics framework for any class of inertial observers within the Kerr spacetime, with widely varying

outcomes depending on the particular choice of orbital parameters and spacetime positions. In this

Sec. 4.4, several different classes of observers have been examined: freely falling radial observers

in a charged black hole, equatorial infallers with zero angular momentum in a rotating black hole,
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and equatorial infallers with zero energy in a rotating black hole. In all these cases, the effective

temperature required an additional constraint that the emitted affine distance be kept constant,

so that a family of Unruh-state emitters could be matched to the same eikonal wavefront as the

observer pans across their field of view.

For all classes of observers examined here that reach the black hole’s Cauchy horizon, at least

one point in their field of view contains a diverging effective Hawking temperature. In accordance

with prior studies of both Hawking radiation [87] and the renormalized stress-energy tensor [178],

this semiclassically divergent behavior appears to be generic. Though here it has not been proved

that Hawking radiation temperatures will diverge for every inner-horizon observer within the Kerr

spacetime, the fact that a divergence appears for even a single inertial observer is enough to

demonstrate that Kerr black holes are semiclassically singular and likely unstable at the inner

horizon.

4.5 Graybody spectrum

Since a variety of choices for the observer position rob and black hole parameters Q or a lead to

a nonadiabatic effective temperature function, one may wonder how much trust can be placed on the

physical validity of the results of Secs. 4.2–4.4. Further, the effective temperature is not guaranteed

to provide any information about the behavior of Hawking radiation below the high-frequency

geometric optics limit. Nonetheless, as has been argued, even if the Hawking spectrum is nonthermal,

there should in general still be particle production whenever κeff is nonzero. To verify this claim,

here a full wave mode analysis is performed to find the particle spectrum seen by an infaller in the

locations where the Klein-Gordon equation simplifies enough for such a calculation to be performed.

As in previous sections, the analysis will first be performed for spherically symmetric black

holes (Sec. 4.5.1), then for azimuthally symmetric black holes (Sec. 4.5.2).
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4.5.1 Spherical black holes

Consider the Bogoliubov coefficients between the vacuum state of an Unruh emitter and that

of a freely falling observer in a Reissner-Nordström spacetime. In any spacetime with metric gµν ,

a canonically quantized, minimally coupled, massless scalar field ϕ will satisfy the Klein-Gordon

wave Eq. (3.11). Motivated by the spacetime’s symmetries, this field ϕ can be decomposed into a

complete set of modes ϕωℓm, each accompanied by creation and annihilation operators â†
ωℓm and

âωℓm, as in Eq. (3.13). If these modes are separated as

ϕωℓm =
fωℓ(t, r)Yℓm(θ,φ)

r
√
4πω

, (4.113)

then Eq. (3.11) implies that Yℓm will satisfy the spherical harmonic equation, while fωℓ must satisfy

∂2fωℓ
∂r∗2

− ∂
2fωℓ
∂t2

=∆ [ℓ(ℓ + 1)
r2

+ 1

r

d∆

dr
] fωℓ. (4.114)

For convenience, the mode indices ω, ℓ, and m will hereafter be suppressed as needed. As

described in Sec. 3.2, two vacuum states can be related by a Bogoliubov transformation, which aids

in the calculation of the vacuum expectation value of an observer’s number operator in an emitter’s

vacuum state (and note that there should properly be a sum of two integrals for the emitter’s ingoing

and outgoing states, which are omitted here for simplicity):

⟨0em∣â†
obâob∣0em⟩ = ∫

∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

∣β∣2 = ∫
∞

0
dω̄

∞
∑
ℓ̄=0

ℓ̄

∑
m̄=−ℓ̄

∣⟨ϕem∣ϕ∗ob⟩∣
2
. (4.115)

where bra-ket notation denotes the Lorentz-invariant Klein-Gordon inner product defined by

Eq. (3.21). To determine the expected particle number seen by an observer, one thus needs

only to specify the observer’s and emitter’s modes (usually via a set of boundary conditions),

propagated through the spacetime via the wave equation so that they coincide on some Cauchy

hypersurface.
The Unruh emitter’s ingoing (−) and outgoing (+) modes are defined with the following
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boundary conditions at past null infinity I − and the past horizon H+r+ ≡
intH+r+ ∪

extH+r+ (here f is
defined as in Eq. (4.113), with ωℓ indices dropped for convenience):

f+em →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, I −

e−iωU , H+r+
, (4.116)

f−em →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−iω(t+r
∗), I −

0, H+r+
, (4.117)

where U is the outgoing Kruskal-Szekeres coordinate, defined in terms of the event horizon’s surface

gravity κ+ from Eq. (4.10) by

U ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−e−κ+(t−r∗)/κ+, r+ ≤ r <∞

+e−κ+(t−r∗)/κ+, r− ≤ r < r+

. (4.118)

The relevant surfaces to which these boundary conditions correspond are shown schematically with

dotted arrows in the Penrose diagram of Fig. 4.13. Note that, as shown in the diagram, the outgoing

modes can be further split into a pair of substates via f+ ≡ (intf+) ∪ (extf+), each of whose boundary

conditions are zero except on their respective null surfaces. As argued in Sec. 4.2.1, the modes of

Eqs. (4.116) and (4.117) are precisely those which are positive frequency with respect to the proper

time of a freely falling observer skimming asymptotically close to those surfaces. The modes f±em can

then be extended to the entire spacetime by solving the wave Eq. (4.114).
Similarly, the observer’s ingoing (−) and outgoing (+) modes can be defined via boundary

conditions, in this case on the future null hypersurfaces. At future null infinity, the outgoing modes
are positive frequency with respect to the outgoing Eddington-Finkelstein coordinate u ≡ t − r∗, since
an observer asymptotically close to that surface will define positive frequency with respect to that
coordinate (as argued in Sec. 4.2.1). The natural question is then how this vacuum state should
be extended to the interior of the black hole. In studies of analogous acoustic black hole systems
[5, 14], these interior modes are also defined with respect to the Eddington-Finkelstein coordinates,
in part because the inner horizon of those systems is mimicked by a physically infinite asymptotic
regime. For the Reissner-Nordström spacetime, an infaller will not reach an asymptotically steady
state at the inner horizon; however, they will approach an asymptotic regime (albeit a transient one)
where ∆→ 0 and the scattering potential of Eq. (4.114) vanishes. In the regime where this potential
vanishes, as shown in Sec. 4.2.1, freely falling observers experience a proper time proportional to the
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Figure 4.13: Penrose diagram showing the various boundaries for a Reissner-Nordström or Kerr black
hole on which modes are defined with nonzero values. Past (future) null infinity is labeled I − (I +),
the outer (inner) horizons are labeled Hr+ (Hr−), and the superscripts + (−) everywhere indicate
whether modes traveling across a surface are outgoing (ingoing). The boundary conditions for the
emitter’s (observer’s) modes at the locations of the dotted (solid) lines can then be propagated
(backpropagated) numerically using the wave equation to define the modes throughout the entire
spacetime.

Eddington-Finkelstein coordinates:

f+ob →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e−iω(t−r
∗), I +

e−iω(r
∗−t), H+r−

0, H−r−

, (4.119)

f−ob →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, I + ∪H+r−
e−iω(r

∗+t), H−r−
. (4.120)

These modes are shown with solid arrows in Fig. 4.13. They represent the experience of any

inertial observer with arbitrary energy Eob (up to a rescaling of the frequency ω); without loss of

generality, an observer with Eob = 1 is chosen for the left potion of the inner horizon in Fig. 4.13

(H−r−), while an observer with Eob = −1 is chosen for the right portion (H−r−). Also, note that if the
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observer is placed at the outer horizon instead of the inner horizon, a similar complete set of modes

can be defined mutatis mutandis. In what follows, the results for both sets of modes will be presented

simultaneously, though the steps of analysis for the inner horizon observers’ set of modes will be the

main focus.

Equipped with a complete set of modes for an Unruh emitter and an inertial observer, one may

now proceed to calculate the expectation value of the particle number operator seen by the observer

in the emitter’s vacuum state via Eq. (4.115). To do so, consider what will subsequently be referred

to as the past null Cauchy hypersurface, consisting of the union of past null infinity with the exterior

and interior past horizons (I − ∪ H+r+ ; see Fig. 4.13). On this surface, the emitter’s modes are given

by Eqs. (4.116) and (4.117), while the observer’s modes can be found with scattering theory, as

described below.

Since the t coordinate used to define the observer’s modes defines a global timelike Killing

vector for the spacetime, the field’s modes fωℓ can be separated as

fωℓ(t, r∗) ≡ χωℓ(r∗) e±iωt. (4.121)

This separation puts the Klein-Gordon wave Eq. (4.114) into the form of a 1D scattering equation
in r∗. In the limits as ∆ approaches both 0 and 1, the scattering potential of Eq. (4.114) vanishes,
leading to asymptotic eigenmode solutions of the form exp(±iωr∗). As such, the observer’s modes
χ±ob can be backpropagated to the past null Cauchy hypersurface—altogether, for an observer at
future null infinity one has

extf+ob → e−iωt
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eiωr
∗ +R+exte−iωr

∗

, r∗ext →∞

T +exteiωr
∗

, r∗ext → −∞
, (4.122)

for an outgoing observer at the inner horizon,

intf+ob → eiωt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−iωr
∗

, r∗int →∞

T +inte
−iωr∗ +R+inte

iωr∗ , r∗int → −∞

R+intT −exteiωr
∗

, r∗ext →∞

R+int (eiωr
∗ +R−exte−iωr

∗) , r∗ext → −∞

, (4.123)
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and for an ingoing observer at the inner horizon,

intf−ob → e−iωt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−iωr
∗

, r∗int →∞

T −inte
−iωr∗ +R−inte

iωr∗ , r∗int → −∞

T −intT −exte−iωr
∗

, r∗ext →∞

T −int (e−iωr
∗ +R−exteiωr

∗) , r∗ext → −∞

, (4.124)

where r∗int and r∗ext represent the radial tortoise coordinates r∗ for the black hole’s interior and

exterior, respectively. The reflection coefficients R±int,ext and transmission coefficients T ±int,ext, which

depend on the observer’s mode numbers ω and ℓ, can be computed numerically (or semianalytically

with confluent Heun functions) with the above boundary conditions on the wave Eq. (4.114); see

Appendix B for more details.

Defining annihilation operators int,extâ±ob,em for each respective set of modes int,extf±ob,em, one

can then calculate the particle content seen by the observer. The vacuum expectation values of the

number operators associated with each choice of observer are

⟨N±int,ext⟩ ≡ ⟨0em ∣(int,extâ±ob)
† (int,extâ±ob)∣0em⟩ , (4.125)

with ⟨N+ext⟩ for the expected particle number observed at future null infinity I +, ⟨N−ext⟩ for an

observer at the event horizon H−r+ , ⟨N
+
int⟩ for an outgoing observer at the inner horizon H+r− , and

⟨N−int⟩ for an ingoing observer at the inner horizon H−r− .

Using Eqs. (4.115) and (3.21) and evaluating the inner product between the emitter’s modes

and the observer’s backpropagated modes along the past null Cauchy hypersurface, the anticipated

number operators can be calculated. After summing over the angular modes, the following inner

products yield nontrivial (i.e. up to an irrelevant phase) contributions to the Bogoliubov coefficients:
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⟨N+ext⟩ = ∫
∞

0
dω̄ ∣ ⟨e−iω̄U ∣eiωu⟩extH+r+

∣
2

, (4.126a)

⟨N−ext⟩ = ∫
∞

0
dω̄ ∣ ⟨e−iω̄U ∣eiωu⟩extH+r+

∣
2

, (4.126b)

⟨N−int⟩ = ∫
∞

0
dω̄ ∣ ⟨e−iω̄U ∣eiωu⟩extH+r+

+ ⟨e−iω̄U ∣eiωu⟩intH+r+
∣
2

, (4.126c)

⟨N+int⟩ = ∫
∞

0
dω̄ ∣ ⟨e−iω̄U ∣e−iωu⟩intH+r+

+ ⟨e−iω̄U ∣e−iωu⟩extH+r+
∣
2

+ ∫
∞

0
dω̄ ∣ ⟨e−iω̄v ∣e−iωv⟩

I −
∣
2

, (4.126d)

where each Penrose diagram stands in for the complex conjugate of the backscattering coefficient(s)

corresponding to the path shown, e.g. the final diagram of Eq. (4.126d) represents the combination

(R+intT −ext)∗, and the subscript associated with each bra-ket indicates the null surface over which that

inner product is evaluated.

Several potential pathways appear to be missing from Eqs. (4.126), such as the pathway in

Eq. (4.126b) connecting the event horizon to past null infinity. However, all such pathways involve

inner products of the form ⟨e−iω̄v ∣eiωv⟩, whose modes are completely orthogonal and therefore do not

contribute at all to the Bogoliubov coefficients. While the exclusion of these pathways is entirely

straightforward and routine, one may wonder how these calculations relate to those of Sec. 4.3, where,

for example, an observer at the event horizon does see nontrivial contributions from the ingoing

modes from past null infinity. The discrepancy lies in the fact that adiabaticity is never satisfied

for κ−eff(r+), and therefore the effective temperature calculations cannot be trusted at that specific

location. There is a small range of black hole charges around the value Q/M ≈ 0.937 for which it

appears from Fig. 4.4 that ϵ dips below 1 at the event horizon; however, as noted in Sec. 4.3.1.4, in

this range, the adiabatic control function ϵ fails to be a good estimator of the degree of adiabaticity,

since higher derivatives of κeff dominate over the vanishing first derivative.

The evaluation of the inner products from Eqs. (4.126) over each relevant surface have become
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a standard part of the literature (see, e.g., Refs. [20], [14], and sources therein); for example,

∣⟨e−iω̄U ∣eiωu⟩extH+r+
∣
2

= e−πω/κ+

4π2κ2+

ω

ω̄
∣Γ( iω

κ+
)∣

2

(4.127)

Using the property of gamma functions

∣Γ(±ix)∣2 = 2π

x (eπx − e−πx)
, (4.128)

one finds a Planckian distribution in the observer’s frequency ω, and while the remaining factors

of 1/(2πκ+ω̄) formally diverge when the integrals of Eqs. (4.126) are carried out, this divergence

only occurs as a result of the unphysical usage of infinite plane waves. If one were instead to use a

normalized wave packet localized in each asymptotic region with a frequency content concentrated

around some frequency ω̄∗, the offending terms would all reduce to unity.

Since the scattering coefficients in Eqs. (4.126) are independent of the emitter’s modes ω̄ (the

emitter’s modes are kept at their initial past boundaries, while the observer’s modes are the ones

that must be backpropagated through the spacetime’s scattering potential), the final form of the

number operators at each surface simplifies to (cf. the number operators of Ref. [14] evaluated for a

simplified scattering potential):

⟨N+ext⟩ =
∣T +ext∣

2

e2πω/κ+ − 1
, (4.129a)

⟨N−ext⟩ =
∣R−ext∣

2

e2πω/κ+ − 1
, (4.129b)

⟨N−int⟩ =
∣T −intR−ext −R−inte

πω/κ+ ∣2

e2πω/κ+ − 1
, (4.129c)

⟨N+int⟩ =
∣T +int −R+intR−exteπω/κ+ ∣

2

e2πω/κ+ − 1
+ ∣R+intT −ext∣

2
. (4.129d)

The key feature in each of the above equations is the familiar Planckian spectrum (e2πω/κ+ − 1)−1,

modified by a frequency-dependent graybody factor associated with the appropriate set of scattering

coefficients. For example, if no modes were scattered in the black hole exterior (and therefore
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T +ext = 1), Eq. (4.129a) would reduce to a completely thermal Hawking spectrum, as expected for an

eikonal observer at infinity.

4.5.1.1 Spectra for s-modes

Fig. 4.14 shows the deviations from thermality for the ℓ = 0 spectra of Eqs. (4.129). These plots

are computed numerically with the help of confluent Heun functions, as outlined in Appendix B. In

the top left panel, the particle spectrum seen asymptotically far from the black hole is plotted as the

ratio of ⟨N+ext⟩ to the analogous occupation number for a fully thermal spectrum with temperature

κ+/(2π) (this Planckian distribution will subsequently be referred to as a “κ+ blackbody”). This

ratio, which from Eq. (4.129a) equals the transmission probability ∣T +ext∣
2, approaches unity in the

high frequency (geometric optics) limit, indicating a return to thermality in that regime. However,

at lower frequencies, significant deviation from thermality occurs as the spectrum attains a steeper

power law than that of a blackbody. The transmission probability approaches a power law index of

2, as first predicted by Starobinsky and Churilov for the analytically solvable ωM ≪ 1 regime [166].

For an observer crossing the event horizon, the Hawking radiation seen from ingoing modes in

the sky above is shown in the top right panel of Fig. 4.14. Just as in the top left panel, values at

unity indicate consistency with a κ+ blackbody spectrum, though in this case, thermality at the

surface gravity temperature mostly occurs at the lowest frequencies instead of the highest frequencies,

with slight deviations for different black hole charges Q. At higher frequencies, the spectrum cuts

off much sooner than it does for an asymptotically infinite observer, indicating a lower eikonal

temperature. This high-frequency-limit temperature (multiplied by 2π) is approximately, but not

exactly, equal to the effective temperature κ−eff from Eq. (4.35), as shown by the dotted curves in

Fig. 4.14. Indeed, the modes contributing to the Bogoliubov spectrum from Eq. (4.126b) are ingoing

at the event horizon and therefore tied to κ−eff, although adiabaticity is not quite satisfied there.

In principle, one may also calculate the spectrum of outgoing Hawking modes seen at the

event horizon, corresponding to the effective temperature κ+eff there, and indeed, an infalling observer

will still see an exponentially redshifting past horizon below them after they cross the event horizon.
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Figure 4.14: Graybody s-mode factors from Eqs. (4.129) modifying the thermal κ+/(2π)-temperature
Hawking spectra seen by an observer asymptotically far from the black hole looking downward at
outgoing modes (top left), an ingoing observer at the event horizon looking upward at ingoing modes
(top right), an ingoing observer at the inner horizon looking upward at ingoing modes (bottom left),
and an outgoing observer at the inner horizon looking downward at outgoing modes (bottom right).
Different black hole charges are shown with respective colors from dark blue to yellow: Q/M =
0.1, 0.5, 0.7, 0.9, 0.96, 0.99, and 0.999. Solid curves show the numerically computed spectra, while
dotted curves show the positive-valued spectra obtained from a completely thermal distribution
with temperatures κ+eff/(2π) from Eq. (4.34) (upper left), κ−eff/(2π) from Eq. (4.35) (upper right),
κ−eff/(2π) from Eq. (4.36) (lower left), or κ+eff/(2π) from Eq. (4.37) (lower right).



152

However, calculating the outgoing modes for an ingoing horizon observer (and vice versa) requires

Fourier-decomposing the observer’s modes of Eq. (4.12) so that they can be backpropagated to the

past horizon, which will be deferred to a future study; for more details, see, e.g., Ref. [108].

Though only frequencies as high as ωM ∼ 0.6 are shown for the horizon spectra of Fig. 4.14

(the ωM ≫ 1 regime is beyond the code’s numerical capabilities), any higher frequencies are all but

irrelevant compared to the luminosity peaks of the blackbodies, which, though not shown in the

normalized spectra of Fig. 4.14, occur between ωM ∼ 0.2 (for the lowest charge Q) and ωM ∼ 0.01

(for the highest charge plotted).

While the Hawking spectra seen at infinity and the event horizon contain straightforward

graybody deviations from a thermal spectrum, the spectra seen at the inner horizon tell a different

story. Two spectra for the left and right portions of the inner horizon are shown in the lower left

and right panels of Fig. 4.14, respectively. These spectra bear little resemblance to the initial

κ+ blackbodies seen at infinity; nonetheless, the spectra are still presented normalized to the κ+

blackbodies due to the factors in the denominators of Eqs. (4.129).

At the left leg of the inner horizon (lower left panel of Fig. 4.14), the particle spectra given

by the Bogoliubov coefficient between the observer’s and emitter’s vacuum states all appear to

be ultraviolet-divergent; if an exponential cutoff does occur, it must happen at frequencies higher

than what was able to be computed. A qualitatively similar spectrum would occur for a Planckian

distribution with negative temperature (albeit with an overall sign change), as anticipated in Secs. 4.3

and 4.4, and for reference, the corresponding negative-temperature κ−eff blackbodies are shown by the

dotted curves in Fig. 4.14. Notably, as Q/M → 1, the ultraviolet divergence grows stronger, though

as Q/M → 0, the entire spectrum diverges (once Q/M goes below ∼ 0.01, the spectrum is too high

to be seen on these lower two plots). Such a panchromatic divergence can be attributed to the fact

that the inner horizon’s surface gravity κ−, and consequently the temperatures κ−eff from Eq. (4.36)

and κ+eff from Eq. (4.37), grow to infinity in the Schwarzschild limit, since r− → 0.

At the inner horizon’s right leg (lower right panel of Fig. 4.14), the curves once again diverge

at higher frequencies, indicating quasitemperatures much higher than the underlying κ+ blackbodies.
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Figure 4.15: Sampled points at ωM = 0.5 (blue) and ωM = 0.05 (red) for the four spectra of Fig. 4.14
when generalized to higher-ℓ modes. All points use a black hole charge of Q/M = 0.1. The ℓ = 0 mode
dominates the spectrum ⟨N+ext⟩ seen at infinity, but higher-ℓ modes make substantial contributions
to the spectra seen at the horizons.

These temperatures may be high enough to be negative, though when the black hole charge is large

enough, the spectra begin to deviate significantly from the dotted lines showing κ−eff blackbodies.

Nonetheless, the spectrum is still everywhere nonthermal as a result of the frequency-dependent

additive final term in Eq. (4.129d).

4.5.1.2 Spectra for higher spherical harmonics

The dependence of the Hawking spectra on the spherical harmonic mode number ℓ is shown

in Fig. 4.15. Instead of plotting the entire spectrum for each ℓ, two points are sampled from each

spectrum, one at a higher frequency (ωM = 0.5, blue points) and one at a lower frequency (ωM = 0.05,

red points). In almost all cases (except the spectra for ⟨N−ext⟩; see the upper right panel of Fig. 4.14),

the higher-frequency blue points exceed their lower-frequency red counterparts, indicating that the

general qualitative trends of each spectrum in Fig. 4.14 remain intact for higher-ℓ modes.

For the Hawking radiation seen asymptotically far from the black hole, the ℓ = 0 mode
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dominates over any higher harmonics [144], as can be seen from the drop-off of the solid circular

points in Fig. 4.15. However, for radiation seen at the outer and inner horizons, the spectra do not

seem to fall off as ℓ is increased. It would appear that the ultraviolet-divergent Hawking spectra

contain substantial contributions not only from the spherical ℓ = 0 modes, but also from much

higher harmonics. One important implication of this result is that semiclassical calculations of the

renormalized stress-energy tensor in the (1+1)D Polyakov approximation potentially miss out on

key beyond-s-wave physics near the horizons.

4.5.2 Rotating black holes

Now consider the following complementary analysis to the spherical case of Sec. 4.5.1, for Kerr

black holes. An additional generalization will be made in this section to understand not only the

behavior of a scalar field, but the more general case of a bosonic field with any integer spin.

Over the Kerr background one can place a canonically quantized, massless, bosonic field sϕ̂(x)

with spin weight7 s. Due to the axial symmetry of the metric encoded by Eq. (4.13), the field sϕ̂(x)

can be decomposed into a complete set of modes sϕωℓm(x) with ladder operators, as in Eq. (3.13),

to yield

sϕωℓm =
sfωℓ(r, t, φ) sS

ω
ℓm(θ)

R
√
4πω

(4.130)

(the additional factor of R is included here as in Ref. [179] so that, among other reasons, the

Wronskian of the wave equation will be constant in r). Focusing on the scalar (spin-0) case and

dropping the spin index in what follows for clarity,8 the quantum numbers are the frequency ω ∈ R,

7Following the notation of Teukolsky [170], the term “spin weight” is used for the parameter s, which either equals
the (positive-valued) spin of the field when the ingoing component of the wave is the dominant propagating mode, or
the negative of the field’s spin when the outgoing component of the wave is the dominant propagating mode. However,
s is not the same as the spin weight defined in the GHP formalism [75] as the eigenvalue of the Lorentz-invariant
chiral spin operator and instead would there be called the “boost weight,” the eigenvalue of the generator of Lorentz
boosts. See Sec. IIIC of Ref. [89] for more details.

8The calculations of the Hawking spectra, and in particular the formulae of Eqs. (4.147), are valid for any bosonic
field with integer spin, with the only change coming from the numerically-obtained values of the scattering coefficients
for a given field’s wave equation; see Appendix E for more details. In the derivation that follows, focus will be placed
on the scalar (spin-0) case; non-zero spins will be analyzed in Sec. 4.5.2.2.
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the multipolar number ℓ ∈ Z≥0, and the azimuthal number m ∈ Z≤ℓ ∩Z≥−ℓ. Thanks to azimuthal and

time translation invariance, the mode function fωℓ(r, t, φ) may be further separated as

fωℓ(r, t, φ) = ψωℓ(r) e±iωt e±imφ. (4.131)

If the scalar field’s modes ϕωℓm(x) obey the Klein-Gordon wave equation ◻ϕωℓm = 0, then the

polar function Sω
ℓm(θ) will satisfy the equation for spheroidal wave functions [27], while the radial

function ψωℓ(r) will satisfy the radial Teukolsky equation [170]

d2ψωℓ

dr∗2
+ Vωℓmψωℓ = 0, (4.132)

with the scattering potential

Vωℓm ≡ (ω −
ma

R2
)
2

− λωℓm∆̃

r
− ∆̃2 − d∆̃

dr∗
. (4.133)

In Eq. (4.133), the constant λωℓm is defined in Appendix E below Eq. (E.2), the tortoise coordinate

r∗ is defined by
dr

dr∗
= ∆

R2
, (4.134)

and the function ∆̃ is defined by

∆̃(r) ≡ r∆
R4

. (4.135)

The focus of the present section will be the cases in which the scattering potential of the

radial Klein-Gordon wave equation, given by Eq. (4.133), asymptotically reduces to a constant in

the tortoise coordinate r∗. Such cases occur when the observer is asymptotically far away and when

the observer is crossing one of the black hole’s horizons:

Vωℓm →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ω, r →∞

ω±, r → r±
, (4.136)
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where

ω± ≡ ω −mΩ± = ω −m
a

R2
±
. (4.137)

In these limits, the wave equation possesses the asymptotic eigenmode solutions ∼ exp(±iVωℓmr∗),

and the problem of mode propagation between these limits reduces to a 1D scattering problem in r∗.

One can define the following future boundary conditions (i.e., in the limit as the timelike

coordinates text or r∗int are taken to positive infinity in their respective domains) for each of four

complete sets of radial mode solutions to the wave Eq. (4.132), corresponding to observers locally

defining a positive frequency ω and azimuthal quantum number m:

extf+ob →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eimφ−iωu, r∗ext →∞

0, r∗ext → −∞
, (4.138a)

extf−ob →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

eimφ+−iωv, r∗ext → −∞

0, r∗ext →∞
, (4.138b)

intf+ob →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−imφ−+iωu, tint →∞

0, tint → −∞ ∪ r∗ext →∞
, (4.138c)

intf−ob →
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, tint →∞ ∪ r∗ext →∞

eimφ−−iωv, tint → −∞
, (4.138d)

where φ±, defined in Eq. (4.19), is the azimuthal coordinate that is regular for an observer crossing

the horizon at r = r±. Note that these modes differ slightly from the Eddington-Finkelstein modes

used in Ref. [179] in the use of ω rather than ω± at the outer/inner horizons, since the modes

here are constructed explicitly to match the positive-frequency experience of a free-falling observer

rather than to provide pure eigenmode solutions to the wave equation (more details below). These

initialized modes are shown by the solid arrows in Fig. 4.13. The notation for labeling these modes

is the same as in Sec. 4.5.1; modes in the exterior (interior) portion of the spacetime are labeled

extf (intf), and modes with canonically affine boundary conditions along a future null boundary

transverse to outgoing (ingoing) null rays are labeled f+ (f−).
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The subscript “ob” in the modes of Eqs. (4.138) is used to indicate that each mode corresponds

to the waves that would be seen in the frame of an inertial observer positioned asymptotically close

to its respective null boundary. To see why this is the case, consider the following analysis in analog

to that performed in Sec. 4.2.2 for the modes of the emitter.

If an infalling observer is placed asymptotically far from the black hole at rest, with E = 1,

the outgoing modes encoded by extf+ob will track the same eikonal wavefront as the outgoing null

congruence derived from their own proper time, since

lim
r→∞

du

dτ
= lim

r→∞
(ṫ − R

2

∆
ṙ) = 1. (4.139)

Similarly, if an infalling observer is placed asymptotically close to the event horizon, they will see

the ingoing waves of extf−ob tick at a rate proportional to their own proper time:

lim
r→r+

dv

dτ
= aPθ

ρ2
+ R

2(K + r2)
2ρ2Pr

, (4.140)

with the Hamilton-Jacobi parameters Pr(r) > 0 and Pθ(θ) defined in Eq. (4.15). Note that while

the expression on the right-hand side of Eq. (4.140) does not generally reduce to unity (although it

does simplify to 1/2 for the on-axis observer considered in Sec. 4.3.2.1), the expression is nonetheless

frozen at a constant value as r∗ is varied, in contrast to the divergent behavior for outgoing waves

seen by an ingoing emitter at the event horizon from Eq. (4.21).

For the remaining two interior modes intf±ob, if an infalling (ṙ < 0) observer is placed at the

inner horizon and is ingoing (Pr > 0), their proper time will be proportional to the ingoing modes

intf−ob, while if the observer is outgoing (Pr < 0), their proper time will be proportional to the outgoing

modes intf+ob. The constant of proportionality is the same as the right-hand side of Eq. (4.140), with

r now at its inner horizon value. Thus, the modes defined by Eqs. (4.138) each correspond to the

eikonal waves seen by an inertial, infalling observer passing through their respective hypersurface

boundaries.
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Since each set of boundaries considered in Eqs. (4.138) for each of the four sets of modes forms

a complete null Cauchy hypersurface terminating at spacelike infinity, the radial wave Eq. (4.132)

can be used to back-propagate each mode throughout the rest of the spacetime. Of particular

importance is the behavior of these observer modes at the past null boundaries where the initial

data for the emitter’s Unruh modes are defined, since if both fob and fem are known along the same

Cauchy hypersurface, Eqs. (4.115) and (3.21) can be used to compute the scalar product between

the observer’s and emitter’s modes and therefore the spectrum of Hawking radiation.

Equivalently, one may consider propagating the emitter’s modes forward and evaluating the

mode scalar product along the future null boundary where the initial data for the observer’s modes are

defined, instead of propagating the observer’s modes backward to the past null boundary. However,

this task is more difficult since the Kruskal coordinate U used to define the emitter’s Unruh modes

contains non-trivial coupling between t and r, so that the wave equation is not separable in these

coordinates when initialized with the Unruh modes.

Fortunately, as mentioned above, the problem of finding the observer modes at the past null

boundaries is a straightforward 1D scattering problem in r∗. Define reflection coefficients R±int,ext

and transmission coefficients T ±int,ext for the interior and exterior portions of the spacetime (with the

same notation as in Sec. 4.5.1), depicted visually by the scattering paths in the Penrose diagrams to

the right of each of the expressions below. The boundary conditions to be solved for the radial modes

of Eq. (4.131), evaluated at the mode labeled with ω, ℓ, and m, are provided in Eqs. (4.141)–(4.144)

below. For the modes of Eq. (4.138a) encoded by an observer asymptotically far away from the

black hole, one has

extψ+ob →

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

eiωr
∗ +R+ext,ωe−iωr

∗

, r∗ext →∞,

T +ext,ωeiω+r
∗

, r∗ext → −∞,
, (4.141)
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for the modes of Eq. (4.138b) encoded by an ingoing observer at the event horizon, one has

extψ−ob →

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T −ext,ωe−i(ω+mΩ+)r∗ , r∗ext →∞,

e−iωr
∗ +R−ext,ωeiωr

∗

, r∗ext → −∞,
, (4.142)

for the modes of Eq. (4.138c) encoded by an outgoing observer at the inner horizon, one has

intψ+ob →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−iωr
∗

, r∗int →∞,

T +int,ωe−i(ω++mΩ−)r∗ +R+int,ωei(ω++mΩ−)r∗ , r∗int → −∞, +

R+int,ω (ei(ω++mΩ−)r∗ +R−ext,ωe−i(ω++mΩ−)r∗) , r∗ext → −∞, +

R+int,ωT −ext,ωei(ω+mΩ−)r∗ , r∗ext →∞,

, (4.143)

and for the modes of Eq. (4.138d) encoded by an ingoing observer at the inner horizon, one has

intψ−ob →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−iωr
∗

, r∗int →∞,

T −int,ωe−i(ω++mΩ−)r∗ +R−int,ωei(ω++mΩ−)r∗ , r∗int → −∞, +

T −int,ω (e−i(ω++mΩ−)r∗ +R−ext,ωei(ω++mΩ−)r∗) , r∗ext → −∞, +

T −int,ωT −ext,ωe−i(ω+mΩ−)r∗ , r∗ext →∞,

. (4.144)

The scattering coefficients in the above expressions can be calculated through numerical

means; here the computation is performed with the help of the Teukolsky 0.3.0 package of the

Black Hole Perturbation Toolkit [30]. Since this Mathematica package is only designed to compute

exterior scattering coefficients, I have made adaptations to the code to extend computations to the

spacetime region between the inner and outer horizons; details on these modifications can be found

in Appendix E.

The scalar product of Eq. (3.21) can then be evaluated along the past null Cauchy hyper-

surface where the Unruh state is initialized. The end goal is the computation of Eq. (4.115), the
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vacuum expectation value of the particle number operator for an observer either at infinity, the

event horizon, or the ingoing or outgoing portions of the inner horizon. These spectral number

distributions will be labeled ⟨N+ext⟩ωℓm, ⟨N−ext⟩ωℓm, ⟨N+int⟩ωℓm, and ⟨N−int⟩ωℓm for the respective modes

of Eqs. (4.141)–(4.144).

The analysis proceeds almost identically to that of the spherical case in Sec. 4.5.1, with one

small but crucial difference: the Kerr scattering potential of Eq. (4.133) asymptotically approaches a

different constant value at infinity compared to the values at the event horizon and the inner horizon;

see Eq. (4.136). Thus, observer modes that are initialized as

ϕob ∼
eiωr

∗

R
√
4πω

(4.145)

at future null infinity will be back-scattered into the form

ϕob ∼
eiω+r

∗

R+
√
4πω

(4.146)

along the past horizon, and so forth.

The details for the calculation of the resulting number operator vacuum expectation values

from Eq. (4.115) are given in Appendix C. The result, up to a normalization factor, is

⟨N+ext⟩ωℓm = (
ω+
ω
)
∣T +ext,ω ∣

2

e
2π
κ+

ω+ − 1
, (4.147a)

⟨N−ext⟩ωℓm =
∣R−ext,ω ∣

2

e
2π
κ+

ω − 1
, (4.147b)

⟨N−int⟩ωℓm = (
ω+ +mΩ−

ω
)
∣T −int,ωR−ext,ω −R−int,ωe

π
κ+
(ω++mΩ−)∣

2

e
2π
κ+
(ω++mΩ−) − 1

, (4.147c)

⟨N+int⟩ωℓ(−m) = (
ω+ +mΩ−

ω
)
∣T +int,ω −R+int,ωR−ext,ωe

π
κ+
(ω++mΩ−)∣

2

e
2π
κ+
(ω++mΩ−) − 1

+ (ω +mΩ−
ω

) ∣R+int,ωT −ext,ω ∣
2
,

(4.147d)

with the surface gravity κ+ of Eq. (4.17), the horizon-limit frequency ω+ of Eq. (4.137), and the
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transmission and reflection coefficients T ±int,ext and R±int,ext of Eqs. (4.141)–(4.144). Note that in the

limit a→ 0, the expressions in Eqs. (4.147) reduce to the same Schwarzschild expressions obtained

in Sec. 4.5.1.

The physical interpretation of the vacuum expectation values from Eqs. (4.147) is that they

measure the spectral emission rate; i.e., the mean number of quanta in the mode with frequency ω

and angular mode numbers ℓ and m, seen by a freely falling observer at each respective location, per

the observer’s proper time τob.

One may at first sight worry that for exterior scattering, when ω <mΩ+ (and similarly,

ω <m(Ω+ −Ω−) for the interior), the frequency prefactors in the above expressions for ⟨N+ext⟩ωℓm

and ⟨N±int⟩ωℓm become negative. This is connected to the well-known phenomenon of superradiance,

in which the transmission probability in a rotating system becomes negative and the absorption

probability exceeds unity, so that scattered waves gain amplitude upon reflection and extract energy

from the black hole [166]. However, the aforementioned negative terms are exactly canceled by the

Planckian terms in the denominator of each expression, which also become negative in the same

superradiant regime. Therefore, the expected number of particles seen by the observer will always

remain positive.

4.5.2.1 Spectra for scalar modes

First, consider the Hawking radiation from massless scalar mode excitations, with spin s = 0.

The more general bosonic cases (s = 1 for photons and s = 2 for gravitons) will be considered in the

next subsection.

The Hawking spectra for the lowest set of modes (ℓ = 0, m = 0) are shown in Fig. 4.16. These

s-wave spectra are computed numerically for a variety of black hole spin parameters seen by the four

observers represented in Eqs. (4.147). First, the standard graybody spectrum seen asymptotically far

from the black hole is shown in the upper left panel of Fig. 4.16. Unlike the blackbody-normalized

spectra of Fig. 4.14 for Reissner-Nordström, the distributions here are plotted as spectral intensities,

which scale as ω3⟨N⟩, so that a Planckian blackbody would appear with a quadratic power law at



162

110-110-210-310-4
10-40

10-35

10-30

10-25

10-20

10-15

10-10

10-5

1

ω·M

ω
3 ·
M
3 ·
〈N
ex
t

+
〉 ω
00

Hawking spectral intensity observed
at rob  ∞ (looking inward)

110-110-210-310-4
10-40

10-35

10-30

10-25

10-20

10-15

10-10

10-5

1

ω·M

ω
3 ·
M
3 ·
〈N
ex
t

-
〉 ω
00

Hawking spectral intensity observed
at rob  r+ (looking outward)

110-110-210-310-4

10-10

10-5

1

ω·M

ω
3 ·
M
3 ·
〈N
in
t

-
〉 ω
00

Hawking spectral intensity observed
at rob  r- (ingoing, looking outward)

110-110-210-310-4

10-10

10-5

1

ω·M

ω
3 ·
M
3 ·
〈N
in
t

+
〉 ω
00

Hawking spectral intensity observed
at rob  r- (outgoing, looking outward)

Figure 4.16: Graybody spectra for the Hawking s-modes seen by an infalling observer at infinity
(upper left panel), the event horizon (upper right panel), and the Cauchy horizon (lower left panel for
an ingoing observer and lower right panel for an outgoing observer) in the Kerr spacetime with black
hole spins a/M = 0.1, 0.3, 0.5, 0.7, 0.9, 0.96, 0.99, and 0.999 (labeled with respective colors from
dark blue to yellow). Dashed curves show the corresponding positive-valued blackbody spectra with
temperatures κ+/(2π) (upper two panels) and κ−/(2π) (lower two panels) from Eq. (4.17), while the
solid curves are evaluated numerically from Eqs. (4.147).

low frequencies and an exponential drop at high frequencies. Such a blackbody, with a temperature

given by the surface gravity κ+/(2π), is plotted for each spin parameter with a dashed curve. All

the numerically-evaluated solid curves agree with the blackbody estimations at high frequencies (i.e.,
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the geometric optics limit). However, at low frequencies, the graybody spectra differ from their

blackbody counterparts by a power law index of 2, in agreement with the analytic prediction of

Starobinsky in the limit ω → 0 [166].

While the spectrum of Hawking radiation seen by someone looking inward from asymptotically

far away contains entirely straightforward graybody deviations at low frequencies, the spectrum seen

by someone crossing the event horizon contains graybody deviations at high frequencies, as shown in

the upper right panel of Fig. 4.16. The spectral intensity is still roughly the same order of magnitude

as that seen at infinity, in accordance with assertion #1 in Sec. 4.1. But at higher frequencies, the

spectrum drops to zero much more quickly than one might expect from blackbody predictions. The

reason for the dropoff is that in the geometric optics limit, fewer outgoing modes originating from

an Unruh emitter at the horizon will be reflected and return to the observer; instead, more will

escape as rays to infinity instead of being back-scattered as waves. Since the Hawking spectrum

seen by an observer looking outward from the event horizon is determined entirely by these reflected

modes (and not from transmitted ingoing modes originating from past null infinity, which do not

exhibit the characteristic exponential peeling), Hawking radiation detected at the event horizon is

suppressed at high frequencies.

Before discussing the Hawking spectrum seen by someone at the inner horizon, one feature

present in all panels of Fig. 4.16 is the suppression of Hawking radiation for faster-spinning black

holes. As the spin parameter a is increased and the curves change color from dark blue to yellow,

one may note that the higher-a curves have overall lower intensities. The faster a black hole spins,

the colder it becomes, regardless of where the observer lies within the spacetime.

The Hawking spectra seen by an observer at the Cauchy horizon are shown in the lower two

panels of Fig. 4.16. The lower left panel corresponds to an ingoing observer looking outward at the

sky above (crossing the null boundary H−r− in Fig. 4.13), while the lower right panel corresponds

to an outgoing observer looking inward at the past horizon below (crossing the null boundary H+r−

in Fig. 4.13). These spectra are plotted alongside the dashed blackbody curves (after taking the

absolute value) for the negative temperature given by the surface gravity of the inner horizon,
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κ−/(2π). At low frequencies, all the curves approach the same quadratic power law, but instead

of simply falling off exponentially as the frequency ω is increased, the curves continue to climb

orders of magnitude higher than any positive-temperature blackbody would allow. However, the

physically measurable spectral intensity does not contain an ultraviolet divergence for non-zero

rotation. Eventually, as suggested in the Reissner-Nordström case of Sec. 4.5.1, the exponential Wien

tail dominates as ω →∞ so that the spectral intensity returns to zero. But as the spin a decreases

and the inner horizon approaches the r = 0 singularity, Hawking radiation is able to reach higher

and higher frequencies before effectively experiencing an ultraviolet cutoff. The Schwarzschild limit

a/M → 0 is not shown in these lower two panels, since the spectral intensity in that case becomes

infinite at all frequencies.

It should be noted that the Cauchy horizon Hawking spectra shown in Fig. 4.16 are not a priori

expected to diverge. The divergent negative Hawking temperatures seen at the Cauchy horizon in

Sec. 4.3.2 correspond to ingoing observers looking inward (κ+eff for Pr > 0) and outgoing observers

looking outward (κ−eff for Pr < 0). In contrast, Fig. 4.16 shows observers at the Cauchy horizon

looking in the direction opposite the Penrose blueshift singularity—ingoing observers looking outward

and outgoing observers looking inward. Calculations for the former two scenarios would involve the

inner product of the Unruh emitter’s Kruskal modes with the observer’s Fourier-decomposed and

back-propagated Kruskal modes [108], which is nonetheless expected to yield an infinite spectral

intensity at all frequencies. What Fig. 4.16 shows is that in addition to the classical (and likely also

semiclassical) blueshift singularity, an observer at the Cauchy horizon will see the entire sky around

them glowing brightly with Hawking radiation.

Beyond the s-wave approximation, the Hawking spectral intensities for higher-ℓ modes are

shown in Fig. 4.17. Instead of showing entire spectra as functions of the frequency ω, these spectral

intensities are evaluated at a specific mid-range frequency (ω ⋅M = 0.1) so that the dependence on

the spin parameter a can be plotted more clearly.

For an observer asymptotically far from the black hole, the higher-ℓ spectral intensities are

shown in the upper left panel of Fig. 4.17. As the black hole spin a is taken to zero, all azimuthal
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Figure 4.17: Hawking spectral intensities for higher ℓ- and m-modes, seen by an infalling observer at
infinity (upper left panel), the event horizon (upper right panel), and the Cauchy horizon (lower two
panels) in the Kerr spacetime as a function of the black hole spin parameter a/M . All modes are
evaluated at a frequency of ω ⋅M = 0.1. Each individual m-mode for a given ℓ are presented for the
observer at infinity, while the m-modes are summed for each ℓ for the other three observers.

m-modes within a given ℓ mode converge to the same value, as expected. These intensities in the

low-a limit drop off as ℓ increases, so that the lowest angular mode dominates the Hawking spectrum.

In particular, the ℓ-modes are spaced apart by three to five orders of magnitude, in agreement with
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the approximate behavior predicted by Starobinsky [166]:

∣T +ext∣
2 ∝ (ω ⋅M)2ℓ+1(ℓ!)4

[(2ℓ)!]2[(2ℓ + 1)!!]2
. (4.148)

Additionally, note that in the upper left panel of Fig. 4.17, the green curves (corresponding to

positive m, with m = ℓ located highest in each group) always lie above the corresponding m = 0

curves, while the magenta curves (corresponding to negative m, with m = −ℓ located lowest in each

group) always lie below the corresponding m = 0 curves. Physically, Hawking particles are always

being emitted preferentially with the same angular momentum as the black hole, so that over time,

the black hole will tend to spin down as the Hawking particles carry away excess angular momentum

[94].

In the upper right panel of Fig. 4.17, the Hawking spectral intensity is shown for an observer

crossing the event horizon, yielding quite different behavior than that of an observer far away. While

the ℓ = 0 mode dominates for an asymptotically distant observer, all higher-ℓ modes are present

when the observer is in a regime where they are close enough to access more angular information

than s-waves. While this panel plots the sum over all m-modes in a given ℓ-mode, it should be

noted that as ℓ→∞, all the modes with m = 0 tend to a constant value, just as quickly as all the

modes with m = 0 for an observer at infinity tend to zero—note the relationship between ∣T +ext,ω ∣
2

and ∣R−ext,ω ∣
2 in Eq. (E.16).

The lower two panels of Fig. 4.17 similarly show equal contributions from all higher-ℓ modes in

the full Hawking spectrum seen by an infalling observer near the Cauchy horizon. Just as expected,

the spectral intensity decreases as the black hole spin a increases, and the intensity increases or

decreases monotonically with ℓ, except in the near-extremal case for an outgoing observer looking

inward. The higher-ℓ behavior demonstrated in Fig. 4.17 matches that of the Reissner-Nordström

case in Fig. 4.15. Note that as a→ 0, the observed Hawking spectral intensity diverges as the inner

horizon meets the r = 0 singularity, and as a→M , the observed Hawking radiation vanishes as the

inner horizon meets the outer horizon to create an extremal, zero-temperature spacetime.
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Figure 4.18: Graybody spectra for the electromagnetic (solid curves, (s, ℓ,m) = (1,1,0)) and
gravitational (dotted curves, (s, ℓ,m) = (2,2,0)) components of the Hawking radiation seen by an
inertial observer at Boyer-Lindquist radius rob. All spectra are evaluated for a Kerr black hole with
angular momentum a/M = 0.1. These higher-spin spectra are qualitatively similar to their scalar
counterparts from Fig. 4.16, except in the case of an outgoing observer at the inner horizon, who
sees an infrared-divergent spectrum.

4.5.2.2 Spectra for higher-spin modes

While scalar modes (with spin 0) are commonplace in calculations of semiclassical effects in

curved spacetimes due to the scalar wave equation’s simplicity and the “physical enough” interpretation

of modeling a single degree of freedom from a photon field, one can obtain more physically meaningful

results by considering the higher-spin generalization of the wave equation given by Eq. (E.2).

The Hawking particles that will be considered here are photons from an electromagnetic

field (spin-1) and gravitons from a gravitational field (spin-2). For all integer spins, the spectra of

Eqs. (4.147) retain their Planckian terms, with the only modifications arising from the scattering

coefficients calculated from each spin’s corresponding wave equation [144].

The spectra for Hawking radiation from the lowest ℓ- and m-modes of spin-1 and spin-2 fields

are shown in Fig. 4.18. In this plot, it can be seen that the higher-spin fields radiate with roughly
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the same spectra as in the scalar case of Fig. 4.16 for exterior observers. When rob →∞, the spin-1

and spin-2 spectra peak at a slightly higher frequency than the spin-0 spectrum (not shown), but

they also trail off in the infrared regime with a steeper power-law slope than the spin-0 spectrum.

Similarly, the spectra for an observer at the event horizon appear almost identical for different values

of spin.

All the spectra in Fig. 4.18 are shown for a black hole with angular momentum a/M = 0.1.

Other values of a yield qualitatively similar results (just as in Fig. 4.16), but the low value of a

here is chosen since it gives the most pronounced effects, especially given the proximity of the inner

horizon to the central singularity as a→ 0.

For an observer at the inner horizon, only the spectrum seen by an outgoing observer looking

inward is shown, since the spectra seen by an ingoing observer there for positive values of the

spin weight s are suppressed by the vanishing of the interior reflection coefficients dictated by the

Heaviside function in Eq. (E.14). If instead one chooses s = −1 and s = −2 (i.e., the outgoing radiative

parts of the field; see Footnote 7), as is common in Kerr perturbation calculations for numerical

feasibility, the inner horizon spectra will appear even more ultraviolet-divergent than in the scalar

case. But even for the positive spin weights shown in Fig. 4.18, the spectrum of radiation produced

from electromagnetic and gravitational modes is infrared-divergent, indicating that an outgoing

observer looking inward at the exponentially redshifting and dimming surface of the start that

collapsed long ago will see that surface glow more and more brightly in the infrared as they approach

the Cauchy horizon.

4.6 Discussion

Hawking radiation is an observer-dependent phenomenon. Here the Bogoliubov coefficient

calculation of Hawking [93] has been generalized to determine the effective temperature of semiclassical

radiation seen in the vacuum state of the locally inertial rest frame of an arbitrary observer within

various black hole spacetimes. Hawking found that if the observer is placed asymptotically far from

the black hole, they will see a small amount of approximately thermal radiation emerge from the
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vacuum; here the vast parameter space of various classes of observers and types of black holes is

explored. All of the observers analyzed here, outside or inside the event horizon, see a non-zero

amount of Hawking radiation, sometimes thermal, sometimes not. This radiation appears to originate

from the black hole shadow; i.e., the dimming, redshifting surface of the star that collapsed long ago

to form the black hole.

Two of the main questions underpinning this study are as follows: how would Hawking

radiation appear for someone at a black hole’s inner horizon? And what is meant by a negative

Hawking temperature in this context? Ultimately, one may wish to understand the full quantum

backreaction near the inner horizon, and though the semiclassical quantity ⟨N̂ωℓm⟩ cannot provide a

definitive assertion regarding the fully dynamical, quantum gravitational backreaction, the present

analysis does shed further light on the nature of both Hawking radiation and semiclassical black

holes with inner horizons.

To study the Hawking radiation seen anywhere near or far from a black hole, the analysis

began with the effective temperature functions κ±eff for an arbitrary inertial observer at a radius

rob looking radially inward or outward [20, 21], as defined in Sec. 3.2, which reproduces Hawking’s

original calculation in the geometric optics limit. For a radial infaller in the Reissner-Nordström

spacetime, this effective temperature is given by Eqs. (4.33) and Fig. 4.2. For an on-axis infaller in

the Kerr spacetime, this effective temperature is given by Eqs. (4.59) and Fig. 4.5.

Several important conclusions can be drawn from the effective temperatures κ±eff mentioned

above for infallers with no angular momentum. First and most importantly, the effective temperature

always diverges at the inner horizon, and regardless of the observer’s orbital parameters, it becomes

negative (indicative of modes that are blueshifting instead of redshifting) once the observer falls

close enough to the inner horizon. As it turns out, this negative temperature is not merely confined

to the black hole’s interior that would remain inaccessible to the outside universe; instead, when the

black hole is close enough to extremality, (when Q/M ≳ 0.943 for a charged black hole, and when

a/M ≳ 0.860 for Kerr on-axis), the inner horizon becomes close enough to the event horizon that a

negative κ+eff is detected outside the black hole.
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The perception of an effective temperature for an observer looking in a non-radial direction was

then analyzed in Sec. 4.4. For a charged black hole, focus was placed on a zero-angular-momentum

observer (ZAMO) looking at an angle χ away from the black hole’s center (Fig. 4.6). For a rotating

black hole, focus was placed on two classes of observers in the equatorial plane: ZAMOs looking at an

angle χ away from the principal null direction (Fig. 4.10), and zero-energy (interior Carter) observers

looking an angle χ away from the principal null direction and an angle ψ away from the equatorial

plane (Fig. 4.12). These observers all generically observe both positive and negative temperatures at

different points along their trajectory, and they see a limb-brightened past horizon; i.e., the black

hole shadow has the highest effective temperatures at its edges. But most importantly, the effective

temperature κeff always diverges in at least one direction once the observer reaches the inner horizon.

For the ZAMOs, the divergence occurs not just in the principal null direction, but in every direction

the observer looks in their field of view. The classical phenomenon of mass inflation involves a

divergence only at a single radial point in the sky (as an outgoing observer approaches the inner

horizon, the sky above them will shrink to a point and become infinitely blueshifted; see Fig. 1.3),

but semiclassically, Hawking radiation originating from the past horizon will fill the observer’s entire

field of view with diverging, negative-temperature radiation as they approach the inner horizon.

Are the approximations of the effective temperature formalism even valid whenever κeff becomes

negative? By studying the adiabatic control function ϵ in Sec. 4.3.1.4, one can learn whether ϵ is small

enough for the adiabatic condition to be satisfied and therefore for κeff to reproduce approximately

thermal Bogoliubov coefficients. At the inner horizon, the outgoing modes for an ingoing observer

are found to be sufficiently adiabatic as long as the black hole charge Q or spin a is not too small,

while the ingoing modes are hardly ever fully adiabatic there.

To complement these effective temperature results and provide a more rigorous calculation

in the regimes where the adiabatic condition fails, the analysis concluded in Sec. 4.5 with a full

wave mode investigation to determine the Bogoliubov spectrum at each of the asymptotic regimes

(r →∞, r → r+, and r → r−). To do so, the observer’s wave modes were backpropagated through

the spacetime to the position of the Unruh emitter using the wave equation for a massless scalar
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Klein-Gordon field, and the inner product of the observer’s and emitter’s modes was computed. The

resulting spectra for a charged black hole are shown in Fig. 4.14 and for a rotating black hole in

Fig. 4.16.

Asymptotically far from the black hole, the Hawking spectrum is completely thermal for high

enough frequencies (i.e., in the geometric optics limit), which is consistent with the vanishing of the

outgoing adiabatic control function ϵ+ at infinity. In contrast, for an observer at the event horizon,

ϵ+ is almost never significantly smaller than unity, and the corresponding Bogoliubov spectrum does

deviate significantly from thermality in the geometric optics limit.

At the inner horizon, the spectrum of scalar particles appears quite different from that of a

positive-temperature blackbody, and instead looks much more like the spectrum one would obtain

(up to an overall change in sign) from a blackbody with a negative temperature. The spectra are thus

mostly consistent with the effective temperature predictions, despite the general lack of adiabaticity

in that regime. The familiar Rayleigh-Jeans power law is still present at lower frequencies, but

at higher frequencies, the spectral intensity continues to climb even higher, though it is not fully

ultraviolet-divergent.

Even if the graybody spectra at the inner horizons analyzed here are not infinitely blueshifted

(as some of the effective temperatures κ±eff are), it is important to note that the two spectra shown

in the lower panels of Figs. 4.14 and 4.16 are associated with the Hawking sectors that are not

expected to yield diverging effective temperatures (but are nonetheless negative); namely, the ingoing

temperature κ−eff in Eqs. (4.36) and (4.59), and the outgoing temperature κ+eff in Eq. (4.37). If an

ingoing (or outgoing) observer at the inner horizon looks downward (or upward, respectively), they

should be met with an even stronger dose of diverging Hawking radiation. But what the graybody

spectra communicate is that for an outgoing observer approaching the inner horizon, while they can

look upward to see the Penrose blueshift singularity forming (as in Fig. 1.3), if they look downward

at the initially dimming and redshifting past horizon, even this surface will eventually begin to

blueshift and produce a high-energy glow of semiclassical radiation.

The implications of these Hawking spectra are clear: the interaction of a quantum scalar field
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with a black hole results in runaway particle creation detected at the inner horizon. The particle

spectrum diverges at all frequencies when the black hole charge Q or spin a is taken to zero, since

the inner horizon coincides with the r = 0 singularity that was already found to feature a diverging

Hawking flux in Ref. [87]. But even for nonzero charge, the inner horizon spectrum becomes highly

blueshifted and implies a substantial semiclassical backreaction.

Such a highly energetic source of radiation will quickly become amplified in the radial direction

and provide an ongoing source for the Poisson-Israel mass inflation instability analyzed in Chapter 2.

Even if the observer is taken to be something as simple as a two-level atom, one may speculate that

the implied Hawking flux would energize the atom to such an extent that the inevitable result is a

positive feedback loop resulting in the collapse of the spacetime geometry into a spacelike singularity.

The Reissner-Nordström and Kerr metrics cannot remain semiclassically intact; their inner horizons

must collapse into a singularity or else evolve dynamically into some potentially horizonless object.

One of the biggest outstanding questions that one may ask concerning this analysis of Hawking

radiation in the framework of semiclassical gravity is how the radiation backreacts on the spacetime.

Here the spacetime geometry has been kept fixed, but presumably if enough radiation is present, the

particles produced will possess a gravitational field of their own that will change the underlying metric.

Usually, one assumes that these backreaction effects are negligibly small and the vacuum black

hole metric can still be used as a valid approximation of the spacetime geometry for astrophysical

black holes. The analysis above shows that this assumption is usually true for observers outside

of the event horizon. However, close to the inner horizon, the generally divergent behavior of

observed Hawking radiation suggests that inner horizons are not semiclassically self-consistent. The

backreaction for astrophysically relevant perturbations is likely to form a strong, spacelike singularity

just above the inner horizon (as in Chapter 2), though other mathematical predictions also exist in

the literature, such as a weak, null singularity [49] or a rapid implosion toward the formation of a

compact horizonless object [18].

The obvious problem with attempting to analyze the effects of backreaction from Hawking

radiation in the present framework is that each observer sees a different amount of Hawking radiation,
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but they all exist in the same background metric. Even though the radiation is completely real from

the perspective of any individual observer, the very definition of a particle depends on an observer’s

frame of reference, a concept which seems at first glance completely at odds with the central claim

in semiclassical gravity that particles arising from quantum fields provide the source of curvature for

a global, classical spacetime metric.

Which observer is the one to see the actual radiation that contributes to the underlying

spacetime geometry? Is there a preferred quantum reference frame, or will each observer construct

their own background based on the particular backreaction they see in their own frame? The usual

approach in semiclassical gravity is to place a quantum field in a particular global state and construct

an averaged version of that field’s net energy-momentum, which can be cast into a Lorentz-covariant

(and observer-independent) form [132, 158]. This quantity, the renormalized vacuum expectation

value ⟨Tµν⟩ren of the field’s stress-energy tensor (RSET), is then guaranteed to feed back into the

spacetime geometry in the standard classical way. This thesis will conclude in Chapter 6 with

precisely this analysis of how the RSET should backreact on the inner horizon of an arbitrary

rotating black hole.

However, the RSET is only an averaged quantity and cannot provide all the information that

an observer is able to access about the state of a quantum field in a curved spacetime. Classically,

the stress-energy tensor involves an integral with each particle’s energy-momentum over a Lorentz-

invariant pseudo-scalar volume element:

Tµν = ∫ pµpνf(x,p) g d3p

p0(2πh̵)3
, (4.149)

where g is the number of spin states of the particle and f is the dimensionless occupation number,

which specifies the number dN of particles with 4-position xµ and 4-momentum pµ within the

Lorentz-invariant six-dimensional volume of phase space d3x d3p. The particle number N , directly

related to this occupation number f , is precisely the object of study throughout this chapter. While

the RSET is a difficult object to calculate even for the most symmetric spacetimes, one of the goals of
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this chapter is to show that ⟨N⟩, the more elementary object, is entirely straightforward to calculate

in the locally inertial frame of any observer.

In conclusion, by examining the expectation value of the number operator for a quantum

field placed over a black hole spacetime, it has been shown that the same key ideas anticipated

in Sec. 4.1 hold true: (1) The Hawking radiation seen by generic observers passing the vicinity of

the event horizon has a negligibly weak graybody spectrum, (2) the Hawking radiation seen at the

Cauchy horizon possesses a divergent effective temperature for all the classes of observers examined,

(3) the Hawking radiation originating from different directions in the sky varies considerably for

different classes of observers, and (4) the effective Hawking temperature for certain observers can

become negative even outside of the event horizon, though an ultraviolet divergence in the Hawking

spectrum is not seen for the limited cases considered here. From these results it is clear that any

black hole metric with an inner horizon cannot be trusted in its full global form in the semiclassical

approximation, as a result of the diverging quantum radiation that would be observed at its inner

horizon.



Chapter 5

Renormalized Vacuum Polarization: ⟨ϕ̂2⟩

The contents of this chapter have been published as [126].

5.1 Introduction

This chapter continues to address one of the ultimate questions of this thesis: what happens

inside the event horizon of a black hole? If the classical laws of general relativity are to be believed,

then vacuum models of black holes with charge (Reissner-Nordström) or angular momentum (Kerr)

predict that below the event horizon lies a second horizon, the Cauchy horizon, which marks the

boundary of causality. Below this inner horizon, the vacuum models predict a wormhole and a naked

timelike singularity, but as has been explored in depth in Chapter 2, the effects of perturbations

from accretion are expected to cause the Cauchy horizon to collapse into a spacelike singularity and

preclude any possibility of causality violation.

However, following the classical analysis of Chapter 2, it was shown that at high enough

energies (which are easily achieved with the mass inflation instability), gravity is more appropriately

treated as a quantum field, not a classical one.

As a quantized field theory (see Chapter 3), gravity is non-renormalizable, since Feynman

diagram calculations at all loop orders produce divergences that only get worse the higher one goes

in the perturbative expansion. Nonetheless, as an effective field theory, one-loop divergences can be

absorbed by renormalization of the next-order parameters, so that quantum gravitational effects

can be calculated provided the characteristic frequencies of the gravitational background do not
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exceed the Planck frequency [29]. In this one-loop approach, which fits under the umbrella term

semiclassical gravity, matter fields are quantized while the background spacetime is treated classically.

Such an approach has led to many celebrated predictions in the literature, most notably concerning

Hawking radiation, analyzed in detail in Chapter 4.

For calculations of quantum field theories (QFTs) in curved spacetimes, the quantity of

greatest interest is the renormalized expectation value of the field’s stress-energy tensor ⟨Tµν⟩, since

it contributes to a backreaction to the spacetime geometry via the semiclassical field Eq. (3.9). The

squared amplitude ⟨ϕ2⟩ of vacuum fluctuations is often used as a proxy for the calculation of ⟨Tµν⟩,

since ⟨ϕ2⟩ contains fewer divergences that need to be renormalized yet still provides meaningful

information about vacuum polarization effects. In particular, ⟨ϕ2⟩ can be used to the determine the

trace of ⟨Tµν⟩ for conformally coupled scalar fields, and ⟨ϕ2⟩ additionally provides insight about

spontaneous symmetry breaking in a given background spacetime [4].

In the context of semiclassical black hole interiors, most works have considered only two-

dimensional or charged black holes. In the two-dimensional case, the quantum backreaction at the

inner horizon leads to a divergence of the stress-energy and the formation of a spacelike singularity

[65, 68]. In the charged, spherically symmetric case, early work indicated that ⟨Tµν⟩ would also likely

diverge at the inner horizon to produce a spacelike singularity, but could also remain regular in certain

cases [15, 28]. In the past few years, an explosion of works studying semiclassical Reissner-Nordström

mass inflation have shown that the ingoing null component ⟨Tvv⟩ yields a non-zero value at the

inner horizon, and switching to a time coordinate which is regular through the inner horizon shows

that the renormalized stress-energy tensor does physically diverge there [18, 97, 105, 109, 169, 180,

181]. backreaction from ⟨Tvv⟩ alone is generally believed to cause a strong curvature singularity [97],

though there is no complete semiclassically consistent solution to verify this yet. What has been

shown is that a dynamical semiclassical inner horizon will evaporate outwards over time (along with

a slower, inward-evaporating outer horizon), leading to a self-consistent steady state that inevitably

contains a curvature singularity [8, 9, 18].

For the case of spinning black holes, far fewer works have been published analyzing quantum
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effects at the inner horizon. In the simplified vacuum case (the Kerr metric), before mass inflation

was even understood classically, Hiscock argued from symmetry and conservation conditions that

⟨Tµν⟩ must diverge on either the ingoing or outgoing inner horizon, a result confirmed in the decades

following [95, 143]. More recently, ⟨Tµν⟩ was calculated for the inner horizon of rotating (2 + 1)-

dimensional black holes, which was found to result in a spacelike singularity [41]. Finally, a new

set of works by Zilberman et al. have shown that for a (3 + 1)-dimensional Kerr black hole, the flux

components of ⟨Tµν⟩ do generically diverge at the inner horizon, with the specific choice of spin and

polar angle determining whether the null flux components of ⟨Tµν⟩ are positive or negative. This

analysis will be revisited in Chapter 6.

Despite the success of the aforementioned studies in calculating quantum effects in Kerr black

holes, the Kerr metric is not a realistic model when describing the asymptotic regime near the inner

horizon of an astrophysical black hole, which in general is modified by the perturbative effects of

accretion. Instead of applying a quantum field over some vacuum spacetime solution, here focus

is placed on the inflationary Kasner spacetime, the metric derived in Chapter 2 that models the

near-inner-horizon geometry of a rotating black hole with accretion. The details and assumptions

of this model are reviewed in Sec. 5.2.1. Then, the analysis proceeds with the calculation of the

renormalized vacuum polarization ⟨ϕ2⟩ren. The quantization procedure is detailed in Sec. 5.2.2, while

the renormalization procedure is detailed in Sec. 5.3.

Since the wave equation for this model cannot be solved analytically, a numerical framework

is used, as described in Sec. 5.4. This framework is first tested on a simplified, isotropic case in

Sec. 5.4.1, after which the results for the inflationary Kasner metric are presented in Sec. 5.4.2.

The chapter then concludes with a discussion of the results of the calculation of ⟨ϕ2⟩ren in Sec. 5.5,

leaving the calculation of ⟨Tµν⟩ren to Chapter 6.

5.2 Inflationary Kasner metric revisited

A complete derivation of the inflationary Kasner metric is given in Chapter 2. Here, the key

aspects of the model are presented in a slightly different form, since the different choice of coordinates
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used here are more amenable to the semiclassical calculations at hand.

5.2.1 Spacetime metric

The spacetime geometry near the inner horizon of a rotating, accreting black hole can be

modeled using a homogeneous metric1 [125]:

ds2 = −a20(t)dt2 +
3

∑
i=1
a2i (t)(dxi)2, (5.1)

where the time-dependent scale factors satisfy

a20 = c1t et
2

, a21 = c1t−1et
2

, a22 = a23 = t2, (5.2)

for positive time t and positive constant c1. This metric is called the inflationary Kasner metric

because of its asymptotic resemblance to the well-known Kasner metric first proposed one hundred

years earlier [99]. In particular, for t above unity, the metric approximates a Kasner metric with

Kasner exponents (p1, p2, p3) = (1,0,0), and as t decreases on its way down to the spacelike singularity

at t = 0, the spacetime “bounces” to a Kasner metric with Kasner exponents (−1/3, 2/3, 2/3).

The coordinates and constants used in the line element of Eqs. (5.1)–(5.2) are chosen for their

convenience for the QFT calculations done here. They are related to those of Chapter 2 by:

t = T 1/2, c1 =
1

4πΦ0T
1/2
0 eT0

, (5.3)

along with a suitable rescaling of the spatial coordinates. The astrophysical properties of the black

hole (viz., the spin a, the inner horizon Boyer-Lindquist radius r− ≡ 1 −
√
1 − a2, and the initial

1Throughout this chapter, assume units where M● = 1.
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accretion rate u) are related to these constants via:2

T0 =
r3− − 3r2− + a2r− + a2

u(r2− + a2)2
, Φ0 ≈

u2T0
4π

. (5.4)

To comment briefly on the physical interpretation of this metric, note that the inflationary

Kasner model holds only in the regime asymptotically close to the inner horizon of a rotating,

accreting black hole. Above this horizon, spacetime is well-approximated by the Kerr metric. But

once an observer approaches the inner horizon, they will experience the mass inflation phenomenon

described in Chapter 2, corresponding to the radial collapse of the inflationary Kasner metric as

t decreases from its initial value of t0 ≡
√
T0 (which is generally quite large, since T0 is inversely

proportional to the generally tiny accretion rate u, in units where the black hole mass is 1) until

reaching t ∼
√

1/2. Then, the inflationary Kasner model predicts a bounce in the spacetime, wherein

the radial collapse reverses and the collapse in the isotropic directions proceeds towards a strong,

spacelike singularity at t = 0.

Several key assumptions underlie the inflationary Kasner model; in particular, the near-inner-

horizon spacetime is assumed to be homogeneous and sourced by the self-similar, asymptotically

small accretion of a collisionless, null fluid. First, the assumption of homogeneity comes about from

the fact that during mass inflation, the curvature and stress-energy exponentiate rapidly while the

Boyer-Lindquist coordinates r and θ remain frozen at their inner horizon values. One should not

imagine that a vast, structureless swath of homogeneous spacetime lies hidden within accreting

black holes; rather, homogeneity applies locally for each near-inner-horizon observer as the entire

evolution of the inflationary Kasner model passes by within a fraction of a second of their proper

time. Second, the assumptions about accretion are a direct result of the process of mass inflation,

which accelerates any infalling matter to relativistic velocities along the radial direction, rendering

2The initial energy density Φ0 depends more generally on the observer’s polar coordinate θ and the difference in
the speed of ingoing and outgoing streams [84], but the inclusion of these parameters provides no more precision than
the inflationary Kasner approximation already affords.
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any other contributions to Einstein’s equations irrelevant until t/t0 reaches below ∼
√
10−5 [125].

Finally, the assumption of a tiny accretion rate should hold for any black hole at late times (indeed,

even the cosmic microwave background would source such accretion).

5.2.2 Quantum field modes

Let ϕ̂(x) be a canonically quantized, neutral scalar field, evaluated at a spacetime point x,

that satisfies the Klein-Gordon wave equation

(◻ −m2 − ξR)ϕ = 0, (5.5)

where ◻ ≡ gµν∇µ∇ν is the d’Alembert operator, m is the mass of the field quanta, ξ is a numerical

factor indicating the strength of the coupling between the scalar field and the gravitational field,

and R is the Ricci scalar curvature. For the inflationary Kasner metric, R(x) = 0, so the calculation

of ⟨ϕ2⟩ren here will not depend on ξ. Later, the massless case will be assumed, but in order for the

adiabatic expansion of Sec. 5.3.1 to be valid, m must not be set to 0 until the end of the calculation.3

The homogeneity of the inflationary Kasner spacetime motivates a decomposition of the

quantum field operator ϕ̂ into a set of modes indexed by wavevectors k ∈ R3:

ϕ̂ = 1

(2π)3/2 ∫
d3k [Âkψk(t) eik⋅x + Â†

kψ
∗
k(t) e−ik⋅x] . (5.6)

The creation and annihilation operators Â†
k and Âk (capital letters are used here in contrast to the

lowercase notation introduced in Chapter 3 to avoid confusion with the metric’s scale factors ai) will

then satisfy the usual commutation relations (compare Eq. (3.14))

[Âk, Âk′] = [Â†
k, Â

†
k′] = 0, [Âk, Â

†
k′] = δ

3(k − k′), (5.7)

3Numerically, a variety of values for the mass were tested until convergence in the m→ 0 limit was achieved; for
the present analysis, m = 10−4 was found to be more than sufficient.
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provided the mode functions ψk satisfy the Wronskian condition

ψ̇∗kψk − ψ∗kψ̇k = i
a0

a1a2a3
= it−1. (5.8)

Here and throughout this chapter, an overdot represents differentiation with respect to the coordinate

time t. Introducing the auxiliary function

fk(t) ≡ (
a1a2a3
a0

)
1/2
ψk(t) = t1/2ψk(t), (5.9)

Eq. (5.5) leads to the dynamical equation

f̈k + (ω2
k + σ) fk = 0, (5.10)

where the frequency ωk(t) and k-independent geometrical background term σ(t) are defined by

ω2
k(t) ≡ a

2
0 (

3

∑
i=1

k2i
a2i
+m2) , (5.11)

σ(t) ≡ 1

4
[2ä0
a0
− 3ȧ20
a20
+

3

∑
i=1

ȧ2i
a2i
+ a20 (4ξ − 1)R] . (5.12)

In the isotropic limit, ωk reduces to the standard definition of frequency used for Friedmann-Lemaître-

Robertson-Walker (FLRW) universes [148]. With the scale factors of Eq. (5.2), the anisotropic

background term σ(t) simplifies to 1/(4t2), and the wave Eq. (5.10) has no known solution in terms

of analytic functions. Therefore, the mode functions fk must be found by numerically solving the

wave equation for each choice of wavevector k. The boundary conditions are set by the choice of

vacuum state, the discussion of which is deferred to Sec. 5.3.2.

5.2.3 Asymptotics

While the inflationary Kasner wave equation has no general closed-form solution, three

asymptotic regimes are worth mentioning: the adiabatic regime (t/t0 ≫ 1), where the spacetime
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behaves adiabatically but is too far from the inner horizon singularity to match the behavior of a

black hole; the initial inflationary regime t/t0 → 1, where both the inflationary Kasner and Kerr

metrics are valid just above the inner horizon; and the final collapse regime (t/t0 → 0), where the

spacetime behavior is dominated by the collapse of the metric toward the spacelike singularity.

5.2.3.1 Adiabatic regime

When t/t0 exceeds unity, the exponential terms in the inflationary Kasner scale factors of

Eq. (5.2) will dominate, provided t0 ≫ 1 (as is true for any astrophysical black hole below the Thorne

limit [171], since t0 scales as u−1/2 for the generally tiny accretion rate u≪ 1). The resulting metric,

with an exponential term over the temporal and radial sectors, has the same Rindler-type form of

Lass’s radar coordinates for Minkowski space (when x and T ≡ t2 are swapped) [110]. As a Kasner

universe, the metric asymptotically approaches the well-studied case of Kasner exponents (1, 0, 0).

But even more simply, the coordinate transformation

T̃ ≡
√
c1
t

e
t2

2 sinh(x), X̃ ≡
√
c1
t

e
t2

2 cosh(x), Ỹ ≡ ty, Z̃ ≡ tz (5.13)

will bring the metric to the form

−dT̃ 2 + dX̃2 + dỸ 2 + dZ̃2. (5.14)

in the large-t limit. Thus, the standard QFT approach to flat spacetime applies in this limit, provided

the appropriate vacuum state is supplied.

5.2.3.2 Initial inflationary regime

In the massless limit, as t/t0 approaches unity from below (in fact, for any value of t in the

range e−t
2
0/3 ≲ t ≲ t0, provided t0 ≫ 1), the frequency function in the wave equation will be dominated

by the radial k1 term, which is quadratic in t. The general solution to the wave equation in terms of
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the mode functions ψk = fkt−1/2 can be written in terms of zeroth-order Bessel functions:

ψk = AkJ0 (
1

2
k1t

2) +BkY0 (
1

2
k1t

2) , (5.15)

for complex coefficients Ak and Bk.

5.2.3.3 Final collapse regime

As t/t0 approaches zero, the exponential terms in the inflationary Kasner scale factors of

Eq. (5.2) become negligible, which results in a standard Kasner metric with normalized Kasner

exponents (−1/3, 2/3, 2/3). Asymptotically, the wave Eq. (5.10) simplifies to

f̈k + (
c1k

2
⊥
t
+ 1

4t2
) fk = 0, (5.16)

with a general solution to the mode functions ψk = fkt−1/2 given by zeroth-order Bessel functions

with argument
√
4k2⊥c1t. But since t0 ≫ 1, the constant c1 and therefore the subleading t−1 term

from Eq. (5.16) is exponentially suppressed by the factor e−t
2
0 , so that the mode solutions further

reduce to

ψk(t) = Ak +Bk ln(t), (5.17)

for complex coefficients Ak and Bk.

5.3 Adiabatic regularization

The quantity of interest is the probability density of vacuum fluctuations, given by the

vacuum expectation value of the squared field operator, denoted ⟨0∣ϕ2(x)∣0⟩ (or more concisely, ⟨ϕ2⟩).

Formally, this quantity can be defined as the coincidence limit of a suitable two-point correlation

function,

⟨ϕ2⟩ ≡ 1

2
lim
x′→x

G(1)(x,x′), (5.18)
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where

G(1)(x,x′) ≡ ⟨0∣{ϕ(x)ϕ(x′)}∣0⟩ (5.19)

is the Hadamard Green function, defined with anticommutator brackets {}. In the case of the mode

expansion described in Sec. 5.2.2, the field variance can be naïvely calculated as

⟨ϕ2⟩bare =
1

(2π)3t ∫
d3k ∣fk(t)∣2. (5.20)

However, the bare integral in Eq. (5.20) is quadratically divergent. In order to obtain a physical,

finite result, some renormalization procedure must be employed, as described in the next subsection.

Since the mode solutions to Eq. (5.10) cannot be expressed in an analytic form and must

instead be solved numerically, most of the standard analytic renormalization techniques (such as

dimensional regularization) cannot be used. One robust technique for curved spacetimes, known

as point-splitting, has recently been implemented numerically by Levi and Ori under the name

pragmatic mode-sum regularization (PMR) [112, 113]. Such a technique requires only that the

background admits some symmetry (Killing field) to permit a mode expansion, and the present case

of homogeneous symmetry (translational splitting) has been carried out successfully for the FLRW

metric [26]. However, the x-splitting variant of PMR works well only for isotropic backgrounds—for

the inflationary Kasner metric, the presence of two independent scale factors renders the PMR

method ineffective or perhaps even impossible.4 Instead, the technique of choice in this chapter is

adiabatic regularization, which was introduced in Sec. 3.3 and is described in more detail below.

4In particular, whereas the generalized transform [T G(1)DS(ε)](k) in the case of isotropic x-splitting has kernel
sinc(kε) and can be written explicitly, cylindrical x-splitting requires at most two transforms, with kernels proportional
to cos(kε) and J0(kε), and no generalized Hankel transforms have been found for the divergent pieces ε−2 and ln(ε)
that do not also diverge in k-space.
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5.3.1 Derivation of the adiabatically renormalized field variance

Instead of renormalizing ⟨ϕ2⟩ as a whole or at the level of the two-point function, consider

what happens if the mode functions themselves are renormalized before any integration over modes

is performed. In particular, the goal will be to find a Wentzel-Kramers-Brillouin-type (WKB-

type) expansion of the mode solutions fk(t). These solutions can then be subtracted off from the

numerically-obtained solutions fk(t) to yield a finite integral by construction. This procedure, known

as adiabatic regularization, was developed by Parker and Fulling in the 1970s and has been found to

provide a consistent means of renormalization, particularly in the case of homogeneous spacetimes

[69, 70, 148].

Although adiabatic regularization lacks a manifestly covariant formulation, it is expected to

be robust for spacetimes with a high degree of symmetry (such as the present case with homogeneity

and 2D isotropy), and it benefits from the simplicity of its computations and the intuitive clarity of

its physical interpretation. Further, the scheme has been shown to be equivalent to the DeWitt-

Schwinger point-splitting method for massive scalar fields on any Bianchi Type I spacetime [120].

Nonetheless, the results presented here still may be subjected to a degree of scrutiny, since they have

not been directly compared against an axiomatic, covariant construction [175]. However, the main

ambiguity in the adiabatic scheme arises from the choice of the leading-order frequency of Eq. (5.23)

below, and such a choice mainly corresponds to the well-known mass scale ambiguity for massless

scalar fields, which should not affect the sought-after temporal dependence of ⟨ϕ2⟩ [25].

Eq. (5.10) possesses the formal WKB-type solutions

fk(t) =
exp [−i ∫

t
dt′ Wk(t′)]√

2Wk(t)
, (5.21)

where the WKB approximate frequency Wk(t) satisfies the nonlinear equation

W 2
k = ω

2
k + σ −

1

2
(Ẅk

Wk
− 3

2

Ẇ 2
k

W 2
k

) . (5.22)
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Note that fk contains an arbitrary phase factor associated with the lower bound of the integral in

Eq. (5.21). At this stage, the shift from fk to Wk is nothing more than a change of variables; the

WKB-type form of Eq. (5.21) has the distinct advantage that the Wronskian condition of Eq. (5.8)

is automatically satisfied if Wk is chosen to be real and nonnegative.

Under the adiabatic approximation, if the spacetime is slowly varying, any derivative terms in

Eq. (5.22) will be small compared to the squared frequency ω2
k, so a zeroth-order approximation is

to substitute

W
(0)
k ≡ ωk (5.23)

(note that the background term σ(t), Eq. (5.12), has adiabatic order 2 (as defined below) and

therefore vanishes in the zeroth-order limit along with the explicit derivative terms on the right-hand

side of Eq. (5.22)). Higher-order solutions may then be derived by iteration. The next-highest order

reads:

W
(2)
k =

¿
ÁÁÀω2

k + σ −
1

2
( ω̈k

ωk
− 3

2

ω̇2
k

ω2
k

). (5.24)

The superscript (A) attached to the WKB approximate frequency W
(A)
k denotes the adiabatic

order A of the function. The Ath adiabatic order is defined by considering the replacement t→ ϵt

(where the adiabatic parameter ϵ will be taken to 1 at the end of the calculation) and performing an

expansion in powers of ϵ to obtain terms up to order ϵA. Practically, terms of Ath adiabatic order

are those with up to A time derivatives of the metric.

The key feature of adiabatic regularization is that in the adiabatic limit ϵ→ 0 (or equivalently,

k →∞), the adiabatic expansion of the mode solutions to the wave equation should match the exact

mode solutions. Since this limit is precisely the regime where ⟨ϕ2⟩ contains ultraviolet divergences,

subtracting the adiabatic term involving W
(A)
k from the term involving the exact solutions Wk

should yield a finite, renormalized result that can be integrated.

More precisely, the renormalized field variance is

⟨ϕ2⟩ren =
1

(2π)3t ∫
d3k [ 1

2Wk
− ( 1

2Wk
)
(A)
] . (5.25)
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According to the standard prescription for ⟨ϕ2⟩ renormalization [29], only terms up to adiabatic

order 2 (viz., all orders containing terms that yield divergent integrals) need to be subtracted for the

solution to be consistent with the results obtained from renormalization of the bare constants in the

Lagrangian. Utilizing Eq. (5.24), the result is:

( 1

2Wk
)
(2)
= 1

2ωk
− σ

4ω3
k

+ ω̈k

8ω4
k

−
3ω̇2

k

16ω5
k

. (5.26)

By construction, the terms in Eq. (5.26) that would diverge when integrated over k exactly cancel

the divergences from the exact mode solutions 1/(2Wk).

Additionally, since the integrand is even in k1 and isotropic in the k2-k3 plane, the integral

simplifies in cylindrical coordinates (with k⊥ ≡
√
k22 + k23) to

⟨ϕ2⟩ren = lim
Λ→∞

( 1

2π2t
∫

Λ

0
∫

Λ

0
dk1dk⊥k⊥ [

1

2Wk
− 1

2ωk
+ σ

4ω3
k

− ω̈k

8ω4
k

+
3ω̇2

k

16ω5
k

]) . (5.27)

Eq. (5.27) is the expression used in Sec. 5.4 to calculate the vacuum polarization effects in the

inflationary Kasner spacetime, first by numerically solving for Wk via Eq. (5.22) (with initial

conditions provided in the next subsection) and then integrating up to a suitably large choice for the

ultraviolet cutoff parameter Λ.

5.3.2 Choice of vacuum state

For any curved spacetime, the concept of “particles” will not necessarily hold the same meaning

for different observers. Thus, any calculation in this framework must make the observer-dependent

choice of what defines the vacuum state. Such a choice is equivalent to specifying boundary conditions

for the wave equation on the spacetime.

Traditionally, the vacuum state for a stationary black hole spacetime is defined by imposing

an initial condition to the wave equation along the spacetime’s past null boundaries, where one can

naturally specify free wave solutions with respect to some affine parameter along those boundaries.
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Physically, one can then connect the vacuum state to the standard Minkowski vacuum seen by

stationary observers at infinity. However, in the present case, the mode expansion for the inflationary

Kasner spacetime remains valid only for observers arbitrarily close to the inner horizon. The solution

to the inflationary Kasner wave equation as t approaches infinity has no physical meaning, not only

because the spacetime is not stationary, but also because once t becomes larger than t0, the metric

must be replaced with the Kerr metric if one wishes to describe an astrophysical black hole.

In the absence of a clear natural choice of vacuum state within the inflationary Kasner

spacetime, three options present themselves as physically viable choices:

(1) The adiabatic vacuum [29, 147] defined at some time tA consists of purely positive frequency

modes with respect to an adiabatic mode expansion, Eq. (5.21), given tA lies in a regime

where the spacetime is slowly varying.

(2) A Minkowski vacuum can be defined via the asymptotic behavior of the inflationary Kasner

metric for t/t0 ≫ 1 (see Sec. 5.2.3.1), provided the appropriate coordinate transformation

and mode decomposition that would allow for the mixing of eik⋅x and e−ik⋅x waves.

(3) The Unruh state [173], which reproduces the predictions of Hawking radiation for stationary

black holes [12, 13, 36], can be defined at the Kerr past null boundaries, propagated through

the spacetime until it reaches asymptotically close to the inner horizon, then matched

onto the inflationary Kasner spacetime via a suitable coordinate transformation and mode

decomposition.

Since all three of these vacuum states have transparent, physical interpretations within the

black hole spacetime, they all should lead to roughly similar vacuum expectation values, at least when

considering the temporal dependence of the effects of particle production from the rapid evolution of

the spacetime curvature during mass inflation and collapse. The vacuum state specifically tailored

to study the production of physical particles (in the sense of the experiences of a comoving particle

detector in a dynamic, homogeneous spacetime) is the adiabatic vacuum state of Option 1, and it is

this state that will be used in the present analysis. The most physically authentic choice for the
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vacuum state would likely be Option 3, especially considering its recent success in the calculation of

the renormalized stress-energy tensor at the Kerr inner horizon [178, 179]. However, the transition

from Unruh modes to an equivalent set of k-modes in the inflationary Kasner regime is complex and

nontrivial, and the authors are currently working on methods to apply the states of Options 2 and 3

in a follow-up work (now published as Ref. [89]).

The adiabatic family of vacuum states ∣0(A)⟩, which forms the focus of the present analysis, is

defined at Ath adiabatic order such that the annihilation operator Â(A)k satisfies

Â
(A)
k ∣0

(A)⟩ = 0 (5.28)

and designates an exact mode decomposition of the field operator ϕ̂ akin to Eq. (5.6) [148]. The

adiabatic terminology comes into play because the quantized mode solutions to the wave equation

are matched to an adiabatic expansion of those modes (to order A) at a time t = tA. It should be

noted that despite the terminology, the adiabatic state is not merely an approximate vacuum; on

the contrary, it represents an exact solution to the wave equation, with the well-defined choice of

positive frequency modes motivated by the state one would get from a given adiabatic expansion.

The adiabatic vacuum has several distinct advantages as a physical vacuum state. First, it

only requires a matching at a specific time tA, which can be taken in this case to be far from the

inflationary Kasner bounce so that the effects of mode distortion from the changing spacetime are

minimized in the construction of the quantized field modes. Second, and more importantly, in the

adiabatic limit ϵ→ 0, a comoving particle detector in this vacuum will detect a spectrum that falls off

faster than any inverse power of the momentum k [147, 148]. Since particle number is an adiabatic

invariant, as long as

ωk ≫
ω̇k

ωk
, (5.29)

the excitation of the large-k modes will be highly suppressed, and the adiabatic vacuum will exactly

match the physical vacuum definition of particles. But even for non-adiabatic portions of a spacetime,

the minimization postulate encoded by the statements above implies that the adiabatic definition
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of creation operators will approximately match that of physical particles throughout the evolution

of the spacetime, up to adiabatic order A. For the inflationary Kasner spacetime, the adiabatic

condition (5.29) holds in the strict sense for large k1, k2, or k3, and it holds more generally when

t≪ 1 or t≫ 1. For large t, since ωk ∼ et
2/2 and ω̇k/ωk ∼ t, the adiabatic condition is met even for

times as small as t ∼ 5, where the frequency ωk exceeds its logarithmic derivative already by several

orders of magnitude.

To demonstrate the robustness of the adiabatic state used here, Fig. 5.1 shows the computed

value of ⟨ϕ2(t)⟩ren at a certain intermediate time (t/t0 ≈ 0.32) for a family of different adiabatic

vacuum states parametrized by the adiabatic matching time tA. In this plot, the renormalized field

variance ⟨ϕ2⟩ren is found to be exactly 0 when the adiabatic vacuum time tA is the same as the

evaluated time t (the rightmost point on the plot), since the field is in vacuum by definition. But if

the adiabatic vacuum state is chosen to begin at a time tA earlier than the point being evaluated,

⟨ϕ2⟩ren obtains a nonzero value corresponding to the polarization of the vacuum accomplished by the

spacetime’s evolution from tA to t. For a choice of tA far enough into the past, the value of ⟨ϕ2⟩ren

asymptotes to a constant, indicating that the chosen vacuum begins in a suitably adiabatic regime.

Note that for the choice of constants used throughout this chapter, t0 (the starting time for the mass

inflation epoch and the point of matching between the Kerr and inflationary Kasner metrics) takes

on a value of about 3.1, which is not quite large enough to preside in the adiabatic regime. The

vacuum time tA must therefore be chosen to be distinct from (and farther in the past than) t0 (in

particular, tA = 5 ≈ 1.6t0), though it is still close enough to t0 that the inflationary Kasner model

should still hold reasonably well.

In order to perform the renormalization calculations in the adiabatic vacuum state, the wave

equation (in this case, Eq. (5.22)) is solved using a standard numerical integrator, with the Cauchy

initial conditions
1

2Wk(t0)
= ( 1

2Wk(t0)
)
(A)

, (5.30a)

∂t (
1

2Wk(t0)
) = ∂t (

1

2Wk(t0)
)
(A)

, (5.30b)
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Figure 5.1: The renormalized variance ⟨ϕ2(t)⟩ren evaluated at the inflationary Kasner time
t = 1 ≈ 0.32t0 for various choices of the adiabatic matching time tA. The constants used are the black
hole spin a = 0.96 and initial accretion rate u = 0.02, for which t0 ≈ 3.1.

where the quantities with superscript (A) are truncated at adiabatic order A = 2 by Eq. (5.24) to

ensure consistency with the renormalization scheme. As mentioned in Sec. 5.3.1, the mode functions

Wk(t) are used for numerical calculations instead of fk(t) because the Wronskian condition of

Eq. (5.8) is guaranteed to be satisfied as long as Wk(t) is constrained to be real and nonnegative.

5.4 Numerical results

To demonstrate how the present numerical framework of adiabatic regularization can be

applied to a spacetime (and to confirm its validity), the technique is first carried out for a simplified

yet comparable Bianchi Type I spacetime. The chosen spacetime (FLRW model with scale factor t1/3)

has the advantage that the renormalized variance is known analytically from several independent

renormalization techniques and can also be calculated using a numerical adiabatic regularization

scheme identical to the one presented here. The numerical results for this simplified case are shown

in Sec. 5.4.1 to be entirely consistent with the analytic solutions. Then, the main results of the

renormalization for the inflationary Kasner spacetime are presented in Sec. 5.4.2.
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5.4.1 FLRW renormalization

The Friedmann-Lemaître-Robertson-Walker (FLRW) metric is a special case of the homo-

geneous metric of Eq. (5.1) where the scale factors are completely isotropic. For the present case,

assume the scale factors

a0 = 1, a1 = a2 = a3 = t1/3, (5.31)

which correspond to a flat FLRW universe with a classical free scalar field (distinct from the quantized

scalar field that will be added to this background). This choice of metric has the advantage that the

formalism of Sec. 5.2.2 ff. remains completely unchanged when comparing the inflationary Kasner

and FLRW calculations (in particular, a1a2a3/a0 = t).

The renormalized FLRW variance has been calculated analytically for a conformally coupled

massless scalar field using both point-splitting and adiabatic techniques [7, 51, 148, 157]. Since the

spacetime is isotropic, homogeneous, and spatially flat, it is conformally Minkowski. As such, in the

massless, conformally coupled case, the field can be decomposed into k-modes as in Eq. (5.6), with

mode solutions

ψk =
exp (−3

2 ikt
2/3)

√
2kt2/3

, k ≡ ∣k∣ =
√
k21 + k22 + k23. (5.32)

These modes are positive frequency with respect to the globally timelike conformal Killing vector ∂η

(where η ≡ ∫ a(t)−1dt = (3/2)t2/3). Therefore, unlike in the case of inflationary Kasner, the modes

of Eq. (5.32) uniquely define a natural vacuum state. In particular, the adiabatic vacuum state of

Sec. 5.3.2 is equivalent to this vacuum state for all matching points tA, to all adiabatic orders.

On the numerical side, the corresponding initial conditions that must replace Eq. (5.30) to

ensure the same conformal vacuum state as in the analytic case are those tied to the modes

Wk = kt−1/3. (5.33)

Otherwise, after the replacement of the scale factors of Eq. (5.31) and the inclusion of the now

nonzero Ricci scalar R = −2/(3t2), the numerical scheme presented in the previous sections can be
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Figure 5.2: The renormalized variance in an FLRW background with scale factor power law index
1/3. The black points are computed numerically using the adiabatic regularization scheme outlined
in Sec. 5.3, and the orange line indicates the analytic expression from Eq. (5.34) derived from both
adiabatic and point-splitting regularization techniques.

followed exactly as in the inflationary Kasner case.

In the conformal vacuum state, the renormalized variance of a massless, conformally-coupled

field over the FLRW background is [29]

⟨ϕ2⟩ren = −
R

288π2
= 1

432π2t2
. (5.34)

The numerical adiabatic computation of ⟨ϕ2⟩ren is presented in Fig. 5.2 alongside the analytic

expression from Eq. (5.34). The integrations necessary to compute each point in this figure converged

to a steady value rather quickly, usually requiring an ultraviolet cutoff of no more than Λ = 1. As

shown, the two methods show excellent agreement, lending credence to the validity and precision of

the present adiabatic numerical scheme.

5.4.2 Inflationary Kasner renormalization

For the inflationary Kasner spacetime, the wave Eq. (5.22) subject to the boundary conditions

of Eq. (5.30) is solved numerically using Mathematica’s parametric ODE solver. The mode solutions

are then used to compute the integral of Eq. (5.27) for successively larger values of the momentum
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cutoff parameter Λ until convergence is achieved. The result is the numerical value of ⟨ϕ2(t)⟩ren at a

particular time t; this process is then repeated for different values of t until the variance’s full time

dependence is found.

Especially for small values of the inflationary Kasner time t, each numerical calculation of

the wave equation to produce a parametric mode solution can take on the order of seconds or even

minutes. As such, interpolation is used to increase the code’s efficiency. A grid of points over the

pertinent k-space is sampled to calculate the mode solutions, and the remaining k-space is estimated

using third-order Hermite interpolation. To ensure that no features in the k-space are overlooked

by the choice of sampling grid, adaptive mesh refinement techniques are employed, such that if the

errors in the interpolation function for a given region of k-space are greater than a pre-determined

threshold, the grid is refined to include more sampled points within that region. This process is

then repeated until the integrals within all regions lie below the error threshold. An example of this

process is shown in Fig. 5.3.

When the power spectrum of Fig. 5.3 is integrated over both k1 and k⊥, the result is ⟨ϕ2⟩ren.

As k1 or k⊥ increases, the value of the integrand of Eq. (5.27) decreases until it reaches zero, since

the numerically computed mode solutions Wk by construction will approach the same value as

the adiabatic mode solutions of Eq. (5.24) in the large-k adiabatic limit. To ensure that enough

of the infinite k-space is being integrated over to calculate ⟨ϕ2⟩ren, the integral is performed for

successively larger values of Λ until ⟨ϕ2⟩ren converges. As an example, Fig. 5.4 shows the convergence

of ⟨ϕ2(t)⟩ren for the same time used in Fig. 5.3 (t = t0). That is, the integral of the region shown in

Fig. 5.3 corresponds to the point at Λ = 10 in Fig. 5.4.

Since the time t in Figs. 5.3 and 5.4 is close to the adiabatic vacuum time tA, only the lowest

k-modes are occupied, and the integral converges quickly. But as t advances from t0 to 0 and the

spacetime evolves through the inflationary Kasner bounce, higher modes are expected to be occupied

as the strong gravitational field seeds further particle production. Throughout the first Kasner epoch

from t ∼ t0 to t ∼
√

1/2 signaling mass inflation, the transverse modes (k⊥) become progressively more

occupied, and during the second Kasner epoch from t ∼
√

1/2 to t ∼ 0 signaling spacelike collapse,
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Figure 5.3: Power spectrum (the integrand of Eq. (5.27)) over a portion of k-space, evaluated at
time t = t0 (as defined in Sec. 5.2.1). Gridlines reveal the steps of adaptive mesh refinement, with an
error threshold of 10−8 and grid sizes varying from 0.625 to 2 × 10−5. The constants used are the
black hole spin a = 0.96, initial accretion rate u = 0.02, and adiabatic matching time tA = 5.
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Figure 5.4: Convergence of the integral in Eq. (5.27) at time t = t0 as a function of the cutoff
parameter Λ. The choice of constants is the same as in Fig. 5.3.

energy from the transverse modes passes over into the higher radial modes (k1).

The time evolution of ⟨ϕ2⟩ren for a massless scalar field in the adiabatic vacuum in the

inflationary Kasner spacetime is shown in Fig. 5.5. Since t begins close to the adiabatic vacuum
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time tA (t0 is about 3.1 for the choice of constants used here, while tA = 5), the vacuum polarization

⟨ϕ2(t0)⟩ren begins very close to 0 (the precision-limited calculation done here for t = t0 has error bars

crossing through 0). But as mass inflation progresses, ⟨ϕ2⟩ren increases as more and more quantized

field modes become occupied by the changing gravitational potential.

After the inflationary Kasner spacetime undergoes a bounce and proceeds to collapse towards

the strong, spacelike singularity, the renormalized variance continues to increase, spanning several

orders of magnitude as it approaches a divergence at t = 0. Throughout the duration of the collapse

epoch, ⟨ϕ2⟩ren seems to follow a quasi-power law in time, with an index of −3. Qualitatively, the

vacuum polarization follows a similar trend to that of the inflationary Kasner spacetime’s classical

stress-energy tensor, whose density and radial flux components in a locally orthonormal tetrad frame

are [125]

T00 = T11 =
1

4πc1t et2
, (5.35)

which also asymptote to a power law in t during the final collapse regime. The main difference is that

the power law divergence in ⟨ϕ2⟩ren is even steeper than that of the classical stress-energy tensor.
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Figure 5.5: Renormalized adiabatic vacuum expectation value of the quantized field variance as a
function of time in the inflationary Kasner spacetime. The vertical line signals the bounce transition
from the mass inflation epoch to the spacelike collapse epoch, and the dashed line shows a t−3 power
law. The black hole spin is a = 0.96, the initial accretion rate is u = 0.02, and the adiabatic matching
time is tA = 5.
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5.5 Discussion

The results from Sec. 5.4.2 suggest that as an observer falls into a rotating, accreting black hole

and approaches the inner horizon, the classical picture of mass inflation and subsequent spacelike

collapse is reinforced when semiclassical effects are taken into account. In particular, when a

quantized, massless, neutral, scalar field in the adiabatic vacuum state is coupled to the inflationary

Kasner spacetime, to first-loop order, that field acquires a nonzero variance, shown in Fig. 5.5,

that follows a similar trend to that of the classical stress-energy of the spacetime, asymptotically

approaching a power law divergence.

Since the vacuum polarization ⟨ϕ2⟩ren can be seen as a tracer for the behavior of the renor-

malized stress-energy tensor ⟨Tµν⟩ren, which feeds back into the geometry of the spacetime via the

semiclassical Einstein Eq. (3.9), the picture that emerges is a quantum backreaction that acts to

amplify the strength of the curvature singularity at the inner horizon. Locally, particle production

occurs near the inner horizon as the vacuum interacts with the inflating and collapsing spacetime

curvature, and these particles seed further accretion that should feed back into the same classical

inflationary Kasner spacetime.

The choice of constants used throughout this study is made both for numerical convenience

and astrophysical relevance. As mentioned in Sec. 5.3.2, the choice of the adiabatic matching time

tA should not change the results of the renormalization much, as long as that time lies within the

adiabatic regime. The only other independent constant in this model is c1, the metric coefficient for

the radial scale factor, which is determined by two physical constants via Eqs. (5.3) and (5.4), the

black hole spin a and the initial accretion rate u. Though the spin parameter a can take on any

value between 0 and 1, only a small range of values near 1 lead to numerically tractable values for c1

with the present choice of coordinates (for example, when a = 0.5, the presence of an exponential

term in the conversion factor leads to c1 ∼ 10−70). However, within this range, changing the spin does

not change the qualitative behavior of Fig. 5.5 (only the overall magnitude), and many astrophysical

black holes have been observed with spins consistent with what has been used for this analysis [73,
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Figure 5.6: Renormalized adiabatic vacuum expectation value of the quantized field variance as a
function of the inflationary Kasner metric coefficient c1, which depends on both the initial accretion
rate u and the black hole spin a. All the values shown are calculated at a time t/t0 ≈ 0.32.

77].

Regardless, the picture presented here is expected to hold for all astrophysically relevant

ranges of spin and accretion; as either a or u increases, the overall magnitude of ⟨ϕ2⟩ren decreases

nonlinearly while preserving its general qualitative trend in t. The dependence of ⟨ϕ2⟩ren on these

parameters for a fixed time t = 1 ≈ 0.32t0 (in the intermediate regime between inflation and collapse)

is shown in Fig. 5.6. For a fixed initial accretion rate u, as the spin a increases, ⟨ϕ2⟩ren decreases, and

similarly, for a fixed spin a, as the initial accretion rate u increases, ⟨ϕ2⟩ren decreases. Classically,

the tinier the accretion rate, the more powerful mass inflation becomes, and here it is found that the

same holds true for the semiclassical backreaction to mass inflation.

To ensure the robustness of the results presented here, the next natural step is to build on this

framework and calculate the renormalized quantum stress-energy tensor ⟨Tµν⟩ren. Such a calculation

involves derivatives of the mode functions and contains stronger divergences to be renormalized than

those of ⟨ϕ2⟩ren, but knowing ⟨Tµν⟩ren will allow for a more direct understanding of the quantum

backreaction at the inner horizon of rotating, accreting black holes.



Chapter 6

Renormalized Stress-Energy Tensor: ⟨T̂µν⟩

The contents of Sec. 6.1 have been published as part of [123], and the contents of Secs. 6.2-6.3

have been submitted for publication [124].

In this chapter, the inevitability of divergent semiclassical behavior at inner horizons will be

confirmed by analyzing the behavior of the vacuum expectation value of the renormalized stress-

energy tensor ⟨Tµν⟩. This quantity is not only free of assumptions about adiabaticity and eikonality,

but it is also more directly tied to the effects of quantum backreaction on the underlying spacetime

geometry (via the semiclassical Einstein field Eq. 3.9).

This chapter is divided into three sections; first, in Sec. 6.1 the renormalized stress-energy

tensor (RSET) is calculated at the inner horizon for black holes with spherical symmetry. The specific

model under consideration is the inner-extremal regular black hole introduced in Sec. 4.3.1.5, with a

line element given by Eqs. (4.1) and (4.43). This black hole is similar to the Reissner-Nordström

solution but has an inner horizon with zero surface gravity κ−; if there was a non-extremal spherical

black hole solution without a diverging inner-horizon RSET, this would be the most promising

candidate. However, it will be shown using two different renormalization techniques (the Polyakov

approximation in Sec. 6.1.1 and point-splitting in Sec. 6.1.2) that the RSET does indeed diverge at

the inner horizon of inner-extremal regular black holes, so that they are actually not regular in the

semiclassical sense.

In the second section of this chapter (Sec. 6.2), the RSET is calculated at the inner horizon
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of a Kerr black hole for a large range of parameters. The conclusion is once again that at least

one component of the RSET always diverges at the inner horizon, and therefore the semiclassical

backreaction to the spacetime metric cannot be neglected. Therefore, in the final section (Sec. 6.3),

an analysis of the semiclassical field equations is carried out to determine how the RSET should

backreact on the near-inner-horizon geometry. The resulting predictions end up bearing a striking

resemblance to the classical behavior of the inflationary Kasner metric derived in Chapter 2, with

some additional surprises.

6.1 Spherical black holes

As a primer, consider the trace anomaly, which helped form the foundations of semiclassical

gravity in the early days of quantum field theory in curved spacetimes [56]. While the trace of the

stress-energy tensor for a classical field with conformal invariance must vanish, the trace of the

expectation value of the renormalized stress-energy tensor for a quantum theory with an ultraviolet

regulator is generically non-zero—for a conformal field in four spacetime dimensions, this trace

anomaly can be written as

⟨Tµ
µ ⟩ = αFF + αEE + αR◻R (6.1)

[56], where F is the squared Weyl tensor, E is the squared Riemann dual tensor (known as the Euler

density), and ◻R is the d’Alembertian of the Ricci scalar R. These quantities can be expressed in

terms of the Riemann tensor Rµνρσ and the Ricci tensor Rµν as

F = RµνρσR
µνρσ − 2RµνR

µν + 1

3
R2, (6.2a)

E = RµνρσR
µνρσ − 4RµνR

µν +R2. (6.2b)

The coefficients αF , αE , and αR depend only on the number of fields and their spins, so that the

entire trace anomaly is independent of the vacuum state in which the renormalized stress-energy

tensor is evaluated. The form of Eq. (6.1) may also contain additional additive terms if the massless
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fields are coupled to additional background gauge fields.

For a Reissner-Nordström black hole, the Ricci scalar and its d’Alembertian vanish everywhere,

but the squared Weyl tensor and Euler density remain non-zero, so that at the inner horizon, the

trace anomaly becomes

⟨Tµ
µ ⟩RN(r−) = (αF + αE)

12(r+ − r−)2

r6−
− αE

8r2+
r6−

. (6.3)

For a spherical inner-extremal regular black hole, while the Ricci scalar does not vanish (at the

inner horizon, R = 2/r2−), both ◻R and E do vanish at the inner horizon, so that the trace anomaly

simplifies to

⟨Tµ
µ ⟩IE(r−) = αF

4

3r4−
. (6.4)

Note that a finite, non-zero conformal anomaly does not necessarily imply that individual components

of a physically realizable renormalized stress-energy tensor will remain well-behaved—for example,

for a Reissner-Nordström black hole, though ⟨Tµ
µ ⟩ from Eq. (6.3) is finite and non-zero at the inner

horizon, the flux components (as well as the trace) of ⟨Tµν⟩ren are well-known to exhibit an inner

horizon divergence when a physically realistic vacuum state is used in place of the conformal vacuum

[97, 180].

In principle, one may use the trace anomaly to derive an effective action for a set of auxiliary

fields that can be used to define the full covariantly conserved stress-energy tensor ⟨Tµν⟩ren [6].

However, since inner-extremal regular black holes are not Ricci-flat, the resulting fourth-order

differential equations to define ⟨Tµν⟩ren this way do not have analytic solutions in closed form.

Further, if the quantum field ϕ̂ over the spacetime is not conformally invariant, an additional

◻⟨ϕ2⟩ren term must be included in the calculation of the renormalized stress-energy tensor’s trace

[163]. Thus, instead, the renormalized stress-energy tensor will be evaluated two different ways here:

first, integrating over the angular degrees of freedom allows for ⟨Tµν⟩ren to be calculated exactly in

1+1 dimensions via the so-called Polyakov approximation (Sec. 6.1.1), and secondly, a pragmatic

mode-sum analysis allows for ⟨Tµν⟩ren to be calculated numerically via point-splitting at the inner
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horizon in the full 3+1 dimensions (Sec. 6.1.2).

6.1.1 Polyakov approximation

If the static, spherically symmetric black hole spacetime described by Eq. (4.1) is restricted to

the (t, r) sector, the stress-energy tensor of a quantized field in the resulting 1+1D spacetime can be

uniquely renormalized to yield an exact expression, since the equations of motion for the field are

conformally invariant [19]. If one converts to a set of double null coordinates (u, v) that define the

vacuum state, so that the line element becomes

ds2 = −C(u, v) du dv (6.5)

for some conformal factor C, the vacuum expectation value of the renormalized stress-energy tensor

for a massless, scalar quantum field will be

⟨Tuu⟩ren =
1

24π
( 1
C

∂2C

∂u2
− 3

2C2
(∂C
∂u
)
2

) , (6.6a)

⟨Tvv⟩ren =
1

24π
( 1
C

∂2C

∂v2
− 3

2C2
(∂C
∂v
)
2

) , (6.6b)

⟨Tuv⟩ren =
1

24π
( 1

C2

∂C

∂u

∂C

∂v
− 1

C

∂2C

∂u∂v
) . (6.6c)

The contribution made by Polyakov (working in the context of bosonic string theory) was that an

effective action for a higher-dimensional theory can be reduced to a two-dimensional, renormalizable,

completely integrable theory by performing an averaging sum over all the remaining surfaces [155]. In

the present context, Polyakov’s approximation manifests by averaging over the 2-sphere so that the

renormalized stress-energy tensor in 3+1 dimensions is simply given by the expressions of Eqs. (6.6),

each divided by the factor 4πr2. While such a choice implies that ⟨Tµν⟩ren will behave in a singular

fashion at r = 0, this r = 0 singularity at least in the rotating case can only be reached in an infinite

proper time [67], but more importantly, it is understood that the renormalized stress-energy tensor

in the Polyakov approximation should be further regularized at small r [9].
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6.1.1.1 Boulware vacuum

The calculation of ⟨Tµν⟩ren depends heavily on the choice of vacuum state, which, as mentioned,

is dictated by the specification of the conformal factor C(u, v) of Eq. (6.5). One simple choice is to

set C =∆ from Eq. (4.43), so that the double null coordinates (u, v) coincide with the usual static

Eddington-Finkelstein coordinates. The corresponding vacuum state ∣0⟩B is known as the Boulware

vacuum, which describes an asymptotically radiation-free black hole as viewed by a static observer in

the exterior (and a similar state can be defined for a zero-energy observer in the black hole interior).

As a result, the state is not well-defined for an observer at either horizon, and an infaller will see a

diverging stress-energy flux at the outer horizon:

⟨Tuu⟩renB = ⟨Tvv⟩renB = 1

192π2r2
(κ′(r)∆(r) − κ(r)2) , (6.7a)

⟨Tuv⟩renB = ⟨Tvu⟩renB = 1

192π2r2
κ′(r)∆(r), (6.7b)

where κ(r) is the generalized surface gravity given by Eq. (4.42). While these null components of

⟨Tµν⟩ren do not diverge at either horizon, the coordinate system does. Changing to a coordinate

system that behaves regularly at the horizons, such as the Kruskal-Szekeres coordinates (U,V )

defined by
dU

du
= e−κ(r+)u,

dV

dv
= eκ(r+)v, (6.8)

reveals that as long as ⟨Tuu⟩renB is non-zero at the outer horizon, ⟨TUU ⟩renB will diverge as e2κ(r+)u as

the horizon at u→∞ is approached. At the outer horizon, the surface gravity κ(r+) contributing to

Eq. (6.7a) remains non-zero, so the Boulware vacuum stress-energy will always diverge in that limit.

In accordance with the Fulling-Sweeny-Wald theorem [71], since any Hadamard state should yield

finite quantities at the outer horizon, a more astrophysically relevant vacuum state must be sought

after.

The two vacuum states that will be used here to find the renormalized stress-energy tensor at

the inner horizon are the “in” Minkowski vacuum ∣0⟩in and the Unruh vacuum ∣0⟩U.
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6.1.1.2 Minkowski “in” vacuum

The “in” vacuum state assumes that asymptotically far into the past, the spacetime is completely

flat, with the standard Minkowski vacuum. Then, at a time v = v0, an ingoing null shell forms a

black hole so that the conformal factor of Eq. (6.5) transitions from C(uin, vin) = 1 in the “in” region

(v < v0) to C(uout, vout) =∆ in the “out” region (v > v0). The corresponding conformal factor of the

“in” vacuum state to be substituted into Eq. (6.6) is

C = duout

duin
∆, (6.9)

where the relation between the “in” and “out” coordinates can be found by matching metrics through

the collapsing null shell, as detailed below.

The authors of Ref. [18] performed such a matching with sufficient generality by focusing on

the asymptotic behavior of ⟨Tµν⟩renin at the inner and outer horizons. By expanding the horizon

function ∆ about either horizon at r± via the series of Eq. (4.49), the stress-energy tensor at r±

reduces to

⟨Tuu⟩renin ≈
1

96π2r2±

κ′′(r±)
8κ(r±)

(e2κ(r±)(v−v0) − 1) +O (r − r±) , (6.10a)

⟨Tvv⟩renin ≈ −
1

96π2r2±

κ(r±)2

2
+O ((r − r±)2) , (6.10b)

⟨Tuv⟩renin = ⟨Tvu⟩renin ≈
1

96π2r2±

κ′(r±)
2

eκ(r±)(v−v0) +O (r − r±) . (6.10c)

For the inner-extremal regular black holes in which κ(r−) = 0, the modified series expansion and

subsequent matching procedure lead to the same form for the stress-energy tensor components as

that inferred from Eqs. (6.10). In particular, the uu-component of the stress-energy tensor at the

inner horizon diverges as κ′′(r−)(v − v0), while the vv-component vanishes. Converting to a set of

regular coordinates across the horizon (such as ⟨Trr⟩renin ) yields a similar divergence in v. However,

as the authors of Ref. [18] note, higher-order terms in the series expansion also contain similar
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time-dependent divergent factors (except in the expansion of ⟨Tvv⟩renin ), so that the truncated series

expansion about the inner horizon becomes less and less of a good approximation as v increases. The

opposite happens at the outer horizon, where higher-order time-dependent terms are exponentially

damped in accordance with the change in sign of the surface gravity.

To alleviate this problem, instead of performing a series expansion about a general horizon

function ∆, consider the exact form of the “in” vacuum stress-energy tensor for the specific case of

the horizon function of Eq. (4.43). At the null shell boundary, outgoing null geodesics in the “in”

region satisfy

r = v0 − uin

2
, (6.11)

while outgoing null geodesics in the “out” region satisfy

v0 − uout

2
= r + A

(r − r−)
+ B

(r − r−)2
+C ln ∣r − r−

r−
∣ +D ln ∣r − r+

r+
∣ , (6.12)

where the constants A, B, C, and D define a tortoise coordinate (via dr/dr∗ =∆); their exact form

in terms of the parameters r+, r−, a2, and M is not too enlightening and will not be given here.

After matching these solutions at the null boundary, the resulting stress-energy tensor can then be

calculated through Eqs. (6.6) and (6.9). Instead of calculating the full u- and v-dependence of the

conformal factor C, one may note that each term on the right-hand side of Eq. (6.9) will contribute a

separate additive term to the total stress-energy tensor: the contribution from the horizon function ∆

has already been calculated as the static Boulware term of Eqs. 6.7, and the second state-dependent

term will approximately equal the Schwarzian derivative of uin(uout), divided by −24π [61].

The result for the normal stress components (for simplicity the shear stress components are

ignored in what follows, since they will generally vanish in the horizon limit) of the renormalized

stress-energy tensor in the “in” vacuum state, evaluated at the outer horizon (where uin = v0 − 2r+
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and r = r+), is

lim
r→r+
⟨Tuu⟩renin = 0, (6.13a)

lim
r→r+
⟨Tvv⟩renin = −

1

96π2r2+

κ(r+)2

2
, (6.13b)

while the same components evaluated at the left leg of the inner horizon (where uin = v0 and r = r−)

simplify to

lim
r→r−
⟨Tuu⟩renin =

1

96π2r2−

a2 − 3r−(r+ + r−)
2r+r3−

, (6.14a)

lim
r→r−
⟨Tvv⟩renin = 0. (6.14b)

The outer horizon value of ⟨Tuu⟩renin vanishes because the state-dependent term is proportional

to κ(r+)2, which exactly cancels the same factor in the Boulware term of Eq. (6.7a), while the

inner horizon value of ⟨Tvv⟩renin vanishes because both the state-dependent and Boulware terms are

identically zero.

At the outer horizon, the interpretation of Eqs. (6.13) is that a steady negative ingoing flux

counters the outgoing Hawking radiation at infinity and causes the outer horizon to shrink over time,

while no outgoing flux is observed at the outer horizon (otherwise, the stress-energy would diverge

there when written in coordinates that are regular across the horizon).

At the left leg of the inner horizon, the interpretation of Eqs. (6.14) is that the vanishing

surface gravity removes any ingoing flux that might shift the position of the inner horizon, but the

outgoing flux from the collapse vacuum is non-zero and therefore causes divergent, singular behavior

when switching over to Kruskalized coordinates that are regular across the inner horizon.

6.1.1.3 Unruh vacuum

The final vacuum state that will be considered here is the (past) Unruh vacuum ∣0⟩U [173],

which is the late-time (u→∞) limit of the “in” Minkowski state. This state describes the steady-state
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collapse dynamics of a black hole by replacing the past horizon of an eternal black hole spacetime

(such as the inner-extremal regular black hole model) with a semiclassically singular surface that

sources exponentially redshifting modes.

The appropriate conformal factor for the Unruh state is

C = du
dU

∆, (6.15)

where u is the standard outgoing Eddington-Finkelstein coordinate and U is the outgoing Kruskal-

Szekeres coordinate of Eq. (6.8). The resulting components of the renormalized stress-energy tensor

are

⟨Tuu⟩renU = 1

192π2r2
(κ′(r)∆(r) − κ(r)2 + κ(r+)2) , (6.16a)

⟨Tvv⟩renU = 1

192π2r2
(κ′(r)∆(r) − κ(r)2) , (6.16b)

⟨Tuv⟩renU = ⟨Tvu⟩renU = 1

192π2r2
κ′(r)∆(r). (6.16c)

Consider the behavior of Eqs. (6.16) for the horizon function of Eq. (4.43). At the outer horizon,

the only non-zero double-null component of ⟨Tµν⟩renU is the usual ingoing vv term contributing to

the shrinking of that horizon. However, at the inner horizon, the only non-vanishing component is

the uu component, which is proportional to the square of the outer horizon’s surface gravity. As

a result, conversion to a set of coordinates that are regular across horizons will yield a physical

divergence in ⟨Tµν⟩renU along the left leg of the inner horizon. This divergence is of the exact same

form as that found in the effective temperature calculations of Eq. (4.48a)—even though the inner

horizon’s surface gravity may vanish, the semiclassical flux diverges at the inner horizon because

the surface gravity of the outer horizon (which determines the quantum modes’ exponential peeling

rates) is non-zero.
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6.1.2 Pragmatic mode-sum renormalization

One may wonder whether the divergence of the renormalized stress-energy tensor at the inner

horizon is simply an artifact of the Polyakov restriction to 1+1 dimensions, which does not account

for the back-scattering of angular modes. To test whether this is the case, the inner-horizon limit

of the 3+1D renormalized stress-energy tensor will be calculated numerically using a prescription

developed by Levi and Ori known as pragmatic mode-sum renormalization (PMR) [111, 112, 114].

In the PMR prescription, ⟨Tµν⟩ is renormalized with covariant point-splitting, where the

stress-energy tensor is built out of the field’s two-point function and its derivatives. The resulting

quantity will formally diverge when the coincidence limit is taken, but it will remain finite when a

geometrically constructed counterterm is subtracted from the bare stress-energy tensor. Covariant

point-splitting renormalization usually has the numerical difficulty that both the bare stress-energy

and the subtracted counterterm formally diverge, so that a finite result can only be obtained when

both quantities are regularized to yield analytic closed forms that can be subtracted. The way PMR

overcomes this obstacle is by bringing both the bare term and the counterterm under the same mode

sum, so that the subtraction can be carried out in a finite fashion mode-by-mode.

If a massless, minimally coupled scalar field ϕ̂ is placed over the spherically symmetric spacetime

of Eq. (4.1) with the inner-extremal regular horizon function of Eq. (4.43), that field will obey the

wave equation ◻ϕ = 0. Decomposing the field into a sum of modes via

ϕ(x) =
∞
∑
ℓ=0

ℓ

∑
m=−ℓ

∫
∞

0
dω e−iωtYℓm(θ,φ)ψωℓ(r) (6.17)

leads to the following wave equation for the radial mode functions ψωℓ:

dψωℓ

dr∗2
+ (ω2 − (ℓ(ℓ + 1)

r2
+ 2κ

r
)∆)ψωℓ = 0, (6.18)

where r∗ is the tortoise coordinate defined by dr/dr∗ =∆ as in Eq. (6.12), and κ(r) is the generalized

surface gravity of Eq. (4.42).
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The Unruh state for this field ϕ̂ is specified by the following boundary conditions on the set of

ingoing modes ϕin
ωℓ ≡ e−iωtψin

ωℓ and outgoing modes ϕup
ωℓ ≡ e−iωtψup

ωℓ :

ϕin
ωℓ →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, past null infinity

e−iωU , past horizon
, (6.19a)

ϕup
ωℓ →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−iωv, past null infinity

0, past horizon
, (6.19b)

with the Kruskal-Szekeres coordinate U of Eq. (6.8), the Eddington-Finkelstein coordinate u ≡ t − r∗

(both in the interior and the exterior), and where the “past horizon” denotes the surface for which

r∗ → −∞ and t→ −∞ (both in the interior and the exterior).

In this vacuum state, renormalization of the stress-energy tensor by θ-splitting PMR yields

the following formulas for the normal stress components evaluated at the inner horizon:

⟨Tuu⟩renU (r−) =
∞
∑
ℓ=0

2ℓ + 1
8π

(∫
∞

0
dω ÊU

ωℓ − β) , (6.20a)

⟨Tvv⟩renU (r−) = ⟨Tuu⟩
ren
U (r−) −

1

4πr2−

∞
∑
ℓ=0
LU
ℓ (6.20b)

[180], where

ÊU
ωℓ =

ω

4πr2−
(∣Aωℓ∣2 (1 + (coth ω̃ − 1) ∣ρup

ωℓ ∣
2) + cschω̃ Re (ρup

ωℓAωℓBωℓ) ), (6.21a)

LU
ℓ =

2ℓ + 1
4π

∫
∞

0
dω ω (coth ω̃ − 1) ∣τup

ωℓ ∣
2, (6.21b)

where ω̃ ≡ πω/κ(r+), and where ρup
ωℓ , τ

up
ωℓ , Aωℓ, and Bωℓ are scattering coefficients described in more

detail below.

The above expressions for the components of the renormalized stress-energy tensor at the

inner horizon were originally derived for Reissner-Nordström black holes, but the derivation was

carried out with sufficient generality so that it also can be applied to the present case of spherical

inner-extremal regular black holes with minimal changes. The most noticeable difference aside from
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the alternative specification of the horizon function ∆ is in the form of the blind-spot counterterm β

in Eq. (6.20a), which represents the asymptotic large-ℓ plateau value of the integral immediately

preceding it. In Reissner-Nordström, one has β = (κ(r−)2 − κ(r+)2) /(24πr2−) [180], but the derivation

of this analytic expression (in particular, the large-ℓ forms of the scattering coefficients derived in

Ref. [163]) relies on the Reissner-Nordström form of the horizon function in several crucial ways.

When the inner-extremal horizon function of Eq. (4.43) instead is used in the radial wave Eq. (6.18),

the relevant asymptotic solutions can no longer be written in terms of Bessel functions near the

inner horizon (nor any other well-understood special functions). An analytic form for β may still be

possible for the inner-extremal case through a form of Frobenius matching; however, here it suffices

to compute β numerically, since the sum of Eq. (6.20a) quickly reaches a plateau value within the

desired precision after only a few of the lowest-ℓ terms are included. Regardless, as will be seen, the

divergence of at least one component of ⟨Tµν⟩ren can be shown without making any assumptions

about β.

The scattering coefficients ρup
ωℓ , τ

up
ωℓ , Aωℓ, and Bωℓ are computed by numerically integrating the

radial wave Eq. (6.18) for a set of Eddington-Finkelstein modes propagating between the asymptotic

boundaries for both the exterior and interior black hole sectors. In the exterior sector, the reflection

coefficient ρup
ωℓ gives the fraction of outgoing waves emitted from the outer horizon in the asymptotic

past that reflect back to the outer horizon, while the transmission coefficient τup
ωℓ gives the remaining

portion of waves that reach infinity:

ψup
ωℓ →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

eiωr
∗ + ρup

ωℓ e−iωr
∗

, r∗ → −∞

τup
ωℓ eiωr

∗

, r∗ →∞
. (6.22)

The reflection coefficient ρup
ωℓ is related to the transmission coefficient τup

ωℓ through the condition

∣ρup
ωℓ ∣

2 + ∣τup
ωℓ ∣

2 = 1 resulting from Wronskian conservation of solutions for the radial wave Eq. (6.18).

In the interior sector, where r∗ becomes a timelike coordinate, free incoming waves at the

outer horizon scatter into a superposition of ingoing and outgoing waves at the inner horizon with

the corresponding reflection and transmission coefficients Aωℓ and Bωℓ:
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ψup
ωℓ →

⎧⎪⎪⎪⎨⎪⎪⎪⎩

e−iωr
∗

, r∗ → −∞

Aωℓ eiωr
∗ +Bωℓ e−iωr

∗

, r∗ →∞
. (6.23)

For these interior scattering coefficients, which need not remain bounded, the Wronskian condition

implies that ∣Bωℓ∣2 − ∣Aωℓ∣2 = 1.

Once these scattering coefficients are computed numerically for each set of modes specified

by ω and ℓ, the quantity ÊU
ωℓ from Eq. (6.20a) can be integrated over a sampled set of frequencies

with the help of third-order Hermite interpolation built into the software package Mathematica. In

practice, instead of sampling points all the way out to ω →∞, computations of the integrand ÊU
ωℓ

are terminated once it enters deep into the regime in which it decays as ω ⋅ e−ω/k for some positive k,

after which the integrand is analytically extended to infinity with the appropriate extrapolation.

The values of this integrand for the ℓ = 0 and ℓ = 1 modes are shown in the left panel of Fig. 6.1.

For numerical computations, the outer and inner horizons are chosen to lie at the following

radii:

r+ = 2M, r− = l(1 + α
l

M
+O ( l

2

M2
)) , (6.24)

where M is the mass of the black hole, α is an order-unity parameter, and l is a regularization length

scale often identified as the Planck length, where semiclassical gravity breaks down (though it should

be noted that for the present choice of constants such an identification cannot be upheld as it would

imply that the black hole weighs less than a single grain of sand). The numerical computations done

here use the same choices for these constants as in Ref. [38]: α = 1 and M/l = 100.

In the left panel of Fig. 6.1, though the spectra for only the lowest two angular modes (ℓ = 0

and ℓ = 1) are shown, all higher-ℓ modes appear visually similar to the ℓ = 1 spectrum on that plot, as

the integrated spectrum quickly plateaus to the value β as ℓ is increased. This constant is numerically

found to equal approximately 1.4 × 104M−4, which is consistent with the parameter range one might

expect from an analysis of Reissner-Nordström black holes (in particular, the inner-extremal β for this

choice of parameters coincides with the Reissner-Nordström β for a black hole with charge-to-mass
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Figure 6.1: (Left panel) Numerically computed values of the integrand ÊU

ωℓ from Eq. (6.20a) for the
ℓ = 0 (blue) and ℓ = 1 (orange) modes. The area under each of these curves (which approaches the
constant β as ℓ→∞) is used to calculate the Unruh-state renormalized stress-energy component
⟨Tuu⟩renU evaluated at the inner horizon.
(Right panel) Numerically computed values of luminosity ℓ-modes LU

ℓ from Eq. (6.21b). The sum of all
these values from ℓ = 0 to ℓ =∞ yields the Hawking outflux 4πr2− (⟨Tuu⟩renU − ⟨Tvv⟩renU ) of Eq. (6.20b).
All modes are positive and drop to zero exponentially as ℓ increases. The fact that the sum over
all these points yields a non-zero value indicates that at least one (Kruskalized) component of the
renormalized stress-energy tensor diverges at the inner horizon of spherical inner-extremal regular
black holes. The constants used for both the left and right panels are α = 1, l/M = 1/100, and
a2/M2 = 1/10.

ratio Q/M ≈ 0.427). As a result, the uu-component of the Unruh-state renormalized stress-energy

tensor at the inner horizon from Eq. (6.20a) is calculated to be 8.9 × 105M−4. Since this value is

non-zero, the corresponding stress-energy component for a set of coordinates that are regular through

the inner horizon, such as the Kruskal coordinates of Eq. (6.8), will diverge.

Since the inner-extremal regular black hole spacetime under consideration here is spherically

symmetric and static, energy-momentum conservation implies that in spherically symmetric, static

quantum states like the Unruh state, the quantity

4πr2(⟨Tuu⟩renU − ⟨Tvv⟩renU ) (6.25)
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must be conserved everywhere in the spacetime [180]. For some vacuum states like the Hartle-

Hawking state, this constant trivially vanishes, but for the Unruh state, it can be evaluated at

the inner horizon as the sum ∑∞ℓ=0LU
ℓ from Eqs. (6.20b) and (6.21b). For the Unruh state, this

luminosity coincides precisely with the Hawking outflux. For the choice of inner-extremal parameters

used throughout this section, the computed Hawking outflux equals 6.81142 × 10−5M−2. To obtain

this value, similar to the methodologies described above, the external scattering coefficient is sampled

for a set of frequencies and extrapolated with the knowledge that at high frequencies, the integrand

of Eq. (6.21b) behaves as ω ⋅ e−2ω̃, while at low frequencies, it behaves as a power law in ω. Then,

the spectrum is integrated over all frequencies and summed over larger and larger values of ℓ until

convergence is reached, as shown in the right panel of Fig. 6.1.

The fact that the Hawking outflux does not vanish at the inner horizon indicates that ⟨Tuu⟩renU

and ⟨Tvv⟩renU can never simultaneously equal zero and therefore that at least one component (in

coordinates that are regular across the inner horizon) of the renormalized stress-energy tensor will

always diverge there. The remarkable aspect of this result is that the semiclassical divergence

occurs regardless of anything happening in the interior, such as a vanishing surface gravity at the

inner horizon or some anomalous scattering governed by Aωℓ and Bωℓ. Rather, from Eq. (6.21b),

this divergence depends only on the external portion of the spacetime, characterized by the outer

horizon’s surface gravity κ(r+) and the external transmission coefficient τup
ωℓ .

6.1.3 Outlook

In the absence of a full theory of quantum gravity, one may hope that using an effective field

theory to describe the semiclassical behavior of gravity (valid up the the Planck energy) would be

enough to provide a complete model of astrophysical black holes formed from collapse. If this were

true, one should be able to write down a completely classical, singularity-free metric to describe the

black hole, sourced by semiclassical stress-energy via Eq. (3.9). The inner-extremal regular black

hole metric of Eq. (4.1) potentially provides such a model, especially promising due to its avoidance

of the classical mass inflation instability.
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The key takeaway of the present analysis is that for black holes formed from astrophysical

collapse, no regular black hole models with an inner horizon will be semiclassically stable and regular,

regardless of whether or not the inner horizon is fine-tuned so that its surface gravity vanishes (like

in the inner-extremal models). An Unruh-state semiclassical divergence at the inner horizon is driven

by both the inner and outer horizons’ surface gravities, so that the only singularity-free black holes

models that can avoid the semiclassical instability are extremal black holes.

The semiclassical divergence present at the inner horizon of inner-extremal regular black

holes has here been demonstrated with the calculation of the renormalized stress-energy tensor

for a quantized massless scalar field. In Sec. 6.1.1, the RSET was evaluated using the Polyakov

approximation (i.e., averaging over the angular degrees of freedom so that an exact answer can be

obtained in 1+1 dimensions). The normal stress component of this tensor in outgoing Eddington-

Finkelstein coordinates (⟨Tuu⟩ren) remains non-zero at the inner horizon in both the Unruh and

Minkowski “in” vacuum states, which indicates that the physical stress-energy will diverge when one

transforms to a set of coordinates that are regular across that surface.

Then, to confirm that the 1+1D calculations of Sec. 6.1.1 are not missing any crucial information

from the scattering of higher-ℓ angular modes in the full 3+1 dimensions, the renormalized stress-

energy tensor has been calculated numerically for a specific choice of parameters in Sec. 6.1.2 using

pragmatic mode-sum renormalization. To do so requires finding the exterior and interior scattering

coefficients for free waves traveling from infinity to the outer horizon and from the outer horizon

to the inner horizon, respectively. The result is the same as in the 1+1D case: the renormalized

stress-energy in outgoing Eddington-Finkelstein coordinates do not vanish at the inner horizon, so

that a semiclassical singularity will emerge there if the spacetime remains static. This divergence

will always occur for at least one leg of the inner horizon, since the difference ⟨Tuu⟩renU − ⟨Tvv⟩renU in

the Unruh state is always proportional to the non-zero Hawking outflux.

It would thus appear that any semiclassically self-consistent model of a regular black hole one

may come up with cannot have an inner horizon that is spatially separated from the outer horizon,

no matter how degenerate it may be. It would be interesting to analyze how the semiclassical
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backreaction dynamically affects the inner-extremal geometry if the constraints of staticity are

relaxed—the inner horizon may evaporate outward to meet the outer horizon and perhaps evolve to

a new, non-black-hole geometry, for example. However, the vanishing of ⟨Tvv⟩ren in Eqs. (6.14) and

(6.16) at the inner horizon offers an indication that forcing the inner horizon’s surface gravity to

vanish only strengthens the semiclassical divergence, since it is precisely this surface gravity that

would cause the inner horizon to evaporate. Instead, it is likely that the semiclassical inflation near

the inner horizon will occur too rapidly for the geometry to have time to react, so that a curvature

singularity forms. One must then appeal to higher-order theories of quantum gravity to understand

how spacetime evolves further [46].

6.2 Rotating black holes

Now, consider the evaluation of the RSET at the inner horizon of a rotating black hole,

specifically in the case of the Kerr metric. What is the fate of the inner horizon and its traversability

if a Kerr black hole is subject to semiclassical perturbations?

The computation of this renormalized stress-energy tensor (RSET) is a difficult task for

physically realistic vacuum states in even the most symmetric spacetimes. But in recent years, novel

computational methods have led to a resurgence of interest, and most relevant to the present analysis,

Ref. [178] made use of state subtraction to calculate the mode-summed RSET of a scalar field at the

inner horizon of a four-dimensional (4D) Kerr black hole (see [179] for a thorough derivation and

Fig. 6.2 for the parameter space covered by the study). The main conclusion of the study was that

the ingoing double-null flux component of the RSET (the vv-component, in Eddington-Finkelstein

coordinates) is generically nonvanishing, implying that the semiclassical stress-energy will diverge

when cast into coordinates that are regular across the inner horizon (as seen, for example, in the

local frame of an infalling, outgoing1 observer reaching the inner horizon). The implications are

1Infalling (outfalling) here means that the radial component of the observer’s 4-velocity satisfies ṙ < 0 (ṙ > 0), while
ingoing (outgoing) refers to a left-moving (right-moving) observer on a traditional Penrose diagram. Ingoing observers
are not considered here, since the Unruh state differs substantially from the more realistic Minkowski in-state along



216

Figure 6.2: Parameter space of Kerr spin-to-mass ratios a/M and polar angles θ for which the
dominant components of the RSET ⟨T−µν⟩ have been calculated for a scalar field at the inner horizon.
Cyan plus signs indicate values calculated in Ref. [178] via point splitting, solid blue triangles
indicate values calculated in Ref. [178] via state subtraction, and hollow orange circles show the
values calculated in the present study via state subtraction.

much stronger than the classical case—even in the complete absence of external matter or radiation

tails, the mere presence of an initially empty quantum field is enough to interrupt the gravitational

collapse toward the full Kerr spacetime once the inner horizon is reached.

The divergence of the RSET at the inner horizon implies that the full geometry of the

Kerr metric is not semiclassically self-consistent and must be substantially modified by the field’s

backreaction. Ref. [178] suggested that the backreaction should depend crucially on the signs of

the RSET’s null flux components, based on prior results from the spherically symmetric case [180]:

if the RSET’s vv-component at the inner horizon is positive (negative), an observer approaching

the inner horizon would experience an abrupt contraction (expansion). Since this component was

generically found to change signs for different latitudes along the inner horizon and for different

that portion of the inner horizon.
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black hole spins, the result to first order is a chaotic inner-horizon singularity with local patches of

abrupt contraction or expansion.

A more comprehensive analysis of the semiclassical backreaction in rotating black holes was

recently carried out in the context of the Kerr-de Sitter spacetime, confirming the postulations

of Ref. [178] that the RSET’s vv-component dominates the evolution [103]. But if the RSET’s

vv-component changes sign across different latitudes, this would imply that some portions of the

inner horizon would necessarily remain unscathed by any quantum null fluxes. Could a finely-tuned

observer evade the semiclassical singularity at the inner horizon? Not quite—Ref. [103] found that

even in these regions, a subdominant divergence in the RSET’s vφ-component causes the local patch

of geometry to experience a diverging amount of relative twist.

The goal of the present study is to provide independent validation of the prior studies’ numerical

work, extend the parameter space of known RSET values (see Fig. 6.2), and understand as much as

can be possibly gleaned about the Kerr metric’s semiclassical evolution out of equilibrium. There is a

hope that the semiclassical gravity framework may be sufficient to describe the (meta)stable endpoint

of evolution from a gravitational collapse toward a black hole [64]—though the black hole may

evaporate on super-cosmological timescales, the mass-inflation and semiclassical instabilities operate

on light-crossing timescales and may push the black hole toward a stable configuration with extremal

horizons, a regular core, a wormhole throat, or no horizon at all (such as a gravastar). However, here

evidence is given against the formation of such objects from Kerr-like initial conditions. Instead, an

analysis of the backreaction using the mass-inflationary framework of Refs. [84, 85, 90] suggests that

the local geometry near the would-be inner horizon should evolve in a Belinskii-Khalatnikov-Lifschitz

(BKL)-like fashion [24] toward a strong, spacelike singularity.

The derivation of the key details in the calculation of the RSET is presented in Sec. 6.2.1, the

numerical results of the calculations are presented in Sec. 6.2.2, and the analysis of the backreaction

is given in Sec. 6.3. In this analysis, it should be noted here that one cannot actually conclude

definitively that a spacelike singularity is the generic outcome of the semiclassical instability near

the inner horizon. The backreaction of the Kerr RSET is only valid while the geometry can still be
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well-approximated by the vacuum Kerr metric, and as soon as the spacetime begins to evolve away

from equilibrium, a new, non-vacuum RSET would need to be found. Most prior studies remain

silent on the search for a path forward in our understanding other than an admission to the necessity

of a full theory of quantum gravity. But here, another path is suggested: the local inner-horizon

geometry under some mild assumptions becomes elegantly simple during the initial stages of mass

inflation, and it thus may be possible in the future to compute the RSET in this simplified spacetime

to determine the full semiclassical evolution of the near-inner-horizon geometry until the curvature

reaches the Planck scale.

6.2.1 Derivation of the renormalized Kerr RSET

The Kerr RSET at the inner horizon is here computed using the state subtraction method

employed in Refs. [178, 179]. The key details are outlined in what follows.

The Kerr line element for a black hole with mass M and angular momentum J ≡ aM can be

written in Boyer-Lindquist coordinates as

ds2 = ρ2 ( dr2

(r2 + a2)2∆r
+ sin2θ dθ2

∆θ
+ ∆θ(dφ −Ωrdt)2 −∆r(dt −Ωθdφ)2

(1 −ΩrΩθ)2
) , (6.26)

with the conformal factor ρ2 ≡ r2+a2 cos2θ, the horizon function ∆r ≡ (r2+a2−2Mr)/(r2+a2)2 (with

two roots at the outer and inner horizon radii r± ≡M ±
√
M2 − a2), the polar function ∆θ ≡ sin2θ,

the angular velocity Ωr ≡ a/(r2 + a2) of the principal frame through the coordinates, and the specific

angular momentum Ωθ ≡ a sin2θ of principal null congruence photons.

If a massless scalar test field ϕ̂ is minimally coupled to the Einstein-Hilbert action and

canonically quantized, the resulting Klein-Gordon wave equation ◻ϕωℓm = 0 for the field’s modes is

separable [40, 170] and lends itself to the following decomposition:

ϕωℓm(t, r, θ,φ) = eimφ−iωtSω
ℓm(θ)Rωℓm(r), (6.27)
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where Sω
ℓm(θ) are prolate spheroidal harmonics, normalized on the two-sphere according to the

Meixner-Schäfke scheme (such a normalization adds some extra factors to the calculation but is the

scheme of choice for the functions provided in Mathematica) [129].

The field ϕ̂ is then equipped with an Unruh-type vacuum state ∣U⟩ [106, 173] to mimic the

effects of a physically realistic gravitational collapse, with positive frequencies along the past null

boundaries defined with respect to the proper time of an infalling observer asymptotically approaching

those radii [128].

In order to calculate the Unruh-state RSET at the inner horizon, Ref. [178] constructed a

bare mode sum composed of the appropriate differential operator acting on the Hadamard two-point

function. Since this sum is formally divergent, the summand was then subtracted from that of

another bare mode sum equipped with a vacuum state known to lead to a vanishing RSET at

the inner horizon, in order to yield a finite RSET. This latter vacuum state, constructed from a

time-reversed, negative-mass Kerr spacetime, may appear unconventional but nonetheless agrees

with the Unruh-state RSET obtained from a “comparison” state subtraction [103] as well as from

a traditional point splitting approach [178] (at least for two different values of the black hole spin

parameter on the polar axis; see Fig. 6.2).

Computing the two-point function at the inner horizon for a field initialized at the past null

boundaries necessitates solving a relativistic scattering problem. Although the Unruh-state modes

at the past horizon are not eigenmodes of the radial Teukolsky equation, they can nonetheless be

Fourier-decomposed into an orthonormal set of eigenmodes Rin
ωℓm (originating from past null infinity)

and Rup
ωℓm (originating from the past horizon) so that the two-point function and therefore the RSET

at the inner horizon can be expressed in terms of numerically attainable 1D scattering coefficients

[179]. These coefficients are calculated using the Mano-Suzuki-Takasugi (MST) method [118, 119],

using a version of the Black Hole Perturbation Toolkit (BHPT) [30] adapted by the author; see

Appendix E for details. In the notation of MST,2 these scattering coefficients satisfy the asymptotic

2The translation from the notation of MST, BHPT, and the present work to that of Ref. [178] can be accomplished
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conditions

Rin
ωℓm →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Bref
extr

−1eiωr
∗ +Binc

extr
−1e−iωr

∗

, r →∞

Btrans
ext e−iω+r

∗

, r → r+

Bref
int eiω−r

∗ +Btrans
int e−iω−r

∗

, r → r−

, (6.28a)

Rup
ωℓm →

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ctrans
ext r−1eiωr

∗

, r →∞

C inc
ext eiω+r

∗ +Cref
exte−iω+r

∗

, r → r+

Ctrans
int eiω−r

∗ +Cref
inte
−iω−r∗ , r → r−

, (6.28b)

where ω± ≡ ω −mΩr± and the tortoise coordinate r∗ is chosen to be

r∗ ≡ r + 1

2κ+
ln ∣r − r+

2M
∣ + 1

2κ−
ln ∣r − r−

2M
∣ , (6.29)

with the surface gravity κ± ≡Mr±∆
′
r(r±) (where a prime denotes differentiation with respect to r),

defined to be negative at the inner horizon.

In terms of these scattering coefficients, the state-subtracted mode sum yielding the RSET at

the inner horizon can be written explicitly [103, 179]. In terms of the interior Eddington-Finkelstein

coordinates u ≡ r∗ − t and v ≡ r∗ + t, the three most relevant components of the RSET are the vv-,

vφ-, and uu-components, which are given by the equations [103, 178]

⟨T−vv⟩ = ⨋ (EU−
vv(ωℓm) − coth

πω−
−κ−
) , (6.30a)

⟨T−vφ⟩ = ⨋
−m
ω−
(EU−

vv(ωℓm) − coth
πω−
−κ−
) , (6.30b)

⟨T−uu⟩ − ⟨T−vv⟩ = ⨋ (coth
πω+
κ+
− 1)
⎛
⎝
1 − ∣C

ref
ext

C inc
ext
∣
2⎞
⎠
. (6.30c)

Here and throughout, each RSET component is written as ⟨T±µν⟩ ≡ ⟨U ∣T̂µν ∣U⟩ren∣r± , and the symbols

by setting ρup
ωℓm = (1 − a

2)−2iω+(1−a
2
)
−1/2

Cref
ext/C inc

ext and Bωℓm = (1 − a2)im/a(r−/r+)1/2Btrans
int /Btrans

ext , with the remaining
coefficients obtained from the Wronskian conditions of Appendix E.
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⨋ and EU−
vv(ωℓm) are defined by

⨋ (X) ≡ ∫
∞

0

∞
∑
ℓ=0

ℓ

∑
m=−ℓ

(2ℓ + 1)(ℓ −m)!
(ℓ +m)!

ω−∣Sω
ℓm(θ)∣

2

32π2Mr−
(X) dω, (6.31)

EU−
vv(ωℓm) =

r−ω−
r+ω+

⎡⎢⎢⎢⎢⎣
coth

πω+
κ+

⎛
⎝
∣
Bref

int
Btrans

ext
∣
2

+ ∣C
ref
ext

C inc
ext
∣
2

∣
Btrans

int
Btrans

ext
∣
2⎞
⎠

+ 2cschπω+
κ+

R(
Cref

extB
ref
intB

trans
int

C inc
ext(Btrans

ext )2
) +
⎛
⎝
1 − ∣C

ref
ext

C inc
ext
∣
2⎞
⎠
∣
Btrans

int
Btrans

ext
∣
2 ⎤⎥⎥⎥⎥⎦
. (6.32)

Thus, the RSET at the Kerr inner horizon can be calculated in a straightforward manner by

numerically solving the radial and angular Teukolsky equations and applying their eigenmode

solutions to Eqs. (6.30a)–(6.30c).

6.2.2 Numerical results

In order to make the calculation of the RSET as efficient as possible, integration is performed

in the present work using an adaptive quadrature algorithm, which has the advantages of both

rapid convergence for preferably sparse domain sampling and fine control over error estimation. An

example of the output of this scheme for a particular choice of parameters can be seen in Fig. 6.3.

The ultimate goal is to integrate and sum Eqs. (6.30a)–(6.30c) over all possible ω-, ℓ-, and m-modes,

which for brevity are written with the notation

⟨T −µν⟩ ≡ ∫
∞

0
⟨T −µν⟩(ω)dω ≡ ∫

∞

0

∞
∑
ℓ=0

ℓ

∑
m=−ℓ
⟨T−µν⟩(ωℓm)dω. (6.33)

Each point in the main panel of Fig. 6.3 corresponds to the integrand ⟨T−vv⟩(ω) for a particular

value of the frequency ω, and each of these points is computed by summing over all possible ℓ- and

m-modes (see inset of Fig. 6.3). These sums converge exponentially and usually require only modes

with ℓ ≤ 2 for the error threshold to be vastly dwarfed by the error in the ω integration, though in

some cases like the one shown in the figure, a larger number of angular modes are needed.
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Figure 6.3: Spectrum of ⟨T−vv⟩ at the north or south pole (θ = 0○) for a Kerr black hole with a/M = 0.2.
The sum over the ℓ- and m-modes in the inset panel yields each point in main panel (note that only
the m = 0 modes contribute when θ = 0○), and the integral over the ω-modes in the main panel yields
the total RSET ⟨T −vv⟩ (i.e., the point at a/M = 0.2 in Fig. 6.4). Positive (negative) values on the
log plots are given by the red (blue) points. The sampling and integration is performed using the
adaptive quadrature algorithm described in the text.

Then, the algorithm proceeds by (i) computing four ⟨T−µν⟩(ω) points subdivided evenly in a

closed frequency domain, (ii) interpolating between these points with a cubic B-spline, (iii) computing

a fifth sample point in the center of the domain, (iv) calculating the difference between this sample

point and the center point of the spline, and (v) if this difference lies above a set error threshold, the

domain is divided evenly in half and the algorithm is repeated from step (i) for each new domain.

This approach leads to a speedup of up to a factor of 10 in the total computational runtime compared

to a fixed linear integration method and additionally allows for more precise error control.

Adaptive quadrature approaches perform most poorly in regimes where the integrand cannot

be well-approximated by polynomial functions, which for the integrands of Eqs. (6.30a)–(6.30c)

occurs in the exponential decay regime at high frequencies (notice in Fig. 6.3 the slight difference at

ω/M ∼ 50 between the interpolating function and the dashed exponential fit). In these cases, two
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options were tested, both yielding similar convergent results: either the splines can be computed

over log-frequency space and the domain extended until convergence is reached, or enough points

can be sampled so that the remaining portion of the integrand can be fitted to an exponentially

decaying function and the integral extrapolated to infinity.

Two main sources of error are accounted for in the numerical calculations of the RSET

performed here. The first is truncation error, which is minimized in the ℓ- and m-sums by cutting

off the sum only when the next term returns zero with the specified numerical precision, and which

is controlled in the ω-integrals by the degree of confidence in the exponential decay fit that is

integrated to infinity. The second source of error is the global discretization error from the numerical

integration scheme, which is controlled by specifying an error bound in the algorithm described

above. Accounting for both of these sources of uncertainty, the points in Figs. 6.3–6.5 are computed

to a high enough precision that their error bars are smaller than the points themselves in all but a

couple edge cases.
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Figure 6.4: Computed values of the vv- and uu-components of the RSET at the Kerr inner horizon
along the axis of rotation for different values of the black hole spin-to-mass ratio a/M . Positive
(negative) values on the log plot are given by the red (blue) points. Solid curves interpolate between
the numerically-computed points, and the dashed curve shows a 1/a2 fit at low spins.
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Figure 6.5: Same setup as Fig. 6.4 but for black hole spins near extremality, with the near-
zero parameter ϵ ≡

√
1 − (a/M)2. The two lines show the asymptotic behavior of the RSET’s

double-null components near extremality, given by the analytic expressions ⟨T−vv⟩→ ϵ4/(7680π2) and
⟨T −uu⟩→ ϵ5/(960π2).

First, consider the inner-horizon RSET at the north or south pole, where θ = 0○. There only

the modes with m = 0 contribute to the RSET, so that ⟨T−vφ⟩ vanishes and the calculation of the

other null components simplify considerably. The two double-null flux components of the RSET

are plotted as a function of the black hole’s angular momentum a in Figs. 6.4 and 6.5. Fig. 6.4

shows computed values for spins from a/M = 0.15 to a/M ≈ 0.997, yielding excellent quantitative

agreement with Fig. 2 of Ref. [178] and qualitative agreement with the Kerr-de Sitter case in Fig. 4

of Ref. [103] (both of which only reach a minimum of a/M = 0.55). The vv-component of the RSET

is negative and vanishingly small at high spins, and as the rotation of the black hole slows, this

component increases until reaching zero at a/M ≈ 0.862 and continuing to increase exponentially in

a/M . However, at slow enough spins, ⟨T −vv⟩ once again changes signs.

Both ⟨T−vv⟩ and ⟨T−uu⟩ are expected to diverge as a→ 0, since in that limit the inner horizon

coincides with the r = 0 singularity. In particular, the quantity ⟨T−uu⟩ − ⟨T −vv⟩, related to the Hawking

outflux per surface area 4πr2− [180], should diverge as a−2 (compare the dashed curve in Fig. 6.4)
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owing to the factor of r− in the denominator of Eq. (6.31). An even stronger divergence is expected

to be present in ⟨T−vv⟩ as a→ 0, since the scattering coefficients ∣Bref
int∣2 and ∣Btrans

int ∣2 from Eq. (6.28a)

both diverge as a−2. However, the exact nature of the low-spin divergence of ⟨T−vv⟩ is not easily

found, since the spectrum includes non-trivial contributions from successively higher frequencies ω

as the spin a decreases, so that for a/M < 0.15, ⟨T −vv⟩ could be either positive or negative (or even

vanish in a highly fine-tuned case).

While the double-null components of the RSET are expected to diverge at the inner horizon

as a/M → 0, they will vanish as a/M → 1, as shown in Fig. 6.5 (compare Fig. 3 in the Supplemental

Materials of Ref. [178]). In particular, through an analysis of the asymptotic behavior of the

near-extremal scattering coefficients, it can be shown that in terms of a near-extremal spin parameter

ϵ ≡
√
1 − (a/M)2, the vv-component of the RSET will vanish as ⟨T−vv⟩→ ϵ4/(7680π2), while the

uu-component will vanish as ⟨T−uu⟩→ ϵ5/(960π2).

Off the axis of rotation, the computation of the inner-horizon RSET is less clean. Even in

the near-extremal limit, while the on-axis scattering coefficients are dominated by low-frequency

ℓ = 0 modes that create a simple negative, exponentially decaying spectrum, the off-axis spectrum

generally contains both positive and negative peaks at low frequencies. Nevertheless, in the limit as

a/M → 1 for all polar angles θ, all three components of the RSET analyzed here vanish.

The behavior of ⟨T−vv⟩ as a function of both spin a and polar angle θ is shown in Fig. 6.6. As

can be seen, while the sign of ⟨T−vv⟩ changes as the spin of the black hole is varied, even for a single

black hole with a given spin, ⟨T−vv⟩ will necessarily change signs at different latitudes along the inner

horizon. For a/M ≳ 0.862, ⟨T−vv⟩ is negative near the pole and reaches zero exactly once between the

pole and the equator. For smaller spins, ⟨T−vv⟩ may change signs twice, though it should be noted

that the behavior of the RSET for large θ and very small spins in Fig. 6.6 is only an extrapolated

estimation.

Though not plotted here, the vφ-component of the RSET has also been computed and is

generically non-zero throughout the 2D parameter space, except for at least one 1D zero-valued
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Figure 6.6: Parameter space for the vv-component of the Kerr RSET at the inner horizon as a
function of both the black hole spin-to-mass ratio a/M and the polar angle θ. The points at the
locations given in Fig. 6.2 were computed explicitly using the techniques described in the text, and
the remaining portion of the parameter space was filled in via interpolation.

contour (just as ⟨T−vv⟩ in Fig. 6.6 contains two3 zero-valued contours given by the white regions).

Though the divergence associated with ⟨T−vφ⟩ is subdominant compared to ⟨T−vv⟩, the presence of a

sign flip in ⟨T−vv⟩ implies that ⟨T−vφ⟩ will dominate the backreaction for at least one latitude, leading

to a divergent twisting of the geometry separating regions of local expansion and contraction [103].

In conclusion, the renormalized stress-energy of a scalar quantum field in the Unruh state has

been calculated for most of the physically relevant parameter space in the Kerr spacetime at the

inner horizon. The results indicate that in a locally inertial frame reaching the inner horizon, the

field’s flux generically diverges, and thus that the Kerr metric is not semiclassically self-consistent

at or beyond the inner horizon. To understand how the geometry backreacts to this semiclassical

instability, one must analyze the field equations, as shown in the next section.

3Or three, if you count the θ-parametrized contour at a/M = 1, though in this work the extremal case is not treated.
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6.3 Backreaction

Analyses of semiclassical backreactions carry with them intricate subtleties. Ideally, one would

like to find a solution to the Møller-Rosenfeld semiclassical field equations, Eq. (3.9), to see how the

geometry and the quantum field coevolve over time. However, as can be gleaned from the calculations

of the previous sections, the RSET is difficult to calculate and currently is only known for a select

handful of highly symmetric vacuum spacetimes. Thus, the present calculations will apply only to a

weak backreaction domain, where one is still far enough from the inner horizon that the geometry can

be well-approximated by the vacuum black hole spacetime but close enough that the semiclassical

backreaction, of order (eκ−v mP /M)2 (where mP denotes the Planck mass), is not negligible.

6.3.1 Spherical symmetry

The conclusions of any backreaction analysis are limited by the choice of assumptions about

how the metric in question should be generalized. In the case of spherical symmetry (when a = 0),

such generalizations can be made comprehensively. If double-null coordinates u and v are gauge-fixed

to match those of the vacuum RSET ⟨T −µν⟩, then the remaining two functional degrees of freedom in

the line element can be written as −eσ(u,v)dudv + r(u, v)2dΩ2. The resulting field equations imply

that near the inner horizon,

∂vr ≈
4πr−
κ−
⟨T−vv⟩ +O(e−κ−v). (6.34)

Recalling that the inner-horizon surface gravity κ− is defined here to be negative, one would then

conclude that an infalling observer near the inner horizon would experience an abrupt contraction

(expansion) in the geometry’s area element when ⟨T −vv⟩ is positive (negative) [180].

However, if instead the radial coordinate r is gauge-fixed to match that of the vacuum RSET

and the remaining two metric degrees of freedom are encoded by, for example, the positions of the

black hole’s inner and outer horizons, the same field equations then imply dynamical behavior in

the horizon structure rather than in the local area element. In particular, the outer horizon will

evaporate inward slowly over time, as per Hawking’s famous result (as long as ⟨T+vv⟩ < 0, which is
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always true in the 2D case) [18, 50, 93], while the inner horizon will evaporate rapidly outward

(inward) when ⟨T−vv⟩ is negative (positive). The inner horizon in this case will move extremely quickly,

at a timescale on the order of the black hole’s light-crossing time [18].

While the two options described above for the spherically symmetric case might seem distinct

or even at odds with one another, they are actually completely compatible. Extrapolating and

reinterpreting those results as statements about the dominant contributions to global, long-term

dynamics, “which is irresistible but not allowed” [15], would lead to the conclusion that black holes

with ⟨T−vv⟩ > 0 have interiors that contract until a spacelike singularity is formed at r = 0, while

black holes with ⟨T−vv⟩ < 0 would explode from the inside out to form extremal or horizonless objects.

However, since the RSET calculated here only remains valid in the weak backreaction domain,

absolutely no conclusions can be made about long-term dynamics until the RSET is computed for

the more general form of the spacetime.

6.3.2 Axisymmetry: initial tendencies

Now consider the case of black holes with non-zero rotation. Here it is clear that the outcome

must be more complicated than in the spherically symmetric case, since the local interior geometry

will no longer uniformly contract or expand across the entire inner horizon; instead, ⟨T −vv⟩ is both

positive and negative across different latitudes of the same black hole (see Fig. 6.6). An excellent

backreaction analysis for the case of Kerr-de Sitter black holes was recently [103] carried out by

decomposing the spacetime into a set of double-null hypersurfaces gauge-fixed to match the null

coordinates in ⟨T −µν⟩.4 Along each hypersurface, the induced metric can be written in a completely

general form as

gABdx
AdxB = γ2 [α−2dθ2 + α2 (dφ + τdθ)2] , (6.35)

4The fixing comes in the identification of the affine parameter λ, taken to be constant along each hypersurface,
with the Kruskal coordinate V− ∝ e−κ−v.
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for the area element γ2 and the arbitrary functions α and τ that physically relate to notions of shear

and twisting of null geodesics as the hypersurface is moved toward the would-be inner horizon at

λ→ 0, or equivalently, v →∞. The semiclassical Einstein equations and Raychaudhuri equations

can then be analyzed to yield

∂2λγ = −γ [4π⟨T
−
λλ⟩ + 4(∂λ lnα)

2 + α4(∂λτ)2] , (6.36a)

∂θ(γ2α4∂λτ) = 8πγ2⟨T−λφ⟩ + ∂λ(γ
2β), (6.36b)

where β measures the amount of twisting in the φ-direction for light rays perpendicular to the

surfaces of constant λ as λ→ 0.

From Eq. (6.36a) it can be gleaned that for positive (negative) ⟨T−vv⟩, the divergent RSET

component ⟨T−λλ⟩ ∼ λ
−2 will also be positive (negative) and will cause γ to contract (expand) as

λ→ 0. In the inevitable intermediate cases where γ neither contracts nor expands, Eq. (6.36b) then

predicts that a non-zero ⟨T−vφ⟩ will cause an infinite local twisting. Thus, one reproduces the same

behaviors predicted in the spherically symmetric case (i.e., the local blow-up or shrinking of the

geometry near the inner horizon dictated by the sign of ⟨T−vv⟩), with the addendum that even in the

cases where the geometry neither contracts nor expands, a subdominant component of the RSET

will still generically cause the local geometry to diverge in a shearing manner.

Two comments concerning the above analysis are worth mentioning. First, while the backreac-

tion is performed with sufficient generality to reproduce the effects predicted in the spherical case and

predict additional rotational effects, the restriction of the metric to null hypersurface cuts of constant

v does not allow for a full global analysis of the spacetime’s evolution and does not encompass the

most general axisymmetric geometry possible (it for example washes out any dynamical information

related to the outgoing u coordinate and its coupling with the other degrees of freedom). But more

importantly, the analysis does not invite any obvious path forward to understand how the spacetime

evolves beyond these initial tendencies. Does the semiclassical inner-horizon instability remain

confined to a (meta)stable interior singularity (or even a regular configuration), or will inflationary
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perturbations spread like a wildfire until they destroy the black hole from the inside out? To address

these problems at least partially, consider the complementary analysis below.

Generalizations of the Kerr metric abound. Starting from the line element of Eq. (6.26), one

may, for example, promote the mass M to an arbitrary function M(r, θ) [62], or allow dynamical

behavior via M →M(v) and a→ a(v) [177], or leave all the functions ∆r(r), ∆θ(θ), Ωr(r), Ωθ(θ),

and ρ2 = ρ2r(r) + ρ2θ(θ) arbitrary for full Hamilton-Jacobi separability [40]. Additional generalizations

beyond the form of Eq. (6.26) also exist; imposing Klein-Gordon and timelike Hamilton-Jacobi

separability yields a 3-function class of metrics that reproduces a wide variety of regular and singular

spacetime candidates [10], and imposing only asymptotic flatness and the preservation of the Carter

constant leads to a 10-function class of general axisymmetric metrics [145]. Amidst all these options,

one thus desires a trade-off between generality and tractability in capturing the most important

physical behaviors to be modeled and understood.

The properties of the semiclassical radiation produced from a quantum scalar field in the

vacuum Kerr spacetime already seem to rule out a number of Kerr generalizations. For example,

the 3-function class of metrics put forward in Ref. [10] claims to encompass a majority of the

currently-proposed stable endpoints of black hole evolution (aside from complete evaporation or

gravastar-like objects); however, the Einstein tensor for these metrics always contains a vanishing

rt-component, despite the fact that the semiclassical RSET calculated here possesses a non-vanishing

(and in fact diverging) rt-component ⟨T−rt⟩ = (⟨T−vv⟩ − ⟨T−uu⟩)R−2∆−1r . Presumably such black hole

solutions that are regular and instability-free cannot form from an initial Kerr-like collapse.

6.3.3 Axisymmetry: mass inflationary approach

To generalize the Kerr metric in order to allow for the dynamics anticipated from the vacuum

RSET, the following assumptions will be made:

(i) The spacetime is axisymmetric, motivated both by simplicity and by the preservation of this

symmetry in the past Unruh state.
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(ii) The spacetime is asymptotically flat at spatial infinity, as in the case of the original Kerr

metric.

(iii) The spacetime is initialized with a Kerr vacuum geometry, and the quantum scalar field

is initialized with an Unruh vacuum state mimicking the effects of a gravitational collapse

sufficiently far in the past.

(iv) The spacetime maintains conformal Hamilton-Jacobi separability [84]; i.e., the equations of

motion for massless particles are separable in spheroidal coordinates (but not necessarily for

massive particles, as in the case of strict separability seen for Kerr).

Unfortunately, none of these assumptions are actually true for astrophysically realistic black

holes. The accretion flows observed by the GRAVITY instrument [78] and the Event Horizon

Telescope Collaboration [60] feature asymmetries in φ, though in the stationary limit, rigidity

theorems suggest that any non-axisymmetric perturbations are part of the “hair” that a black hole

will eventually shed [92, 96]. In regard to Assumption (ii), the lack of asymptotic flatness in the

Universe has been measured with great precision [153], but any effects from a cosmological horizon

on the inner-horizon instability are expected to be negligible, both due to the similarity in the RSET

calculations here to those of the Kerr-de Sitter case [103], and because the cosmological constant is

currently measured to be Λ ∼ 10−46 M−2
⊙ in geometrized units, much too small to have any practical

influence. As for Assumption (iii), black holes (and therefore near-inner-horizon geometries) form

under chaotic, rapidly evolving conditions, and even after settling down, the most quiescent black

holes are still non-vacuum and accrete more than enough radiation to trigger the mass inflation

instability and destroy any vacuum inner horizon [125]. Additionally, physically relevant fields in the

Standard Model are those with spin 1 (electromagnetic), 1/2 (fermionic), or 2 (gravitational), so

using a massless scalar field with spin 0 is a simplification seen as a proxy for, e.g., a single photonic

degree of freedom. Even regarding Assumption (iv), which provides a more general notion than

the strict separability that itself is justified by the observation of long-lived accretion disks (lack of

separability implies chaotic, destabilizing particle orbits [10]), it will be seen in what follows that
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conformal separability, while valid in the weak backreaction domain, eventually breaks down once

the vierbein of Eq. (6.40) ceases to be diagonal.

Under Assumptions (i)–(iv), the spacetime’s line element takes the form of Eq. (6.26), except

that the functions ∆r(r), ∆θ(θ), Ωr(r), Ωθ(θ), and ρ(r, θ, t) are left arbitrary. Assumption (ii) of

asymptotic flatness, while not strictly required for any aspect of this analysis (any cosmological

contribution to the near-inner-horizon geometry will be completely overwhelmed by the ignition of

both classical and semiclassical streams [84]), will impose the additional conditions ∆r ∼ Ωr ∼ r−2

and ρ ∼ r.

The form of the line element of Eq. (6.26) naturally encodes an orthonormal tetrad basis first

written down by Carter [40]. This basis can be constructed in the Newman-Penrose formalism by

performing a null rotation on the Kinnersley tetrad so that the resulting frame is symmetric with

respect to the ingoing and outgoing principal null directions [182]. The corresponding vierbein em̂µ,

defined through

ds2 = gµνdxµdxν = ηm̂n̂e
m̂
µe

n̂
νdx

µdxν (6.37)

for the Minkowski metric tensor ηm̂n̂, can be written as the product [86]

em̂µ = (edyn)m̂κ (efix)κµ, (6.38)

where (edyn)m̂κ is a dynamical vierbein that is only a function of the variable r (which is timelike

in the interior), and (efix)κµ is a fixed vierbein whose elements should remain frozen at their inner-

horizon values throughout the evolution of the instability induced by the semiclassical backreaction.
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In terms of Boyer-Lindquist coordinates, the fixed vierbein contains the basis vectors

(efix)0 = ρ ∂r, (6.39a)

(efix)1 =
ρ

1 −ΩrΩθ
(∂t −Ωθ∂φ) , (6.39b)

(efix)2 = ρ ∂θ, (6.39c)

(efix)3 =
ρ
√
∆θ

1 −ΩrΩθ
(∂φ −Ωr∂t) , (6.39d)

which serves to align the tetrad with the principal null directions of the black hole. The dynamical

vierbein then is purely diagonal:

(edyn)0 =
e−5ξ/2

R2
√
∣∆r ∣

∂0, (6.40a)

(edyn)1 = eξ/2
√
∣∆r ∣ ∂1, (6.40b)

(edyn)2 = e−ξ ∂2, (6.40c)

(edyn)3 = e−ξ ∂3, (6.40d)

where the redefinitions ρ(r, θ, t)→ e−ξ(r)ρ(r, θ, t) and ∆r(r) → e3ξ(r)∆r(r) have been made for an

arbitrary radial function ξ(r), which is brought to the dynamical vierbein so that the vierbein may

undergo a conformal expansion or contraction under backreaction.

The Einstein tensor corresponding to this spacetime is far too intricate to be presented here

in any complete, meaningful way. However, at least in the quasi-stationary limit (in particular, if

the redefined conformal piece ρ is written as ρ(r, θ, t) = eṽt
√
r2 + a2 cos2θ for some vanishing small

accretion parameter ṽ), the field equations have already been analyzed in detail in Refs. [84, 85,

90] (this is the conformally separable Kerr solution described in Sec. 2.3.1). The resulting behavior

provides classical justification for the decomposition of Eq. (6.38), since near the inner horizon, the

functions ∆θ, Ωr, and Ωθ remain approximately fixed at their Kerr values near the inner horizon,

while the horizon function ∆r and the inflationary function ξ become the dominant contributors to
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the evolution of the Einstein tensor. The resulting tensor behaves at least initially like a perfect

fluid with equal ingoing and outgoing streams, with dominant inflating tetrad-frame components

G00 ∼ G11 ∼ G01 ∼ ∆−1r , where the off-diagonal component G01 is suppressed by a factor of ṽ.

Classically, the evolution can then be continued to show that ∆r eventually stalls out at some tiny

value [84], after which ξ grows large and the spacetime undergoes a series of BKL-like bounces

toward a strong, spacelike singularity [86].

How might semiclassical effects modify this picture? The tetrad-frame components of the

RSET can be re-expressed in terms of the double-null Eddington-Finkelstein coordinates used

throughout this paper:

⟨T00⟩ =
e5ξ

ρ2∣∆r ∣
[⟨Tuu⟩ + ⟨Tvv⟩ + 2⟨Tuv⟩] , (6.41a)

⟨T11⟩ =
e−ξ

ρ2∣∆r ∣
[⟨Tuu⟩ + ⟨Tvv⟩ − 2⟨Tuv⟩ − 2Ωr (⟨Tuφ⟩ − ⟨Tvφ⟩) +Ω2

r⟨Tφφ⟩] , (6.41b)

⟨T01⟩ =
2e2ξ

ρ2∣∆r ∣
[⟨Tuu⟩ − ⟨Tvv⟩ −Ωr (⟨Tuφ⟩ + ⟨Tvφ⟩)] , (6.41c)

⟨T13⟩ =
eξ/2

ρ2
√
∣∆r ∣∆θ

[Ωθ (⟨Tuu⟩ + ⟨Tvv⟩ − 2⟨Tuv⟩) + (1 +ΩrΩθ) (⟨Tvφ⟩ − ⟨Tuφ⟩) +Ωr⟨Tφφ⟩] , (6.41d)

⟨T22⟩ =
e2ξ∆θ

ρ2 sin2θ
⟨Tθθ⟩, (6.41e)

⟨T33⟩ =
e2ξ

ρ2∆θ
[Ω2

θ (⟨Tuu⟩ + ⟨Tvv⟩ − 2⟨Tuv⟩) + 2Ωθ (⟨Tvφ⟩ − ⟨Tuφ⟩) + ⟨Tφφ⟩] . (6.41f)

Far enough away from the inner horizon, all components of the RSET should be completely negligible,

as they are suppressed by the Planck scale. Thus, everywhere outside the black hole as well as

inside when v is not large, a vacuum source should recover the standard Kerr solution with ξ = 0

and ∆r = (r2 + a2 − 2Mr)/(r2 + a2)2. However, in the weak backreaction domain, once the null

components of the RSET cease to be vanishingly small, Eqs. (6.41) indicate that the radial- and

time-components of the tetrad-frame Einstein tensor will begin to diverge as ∆−1r as one takes

∆r → 0.

Though the RSET components ⟨T−uv⟩, ⟨T−uφ⟩, and ⟨T−φφ⟩ have not been computed explicitly,
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one can make the assumption that their contributions to Eqs. (6.41) will be subdominant compared

to that of the double-null components, and more importantly, that they will not contrive to cause

any of the specific combinations in the equations above to cancel exactly. Even if they do, then the

classical mass inflation phenomenon described in Refs. [84, 85, 90] will take over the evolution and a

spacelike singularity will form. But based on the numerical results in Sec. 6.2.2, it is apparent that

⟨T −00⟩ and ⟨T−11⟩ are the dominant contributors to the evolution in the weak backreaction domain,

while the off-diagonal components ⟨T −01⟩ are also important but initially much smaller than their

diagonal counterparts (recall from Fig. 6.4 that the difference ⟨T−uu⟩ − ⟨T−vv⟩ is almost always several

orders of magnitude smaller than either individual component).

The Einstein tensor combination G00 +G11 for the tetrad frame of Eq. (6.38) can be written as

G00 +G11 = −
2∆r

ρ2
(∂2r∗ξ + (∂r∗ξ)

2 − 2∂r∗ ln(
ρ

1 −ΩrΩθ
)∂r∗ξ) + Frt, (6.42)

where the tortoise coordinate r∗ is defined by dr/dr∗ = e3ξR2∆r, and the function Frt encompasses

subdominant terms related to the precise nature of any classical accretion contributing to non-

stationary conformal dynamics.

The dominant term in Eq. (6.42) is the one involving the second derivative of the inflationary

exponent ξ [84]. Equating this term to the semiclassical source from Eq. (6.41), which behaves as

∆−1r near the inner horizon, yields after integration the approximate solution

∂r∗ξ ≈
8π

−∆r
(⟨T−uu⟩ + ⟨T−vv⟩ − 2Ωr(⟨T−uφ⟩ − ⟨T−vφ⟩) +Ω2

r⟨T −φφ⟩), (6.43)

as long as ξ remains smaller than its derivatives. In the regime where the double-null components

of the RSET dominate over the shearing components, Eq. (6.43) thus predicts that when the sum

⟨T −uu⟩ + ⟨T−vv⟩ is positive (negative), the spacetime’s conformal factor e−ξ will abruptly contract

(expand) as the inner horizon is approached at ∆r → 0−. These initial tendencies align precisely with

that of the spherically symmetric case, since ⟨T−uu⟩ + ⟨T−vv⟩ is usually the same sign as ⟨T−vv⟩.
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One can continue the evolution of the spacetime by examining the behavior of the dynamical

vierbein of Eqs. (6.40a)–(6.40d). Under the assumption that the fixed vierbein of Eqs. (6.39a)–(6.39d)

remains stable as the initial backreaction ignites the inflationary tendencies described above, the

geometry will be governed solely by a diagonal, dynamical, homogeneous line element sourced by

inflating streams of semiclassical matter. The classical counterpart of this analysis has already been

carried out in detail in Chapter 2, yielding the inflationary Kasner metric: as one might anticipate,

the streams of matter are amplified in energy density as ∆r plunges to zero and ξ increases rapidly.

Then, the spacetime undergoes a bounce as ∆r freezes out at a small value and the eξ/2 term in

Eq. (6.40b) takes over and causes a radial expansion. The solution works for both positive and

negative sources of stress-energy, generically producing a series of inflating Kasner-like bounces

toward a spacelike singularity.

Eventually, the approximations made in this section will break down, and the final evolution

of the geometry near the spacelike singularity must be relinquished to a higher-order theory of

quantum gravity. However, the results remain robust in the weak backreaction domain, and even

in the presence of additional non-negligible stress-energy sources not accounted for in the analysis

above, it has been shown [84] that the dominant double-null contributors to the geometry’s initial

inflation remain dominant to the next-highest order, as long as one still has ∣∆r ∣≪ ∂r∗ξ or ∂r∗ξ ≪ 1.

If anything, the semiclassical contribution to the classical mass inflation instability will cause the

conformally separable solution to break down faster than it otherwise would (due to the presence of

shearing terms that act to rotate the dynamical vierbein away from its initial configuration). But

numerical work in the classical case serves to indicate that even with such perturbations, the generic

result should still be a chaotic, BKL-like collapse toward a spacelike singularity [86].

6.3.4 Discussion

By now it is clear in the literature that quantum fields do not jive well with vacuum black

hole spacetimes. If the Kerr metric (the axisymmetric solution to Einstein’s equations for a rotating

black hole in an empty spacetime) is immersed within a scalar quantum field, then even if that field
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begins in an empty vacuum state, the gravitational collapse leading to the formation of the black

hole will cause a mixing of positive- and negative-frequency modes that leads to the spontaneous

production of particles. Usually, this semiclassical flux of particles will be suppressed on the order of

the Planck mass m2
P divided by the black hole’s mass M2, and the Kerr structure will remain intact,

but close enough to the inner horizon, this study confirms the conclusion of previous studies [103,

178] that semiclassical radiation will diverge at the Kerr inner horizon.

To understand how the Kerr geometry will react to the diverging quantum field near the

inner horizon, it is natural to work in the framework of the semiclassical Einstein field Eqs. (3.9),

wherein the spacetime’s curvature is sourced by the vacuum expectation value of the renormalized

stress-energy tensor (RSET) of the quantum field. The potential problems (mathematical, physical,

and philosophical) associated with such an approach have been debated again and again over the

years [2, 63, 104, 137], but it nonetheless remains true that the semiclassical approach is perfectly

valid as an effective field theory of quantum gravity, as long as the RSET remains below Planck-scale

energies (at 1019 GeV, which is already orders of magnitude above the grand unified scale, beyond

the point where every atomic nucleus has been dissociated and the very notion of particles and

interactions is called into question).

Here it is found that the RSET in double-null coordinates contains a non-zero component

⟨U ∣T̂vv ∣U⟩ren near the inner horizons of both spherical and rotating black holes, which, when converted

to coordinates that are regular across that horizon, yields an exponential divergence in the quantum

flux. Such behavior was also found in Refs. [103, 178]; the additional contributions here were to

compute more inner-horizon RSET components over the full parameter space (a, θ) (Fig. 6.6), find

the asymptotic behavior at both high and low black hole spins (Figs. 6.4, 6.5), and analyze the

backreaction that the RSET elicits.

The most striking feature of the inner-horizon RSET is that, in contrast to the classical case

(or even the semiclassical 2D case), the double-null components of the RSET can be either positive

or negative at different points along the inner horizon. The semiclassical Einstein equations then

suggest that as an initial tendency, the local geometry as one approaches the inner horizon will
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rapidly contract (expand) wherever ⟨T−vv⟩ is positive (negative).

In semiclassical backreaction analyses, the above statement is usually the end of the story.

Ref. [103] takes it one step further to show that in the inevitable regions where the local geometry

neither contracts nor expands, the vφ-component of the RSET will cause an initial tendency for the

geometry to undergo an infinite twisting. However, the question of whether anything more can be

ascertained from the RSET about the geometry’s evolution and the black hole’s final configuration is

either left to speculation or completely ignored, and for good reason—as soon as the inner horizon is

pushed even slightly away from its Kerr value, the Kerr vacuum RSET is no longer valid and a new

RSET in a more general spacetime would need to be found to continue the evolution any further.

Nonetheless, the goal of the current work is to provide a path forward to do exactly that, so that

one may determine whether or not the semiclassical inner-horizon instability generically leads to a

spacelike singularity.

The backreaction analysis of Sec. 6.3.3 employed the conformally separable framework of

Refs. [84–86, 90] to determine how semiclassical fluxes can be understood together with the classical

fluxes that lead to mass inflation near the inner horizon. One can immediately gather from the

presence of a non-vanishing RSET component ⟨T−rt⟩ = (⟨T−vv⟩ − ⟨T−uu⟩)R−2∆−1r that the semiclassical

backreaction drives the evolution away from many of the potential (meta)stable geometries proposed

as potential endpoints of black hole evolution, like the regular “eye of the storm” geometry or the Kerr

“black-bounce” geometry (see the end of Sec. 6.3.2). In contrast, the conformally separable model

generically predicts the presence of a strong, spacelike singularity that is stable over astrophysical

time scales.

In particular, in Sec. 6.3.3, the metric is generalized to allow for all the functions in the

Kerr line element of Eq. (6.26) to respond freely to the presence of semiclassical stress-energy. The

dominant evolution near the inner horizon comes from the horizon function ∆r(r) and the conformal

factor ρ(r, θ, t), and thus it becomes useful to analyze the spacetime in a tetrad frame rotated to

align with the principal null directions so that the ∆r- and ρ-dependent portions of the vierbein are

purely diagonal, Eqs. (6.40a)–(6.40d).
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In this Carter tetrad frame, the RSET’s dominant components are the diagonals ⟨T−00⟩ and

⟨T −11⟩, Eqs. (6.41), while the off-diagonal ⟨T−01⟩ also diverges as ∆−1r but is numerically seen to be

usually several orders of magnitude smaller than the diagonal components. As such, one is justified in

treating the initial semiclassical evolution with the inflationary Kasner spacetime of Chapter 2, which

uses precisely the dynamical vierbein of Eqs. (6.40a)–(6.40d) sourced by stress-energy components

T00 and T11. Eventually (or even initially, in the latitudes of infinite quantum twisting), this solution

will break down once the RSET’s angular components become non-negligible, but even once the

inflationary Kasner model breaks down, the full conformally separable model can still be continued

(albeit with less symmetry), as it has been shown to be robust for a wide variety of stress-energy

sources [84].

The advantage of the conformally separable model at describing the inner-horizon backreaction

is not only in its ability to encompass a wide range of behaviors related to the mass inflation

phenomenon, but also in its potential to take the semiclassical evolution even deeper. It is almost

miraculous that such a chaotic instability leads at least initially to a spacetime (the inflationary

Kasner metric) that is so simple, elegant, and possesses a high degree of symmetry. The RSET in

this new homogeneous spacetime should be relatively straightforward to compute, with the only

difficulty coming from mode-matching to the Kerr Unruh state (though the relevant mathematical

details have already been worked out in Ref. [89]). The renormalized vacuum polarization ⟨ϕ̂2⟩ren

has already been calculated in the inflationary Kasner spacetime in an adiabatic vacuum state

(Chapter 5), with the conclusion that the semiclassical contribution follows the same qualitative

behavior as the classical stress-energy.

It is time to take RSET calculations beyond vacuum black holes. From this work it can be

gleaned that the semiclassical inner-horizon instability causes the local Kerr spacetime to be filled

with diverging streams of radiation, and while this work provides evidence that those streams should

generically lead to an astrophysically stable, chaotic, spacelike singularity, their exact semiclassical

evolution remains an open but tractable question.



Chapter 7

Concluding Remarks

This thesis is a jam-packed conglomeration of six separate works published over the course of

four years. However, hopefully it is clear to any reader (whether skimming, seeking out sections of

interest, or analyzing everything with a fine-toothed comb) that these works are all brought together

under a central, unifying theme—astrophysical black holes cannot possess an inner horizon.

The thesis uses two physical frameworks to address the topic at hand: first, classical gravity as

described by Einstein’s theory of general relativity (Chapters 1–2), and second, semiclassical gravity

as described by one-loop quantum field theory over a curved spacetime (Chapters 3–6).

In the context of the framework of classical gravity, inner horizons are commonplace features

of black hole spacetimes in general relativity, and beyond these inner horizons one may expect to find

a regular star-like core, a timelike singularity, or even a wormhole to a new universe. However, the

analysis of Chapter 2 revealed that if a black hole is not empty but instead is subject to a constant,

tiny source of accretion (like the radiation penetrating every black hole in the current Universe),

the geometry near the would-be inner horizon will be replaced with the inflationary Kasner metric,

Eq. (2.5). This metric predicts the dynamical evolution of the spacetime through a mass inflation

stage (where the streams of fluid focus along the principal null directions and increase exponentially

in energy) into a collapse stage (where the geometry bounces and proceeds toward a spaghettifying,

Schwarzschild-like singularity). The phenomenon of mass inflation has been predicted as a robust

outcome since at least the early 1990s [154], but here it was shown that it is not the end of the

story—the mass inflation instability eventually stalls out and gives way to a BKL-like collapse toward
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a spacelike singularity, as a result of the continued presence of accretion.

In the context of the framework of semiclassical gravity, the goal was to understand what

quantum effects an inertial observer would experience as they fall into a black hole. The most obvious

effect is Hawking radiation, which, contrary to the common lore, will continue to be detected as a

bath of outgoing particles even after an observer falls below the event horizon. While the analysis of

Chapter 4 did not make use of a local particle picture and instead worked with the global scattering

framework originally used by Hawking [94], heuristically, one could imagine that particle-antiparticle

pairs are always being spontaneously produced from the quantum vacuum. Usually, these pairs

cannot exist on-shell because one member must have a (classically forbidden) negative energy, but

in the presence of a black hole interior where the global time coordinate becomes spacelike, energies

can be positive or negative, and Hawking pairs are free to roam as real radiation anywhere they

please. These particles become more and more numerous and energetic as one approaches the inner

horizon, until the effective Hawking temperature (defined in Sec. 3.2) diverges at the inner horizon.

Curiously, this effective temperature is negative, which was interpreted either as an indication that

the spectrum is ultraviolet-divergent in response to the blueshifting of modes, or as a consequence

of the fact that the spaghettifying tidal forces ripping apart Hawking pairs switch signs to become

“pancakifying” close enough to the inner horizon [122].

Though other important quantum effects were analyzed in this thesis, Hawking radiation was

the main semiclassical effect that deserved the most focus, as it had not previously been explored for

black hole interiors. The effective temperature formalism used in Sec. 4.2–4.4 clearly shows how the

perception of Hawking radiation changes along any inertial trajectory outside or inside a black hole,

and more conclusively, the full Bogoliubov coefficient calculations of Sec. 4.5 show how the entire

graybody spectrum of Hawking radiation will appear at each horizon.

Perhaps the most important semiclassical quantity analyzed in this thesis is the renormalized

stress-energy tensor of Chapter 6, since this quantity provides direct information about backreaction

and brings us one step closer to answering the deeper question of whether one can construct a

semiclassically self-consistent black hole model. The conclusion here is that such a model likely
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cannot contain an inner horizon, since such a hypersurface always appears to excite a quantum field’s

stress-energy content an infinite amount. However, it is still not known what the generic outcome of

this semiclassical instability will be—this thesis supports the conclusion that astrophysical black

holes will host chaotic, oscillatory, spacelike singularities (i.e., regions where ultraviolet-complete

theories of quantum gravity reign supreme) that remain semiclassically stable over cosmological

timescales, but since a fully self-consistent backreaction analysis is still nonexistent, one could also

imagine any number of other scenarios in which a black hole’s core becomes regularized or rapidly

evaporates from the inside out to form a compact, horizonless object.

Why care about these fascinating classical and quantum effects happening inside astrophysical

black holes? For the astronomer, we wish to understand what these objects whose gravitational and

radiative effects we observe actually are—should we be looking for compact, horizonless objects, does

the interior instability substantially modify the external parameters of the black hole, or is mass

inflation semiclassically stable so that the Kerr metric remains completely valid in all observable

portions of the spacetime?

For the high energy physicist, this semiclassical instability is a theoretical testbed that provides

one of our best chances for understanding quantum gravity. Particle energies close to the would-be

inner horizon can very quickly reach far above the grand unified scale, and yet these phenomena

have remained largely unexplored up to this point.

For the mathematician, a plethora of problems related to robust construction of an Unruh

state, the monodromy of confluent Heun eigenmodes, and the validity of the cosmic censorship

hypothesis still remain to be solved.

For the quantum information theorist, while great strides have been made toward understanding

the unitary of black hole systems as a whole and their connections to holography and computational

complexity, we still are lacking a firm answer as to what happens on the side of semiclassical physics.

And for the dreamer, the study of black hole interiors is bound to lead to new, unexpected

discoveries that will transform physics as we know it. Black holes, quantum vacuum fluctuations,

wormholes, and warp drives lie at the very forefront of the imagined world of science fiction, and my
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hope is that the analysis in this thesis of robust semiclassical effects in astrophysical models of black

holes has pushed some of these phenomena just a little bit closer to science reality.
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Appendix A

Inflationary Kasner viewing angles

This appendix defines and elaborates on the usage of the observer’s viewing angles χ and ψ

employed throughout Chapter 2. To determine the path of a null geodesic in a 3+1D spacetime

uniquely, one needs to specify at most two constants of motion. For the inflationary Kasner metric,

the spatial four-momentum components kx, ky, and kz uniquely label a null geodesic, but there is an

extra degree of freedom associated with an arbitrary normalization factor for the four momentum’s

magnitude. Thus, one can transform to a new set of constants that represents the celestial coordinates

for an observer in the inflationary Kasner tetrad frame. In particular, the viewing angle χ ∈ [0, π]

is defined to be the angle between the x1-axis and −kIK (negative since the observer is seeing the

photon reach the origin of their frame of reference), and ψ ∈ [0,2π) is the angle between the x2-axis

and the projection of −kIK onto the x2-x3 plane. These viewing angles are shown in Fig. A.1.

The definitions of the observer’s viewing angles and their relation to the spatial covariant

momenta via Eqs. (2.40) are given by

tanχ ≡

√
(−k2IK)

2 + (−k3IK)
2

−k1IK
=

√
k2y + k2z
−kx

aobs
1

aobs
2

, (A.1a)

tanψ ≡
−k3IK
−k2IK

= −kz
−ky

, (A.1b)
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Figure A.1: Definition of the viewing angles χ and ψ with respect to the tetrad frame axes x1, x2,
and x3, for a photon with tetrad-frame four-momentum km̂.

or equivalently,

kx = −Eaobs
1 cosχ, (A.2a)

ky = −Eaobs
2 sinχ cosψ, (A.2b)

kz = −Eaobs
2 sinχ sinψ, (A.2c)

where aobs
1 and aobs

2 are the values of the scales factors from Eq. (2.6) at time T = Tobs, and E is

some positive normalization factor (the additional degree of freedom mentioned earlier).

Physically, the x1-axis of the tetrad frame is parallel to the principal null directions of the

black hole, and the x2-axis points in the θ̂ direction. When χ = 0○, the observer is looking along

the positive x1-axis, away from the black hole, at ingoing photons. When ψ = 0○ and χ = 90○, the

observer is looking straight down along the positive x2-axis, in the θ̂ direction. Geodesics with

constant Boyer-Lindquist latitude are then given by ψ = 90○ and ψ = 270○.

When matching the tetrad-frame four-momenta of the inflationary Kasner solution with the

Kerr solution at a Boyer-Lindquist radius of r = r1, one can find the relation between the observer’s

viewing angles and the Kerr orbital parameters defined by Eqs. (2.42). Inverting Eqs. (2.46) and
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combining with Eqs. (A.1) yields

tanχ =
√
K(−∆r)
E − ωrL

aobs
1

aobs
2

, (A.3a)

sinψ = ωθE −L√
K∆θ

. (A.3b)

This relation holds for viewing angles defined for an observer in the interior Carter frame, within

the event horizon. Outside the event horizon, the exterior Carter observer also possesses a set of

viewing angles (χ,ψ), still defined by Fig. A.1. However, those angles’ relations to the Kerr orbital

parameters will differ from the interior case, since the interior Carter frame differs from the exterior

frame of Eqs. (2.35) in the swapping of e0µ ↔ e1µ and
√
−∆r ↔

√
+∆r. In the Kerr exterior, the

viewing angles are related to the Kerr parameters by

sinχ =
√
K∆r

E − ωrL
, (A.4a)

sinψ = ωθE −L√
K∆θ

. (A.4b)

The interior versus exterior region also differs in how the Mollweide projection of the observer’s

sky is defined, with reference to Figs. 2.6 and 2.7. In the exterior region outside the event horizon, it

is natural to choose the −x1 direction (χ = 180○) for the center of the projection, since it corresponds

to the direction toward the center of the black hole. However, in the interior region, it is more

natural to choose the −x3 direction (χ = 90○, ψ = 270○) for the center of the projection, so that the

black hole’s shadow occupies the lower half of the field of view and the sky occupies the upper half,

so as to coincide with the general notion of “uprightness” as perceived on Earth.

In terms of the Mollweide projection’s latitude φ ∈ [−π
2 ,

π
2 ] and longitude λ ∈ [−π,π) for
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Figs. 2.6 and 2.7, defined by

φ = sin−1( 2
π
(y
√
1 − y2 + sin−1y)) , (A.5a)

λ = π
2

x√
1 − y2

, (A.5b)

where x ∈ [−2,2] and y ∈ [−1,1], the viewing angles in the Kerr exterior are given by

tanχ =
√
sin2φ + cos2φ sin2λ

− cosφ cosλ
, (A.6a)

tanψ = tanφ

sinλ
, (A.6b)

and the viewing angles in the Kerr interior are given by

χ = π
2
− φ, (A.7a)

ψ = (3π
2
− λ)mod 2π. (A.7b)

For reference, Fig. A.2 shows the χ − ψ coordinate grid for both the interior and exterior

Mollweide projection views of Figs. 2.6 and 2.7.

(a) (b)

Figure A.2: Coordinate grid of the viewing angles χ and ψ on a Mollweide projection of the full field
of view of an exterior (a) and interior (b) Carter observer. Lines of constant ψ are equally spaced at
15○ intervals from ψ = 0○ (red) to ψ = 360○ (blue), and lines of constant χ are equally spaced at 15○

intervals from χ = 0○ (yellow) to χ = 180○ (cyan).



Appendix B

Backscattering coefficients via confluent Heun functions

In this Appendix we outline the methodology to compute the backscattering coefficients used

in Sec. 4.5.1 to find the graybody factors associated with the Reissner-Nordström Hawking spectrum

at infinity, the event horizon, and the inner horizon. Eqs. (4.122)−(4.124) provide the boundary

conditions for the observer’s backscattered mode functions in terms of the reflection coefficients

R±int,ext and transmission coefficients T ±int,ext, where the subscript labels whether the scattering occurs

in the black hole’s interior (“int”) or exterior (“ext”), and the superscript labels whether the modes

are outgoing (+) or ingoing (−) prior to backpropagation, at the future null surface in the relevant

spacetime sector. Conservation of the Wronskian dictates that these coefficients satisfy the following

normalization conditions:

∣T ±int∣
2 − ∣R±int∣

2 = 1, (B.1a)

∣T ±ext∣
2 + ∣R±ext∣

2 = 1, (B.1b)

which will provide a check to ensure the accuracy of the numerical scheme. The negative sign

associated with R±int in Eq. (B.1a) is due to the fact that the corresponding substates have a negative

norm; the scattering potential inside the black hole allows for the existence of both the observer’s

original modes exp(−iωr∗) (positive frequency with respect to the timelike coordinate r∗) and the

anomalous modes exp(+iωr∗).

The backscattering coefficients can be calculated either by implementing an implicit numerical
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ODE method to solve the Klein-Gordon wave Eq. (4.114), or by matching analytic solutions to that

equation. Here we will explore the latter option.

Instead of the mode separation of Eq. (4.113), the Klein-Gordon scalar field can be separated

as

ϕωℓm =
Rωℓ(r) e±iωt Yℓm(θ,φ)√

4πω
, (B.2)

with the upper (+) sign in the exponential for the outgoing modes observed at the right leg of the

inner horizon (which can be written as intR+ob) and the lower (−) sign for both the ingoing modes

observed at the left leg of the inner horizon (intR−ob) as well as the outgoing modes observed at future

null infinity (extR+ob). In terms of the modes of Eq. (4.114), Rωℓ and fωℓ are related by

fωℓ(t, r) = rRωℓ(r) e±iωt. (B.3)

The Klein-Gordon wave equation for the spatial modes Rωℓ, or equivalently, the wave Eq. (4.114)

for fωℓ, contains three singular points throughout the spacetime, which occur whenever r∗ → ±∞.

Two of these are the regular singularities located at the inner and outer horizons, and the third is an

irregular, rank-1 singularity at spatial infinity. This structure suggests that the wave equation can

be cast into confluent Heun form: first, apply a Möbius transformation to define the new coordinate

z ≡ r − r−
r+ − r−

(B.4)

so that the singular points are shifted from r = (r−, r+,∞) to z = (0,1,∞). Then, apply a gauge

transformation to the field variable that keeps the singular points fixed (such a shift in the Frobenius

solution indices is known as an F -homotopic transformation):

R(z) = z
γ−1
2 ∣z − 1∣

δ−1
2 e

ε
2
z Z(z), (B.5)
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so that the Klein-Gordon wave Eq. (3.11) reduces to:

d2Z

dz2
+ (γ

z
+ δ

z − 1
+ ε) dZ

dz
+ (q

z
+ α − q
z − 1

)Z = 0 (B.6)

provided

q = ℓ(ℓ + 1) + 2iω r+r−
r+ − r−

− 4ω2r2− + 4ω2 ( r+r−
r+ − r−

)
2

, (B.7a)

α = −2iω(r+ − r−) − 4ω2r2−, (B.7b)

γ = 1 − 2iω r2−
r+ − r−

, (B.7c)

δ = 1 − 2iω r2+
r+ − r−

, (B.7d)

ε = −2iω(r+ − r−). (B.7e)

For the more general Kerr-Newman case, the corresponding version of these parameters can be

inferred from, e.g. Ref. [174]. Also, note that the signs of the three exponents in Eq. (B.5) can be

either positive or negative, corresponding either to outgoing or ingoing waves at each of the singular

points. Regardless of this gauge choice, both ingoing and outgoing modes will always be recovered

by the choice of linear combinations of modes for Z(z).

Two linearly independent solutions to Eq. (B.6) that are regular at the inner horizon are given

via confluent Heun functions for the equation’s allowed F -homotopic automorphisms:

Z(0)(z) = A(0)ZA
(0)(z) +B(0)Z

B
(0)(z), (B.8a)

ZA
(0)(z) = HeunC (q,α, γ, δ, ε; z) , (B.8b)

ZB
(0)(z) = z

1−γHeunC (q′, α′,2 − γ, δ, ε; z) , (B.8c)
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with arbitrary complex coefficients A(0) and B(0), with the definitions

q′ = q − (δ − ε)(1 − γ), (B.9a)

α′ = α + ε(1 − γ), (B.9b)

and with the functions’ argument structure following the convention used in Mathematica, which has

newly implemented Heun functions in version 12.1. These negative- and positive-frequency solutions

can be computed with a forwardly stable set of power series that are convergent everywhere except

at the singular points z = 1,∞ and are linearly independent except when γ = 1, in which case the

factor z1−γ can be replaced with ln(z).

As a reminder, the goal here is to compute the values of the reflection and transmission

coefficients R±int,ext and T ±int,ext, which can be used to calculate the observed spectra of Eq. (4.147).

These coefficients are tied to the asymptotic forms of the field modes given in Eqs. (4.122)−(4.124),

which in the present notation take the form

extR+ob(z)→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eiωr−

r+−r− e
iω(r+−r−)z ∣z∣2iω−1 +R+ext

e−iωr−

r+−r− e−iω(r+−r−)z ∣z∣−2iω−1, z →∞

T +ext
eiωr+

r+
∣z − 1∣iω

r2+
r+−r− , z → 1

0, z → 0

, (B.10a)

intR+ob(z)→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R+intT −ext
eiωr−

r+−r− e
iω(r+−r−)z ∣z∣2iω−1, z →∞

R+int
eiωr+

r+
∣z − 1∣iω

r2+
r+−r− + (T +int +R+intR−ext) e−iωr+

r+
∣z − 1∣−iω

r2+
r+−r− , z → 1

e−iωr−

r−
∣z∣iω

r2−
r+−r− , z → 0

, (B.10b)

intR−ob(z)→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T −intT −ext
e−iωr−

r+−r− e−iω(r+−r−)z ∣z∣−2iω−1, z →∞

T −int
e−iωr+

r+
∣z − 1∣−iω

r2+
r+−r− + (R−int + T −intR−ext) eiωr+

r+
∣z − 1∣iω

r2+
r+−r− , z → 1

e−iωr−

r−
∣z∣iω

r2−
r+−r− , z → 0

. (B.10c)



263

Here the integration constant for the tortoise coordinate r∗ of Eq. (4.5) is chosen so that

r∗ = r + r2+
r+ − r−

ln ∣z − 1∣ − r2−
r+ − r−

ln ∣z∣ . (B.11)

Asymptotically, the modes of Eq. (B.8) at the inner horizon (z = 0) reduce to

R(z)→ A(0)z
− 1−γ

2 +B(0)z
1−γ
2 , z → 0, (B.12)

since the confluent Heun functions are normalized to unity when the independent variable equals

zero, provided γ is not a nonpositive integer. This asymptotic form can then be matched to the

modes of Eq. (B.10) to find expressions for A(0) and B(0). One obtains A(0) = 0 for all three sets

of modes in Eq. (B.10), since by definition the inner horizon observer only sees positive frequency

waves there. For the interior observer modes intR±ob(z), B(0) = exp(−iωr−)/r−, while the exterior

observer modes extR+ob(z) are only defined for z ≥ 1 and must be treated separately.

Unfortunately, analytic asymptotic forms for the modes of Eq. (B.8) are not known at the

spacetime’s two other singular points. An explicit solution to the central two-point connection

problem for confluent Heun functions is still outstanding and is directly related to the inverse of

Hilbert’s 21st problem; currently, analytic forms of the monodromy matrices have only been found

for the reduced confluent Heun equation with ε = 0 [101].

Thus, we proceed by defining a new set of local Heun modes at each singular point and

numerically matching their coefficients via the algorithm set forth in Ref. [133].

At the event horizon (z = 1), a set of regular, linearly independent solutions to Eq. (B.6) that

are convergent everywhere except at the singular points z = 0,∞ can be written as:

Z(1)(z) = A(1)ZA
(1)(z) +B(1)Z

B
(1)(z), (B.13a)

ZA
(1)(z) = HeunC (q − α,−α, δ, γ,−ε; 1 − z) , (B.13b)

ZB
(1)(z) = (1 − z)

1−δHeunC (q′ − α′,−α′,2 − δ, γ,−ε; 1 − z) , (B.13c)
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with arbitrary complex coefficients A(1) and B(1), and with the definitions

q′ = q − γ(1 − δ), (B.14a)

α′ = α + ε(1 − δ). (B.14b)

Asymptotically, the modes of Eq. (B.13) at the event horizon (z = 1) reduce to

R(z)→ e
ε
2 ∣z − 1∣−

1−δ
2 (A(1) +B(1)(1 − z)1−δ) , (B.15)

which leads to the matching

extA+(1) = 0,

extB+(1) = T
+
ext

eiω(2r+−r−)

r+
; (B.16a)

intA+(1) = (T
+
int +R+intR−ext)

e−iωr−

r+
,

intB+(1) =R
+
int

eiω(2r+−r−)

r+
; (B.16b)

intA−(1) = T
−
int

e−iωr−

r+
,

intB−(1) = (R
−
int + T −intR−ext)

eiω(2r+−r−)

r+
; (B.16c)

for each respective set of modes; i.e., the coefficients from Eq. (B.13) for ext,intR±ob are labeled

ext,intA±(1) and ext,intB±(1). Eqs. (B.16) are strictly only valid for z < 1; for the exterior (z > 1), an

additional factor of exp[2πωr2+/(r+ − r−)] must be included in the right-hand side of the equations

for each of the B coefficients to account for the lack of absolute values in the trailing factor of

Eq. (B.15).

At some point z∗ in the interior (we take z∗ = 0.5 for simplicity), both Eqs. (B.8) and (B.13)

provide regular solutions to the wave Eq. (B.6). One can convert between them with the respective
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linear systems

ZA,B
(1) (z∗) = C

A,B
A ZA

(0)(z∗) +C
A,B
B ZB

(0)(z∗), (B.17a)

(ZA,B
(1) )

′(z)∣
z∗
= CA,B

A (ZA
(0))

′(z)∣
z∗
+CA,B

B (ZB
(0))

′(z)∣
z∗
. (B.17b)

The functions ZA
(0)(z∗), Z

B
(0)(z∗), Z

A
(1)(z∗) and ZB

(1)(z∗) can be computed numerically, and therefore

the constants CA
A , CB

A , CA
B , and CB

B can also be computed. Once these constants are known, the total

eigenmodes Z(0)(z) and Z(1)(z) can be matched to solve for each of the backscattering coefficients:

A(0) = A(1)CA
A +B(1)CB

A , (B.18a)

B(0) = A(1)CA
B +B(1)CB

B . (B.18b)

Once the backscattering coefficients connecting z = 0 to z = 1 are known, a similar process will yield

the coefficients connecting z = 1 to z =∞. As z approaches infinity, the confluent Heun solutions to

Eq. (B.6) asymptotically (in a sector) take the form

Z(∞)(z) = A(∞)ZA
(∞)(z) +B(∞)Z

B
(∞)(z), (B.19a)

ZA
(∞)(z) = z

−α
ε , (B.19b)

ZB
(∞)(z) = e−εzz

α
ε
−γ−δ, (B.19c)

with arbitrary complex coefficients A(∞) and B(∞). Comparison with the asymptotic forms of

Eq. (B.10) reveals the following matched values for these coefficients:

extA+(∞) =R
+
ext

e−iωr−

r+ − r−
,

extB+(∞) =
eiωr−

r+ − r−
; (B.20a)

intA+(∞) = 0,

intB+(∞) =R
+
intT −ext

eiωr−

r+ − r−
; (B.20b)
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intA−(∞) = T
−
intT −ext

e−iωr−

r+ − r−
,

intB−(∞) = 0, (B.20c)

where the coefficient notation is the same as in Eq. (B.16).

For some sufficiently large radial coordinate z = z∗ (heuristically found to be z∗ = 18/(ω
√
1 −Q2)

is more than sufficient to ensure convergence at machine-level precision), both Eqs. (B.13) and (B.19)

satisfy the wave Eq. (B.6), and so the two sets of solutions can be matched. One has the system

ZA,B
(1) (z

∗) =DA,B
A ZA

(∞)(z
∗) +DA,B

B ZB
(∞)(z

∗), (B.21a)

(ZA,B
(1) )

′(z)∣
z∗
=DA,B

A (ZA
(∞))

′(z)∣
z∗
+DA,B

B (ZB
(∞))

′(z)∣
z∗

(B.21b)

to solve for the constantsDA
A, DB

A , DA
B , andDB

B , which can then be used to solve for the backscattering

coefficients with the system

A(∞) = A(1)DA
A +B(1)DB

A , (B.22a)

B(∞) = A(1)DA
B +B(1)DB

B . (B.22b)

Altogether, the relevant backscattering coefficients can be written as follows (note that multiple

variations to the below equations are possible based on implicit relations between and among the C

and D coefficients):

T +ext =
r+

r+ − r−
1

DB
B

e−2iω(r+−r−)−πω/κ+ , (B.23a)

T −ext =
r+ − r−
r+

D̃

DB
B

, (B.23b)

R+ext =
DB

A

DB
B

e2iωr− , (B.23c)

R−ext = −
DA

B

DB
B

e−2iωr+−πω/κ+ , (B.23d)
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T +int = −
r+
r−

CB
AD

B
B −CA

AD
A
B e−4iωr+−πω/κ+

C̃DB
B

, (B.23e)

T −int = −
r+
r−

CB
A

C̃
, (B.23f)

R+int =
r+
r−

CA
A

C̃
e−2iωr+ , (B.23g)

R−int =
r+
r−

CA
AD

B
B −CB

AD
A
B

C̃DB
B

e−2iωr+ , (B.23h)

where

C̃ ≡ CA
AC

B
B −CB

AC
A
B , (B.24)

D̃ ≡DA
AD

B
B −DB

AD
A
B. (B.25)

The resulting numerical values of the backscattering coefficients are used to calculate the Hawking

spectra of Fig. (4.14).
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Evaluation of Bogoliubov coefficient scalar products

In this Appendix, details are given for the calculation of the inner products of Eqs. (4.115) and

(3.21) leading to the number operators of Eqs. (4.147). Focus will be placed on the scalar (spin-0)

case, though the final result holds true for any integer-spin modes.

For the scalar product along past null infinity (I −), where the ingoing Eddington-Finkelstein

coordinate v runs from −∞ to ∞, one may choose

dΣ nµ
√
−gΣ ∂µ = dvd(cos θ)dφR2∂v, (C.1)

while for the scalar product along the past horizon (Hpast = Hext
past ∪Hint

past), where the outgoing

Kruskal-Szekeres coordinate U runs from −∞ to 0 in the interior and from 0 to ∞ in the exterior,

one has

dΣ nµ
√
−gΣ ∂µ = dUd(cos θ)dφ+R2

+∂U . (C.2)

The modes to be evaluated along these null hypersurfaces are those of the emitter:

ϕem →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eim̄φSω̄
ℓ̄m̄
(θ)

√
4πω̄R

e−iω̄v, I −

eim̄φ+Sω̄
ℓ̄m̄
(θ)

√
4πω̄R+

e−iω̄U , Hpast

, (C.3)

and those of one of four classes of observers, initialized either at infinity, at the event horizon, or at
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the left or right leg of the inner horizon:

ϕob →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ŝv
e±imφSω

ℓm(θ)√
4πωR

e∓iω̂v, I −

Ŝuext

e±imφ+Sω
ℓm(θ)√

4πωR+
e∓i(ω̂−mΩ+)u, Hext

past

Ŝuint

e±imφ+Sω
ℓm(θ)√

4πωR+
e∓i(ω̂−mΩ+)u, Hint

past

, (C.4)

where the upper sign corresponds to the observer modes extϕ+ob,
extϕ−ob, and intϕ−ob, the lower sign

corresponds to the observer modes intϕ+ob, and where quantities with hats also take on different forms

for each family of observers:

extϕ+ob,ω ∶ ω̂ = ω, Ŝv =R+ext,ω, Ŝuext = T +ext,ω, Ŝuint = 0,

extϕ−ob,ω ∶ ω̂ = ω +mΩ+, Ŝv = T −ext,ω, Ŝuext =R−ext,ω, Ŝuint = 0,

intϕ−ob,ω ∶ ω̂ = ω +mΩ−, Ŝv = T −int,ωT −ext,ω, Ŝuext = T −int,ωR−ext,ω, Ŝuint =R
−
int,ω,

intϕ+ob,ω ∶ ω̂ = ω +mΩ−, Ŝv =R+int,ωT −ext,ω, Ŝuext =R+int,ωR−ext,ω, Ŝuint = T
+
int,ω. (C.5)

Due to the orthogonality of the spheroidal harmonics, the angular pieces can be integrated

out to yield Kronecker δ functions between the observer’s and emitter’s mode numbers ℓ and m.

Then one has (where the ± sign is once again defined as above)

⟨ϕem∣ϕ̂*
ob⟩ =

δℓ̄ℓδ(±m̄)m

4πi
√
ωω̄
(Ŝv ∫

∞

−∞
dv e−iω̄v

↔
∂ ve∓iω̂v

+ Ŝuext ∫
0

−∞
dU e−iω̄U

↔
∂Ue∓i(ω̂−mΩ+)u

+ Ŝuint ∫
∞

0
dU e−iω̄U

↔
∂Ue∓i(ω̂−mΩ+)u). (C.6)

In evaluating the bidirectional derivative defined by ψ
↔
∂µϕ ≡ ψ∂µϕ − ϕ∂µψ, the terms in the second

and third lines of Eq. (C.6) that have the form ∂Ue∓i(ω̂−mΩ+)u can be simplified through integration
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by parts, yielding a surface term that can be safely discarded:

⟨ϕem∣ϕ̂*
ob⟩ =

δℓ̄ℓδ(±m̄)m

4π
√
ωω̄
((ω̄ ∓ ω̂)Ŝv ∫

∞

−∞
dv e−i(ω̄±ω̂)v

+ 2ω̄Ŝuext ∫
0

−∞
dU e−i(ω̄U±(ω̂−mΩ+)u)

+ 2ω̄Ŝuint ∫
∞

0
dU e−i(ω̄U±(ω̂−mΩ+)u)). (C.7)

The observed number operator ⟨N̂⟩ωℓm can now be evaluated via Eq. (4.115) by taking the square of

the complex conjugate of Eq. (C.7) and summing over all emitter modes. The integral in the first

line of Eq. (C.7) reduces to a Dirac δ function that either vanishes (upper sign) or leaves a small

additive factor (lower sign)—these values can be ascertained by noting that the emitter’s modes ϕem

are normalized along past null infinity as

⟨ϕωℓmem ∣ϕω̄ℓ̄m̄em ⟩ = −⟨ϕωℓm*
em ∣ϕω̄ℓ̄m̄*

em ⟩ = δ(ω − ω̄)δℓℓ̄δmm̄,

⟨ϕωℓmem ∣ϕω̄ℓ̄m̄*
em ⟩ = 0. (C.8)

The integrals in the second and third lines of Eq. (C.7), on the other hand, are the origin of the

Planckian distribution. Using the definition of U from Eq. (4.16), these can be evaluated in terms of

Γ functions [20]. The resulting number operator can then be found after taking the modulus squared:

⟨N̂⟩ωℓ{±m} =
1

4π2ω
∫
∞

0
dω̄ ω̄ ∣ { 0

2πŜvδ(ω̄ − ω̂)
} + (Ŝuext + (−1)−zŜuint)Γ(z)(−iω̄)

−zκz−1+ ∣
2

, (C.9)

where we have defined the quantity

z ≡ 1 ± i(ω̂ −mΩ+)
κ+

. (C.10)
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The squared modulus of Eq. (C.9) can be simplified by the property

∣Γ (1 + bi)∣2 = πb

sinh(πb)
. (C.11)

First, consider the upper sign of Eq. (C.9), corresponding to the observer modes extϕ+ob, extϕ−ob, and

intϕ−ob (i.e., all modes except those originating from an outgoing observer at the inner horizon, who

has exp(iωt) instead of exp(−iωt)). Then, assuming the frequencies ω̂ and ω̄ are strictly positive, the

first term in the integrand of Eq. (C.9) will vanish, and the observed number operator will simplify

to

⟨N̂⟩ωℓm =
ω̂ −mΩ+

ω

∣Ŝuext − e
π
κ+
(ω̂−mΩ+)Ŝuint ∣

2

e
2π
κ+
(ω̂−mΩ+) − 1

∫
∞

0

dω̄

2πκ+ω̄
. (C.12)

The integral over the emitter’s frequency modes in the second line of Eq. (C.12) diverges, but

such behavior is not a problem and is actually to be expected. The divergence originates from the

use of continuum-normalized plane waves to initialize the modes detected over an entire Cauchy

hypersurface, which inevitably leads to an infinite amount of Hawking radiation reaching an observer

throughout the infinite amount of time left in the future. If instead of plane waves, a more physically

realistic choice is used to represent the observer’s modes, such as a finite wave packet distribution,

then the resulting integral will be regularized and the integral in Eq. (C.12) will reduce to unity

[61]. In particular, one may model the observer as a particle detector sensitive only to frequencies

within a small ϵ of ω ∼ jϵ ∼ (j + 1)ϵ, which is turned on at a time u = 2πn/ϵ for a duration 2π/ϵ (for

integers j and n). Then the observer’s modes will appear as

ϕreg
ob =

1√
ϵ
∫
(j+1)ϵ

jϵ
dω e2πiωn/ϵϕob. (C.13)

At late times (large n), the above expression will yield exactly the first line of Eq. (C.12), with the

remaining terms on the second line reducing to unity. This expression for the expectation value of

the number operator ⟨N̂⟩ωℓm reproduces Eqs. (4.147a)–(4.147c) after substituting the respective

observer quantities from Eqs. (C.5).
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Finally, consider the lower sign of Eq. (C.9), corresponding to the observer modes intϕ+ob. As

in the previous case, it will be helpful to consider a wave-packet version of the observer’s modes,

since the integral over the complex square modulus of a Dirac delta distribution must be regularized

in some meaningful way.

For the portion of the observer’s modes along past null infinity, performing the integral of

Eq. (C.13) gives

ϕreg
ob ∝ Ŝv

√
ϵ

vϵ
2 + nπ

ei
vϵ
2
(2j−1) sin(vϵ

2
) . (C.14)

The Fourier transform of these modes over the emitter’s frequency yields the inner product

⟨ϕem∣ϕ̂reg*
ob ⟩I − = δℓ̄ℓδ(−m̄)mŜv

√
ω̄

ω

e2πiω̄n/ϵ√
ϵ

(C.15)

in the frequency range (j − 1)ϵ < ω̄ < jϵ, and 0 everywhere else. Once this quantity’s complex modulus

is squared and summed over the emitter’s modes, a constant term will remain of the form

(2j − 1)ϵ
2ω

Ŝv ∼
ω̂

ω
Ŝv, (C.16)

since for small ϵ the quantity jϵ is precisely the observer’s frequency ω̂ back-propagated to past null

infinity. Thus, the number operator of Eq. (4.115) for an outgoing observer at the inner horizon

reduces to

⟨N̂⟩ωℓ(−m) = −
ω̂ −mΩ+

ω

∣Ŝuext − e−
π
κ+
(ω̂−mΩ+)Ŝuint ∣

2

e−
2π
κ+
(ω̂−mΩ+) − 1

+ ω̂
ω
Ŝv. (C.17)

Note that in principle Eq. (C.17) will contain an additional cross term when the complex modulus

of Eq. (C.9) is squared, which can be expressed in terms of incomplete gamma functions. However,

in the late-time limit of large n, this term and its complex conjugate become negligibly small and

thus are not included here.

The expression in Eq. (C.17) for the expectation value of the number operator ⟨N̂⟩ωℓm

reproduces Eq. (4.147d) after substituting the respective observer quantities from Eqs. (C.5).
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Deriving the effective temperature as a rate of redshift

The starting point for calculating the effective temperature κeff (defined in Sec. 3.2) as the

rate of redshift in some spacetime is to specify a metric gµν and a set of coordinates xµ. If an

observer follows along some geodesic parametrized by xµ, then one can solve the geodesic equations

to find the observer’s 4-velocity, uµ ≡ dxµ/dτ , in terms of the coordinates and the set of conserved

quantities associated with each geodesic. Similarly, one can find the components of a photon’s

energy-momentum kµ ≡ dxµ/dλ as it travels along a null geodesic in the spacetime.

The quantities uµ and kµ are defined in a coordinate basis, with vectors ∂µ such that ∂µ ⋅∂ν = gµν ,

but to understand what the observer sees, it will be necessary to define a set of orthonormal vector

fields to specify a reference frame. These vectors, known as tetrads and denoted γm̂, satisfy the

condition γm̂ ⋅ γn̂ = ηm̂n̂ (i.e., the observer’s reference frame is locally flat) and are related to the

coordinate basis vectors eµ via a transformation matrix em̂µ known as a vierbein. One can always

construct a vierbein directly from the line element, through the identity

ds2 = gµνdxµdxν = ηm̂n̂e
m̂
µe

n̂
νdx

µdxν . (D.1)

In the simplest case that the metric is diagonal, the vierbein is simply a diagonal matrix with each

element given by the square root of the corresponding metric component.

Here and following, abstract indices for quantities in a coordinate basis are given by lowercase

Greek letters, while abstract indices for quantities in a tetrad basis are given by Latin letters with
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carets. Indices for specific components of vectors in the coordinate basis are given using standard

notation (e.g., (t, x, y, z) or (t, r, θ,φ)), while indices for specific components of vectors in the tetrad

basis are given by numerals (0,1,2,3).

Once a vierbein is specified, the observer’s 4-velocity and the photon’s energy-momentum can

be specified in the tetrad frame, as

um̂ = em̂µuµ, km̂ = em̂µkµ. (D.2)

In the observer’s own tetrad rest frame (which will be denoted with a subscript “ob”), the observer

by definition has 4-velocity um̂ob = (1,0,0,0). The relation between this frame and the coordinate

frame can be found by performing a series of Lorentz transformations (and note that the following

assumes that all spatial components are nonzero—if u3 = 0, for example, the rotation in Eq. (D.4)

can be omitted):

First, transform um̂ → (um̂)′ by rotating counterclockwise about the x2 axis (in the x1-x3

plane) by an angle φ into a frame that satisfies the condition (u3)′ = 0:

(u0)′ = u0, (u1)′ = cos(φ)u1 + sin(φ)u3, (u2)′ = u2, (u3)′ = − sin(φ)u1 + cos(φ)u3. (D.3)

Requiring (u3)′ = 0 leads to the following expressions for the pitch angle φ and the new x1-component

of the 4-velocity:

tan(φ) = u
3

u1

Ô⇒ (u0)′ = u0, (u1)′ = u1
¿
ÁÁÀ1 + (u

3)2
(u1)2

, (u2)′ = u2, (u3)′ = 0.
(D.4)

Next, transform (um̂)′ → (um̂)′′ by rotating counterclockwise about the x3 axis (in the x1-x2 plane)
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by an angle ϑ into a frame that satisfies the condition (u2)′′ = 0:

(u0)′′ = (u0)′, (u1)′′ = cos(ϑ)(u1)′ − sin(φ)(u2)′,

(u2)′′ = sin(ϑ)(u1)′ + cos(ϑ)(u2)′, (u3)′′ = (u3)′.
(D.5)

Requiring (u2)′′ = 0 leads to the following expressions for the yaw angle ϑ and the new components

of the 4-velocity:

tan(ϑ) = − u2

u1
√

1 + (u
3)2

(u1)2

Ô⇒ (u0)′′ = u0, (u1)′′ = u1
¿
ÁÁÀ1 + (u

3)2
(u1)2

¿
ÁÁÀ1 + (u2)2

(u1)2 + (u3)2
, (u2)′′ = 0, (u3)′′ = 0.

(D.6)

Finally, transform (um̂)′′ → um̂ob by boosting into the observer’s rest frame, where u1ob = 0:

u0ob = γ(u
0)′′ − βγ(u1)′′, u1ob = γ(u

1)′′ − βγ(u0)′′, u2ob = (u
2)′′, u3ob = (u

3)′′. (D.7)

Requiring u1ob = 0 leads to the following expressions for the boost parameter β (which also gives the

Lorentz factor γ ≡ (1 − β2)−1/2) and the new components of the 4-velocity:

β = u
1

u0

¿
ÁÁÀ1 + (u

3)2
(u1)2

¿
ÁÁÀ1 + (u2)2

(u1)2 + (u3)2
= sgn(u1)

√
(u0)2 − 1
u0

u0ob = 1, u1ob = 0, u2ob = 0, u3ob = 0,

(D.8)

where u0ob simplifies to 1 when the condition um̂um̂ = −1 is applied, given u0 is positive.

What does the photon’s energy-momentum look like in the observer’s rest frame? Perform the

same process, beginning with the tetrad-frame energy-momentum km̂, rotating around the x2-axis

by the angle φ defined above, rotating around the x3-axis by the angle ϑ defined above, and boosting
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in the x1-direction by β defined above. The result can be simplified to the following:

k0ob = k
0u0 − k1u1 − k2u2 − k3u3,

k1ob = sgn(u1)
k0 − k0obu

0

√
(u0)2 − 1

,

k2ob =
k2 ((u1)2 + (u3)2) − u2 (k1u1 + k3u3)

√
(u0)2 − 1

√
(u1)2 + (u3)2

,

k3ob = sgn(u1) k3u1 − k1u3√
(u1)2 + (u3)2

.

(D.9)

From km̂ob, one can find both the frequency of the photon and the observer’s viewing angles of the

photon. The frequency ωob is simply the x0-component of the photon energy-momentum seen by

the observer (ωob ≡ k0ob), since E = h̵ω and h̵ = 1:

ωob = −km̂um̂. (D.10)

The viewing angles (χ,ψ) at which the observer detects the photon are defined as follows:

tan(χ) ≡
k3ob
k1ob

, tan(ψ) ≡

√
(k1ob)

2 + (k3ob)
2

k2ob
,

k1ob = ωob sin(ψ) cos(χ), k2ob = ωob cos(ψ), k3ob = ωob sin(ψ) sin(χ)

(D.11)

(note that these viewing angles, used in Chapter 4 for the Carter observers in the Kerr spacetime,

are different than the ones defined in Chapter 2 for Carter observers in the conformally separable

spacetime).

Once the frequency detected by the observer and the viewing angle are known, one can

calculate the rate of redshift seen by an observer staring at a fixed viewing angle. The redshift rate

is given by the effective temperature κeff defined in Sec. 3.2, which is given by the formula

κeff ≡ −
d ln(ωob/ωem)

dτob
, (D.12)
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where the subscripts “ob” and “em” here and following denote a function evaluated at the observer

position xob or emitter position xem, respectively. Practically, the frequency ratio will usually not

be known explicitly as a function of τob; instead, it will in principle be a function of the observer

coordinates xob, the emitter coordinates xem, and the constants of motion kµ associated with the

photon path (the covariant components of the 4-momentum that are conserved: the photon’s energy

−kt = E , angular momentum kθ = L, and, in the case of Kerr black holes, the Carter constant K).

Assuming the observer stares in a fixed direction given by the viewing angles (χ,ψ), the effective

temperature κeff can be expanded with the help of the chain rule as follows:

κeff∣χ =
3

∑
i=0
(−
dxiob
dτob

∂ lnωob

∂xiob
+ ωob

ωem

dxiem
dτem

∂ lnωem

∂xiem
− dki
dτob

∂ ln(ωob/ωem)
∂ki

) , (D.13)

where a vertical bar ∣x signifies quantities evaluated with x held constant. The form of the above

expression made use of the equality dτem/dτob = ωob/ωem. This simplifies in the spherically symmetric

case (setting E = 1 without loss of generality) to

κeff∣χ = ωob

3

∑
i=0

⎛
⎝
[ u

i

ω2

dω

dxi
]
xem

xob

⎞
⎠
− ωem

ωob

dL
dτob
∣
χ

∂(ωob/ωem)
∂L

∣
rob,rem

. (D.14)

In order to find dL/dτob, note that the viewing angle is kept constant, so one can write

0 = dχ

dτob
= drob

dτob

dχ

drob
∣
L
+ dL
dτob
∣
χ

dχ

dL
∣
rob

(D.15)

Ô⇒ dL
dτob
∣
χ
= −urob

dχ

drob
∣
L
/ dχ

dL
∣
rob
. (D.16)

One final component necessary for the calculation of the rate of redshift is the restriction that

the observer must be watching the same emitted in-mode as the emitter’s angular position on the

sky is varied (see Sec. 4.2 for details). For an emitter at infinity, this restriction can usually be

trivially applied without any changes to the above calculations. However, for an emitter at a horizon,

the affine distance between the emitter and the observer may diverge, so it becomes necessary to
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calculate the final term in Eq. (D.14) differently. Normalized to a frame at rest at infinity, the affine

distance λ between the emitter and the observer for spherically symmetric black holes is obtained by

integrating dr/dλ, giving

λ = ∫
rob

rem

dr

kr
. (D.17)

The emitted and observed affine distances λem and λob are then

λem = ωemλ, λob = ωobλ. (D.18)

If λem is held fixed as the emitter’s position is varied, then the derivative with respect to L in

Eq. (D.14) can be expressed as

∂ ln(ωob/ωem)
∂L

∣
rob,rem

= ∂ lnλob

∂L
∣
rob,rem

. (D.19)

The effective temperature κeff is calculated using the above framework in Chapter 4.



Appendix E

Backscattering coefficients via the MST method

The Black Hole Perturbation Toolkit (BHPT) [30] makes use of the Mano-Suzuki-Takasugi

(MST) method [118, 119] to calculate the scattering coefficients for a Klein-Gordon field with spin

weight s in the Kerr spacetime. In this Appendix, we review the implementation of this method

for the scattering of exterior modes between the event horizon and spatial infinity, and we extend

the analysis to include the scattering of interior modes between the event horizon and the Cauchy

horizon.

The notation used throughout this Appendix is self-consistent but may differ from the notation

used in the main body of the paper; instead it is chosen to match that of the BHPT and its relevant

references. The most notable change is that R here no longer represents the scale length defined

below Eq. (4.13) and instead represents the Teukolsky radial mode function defined via the mode

expansion

ϕωℓm =
Rωℓm(r) sS

ω
ℓm(θ) eimφ−iωt
√
4πω

, (E.1)

vis-à-vis Eq. (4.130) (therefore ψωℓ(r) = Rωℓm(r)
√
r2 + a2). The modes sS

ω
ℓm(θ) represent spin-

weighted spheroidal wave functions [27], while the radial modes Rωℓm(r) satisfy the homogeneous

radial Teukolsky equation [170]:

(K
2
ωm − 2is(r −M)Kωm

∆
+ 4isωr − λωℓm)Rωℓm

+∆−s d
dr
(∆s+1dRωℓm

dr
) = 0, (E.2)
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for a black hole of mass M and spin a, vis-à-vis Eq. (4.132). The horizon function ∆ is defined in the

same way as in the text following Eq. (4.13), the function Kωm ≡ (r2 + a2)ω −ma, and the constant

λωℓm ≡ Eℓm − 2maω + a2ω2 − s(s + 1), where Eℓm is the eigenvalue of the spin-weighted spheroidal

wave function sS
ω
ℓm(θ) [66] and reduces to Eℓm → ℓ(ℓ + 1) in the Schwarzschild limit.

The BHPT allows for the following boundary value problem to be solved: consider two sets

of modes Rin
ωℓm (initialized on past null infinity) and Rup

ωℓm (initialized on the past horizon), which

asymptotically approach the boundary values

Rin
ωℓm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bref
extr

−1−2seiωr
∗ +Binc

extr
−1e−iωr

∗

, r →∞

Btrans
ext ∣∆∣−se−iω+r

∗

, r → r+

Bref
int eiω−r

∗ +Btrans
int ∣∆∣−se−iω−r

∗

, r → r−

, (E.3)

Rup
ωℓm →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ctrans
ext r−1−2seiωr

∗

, r →∞

Cup
ext eiω+r

∗ +Cref
ext∣∆∣−se−iω+r

∗

, r → r+

Ctrans
int eiω−r

∗ +Cref
int ∣∆∣−se−iω−r

∗

, r → r−

, (E.4)

where ω± is given by Eq. (4.137) and the complex constants B and C are scattering coefficients for

either the reflection, incidence, or transmission of the mode waves. The tortoise coordinate r∗ is

chosen to be

r∗ ≡ r + 1

2κ+
ln ∣r − r+

2M
∣ + 1

2κ−
ln ∣r − r−

2M
∣ , (E.5)

with the surface gravities κ± (which is negative at the inner horizon) given by Eq. (4.17). Note that

the forward-propagated modes Rωℓm and scattering coefficients B and C defined here are different

from the backward-propagated modes ψob and scattering coefficients T and R used in the main text;

the relation between the two will be given at the end of this Appendix.

Conservation of the Wronskian in the scalar case leads to the following relations between the
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scattering coefficients:

∣Bref
ext∣

2 + ω+(r
2
+ + a2)
ω

∣Btrans
ext ∣

2 = ∣Binc
ext∣

2
,

∣Cref
ext∣

2 + ω

ω+(r2+ + a2)
∣Ctrans

ext ∣
2 = ∣Cup

ext∣
2
,

Ctrans
ext
Cup

ext
= ω+(r

2
+ + a2)
ω

Btrans
ext

Binc
ext

,

Ctrans
ext

Cref
ext
= −ω+(r

2
+ + a2)
ω

Btrans*
ext

Bref*
ext

,

∣Bref
int∣

2 + ω+(r
2
+ + a2)

ω−(r2− + a2)
∣Btrans

ext ∣
2 = ∣Btrans

int ∣
2
,

∣Cup
int∣

2 − ω−(r
2
− + a2)

ω+(r2+ + a2)
(∣Ctrans

int ∣
2 − ∣Cref

int ∣
2) = ∣Cref

ext∣
2
,

Btrans
int Ctrans

int −Bref
intC

ref
int =

ω+(r2+ + a2)
ω−(r2− + a2)

Btrans
ext Cup

int,

Btrans*
int Cref

int −Bref*
int C

trans
int = ω+(r

2
+ + a2)

ω−(r2− + a2)
Btrans*

ext Cref
ext, (E.6)

where a superscript asterisk (∗) here and elsewhere denotes complex conjugation, except in the

case of the tortoise coordinate r∗. In what follows, we will focus on the in modes; the scattering

coefficients for the up modes can be obtained from the in modes through the above Wronskian

conditions. The main results for the application of the MST method in the exterior portion of the

spacetime will be quoted here; for a more complete review, see Ref. [161].

The solutions to the radial wave Eq. (E.2) belong to a class of functions known as confluent

Heun functions. However, the mathematical properties of these functions (especially their asymptotic

behavior at each horizon) has been a mathematical enigma, and to this day, the central two-point

connection problem for these functions still has no explicit solution. However, Svartholm [168]

and Erdélyi [57, 58] early on discovered an integral transform for confluent Heun functions with a

hypergeometric kernel, so that they could be expressed in a series representation as the sum of (the

more tractable) hypergeometric functions.

Under the MST method, two infinite series expansions of the solutions to Eq. (E.2) are found

that are valid in different but overlapping regimes. The first of these expansions, in terms of ordinary
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hypergeometric functions 2F1, is valid for all finite values of r but breaks down as r →∞. Defining

the dimensionless parameters1

x ≡ ω
ϵκ
(r+ − r), ϵ ≡ 2Mω, κ ≡

√
1 − ( a

M
)
2

, ϵ± ≡
ϵ ± τ
2

, τ ≡
ϵ −m ( a

M
)

κ
, (E.7)

such that the outer (+) and inner (−) horizon radii are given by r± ≡ (1 ± κ)M , this first series is:

Rin
ν = eiϵκx∣ − x∣−s−iϵ+ ∣1 − x∣iϵ−

∞
∑

n=−∞
aνn(s)2F1(n + ν + 1 − iτ,−n − ν − iτ ; 1 − s − 2iϵ+;x), (E.8)

where the parameter ν, called the renormalized angular momentum, is a generalization of ℓ to

non-integer values that is fixed by requiring that the series solution to the Teukolsky equation

converges.

Likewise, the second series expansion can be written in terms of confluent hypergeometric

functions and is valid for asymptotically large values of r but fails as r → r+. By matching these two

expansions, the coefficients aνn(s) in both expansions will satisfy the same three-term recurrence

relation that can be solved numerically to find the minimal solution.

As r → r+ (or equivalently, as x→ 0), Eq. (E.8) reduces to

Rin
ν → ∣ − x∣−s−iϵ+

∞
∑

n=−∞
aνn(s), (E.9)

while Eq. (E.3) can be written in terms of the parameters of Eq. (E.7) as

Rin
ωℓm → Btrans

ext (
ϵκ

ω
)
−2s
∣ − x∣−s e−iϵ+(ln ∣−x∣+κ+

2κ lnκ
1+κ

). (E.10)

The coefficient Btrans
ext can then be read off by equating the two expressions from Eqs. (E.9) and

1As a reminder, the parameters defined here and used throughout Appendix E should be treated independently
from the notation of the main body of the thesis and instead are chosen to align with the notation used by MST [118,
119]. In particular, κ does not represent the surface gravity or the effective temperature, ϵ does not represent the
adiabatic control function, and τ does not represent proper time.
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(E.10). A similar matching process leads to expressions for the scattering parameters at infinity. The

resulting formulae for Btrans
ext , Binc

ext, and Bref
ext are given respectively by Eqs. (167)–(169) of Ref. [161].

Now, consider how the above formalism may be extended to the black hole’s interior. As

r → r− (or equivalently, as x→ 1), based on the asymptotic behavior of the hypergeometric function

with argument unity, Eqs. (E.8) and (E.3) respectively reduce to

Rin
ν → eiϵκ

⎡⎢⎢⎢⎢⎣
∣1 − x∣iϵ−

∞
∑

n=−∞
aνn(s)

Γ(1 − s − 2iϵ+)Γ(−s − 2iϵ−)
Γ(−n − ν − s − iϵ)Γ(n + ν + 1 − s − iϵ)

H(−s)

+ ∣1 − x∣−s−iϵ−
∞
∑

n=−∞
aνn(s)

Γ(1 − s − 2iϵ+)Γ(s + 2iϵ−)
Γ(−n − ν − iτ)Γ(n + ν + 1 − iτ)

H(s)
⎤⎥⎥⎥⎥⎦
, (E.11)

Rin
ωℓm → Bref

int exp [iϵ− (ln ∣1 − x∣ − κ −
2κ lnκ

1 − κ
)]

+Btrans
int (ϵκ

ω
)
−2s
∣1 − x∣−s exp [−iϵ− (ln ∣1 − x∣ − κ −

2κ lnκ

1 − κ
)] , (E.12)

where H(s) is the Heaviside step function defined by

H(s) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, s ≥ 0

0, s < 0
. (E.13)

Eq. (E.11) breaks down for scalar modes when either ω = 0 or a = 0; these cases, whose modes

asymptotically scale as ln(1 − x), must be treated separately.

Matching Eqs. (E.11) and (E.12) leads to expressions for the internal scattering parameters:

Bref
int =H(−s) eiκ[ϵ+ϵ−(1+

2 lnκ
1−κ
)]

∞
∑

n=−∞
aνn(s)

Γ(1 − s − 2iϵ+)Γ(−s − 2iϵ−)
Γ(−n − ν − s − iϵ)Γ(n + ν + 1 − s − iϵ)

, (E.14)

Btrans
int =H(s) (ϵκ

ω
)
2s

eiκ[ϵ−ϵ−(1+
2 lnκ
1−κ
)]

∞
∑

n=−∞
aνn(s)

Γ(1 − s − 2iϵ+)Γ(s + 2iϵ−)
Γ(−n − ν − iτ)Γ(n + ν + 1 − iτ)

. (E.15)

The step functions in Eqs. (E.14) and (E.15) imply that close to the inner horizon, only the non-

negative (non-positive) spin-weighted components of ingoing (outgoing) waves survive, since these

are the radiative (i.e., dominant propagating; see Footnote 7) components.
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The expressions above for the inner horizon scattering coefficients can then be implemented

in Mathematica alongside the rest of the BHPT’s Teukolsky package to compute the relevant

in scattering coefficients. In order to connect these results to the calculations in Chapter 4, a

transformation must be made between the two sets of scattering coefficients (B and C on the one

hand and T and R on the other). One of the main problems that gives rise to the need for such

a non-trivial matching is that Chapter 4’s back-propagated modes ext,intψ±ob are initialized on the

future null boundaries, while this Appendix’s forward-propagated modes Rin,up
ωℓm are initialized on the

past null boundaries.

To find the back-propagated scattering coefficients, first note that through the conservation

of the Wronskian, the transmission and reflection coefficients T ±ext,int and R±ext,int must satisfy the

normalization conditions

∣R±ext,ω ∣
2 + ∣T ±ext,ω ∣

2 (ω ∓mΩ+
ω

) = 1, (E.16a)

(∣R±int,ω ∣
2 − ∣T ±int,ω ∣

2)(ω+ +mΩ−
ω

) = 1. (E.16b)

Consider first the exterior set of modes used to calculate ⟨N±ext⟩ωℓm, encoded by a family of

observers asymptotically close to future null infinity and the event horizon. Through time reversal,

these modes extψ±ob map to the modes Rin,up
ωℓm by the transformation (ω,m)↦ (−ω,−m), which

corresponds to taking the complex conjugate of the scattering coefficients, since

R(−ω)ℓ(−m) = R∗ωℓm, Btrans,ref
(−ω)ℓ(−m) = B

trans,ref*
ωℓm . (E.17)

By matching the asymptotic relations for the complete set of modes Rin
ωℓm and Rup

ωℓm in the spin-0

limit of Eqs. (E.3) and (E.4) with the appropriately rescaled set of exterior modes extψ−*ob and extψ+*ob

from Eqs. (4.141) and (4.142), respectively, one arrives at the following equalities, after fixing Binc
ext = 1
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and Cup
ext = 1/

√
r2+ + a2:

T +ext,ω = Btrans*
ext,ω

√
r2+ + a2, (E.18a)

R+ext,ω = Bref*
ext,ω, (E.18b)

T −ext,ω+ = C
trans*
ext,ω , (E.18c)

R−ext,ω+ = C
ref*
ext,ω

√
r2+ + a2. (E.18d)

Notice the addition of the mode frequency subscripts in the above scattering coefficients that help

highlight a key difference between the (B,C) coefficients and the (T ,R) coefficients—the scattering

process defined by the former is initialized with the frequency eigenmodes of the wave equation,

while the scattering process of the latter is initialized so that the observer always sees a frequency ω.

Now consider the interior modes used to calculate ⟨N±int⟩ωℓm, encoded by a family of observers

reaching the ingoing and outgoing portions of the inner horizon (together with observers asymp-

totically close to future null infinity, to form a complete Cauchy slice). Since the global scattering

process now depends on three singular points and the interior scattering potential is dynamical,

the backward-propagated modes will not map trivially onto the forward-propagated modes by time

reversal. One may instead consider the transformation (M,r)↦ (−M,−r) as in Ref. [178], which

leaves the radial wave Eq. (4.132) unchanged aside from a swapping of the asymptotic regimes

at the inner and outer horizons. However, since that transformation leaves the irregular singular

point at r →∞ unchanged, the forward- and backward-propagated modes must transform into linear

combinations of one another.

In order to solve for the interior scattering coefficients, define coefficients α±in,up that form

linear combinations of the modes Rin
ωℓm and Rup

ωℓm. These linear combinations can be asymptotically

equated to the modes intψ−ob initialized along the ingoing portion of the future Cauchy slice and the
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modes intψ+*ob +
extψ+ob initialized along the outgoing portions of the future Cauchy slice:

(α−inRin
ωℓm + α

−
upR

up
ωℓm)

√
r2 + a2 = intψ−ob, (E.19a)

(α+inRin
ωℓm + α

+
upR

up
ωℓm)

√
r2 + a2 = intψ+*ob +

extψ+ob (E.19b)

Matching the asymptotic relations for the above sets of modes along the inner horizon leads

to the linear coefficient values

α+in =
Cref

int
D

, α+up = −
Btrans

int
D

, (E.20a)

α−in = −
Ctrans

int
D

, α−up =
Bref

int
D

, (E.20b)

where

D ≡ (Bref
intC

ref
int −Btrans

int Ctrans
int )

√
r2− + a2. (E.21)

The scattering coefficients can then be found by matching the asymptotic relations along the event

horizon and at infinity:

T −int,ω− = (α
−
in,ωB

trans
ext,ω + α−up,ωC

ref
ext,ω)

√
r2+ + a2, (E.22a)

R−int,ω− = α
−
up,ωC

up
int,ω

√
r2+ + a2, (E.22b)

T +int,ω− = α
+*
up,ωC

up*
int,ω

√
r2+ + a2, (E.22c)

R+int,ω− = (α
+*
in,ωB

trans*
ext,ω + α+*up,ωC

ref*
ext,ω)

√
r2+ + a2, (E.22d)

T −ext,ω+ =
α−in,ωB

inc
ext,ω

T −int,ω−
, (E.22e)

R−ext,ω+ =
α−up,ωC

up
ext,ω

T −int,ω−

√
r2+ + a2, (E.22f)

T +ext,ω = α+up,ωC
up
ext,ω

√
r2+ + a2 −R+*int,ω−R

−*
ext,ω+ , (E.22g)

R+ext,ω = α+in,ωBinc
ext,ω −R+*int,ω−T

−*
ext,ω+ . (E.22h)
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Note that, unlike in the exterior case of Eqs. (E.18), the Binc and Cup coefficients from Eqs. (E.22)

do not need to be fixed since all the B and C coefficients are written in a normalization-free form.

Thus, one may retain the default normalization choice Btrans = 1 used by the BHPT.

Once the scattering coefficients B and C are computed with the help of the BHPT, Eqs. (E.18)

can be used to calculate the back-scattering coefficients T andR used in Eqs. (4.147a)–(4.147b), while

Eqs. (E.22) can be used to calculate the back-scattering coefficients used in Eqs. (4.147c)–(4.147d).
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