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tions

Thesis directed by Prof. Jun Ye

Optical lattice clocks provide a testbed for a wide range of science spanning from stud-

ies of fundamental physics to probing novel many-body states. To improve clock precision,

probing increasingly many atoms for the longest coherence times affordable is necessary. In

this thesis, we summarize coherently interrogating atoms trapped in a three-dimensional

optical lattice via an ultrastable laser to understand and advance clock precision. With a

Fermi-degenerate gas of strontium atoms, we perform seconds long clock spectroscopy to

probe Fermi-Hubbard physics and thus understand the effects of superexchange interactions

on our coherence time. Along with advancing clock metrology, this work provides a ground-

work for using optical lattice clocks to probe quantum magnetism and spin entanglement.



Dedication

To my family, old and new.



Acknowledgements

JILA is a special place. During my Ph.D. I was lucky enough to work with some of the

smartest and most generous people I have ever met. Thanking everyone would be impossible,

so I will just try to keep it brief:

First, the Boss. Simply put, the work reported in this thesis would not have been

possible without the singular guidance of my Ph.D. advisor Prof. Jun Ye. Endless funding,

Christmas day paper meetings, an infinite fount of brilliant ideas, and an assembled team

of incredible scientists transformed ideas scribbled on whiteboards into fruition. Behind

the glitter of journal covers and prized talks, those of us lucky enough to be taken under

Jun’s wing saw firsthand the dedication and hard work required to become a world-renowned

physicist. For all of this and much more, thank you Jun.

I was lucky to join the Ye lab in July 2017 at a very exciting time. Our cryogenic,

thermal noise-limited cavity ‘Si3’ was coming online, the new Fermi-degenerate clock ‘Sr2’

had published a first set of ground-breaking results, and the workhorse ‘Sr1’ machine was

gearing up for a clock comparison with NIST. Somehow as a young student I found myself

in the fray of all three experiments.

My first project was studying the long term instability of Si3 with the hopes of ad-

vancing timekeeping with optical technology. This work was chiefly carried out with postdoc

Eric Oelker. Along with providing invaluable guidance with the timescale work, as a young

student Eric’s rigorous approach to research left a deep impression on me. To achieve the

requisite cavity stability, long days and evenings were spent with senior graduate student



v

John Robinson ‘noise hunting’ aka surrounding laser systems with layers-upon-layers of boxes

and foil. With John and Eric doing essentially all the heavy lifting,1 we ended up with a

nice set of results in the end. Dhruv Kedar took over the experiment and transformed hasty

plans for a new, all-crystalline cavity ‘Si6’ into a state-of-the-art cavity system, discovering

new birefringent noise associated with these crystalline coatings. The newest cavity system

‘Si7’2 aiming to enable O(100 s) clock coherence times is in good hands with Ben Lewis,

Zoey Hu, and Dahyeon Lee leading the experiment.

With some laser stabilization experience, I joined Sr2 following the optical timescale

work and quickly realized my atomic physics knowledge was fairly limited. Christian Sanner

deserves a special mention: despite having an encyclopedic knowledge of all things ‘A’, ‘M’,

and ‘O’ Christian was always willing to patiently explain everything from thermal manage-

ment to Roulette secrets to Fourier optics. I fondly remember the long nights we spent

together mystified by Pauli Blocking data, and I will always appreciate his continued sup-

port for me as a physicist. Lindsay Sonderhouse was the leading graduate student for our

Pauli blocking effort and taught me all about Fermi gases and frequency combs. Her SU(N)

and spin-polarized Fermi gas work was the first step towards our future lattice experiments

in the band insulating regime. Ross Hutson was the super-senior graduate student in terms

of height, tenure, and experimental physics knowledge. After many, many late nights tak-

ing data, playing pool, and god-only-knows-what hopefully some of his expertise in atomic

physics has rubbed off on me. To the original Sr2 members Sara Campbell, Ed Marti, and

Aki Goban who I only briefly overlapped with, thank you for building such an amazing

experiment! I am proud of all the results we accomplished as a team in the face of a global

pandemic.

The experiment in headed towards distinguished and exciting research directions thanks

to the new, talented Sr2gang. Lingfeng Yan was closely involved in the previous studies and
1 Both figuratively and literally.
2 We are very creative with naming cavity and clock systems around here.



vi

is now one of the leaders of the experiment. Lingfeng was always willing to stay late to

ensure the job is done and brings a positive spirit that is crucial when the going gets tough.

Stefan Lannig joined in the midst of our superexchange experiment and was immediately

instrumental in understanding our apparent contrast oscillations. Stefan’s broad physics

knowledge and outstanding calculation skills will keep the experiment pointed in the right

direction. Max Frankel is the newest team member and has a great, hard-working attitude

paired with a close eye to detail. I enjoyed teaching Max how to run the experiment, almost

as much as singing karaoke on the Gold Hill bus. Ben Lewis’ experimental prowess was

critical when MOSFETs died or sensitivity functions needed to be determined. The skills

everyone brings to the team are very complementary and mesh well together. So the future

is very bright on Sr2 and I will keenly follow the all the future developments.

I worked closely with the 1D lattice clock Sr1 throughout my Ph.D. First I collaborated

with Toby Bothwell, Dhruv Kedar, and Colin Kennedy on the dark matter search, clock

comparison, and timescale work. As a young student, I was really impressed by how many

projects they could juggle at once. Although there is still no BBR evaluation planned, I

believe year-by-year we get closer to shrugging Toby’s skepticism about our 3D lattice clock.

The new Sr1 team of Alex Aeppli, Kyungtae Kim, and Will Warfield has been amazingly

successful. Alex has been a close friend over the past years and we have many great memories

together. Sequestering 4 am IHOP runs and DAMOP poolside adventures, Alex is a very

methodical scientist whose careful scrutiny ensured the recent Sr1 success. Kyungtae is

a walking Zotero library and selflessly jumps in whenever the ‘postdoc touch’ is required.

Kyungtae’s wisdom was helpful in the face of making big, tough career decisions and when

things are really broken, you should call Kyungtae. ‘Little Will’3 Warfield brought his

Boulder native street-credibility, general relativity knowledge, and hard-working attitude to

the team. We are only slightly jealous about your coherence times over here on Sr2 and I

am looking forward to many exciting results ahead.
3 I did not come up with this nickname and I have no idea what big and little means here.



vii

Sr3 is the newest clock experiment, introducing everyone to a whole new world of cavity

QED physics. John Robinson, Maya Miklos, and Ming Tso constructed the experiment in

lighting speed and quickly got ground-breaking results. I really enjoyed physics conversations

with John during their construction period, talking for hours while watching John wave his

hands attempting to embody a human Bloch sphere. Maya has an amazingly deep knowledge

of physics and always provided great ideas when we were frequently stuck on Sr2 - Emmy the

cQED canine brought a pacifying presence to group meetings too. Ming is a focused scientist

who always seemed undeterred by the challenges to achieve squeezing; I guess it’s a piece of

cake compared to some of his culinary creations. Benedikt Heizenreder was a visiting student

for 6 months, who possessed an interesting blend of MPQ rigor and Bavarian recklessness

that made for some fun adventures on the slopes of Mt. Elbert. With postdocs Joonseok

Hur and Tony Yang on the team, the standard quantum limit is no longer regarded as so

‘standard’ anymore.

KRb were always a fun group. I suppose the camaraderie of struggling on another

Fermi gas platform meant many evenings were spent at the Dark Horse to commiserate

together. The old crew of Giacomo Valtolina, Will Tobias, Jun-Ru Li, Luigi De Marco, and

Kyle Matsuda impressed us with their amazing results, second only to their Jazz skills. Cal

Miller, Junyu Lin, Henrik Hirzler, and Annie Carroll are quickly pushing the experiment in

new, exciting directions. Annie and Stephen Gill deserve special mention as both next-door

neighbors and close friends who were always eager to plan fun outings.

Adam Kaufman’s group built a new tweezer clock platform across the hall that is both

fairly complementary to Sr2 and has been incredibly prolific during my Ph.D. Aaron Young

shared a lot of insights about lattice physics and I enjoyed conversations with Nathan Schine

and Will Eckner. Currently lead by a jolly German with a laugh you can hear from the

other side of JILA, I am excited to see what Prof. Dr. Herr Nelson Darkwah Oppong, Will

E., Alec Cao, and Theo Lukin Yelin will do next.4

4 Sorry, you will need to find a new guy to call at 11 pm if the clock laser is unlocked.



viii

Ana Maria Rey has been our principal theory collaborator for much of the work during

my Ph.D. While profiting from directly learning about atomic physics through an expert in

the field, I also appreciated Ana Maria’s optimism about the capabilities our experiment.

Her insights on our superexchange experiment with her students Mikhail Mamaev and Anjun

Chu were invaluable. The constant stream of good ideas and capable researchers from her

group will certainly continue to benefit our experiment.

There is a long list of JILA staff to thank, and I won’t pretend to fully do their

contributions justice. The machine shop built much of the critical infrastructure on our

experiment, including our custom Sr2 imaging mount and the alignment rig for optically

contacting Si6. Todd Ascinar, Kyle Thatcher, Kim Hagen, Adam Ellzey, James Uhrich, and

Hans Green all deserve thanks. JILA profits from a highly unique electronics shop with a

history of designing custom electronics to solve the toughest problems. Terry Brown deserves

special mention for patiently teaching me all about electronics and feedback systems, along

with Carl Sauer and James Fung-A-Fat. Dave Alchenberger from the Keck lab provided us

with AR coated diodes and custom, dispersive imaging optics. The supply office ensures

that all purchasing hurdles are distanced from students and the Si3 dewar runneth over

thanks to Brian Lynch, Jen Eriksson, Karen Lichtfuss, and Randall Holliness. Computing

gurus J.R Raith, Corey Keasling, and Jim McKown always fixed any computing issues we

encountered and never admonished our ethernet cabling practices too harshly. Agnieszka

Lynch ensured I was paid, thus keeping a roof over my head. Krista Beck and Amy Allison

were the administrative assistants in the group and Krista was absolutely instrumental in

organizing my thesis defense.

There is an even longer list of Ye Lab researchers and collaborators over the years I owe

thanks to and if I tried to single out everyone the acknowledgements section would be longer

than the thesis. On the Mid-IR and XUV frequency comb experiments: Lee Liu, Bryan

Changala, Chuankun Zhang, Dina Rosenberg, Jake Higgins, and Tian Ooi. On the directly-

cooled molecule experiments: Kameron Mehling, Justin Burau, Yewei Wu, Dave Reens, Hao



ix

Wu, and Shiqian Ding. Older-generation strontium scientists: Shimon Kolkowitz and Wei

Zhang. Our PTB collaborators who generously hosted me in 2018: Thomas Legero, Uwe

Sterr, and Fritz Riehle. Our NIST collaborators for the timescale and clock comparison

work: Jeff Sherman, Judah Levine, Jian Yao, Michele Guinta, Tara Fortier, Holly Leopardi,

Dave Hume, and Andrew Ludlow. Finally, thank you to my Ph.D. committee members not

already mentioned: Eric Cornell and Marco Nicotra.

I lived with some amazing housemates during my time in grad school: Shawn Geller,

whose eclectic friends, ability to drive to Denver in 20 minutes, and vast quantum information

knowledge made for some serious fun. Hannah Knaack, who is actually doing quantum gates,

shared some of her cryogenics lore, and made amazing bread weekly. And Aaron Young, who

has provided years of stimulating conversations about physics that almost make up for the

fact that he’s actually an engineer. Someday I will forgive you for building that automatic,

clip-loaded Nerf gun. My old roommates from Madison, Phil Buelow and Ian Hill, lived

in Nederland and brought me outdoor climbing, backcountry skiing, and reminded me that

there is life in Colorado outside Boulder. I will fondly remember late nights climbing with all

of you guys, ‘small’ house parties that inevitably got out of hand, and watching battlebots

together in the penthouse on our paunchy bean bag.

Throughout the ups and downs of grad school, I always had the support of my im-

mediate family. My younger brother David has been a close friend and him moving to

Boulder in the middle of COVID sparked a new, exciting chapter here. The time we spent

together watching Boston sports teams consistently disappoint us, climbing at the Spot, and

hearing about your budding career and life with Ellie always cheered me up. Unbeknownst

to my twin brother Sam, he was a critical component of the only Ye labs startup to-date

‘Quantwinuum’ and I always enjoyed learning about his exciting research solving DMRG

Hamiltonians. Finally, my parents have been my strongest advocate for truly as long as I

can remember. Seeing their unwavering hard work and enthusiasm for my happiness has

always inspired me to work a little harder and be a lot more humble. I am looking forward



x

to seeing you more often soon.

I spent countless days and nights over the past 7 years with everyone in these acknowl-

edgements chasing after the results in this thesis. More often than not, I could probably be

seen with an exasperated look on my face. But even if we never could resolve those dipole-

dipole frequency shifts, and even if the silicon cavity long-term stability never surpassed the

hydrogen maser, and even if we never saw superexchange interactions: the love and support

I received from you all would have been more than enough for me.



xi

Contents

Chapter

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Why an optical lattice clock? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Why a Fermi-degenerate three-dimensional optical lattice clock? . . . . . . . 7

1.4 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Ultracold strontium 15

2.1 Strontium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 Experimental apparatus . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Fermi-degenerate 87Sr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Broadband laser cooling . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Narrow-linewidth laser cooling . . . . . . . . . . . . . . . . . . . . . . 28

2.2.3 Evaporative cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.4 Nuclear-spin polarization . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Three-dimensional optical lattice clock 48

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Lattice loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Clock spectroscopy: Putting it all together . . . . . . . . . . . . . . . . . . . 57



xii

3.2.1 Ultrastable laser systems . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Vertical clock path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3 Second-scale coherent spectroscopy . . . . . . . . . . . . . . . . . . . 66

4 Demonstration of an all-optical timescale 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 Why an all-optical timescale? . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Realizing an all-optical timescale . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Interface with optical clock . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Optical timescale performance . . . . . . . . . . . . . . . . . . . . . . 79

4.2.3 Signal transfer overview . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Kalman filter modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 Expected time scale instability . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Future improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Operating optical clocks at high density 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1 Imaging spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.2 Background on imaging techniques . . . . . . . . . . . . . . . . . . . 109

5.1.3 Imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Saturated imaging at high density . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 In situ imaging characterization . . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Band insulator demonstration . . . . . . . . . . . . . . . . . . . . . . 122

5.2.3 Density diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.4 Signal-to-noise comparison between imaging techniques . . . . . . . . 127

5.2.5 Density distribution calculation . . . . . . . . . . . . . . . . . . . . . 132



xiii

5.2.6 Inverse Abel transform . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Atom number calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Quantum projection noise . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.2 Readout noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.3 Imaging system parameters for Fig. 5.9a . . . . . . . . . . . . . . . . 139

5.3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6 Observing coherent superexchange interactions 142

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.1 Single-particle dephasing . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.1.2 Interaction-based dephasing . . . . . . . . . . . . . . . . . . . . . . . 148

6.1.3 Ramsey fringe contrast measurements . . . . . . . . . . . . . . . . . . 155

6.2 Observing coherent superexchange interactions . . . . . . . . . . . . . . . . . 160

6.2.1 3D lattice study: Superexchange interactions . . . . . . . . . . . . . . 162

6.2.2 1D lattice study: s and p-wave interactions . . . . . . . . . . . . . . . 169

6.2.3 Lattice inhomogeneties . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2.4 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7 Outlook 188

7.1 Superexchange enhanced metrology . . . . . . . . . . . . . . . . . . . . . . . 188

7.2 Enhanced dipole-dipole interactions . . . . . . . . . . . . . . . . . . . . . . . 192

Bibliography 203

Appendix

A 87Sr atomic data 222



xiv

B List of experiments 224

C Fermi gas overview 226



xv

Tables

Table

1.1 Interaction scales in our optical lattice. These values are all tunable, and thus

the order of magnitude of these parameters is most important. . . . . . . . 8

2.1 Hyperfine splitting for 1P1 and 3P1 states. . . . . . . . . . . . . . . . . . . . 19

2.2 Linear sensitivities at low magnetic field in the absence of quadratic shifts. . 20

4.1 Expected time scale instability after 34 days (3 × 106 s) of averaging based

on the Dick effect limit for steering each oscillator for different optical clock

uptimes. This assumes that the uptime is grouped into a single run per day. 93

4.2 Expected time scale instability after 34 days (3× 106 s) of averaging based on

the Dick effect limit for steering each oscillator. We assume a total uptime

of 12 hours/day distributed over a varying number of evenly spaced clock

measurements per day. The all-optical time scale (Si) shows a significant

improvement with increasing measurement frequency. . . . . . . . . . . . . . 93

5.1 Vertical imaging system parameters. . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Horizontal imaging system parameters. . . . . . . . . . . . . . . . . . . . . . 140



xvi

6.1 Parameters for 3D lattice simulations. For transverse lattice depth V⊥ we

provide the atom number N , the lattice harmonic confinement frequency ωlat

along the z direction, the position of the cloud j0−js relative to the minimum

of the lattice confinement (in units of lattice spacing), the on-site Hubbard

repulsion U at the center of the lattice, and the lifetime of atomic coherence

T2 (beyond decay caused by superexchange). . . . . . . . . . . . . . . . . . . 182



xvii

Figures

Figure

1.1 Synchronous clock comparison. Probing O(1000) atoms for O(1) second in-

terrogation times, optical lattice clocks measure differential frequency shifts

with statistical uncertainties at the 10−19 level in ∼ 1 hour timescales. The

blue (red) data points use 3000 (1000) atoms and direct observe a factor of
√
3 improvement in stability according to the reduction in quantum projec-

tion noise from Eq. 1.2. 19 digits of precision (≈ 100 µHz/ 429 THz) is the

same order of magnitude as the accuracy budgets of the most accurate clocks

worldwide [31, 32]. Figure reproduced from [33]. . . . . . . . . . . . . . . . . 4

1.2 Illustration of interactions probed on this experiment. Consider the hierarchy

of energy scales decreasing from left to right. Left: The basic ingredients

of our three-dimensional lattice are captured by the Fermi-Hubbard model.

Atoms may tunnel to neighboring sites at a rate t, at the cost of an interaction

energy U if the site is occupied. Middle: At half filling in the Mott-insulating

regime, atoms interact via superexchange interactions. These dynamics are

modelled by a Heisenberg Hamiltonian. Right: In a deep lattice where motion

is restricted, atoms interact via weak, long-range dipole-dipole interactions.

The coherent portion can be understood as a exchange of photons. . . . . . 8



xviii

2.1 Level structure of 87Sr. Dipole-allowed transitions where ∆L = ±1 and ∆S =

0 are shown in green. Dipole-forbidden, intercombination transitions between

singlet (S = 0) and triplet (S = 1) states are shown in red. 3PJ and 3DJ

energies are broadened to make the plot more readable. . . . . . . . . . . . 17

2.2 Zeeman shifts of relevant states in 87Sr. For the J ̸= 0 states with hyperfine

structure, an external B field was chosen for each plot so the Zeeman shifts

are commensurate with the hyperfine splitting. . . . . . . . . . . . . . . . . . 18

2.3 Zeeman splitting for 1S0 → 3P0 transition. Pulse duration for all transi-

tions corresponds to a π pulse for |mF | = 9
2 → |mF ′ | = 9

2 with peak excita-

tion fraction pe = 1. Note the minimally magnetically-sensitive transition is

|mF | = 5
2 → |mF ′ | = 3

2 in the center of the plot. . . . . . . . . . . . . . . . . 21

2.4 Vacuum chamber for the experiment. Commercial AOSense atomic source

delivers a collimated beam of 87Sr that is laser cooled to Fermi degeneracy in

the Science chamber. We use a 150 L/s ion pump on the main chamber to

achieve UHV and 3 L/s pump on the oven assembly. . . . . . . . . . . . . . 22

2.5 Cross-section of science chamber. The imaging objective lens is positioned

100 mm from the atoms. Our vertical clock laser, red and blue MOT beams,

vertical lattice, and imaging beams all go through this imaging system ori-

ented along gravity. A full description of this setup is provided in Chapter 3.

Between the objective lens and anti-Helmholtz coils is optical access for an

oblique optical path ≈ 10◦ tiled from the vertical path, including our vertical

optical dipole trap and transparency beam. Compensation coils are farther

away from the chamber, thus not in view, providing weak (< 10 G) fields to

establish a quantization axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 23



xix

2.6 Schematic of trapping and cooling lasers on the main breadboard surrounding

the science chamber. Most optical elements are omitted for clarity. Each of

these lasers plays a crucial role for both cooling atoms to quantum degeneracy

and for loading into our 3D optical lattice. Inset: Intensity (proportional to

the confinement strength) of the ODT and optical lattice lasers is plotted. . 24

2.7 Layout of the Sr2 control system. Computers are interfaced over the Sr2

network. Experimental hardware is either directly connected to the network

(orange) or connected to computers (black). By design, any computer can

then communicate with any piece of experimental hardware. . . . . . . . . . 25

2.8 Photo of blue MOT. The only stage of the experiment that can be seen by

the naked eye! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.9 AC stark shifts for 3P1 F = 9/2 states after application of transparency beam.

Scalar (αS), tensor (αT ), and combined (αS + αT ) shifts are plotted. Detuning

is plotted from bare 3P1 → 3S1 transition omitting hyperfine structure. We

operate with this beam ≈ 25 GHz detuned. . . . . . . . . . . . . . . . . . . 33

2.10 Spatial variation of transparency beam shifts. Plotted left is peak AC stark

shifts for 3P1 F = 9/2 states at the center of the Gaussian beam. Plotted

right is spatial variations of these AC stark shifts for 5 mW power, 30 µm

beam waist, 25 GHz detuning, and for the mF = |5/2| state. Shifts are

normalized to the 3P1 linewidth Γ3P1 = 2π × 7 kHz. We see that ∆ ≥ Γ3P1

within a spatial extent of ≈ 50 µm. . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Left: Transparency beam setup. A volume Bragg grating is used to minimize

resonant scatter from the 25 GHz detuned laser. Right: Repumper setup.

These two lasers drive the transitions 3P0 → 3S1 and 3P2 → 3S1 respectively to

deplete the metastable electronic states for readout and laser cooling purposes. 36



xx

2.12 SU(N) fermions. For a T = 0 spin-polarized gas, bosons all occupy the ground

motional state, while fermions occupy each rung of the harmonic oscillator

up to the Fermi energy EF . With an N -component Fermi gas, each spin

component interacts with N − 1 collisional partners, strongly enhancing the

interaction strength. Figure adapted from Ref. [107]. . . . . . . . . . . . . . 39

2.13 Non-interacting thermometry of an expanded Fermi gas. From the image in

the left, we extract T/TF = 0.072(9). The ‘ring’ structure in the Gaussian

residuals reflects the incompressible nature or Fermi pressure of the fermionic

atoms; owing to the Pauli exclusion principle the density in the center of the

cloud is smaller than prescribed by a Gaussian fit. When fit to the Fermi-Dirac

distribution, residuals are strongly reduced. . . . . . . . . . . . . . . . . . . . 40

2.14 Optical dipole trapping laser system operating at 1064 nm. Given this laser

is hundreds of THz detuned from any resonance and not applied during clock

spectroscopy, it is one of the few lasers on the experiment that does not

require frequency stabilization. We share this light with KRb and MidIR

comb experiments in the Ye Lab. Photonic crystal fibers are important to

ensure that stimulated Brilluoin scattering (SBS) is minimized. . . . . . . . 41

2.15 AC stark shifts from TenS4 laser. Plot is centered around the bare 3P1 transi-

tion in absence of hyperfine splitting. The net AC stark shift vanishes for the

mF = 9/2 state when the TenS4 laser is ≈ 250 MHz blue-detuned from the F

= 11/2 transition (highlighted with a gold star). . . . . . . . . . . . . . . . . 43

2.16 Absorption imaging on 1S0 → 3P1 F = 11/2 transition. Spin populations

are plotted left before and right after polarization via resonant pulses. We

intentionally deplete the mF states that experience a weak force from the

TenS4 potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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2.17 TenS4 optimization as a function of pulse duration. If the pulse duration is

not sufficiently long to fully deplete unwanted spins, they will remain trapped

and collide with the mF = −9/2 target state to cause heating. Choosing an

optimal pulse duration of 750µs, we achieve T/TF = 0.15. . . . . . . . . . . . 46

2.18 TenS4 laser system. A Fabry-Pérot filter cavity is used to strongly suppress

any residual light near resonance ≈ 250 MHz from the carrier. We lock the

length of the filter cavity to our TenS4 laser, prestabilized to a 1 Hz linewidth

ULE stabilized laser [37], via a PDH feedback scheme using the cavity piezo

as the feedback actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 The solutions to the periodic potential in Eq. 3.1 are Bloch waves characterized

by quasimomentum q. Left and right panels are wavefunctions for the ground

band (n = 0) and first band (n = 1) respectively. LocalizedWannier functions

are plotted in black, arising from constructive and destructive interference of

Bloch waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Left: Eigenenergies are plotted for wavefunctions in Fig. 3.1 for a lattice

depth of 7 ER. Energies have a dispersion relation depending on the quasi-

momenta q. Right: Bandgap is plotted as a function of lattice depth for the

first (second) bandgap in black (blue). Bandgap increases and band flatten

(bandwidth is decreased) as lattice depth is increased. The bandgap in the

harmonic approximation νlat,HO = 2νR
√

U0
ER

is plotted with a red dashed line

for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Lattice loading sequence. Top: Trapping frequencies νtrap for our optical

dipole trap during evaporative cooling and lattice loading. Bottom: External

confinement frequencies νext for lattice beams during loading. Trap depths in

ER are labelled in plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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3.4 Sideband spectroscopy. No observable red sideband indicates atoms are nearly

entirely in the ground motional state (n̄x, n̄y, n̄z ≈ 0). Figure reproduced

from [33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 ‘Band mapping’ provides a complementary measurement to examine the band

populations. Square density distribution indicates that atoms are in the

ground band or ‘1st Brillouin Zone’. Slight assymetry is likely due to ver-

tical lattice being tilted with respect to imaging system. . . . . . . . . . . . 54

3.6 Lattice laser systems. Both vertical and horizontal lattices use commercial

fiber lasers from Prescilaser. Left: Vertical lattice laser system. Right:

Horizontal lattice laser system. Horizontal lattice is frequency stabilized to

frequency comb referenced to silicon cavity. Vertical lattice laser is frequency

stabilized to horizontal lattice laser via heterodyne detection. Volume Bragg

Grating (VBG) is employed on both systems to remove any residual light that

may cause detrimental AC stark shifts. . . . . . . . . . . . . . . . . . . . . 55

3.7 Parametric heating rates Γ2←0 are plotted for optical dipole trap left and

optical lattice laser right. Note that given Γ ∝ ν2trap, the heating rates are

substantially lower for the optical dipole trap. . . . . . . . . . . . . . . . . . 56

3.8 1S0 lattice lifetime. The atoms are held in a deep 3D lattice and the atom

number loss is measured as a function of hold time. In this measurement

V⊥,1 = 66.5ER, V⊥,2 = 69.9ER, and Vz = 43.7ER. A 1/e time of 108(5)

seconds is fit to the data. The atom loss is likely limited by a combination

of parametric heating from the optical lattice and the vacuum lifetime. This

technical loss timescale is long compared to all dynamics studied in this thesis. 57
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3.9 Rabi spectroscopy. Here ω0 is the energy difference between our ground and

clock states, and ωc is the frequency of our optical local oscillator. Varying the

detuning δ = ωc − ω0 with a π pulse area, a spectroscopic feature is resolved

with full-width at half-maximum inversely proportional to the pulse duration

duration ∆ν ≈ 0.8/Tpulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Left: Modified Allan deviation for both our room-temperature 40 cm ULE

cavity and 21 cm silicon cavity operating at 124 K. Both cavity systems fre-

quency noise is limited by thermal noise arising from Brownian motion of the

amorphous (SiO2/Ta2O5) mirror coatings. Right: Fundamental noise terms

for ULE and Si cavities are tabulated for a number of system parameters. The

improved mechanical properties of Si (i.e. Spacer Brownian, Subtrate Ther-

moelectric, Subtrate Brownian noise terms are negligible) and the reduced

operational temperature compared to ULE realize a lower thermal noise floor

as depicted left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.11 Distribution center layout is plotted. Light from the 40 cm ULE cavity seeds

injection-locked diodes (ILD). Additive noise from injection locking is negligi-

ble with respect to the silicon cavity noise model as verified in Fig. 3.12. To

distribute phase-stable laser light to many different experiments, fiber noise

cancellation (FNC) is employed, where a Michelson interferometer is used to

detect additive fluctuations to be removed via feedback. . . . . . . . . . . . 61
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3.12 Left: The additive noise of injection locking was measured by beating the

seed light with the output of the injection locked diode. An AOM was used to

shift the frequency to enable a heterodyne measurement, avoiding technical

noise close to DC. Additive noise is well below the silicon noise model from [40]

for essentially all Fourier frequencies. Right: Measurement of additive noise

from distribution center via beating two independent FNC loops. Closing the

box surrounding the distribution center optics is important to fully suppress

high frequency noise below the Si3 thermal noise floor. . . . . . . . . . . . . 62

3.13 Left: The optics layout for our vertical clock laser. Clock light propagates

colinear with the MOT and imaging beams. Right: Clock beam propagation.

The Gaussian beam is focused at the dichroic to achieve the necessary retro

condition for FNC. The laser beam size at the atoms is ≈ 300µm, correspond-

ing to a maximum Rabi frequency inhomogeneity of 1% across the cloud as

confirmed in Fig. 6.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 The in-loop error signal for our 1st order fiber noise cancellation setup. When

disengaged, we observe a large amount of low-frequency noise from path length

fluctuations. When the feedback loop is engaged the in-loop error signal, and

thus any uncancelled noise, is well below the silicon noise model from [40]. . 65

3.15 Measured coating curves for the objective lens and dichroic. Vertical lines

are for 461, 689, 698, and 813 nm. All beams are designed to pass through

objective with transmission T > 99% in top. The dichroic is designed to

retro-reflect the lattice at 813 nm and transmit other beams as plotted in

bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
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3.16 Probing atom-light coherence via Ramsey spectroscopy. For this sequence

we employ dark times of top left: Tdark = 100 ms, top right: 1 s, and

middle left: 4 s respectively. Red lines are sinusoidal fits. The loss of

fringe visibility is discussed comprehensively in Chapter 6, due primarily to

single-particle dephasing from lattice photon scattering at the deep lattice

depths employed for this measurement. Middle right: Mean phase excursion

between two silicon cavities at 1542 nm is plotted. Figure is adapted from

Ref. [39]. Bottom: During the Ramsey dark time Tdark, a phase shift is

accumulated due to both the laser detuning ∆ intentionally applied for each

experimental realization and a random phase δφ accumulated by the silicon

cavity. This net phase shift is translated into a modification of the excitation

fraction with a final π/2 pulse around the Y axis. . . . . . . . . . . . . . . . 68

4.1 Cavity drift comparison between conventional ULE cavities and our 21 cm,

cryogenic silicon cavity. In terms of cavity drift, the crystalline cavity outper-

forms the amorphous ULE cavity by many orders of magnitude. . . . . . . . 70

4.2 (a) An array of three lasers are locked to ultrastable Fabry-Pérot resonators.

A femtosecond frequency comb transfers the stability of the OLO (124 K Si

cavity) from 1542 nm to a prestabilized laser at 698 nm used to perform clock

spectroscopy in a 1D 87Sr lattice clock. (b) AT1, a free running microwave

time scale at NIST is compared continuously against the OLO signal over a

fiber optic link using a hydrogen maser (ST14) as a transfer oscillator. An

optical fiber link between JILA and NIST allows for stable transfer of the

optical time scale to NIST for future integration into UTC(NIST). . . . . . . 74
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4.3 (a) The OLO frequency (Si) is measured at 698 nm using a 87Sr lattice clock.

A linear plus exponential trend, a + bt + ce−
t
d , agrees well with the raw fre-

quency data. The fit parameters are a = 24.16 Hz, b = −9.632 Hz/day,

c = −23.17 Hz, and d = 7.813 days. (b) The residuals of the OLO compar-

isons against the 87Sr clock and the NIST AT1 time scale after subtracting

the drift trend from (a) from both datasets. . . . . . . . . . . . . . . . . . . 75

4.4 An estimate of the time error evolution of the optical time scale over the 34

day data campaign results in an integrated value of 48± 94 ps. The peak-to-

peak value of 197 ps is dominated by a four day window that includes the two

days when the 87Sr clock was not operated. The RMS spread in time error

for two time scales based on repeated simulations of a maser steered to either

a microwave or optical frequency standard are shown for comparison. . . . . 78

4.5 The silicon cavity stability is computed from the detrended 87Sr data in

Fig. 4.3b using a gap-tolerant Allan variance similar to [159]. The data is

fit to a noise model with an instability of σ = 1.3× 10−18
√
τ(s) at long av-

eraging times. The long-term stability of the OLO is also inferred from a

continuous measurement against the NIST AT1 time scale. . . . . . . . . . . 80

4.6 Expected fractional frequency stability of the optical time scale. The stability

of our optical time scale is analyzed for two optical clock duty cycles. Our

optical time scale is compared to a hydrogen maser based time scale steered

to an optical lattice clock with identical uptime or a cesium fountain clock

operating continuously. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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4.7 Schematic of the frequency comparison measurement between the OLO and

the NIST AT1 time scale. A hydrogen maser, ST14, is used as a transfer

oscillator. ST14 is compared locally with AT1 and remotely with the OLO

using a stabilized fiber optic link and the Si-AT1 signal is computed from the

two measurements. The OLO is down-converted to the microwave domain

using a frequency comb. The analysis presented in Fig. 4.3b and Fig. 4.5 is

generated by data from the frequency comb located at JILA. To characterize

the noise added by the microwave link, a local measurement of Si-ST14 is

performed at NIST over 5 days using a second frequency comb. This utilizes

an existing phase-stabilized optical fiber link which adds negligible instability. 84

4.8 Frequency comparison between the OLO and the NIST AT1 time scale. (a)

Time series of the beats between the various oscillators highlighting the im-

proved stability of the OLO. The traces are labeled to indicate that they were

measured either locally at NIST or remotely at JILA and are offset for clarity.

(b) Fractional frequency stability of the Si-AT1(JILA) record. The data is

compared against a model including contributions from AT1, microwave link

noise, and the OLO model from Fig. 4.5 . . . . . . . . . . . . . . . . . . . . 86

4.9 Time error uncertainty. Using the OLO noise model from Fig. 4.5, we sim-

ulate a frequency record for each gap between frequency measurements with

the optical clock. We estimate the uncertainty in the time error calculated

in Fig.4.4 by computing the difference between the estimated mean frequency

and true mean frequency of the OLO during each gap and multiplying by

the gap duration. The outcome of repeated simulations along with a 1σ confi-

dence interval (dashed line) are depicted. This corresponds to a 1σ confidence

interval of ±94 ps over the 34 day campaign. . . . . . . . . . . . . . . . . . . 91
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4.10 Anticipated fractional frequency stability of three different local oscillators

steered to an optical clock with several uptime configurations. Panel (a)

assumes a single 1 hour clock measurement per day. The dashed lines in

panel (b) show the stability for a single 12 hour run per day, while the solid

line assumes twelve 1 hour runs that are evenly spaced throughout the day. . 94

4.11 Frequency jumps in the difference frequency between the OLO and a reference

ultrastable laser based on a 4 K Si cavity. The data are fit to a linear plus

Heaviside function to determine the time and magnitude of the jump. The

two frequency steps are fit to 1.94×10−15 and 3.08×10−15 respectively. Data

colored in grey in panel (b) corresponding to the interval when the RAM

servo was being debugged is omitted to avoid biasing the fit. . . . . . . . . 97

4.12 Three-cornered hat analysis of the OLO frequency jumps presented in Fig. 4.11.

Examining all three beats, the frequency jumps are clearly attributable to the

time scale local oscillator (124 K). . . . . . . . . . . . . . . . . . . . . . . . . 98

4.13 Frequency ratio measurements between optical clocks at NIST and JILA.

Error bars to the left side of each data point represent statistical uncertainty,

whereas error bars on the right represent the quadrature sum of statistical

and systematic uncertainties. Lightly shaded regions correspond to the final

uncertainty (1 standard deviation) of each ratio: 5.9× 10−18, 8.0× 10−18 and

6.8× 10−18, for Al+/Yb, Al+/Sr and Yb/Sr, respectively. Figure reproduced

from [169] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.14 The 87Sr clock transition frequency, the oscillation frequency of a hydrogen

maser, and the lattice constant of our silicon cavity all depend directly on the

fine structure constant α. Via atom-cavity comparisons, we realize differential

α sensitivity to place bounds on the coupling of ultralight dark matter. Figure

reproduced from [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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4.15 Measurement of the coefficient of thermal expansion (CTE) zero crossing. The

temperature of Si3 was stepped by ∼10 mK and the cavity frequency was

monitored by both the direct Si3/Si4 beat and the Si3/H-Maser comparison

via a frequency comb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.16 Frequency instability arising due to temperature fluctuations assuming an

offset of 4.5 mK from the zero-crossing temperature for the Si coefficient of

thermal expansion. The data agrees well with the cavity model from Fig. 4.5

between 104 − 105s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.17 Measurement of the drift of the all-crystalline cavity Si6 including Al1−xGaxAs/GaAs

coatings. The Si3 drift is determined from daily measurements with our 87Sr

clock and already subtracted from the black data. We fit a linear drift of

−2.3× 10−20/s plotted in red. Figure adapted from [172]. . . . . . . . . . . . 106

5.1 Imaging spectroscopy. In situ images of ground and excited state atoms fol-

lowing left Ramsey and right Rabi spectroscopy reveal spatially-differential

frequency shifts. A magnetic field gradient (0.26 G/cm) was intentionally ap-

plied, so the atomic resonance frequency matches the clock laser frequency in

a narrow spatial region. Reproduced from Ref. [178]. . . . . . . . . . . . . . 109

5.2 Schematic for Dark Ground imaging. The scattered field tE0e
iφ and the un-

scattered field E0 are separated in the Fourier plane, so the signal on the CCD

is sensitive to the φ2 in Eq. 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.3 Dark-ground imaging measurements. Left: Atom count appears to saturate

at large detuning. Anomalously large atom number at ≈ −100 MHz was

repeatable, but never investigated. Right: Image of atomic distribution in

Fermi gas via dark-ground imaging is plotted. . . . . . . . . . . . . . . . . . 112
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5.4 Imaging system calibration. Top left: Wemeasured the point-spread-function

(PSF) using an illuminated pinhole propagating through a mock imaging sys-

tem including our objective lens and experiment viewport. Magnification of

imaging system can be changed with the ‘focusing lens’ in the diagram. Top

right: The image of our PSF is shown. Bottom: We plot the azimuthal

average of the imaged PSF in green dots. We compare to the calculated PSF

(blue) and to an Airy disk fit (red) of the data. We observe a 6% disagreement

between the fitted and calculated radii. . . . . . . . . . . . . . . . . . . . . 113

5.5 Left: Vertical imaging system schematic is shown. Objective lens with NA =

0.2 and variable magnification stage are depicted. Right: Mount constructed

by JILA machine shop is shown. Tilt meter can precisely determine the degree

that the objective is tilted with respect to the viewports. . . . . . . . . . . 117

5.6 Left: Tilt of imaging beam with respect to viewports causes aberrations.

Right: Aberrations from tilting probe beam simulated in OSLO. Note these

aberrations arise from the relative angle between the probe beam and view-

ports, and thus cannot be compensated by adjusting the objective lens. Op-

erating ≤ 0.5◦ is necessary to strongly avoid these aberrations. . . . . . . . . 118

5.7 Schematic of our clock platform. Vertical and horizontal imaging systems

with numerical apertures of 0.2 and 0.1 respectively provide measurements

of the 2D density distribution ñ. Accounting for the lattice spacing a =

407 nm, ña2 is determined from highly saturated absorption imaging. To

mitigate imaging errors, the atoms are highly saturated and each scatters

photons with a maximum rate of Γ/2. Measurements from our high resolution

imaging system integrated along gravity are presented in panel (a), where the

density distribution is extracted for thermodynamic modeling. Images from

the horizontal imaging system in panel (b) are just used to determine our

atom cloud aspect ratio for our inverse Abel transform. . . . . . . . . . . . . 119
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5.8 A comparison of high intensity fluorescence and standard absorption imaging

(I ∼ Isat) at optical depths exceeding 200 in our highly degenerate Fermi

gas is shown. In situ absorption imaging at low intensity yields strikingly

erroneous measurements at high density. The calculated 2D Fermi gas distri-

bution according to our experimental parameters is shared for comparison in

qualitative agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.9 (a) Calibration method for in situ fluorescence detection using atom counts

from time-of-flight absorption imaging. Collected photon counts from both

the vertical and horizontal imaging systems are plotted, with solid and dashed

lines representing fits to the horizontal and vertical measurements respectively.

Inset: Collected photon count with vertical imaging system as a function of

I/Isat at 1 µs pulse duration. (b) Peak column density as a function of fluores-

cence pulse duration. Measurements are normalized by 1.9×1011 atoms/cm2,

the column density at the shortest pulse duration of 500 ns. Images at 500

ns and 2 µs in inset are plotted for comparison. The error bars denote the

standard error of the mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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5.10 (a) The three-dimensional density distribution and the corresponding lattice

filling fraction are determined from in situ absorption image in Fig. 5.7a and

the use of an inverse Abel transformation. (b) A linecut along z = 0 and

y = 0 provides the data points in circles. Errorbars are both the statistical

uncertainty of the Abel transformation and atom number uncertainty added

in quadrature. We start with a prediction based on thermodynamic calcula-

tion, using independently measured values for the entropy-per-particle, atom

number, and harmonic confinement. The best fit to the data results in a

10% reduction of the measured aspect ratio ωy/ωx and 5% reduction of the

predicted entropy-per-particle. The red line captures this fit, with entropy-

per-particle uncertainty in the shaded band. The blue dashed line is a fit to

Gaussian in qualitative disagreement with na3. . . . . . . . . . . . . . . . . . 126

5.11 Panel (a) shows the integrated counts from the images in Fig. 5.9b of the

main text along the x axis as a function of pulse duration. The total counts

at each pulse duration is plotted in panel (b), normalized by the counts at 500

ns. Given the detected photon count increases linearly with pulse duration,

we observe minimal atom loss or molecular formation over the full 2 µs range.

The inset shows the Gaussian RMS width of the cloud as a function of pulse

duration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 Numerical aperture dependence on density distribution. Black curve is the

actual density distribution. Depends very weakly on NA. For our NA (0.2),

low-pass filtering is minimal. Thus, these measurements provide a fairly robust

probe for temperature in the lattice. . . . . . . . . . . . . . . . . . . . . . . 130
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5.13 SNR comparison between absorption and fluorescence imaging. The relevant

imaging parameters from the main figures of the paper are used for this cal-

culation. For absorption imaging the atom count variance scales inversely

proportional with intensity in the non-saturated limit I ≪ Isat, and propor-

tional with intensity in the high saturation limit. The variance is for both

imaging methods proportional to 1/τ . In the fully saturated regime (and as-

suming no technical noise) the normalized variance for fluorescence imaging is

independent of atomic column density. To avoid imaging defects at the high

densities used in clock operation, an I/Isat > 50 was used in all imaging mea-

surements. The black dashed line indicates the intensity used for our inverse

Abel measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 Readout noise calibration. A π pulse on our optical clock transition is used

so pe ≈ 1 and Vpe = R2

C̄t
2 + C. We use 4 pulse durations between 5 and 20 µs

to vary Ct. We fit R = 100.2± 24.6 and C = 2.73× 10−6 ± 1.02× 10−6. . . . 137

5.15 aQPN calibration. The atoms in our optical lattice are placed in a superpo-

sition of the ground and clock states with a π/2 pulse so pe ≈ 0.5 for these

measurements and Vpe is fit to Eq. 18. We determine aQPN = 1.72± 0.16. . 138

6.1 Coherence time study on Sr2. Top left: Excited state lifetime measurements

agree well with Raman scattering-limited theory. Bottom left: Coherence

time measurements qualitatively agree with lattice scattering-limited dephas-

ing at deep trap depths within prefactors of ≈ 2. At shallow lattice, dephasing

rates strongly increase likely due to motional effects. Right: Although our

lattice laser frequency ωk is hundreds of THz detuned from dipole allowed

transitions, off-resonant scattering processes still occur at ≈ mHz rates. Fig-

ure reproduced from Ref. [72]. . . . . . . . . . . . . . . . . . . . . . . . . . . 144
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6.2 Left: Motional dephasing arises due to spin-orbit coupling from incommen-

surate lattice and probe wavelengths. Right: Dephasing rates are plotted. If

the lattice spacing a is commensurate with clock laser wavelength, dephasing

rate γt is strongly minimized. Sufficiently large lattice spacing via tunable

spacing accordion lattices can strongly reduce tunneling t, also minimizing γt.

Figure adapted from Ref. [72]. . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.3 Eigenstates of the two-site Fermi-Hubbard model (∆E = 0). The ground

state in the Mott-insulating limit U ≫ tz, approximately a ‘singlet’ state, is

4t2/U lower than the E = 0 ‘triplet’ states. Higher-lying states are separated

by an energy gap U . At U = 0, the energy seperation of the highest and

lowest eigenstates is set by tunneling bandwidth 4t. . . . . . . . . . . . . . 150

6.4 Non-interacting Fermi-Hubbard model (U = 0). As the the energy offset

∆E is increased, the ground state becomes a doubly-occupied state. Note at

∆E = 0, energy is again set by tunneling bandwidth 4t. . . . . . . . . . . . 151

6.5 Contrast oscillations versus spin-orbit coupled phase ϕ. Maximum oscillation

amplitude occurs at ϕ = π. Note this condition is not so different than our

operating parameter 2πa/λclk ≈ 7π/6. . . . . . . . . . . . . . . . . . . . . . 152

6.6 Spiral basis transformation. The site-dependent laser phase ϕ is absorbed

into the spin operators: ŝ±j = ˆ̃s±j e±ijϕ, ŝZj = ˆ̃sZj . Thus, the initial state in this

transformed basis is polarized state on the collective Bloch sphere. . . . . . 154
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6.7 Left: Ultracold fermions are confined in the ground band of a three-dimensional

optical lattice with tunable confinement. Lattice depths can be independently

varied by changing the optical power of retro-reflected beams in the transverse

V⊥ or vertical direction Vz. In situ imaging allows to spatially resolve inter-

actions and dephasing via imaging spectroscopy [178]. Right: Dynamics are

described via the Fermi-Hubbard model with tunneling tz, interaction energy

U , and a site-to-site energy shift ∆Ej from the lattice Gaussian confinement.

Atoms along the z axis on sites indexed j − 1, j are initialized in a superpo-

sition state of the ground state |g = 1S0⟩ and the metastable electronic state

(‘clock’ state) |e = 3P0⟩, where the clock laser imprints local phase shift ϕ

due to spin-orbit coupling. Dephasing of the coherence is proportion to an

effective superexchange rate: 4t2zU/(U2 −∆E2
j ). . . . . . . . . . . . . . . . . 156

6.8 Ramsey spectroscopy is employed to study the coherence time. An XY8 pulse

sequence is used to mitigate single-particle dephasing. The dephasing and

rephasing of individual spins is depicted on the Bloch sphere during the echo

sequence. For the final π/2 pulse two choices of the randomized phase ϕ1,2 are

shown (light and dark purple) to illustrate the spread of resulting excitation

fractions in individual realizations. . . . . . . . . . . . . . . . . . . . . . . . 157

6.9 To determine the coherence time T2, the contrast decay is fit to an exponential

C(T ) = C0e
−(T/T2) as a function of dark time T . The contrast is determined

via parametric plots of excitation fractions in regions P1 and P2 of the ensemble

as depicted in Fig. 6.7. Error bars are 1σ (standard deviation) obtained from

jackknifing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



xxxvi

6.10 Simulated ellipse fitting fidelity. We sample data from a known distribution

(C = 0.80, φ = 0), anc examine the convergence of the fitted contrast as

a function of data points. Single realizations of simulation are plotted as

callouts. We see contrast measurements are biased and thus one can underes-

timate contrast is not enough data is collected. ≳ 40 data points were taken

for reported measurements in this chapter to ensure than these systematic

errors are minimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.11 The quality factor Q = πC0T2ν where ν ≈ 429 THz is plotted over a wide

range of transverse and vertical confinement. Two candidate regimes are iden-

tified to investigate further. The weak or zero transverse confinement regime

(i), where the longest optical lattice clock T2 times have been reported [21].

Regime (ii), where fast initial contrast decay is observed due to superexchange

interactions. The deep 3D lattice regime (iii) was studied on this platform in

[72] where the coherence time is limited by Raman scattering of lattice photons.161

6.12 Ramsey contrast decay is studied in a 3D lattice at fixed Vz = 17.4 ER and thus

tz, while V⊥ is varied between approximately 70 and 20 ER primarily modifying

U . Decay curves at V⊥ = 28.1 ER left, and 44.9 ER right, are plotted. Error

bars are 1σ (standard deviation). Red lines are theory, averaging contrast

decay in 1D chains initialized from a thermal distribution of the 3D cloud

with fitted temperatures of 350(14) nK for V⊥ = 28.1 ER and 322(17) nK for

V⊥ = 44.9 ER. The error bands stem from the uncertainty on the temperature

and T2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



xxxvii

6.13 Left: Fitted contrast oscillation frequencies (black points) are compared to

the fit results obtained from the full simulations as shown in panels A, B (red

empty squares) and calculated superexchange frequency (blue line) includ-

ing bond-charge corrections to tz, which averages the expected oscillations

with local ∆Ej and U along the imaging direction. Error bars are 1σ (stan-

dard deviation) uncertainty of the fitted frequency. Right: Contrast curves

approximately collapse when dark times are rescaled by the calculated oscil-

lation frequency (blue line). A simple simulation sampling spin chains with

different lengths and coupling strengths (gray dashed line) is overlaid. . . . . 164

6.14 We explored contrast decay using both an XY8 decoupling sequence and a

standard spin echo sequence with a single π pulse. The solid lines are fits

using the model CSE(T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.15 Atom loss in superexchange regime. For atom loss, we fit a 1/e time constant

τ = 19(1) seconds with V⊥ = 44.9ER and Vz = 17.4ER conditions. Statistical

errorbars in this measurement are susceptible to long term drifts of the total

atom number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.16 All measurements presented here are performed at trap depths Vz = 17.4 ER

and V⊥ = 44.9 ER. The fraction of atoms participating in superexchange is

modified by reducing the filling fraction via uniformly adding holes as depicted

in left panel. In (i), the initial state is a near unity filled sample of ground

state atoms. Next, atoms are placed in a superposition state with tunable

pulse area. Light resonant with |1S0⟩ is turned on to imprint holes, with

the remaining atoms in |3P0⟩ as shown in (ii). The contrast decay is plotted

in right as the clock pulse area and thus total atom number N is reduced

compared to the initial atom number N0. The solid lines shown in right panel

are fits using the model CSE(T ). Error bars are 1σ (standard deviation). . . 167



xxxviii

6.17 In left panel, the superexchange coupling is modified by changing the position

of the atoms in the lattice potential varying the site-to-site energy shift ∆Ej.

At the positions indicated by vertical red lines tunneling becomes resonant and

strongly enhances the local JSE(j). However, averaged over the whole cloud

this only slightly modifies the oscillation frequencies. Oscillations in contrast

at different vertical positions z are shown in middle panel; curves are shifted

vertically according to z position. These measured oscillation frequencies are

compared with a heuristic superexchange simulation (red line) of the Ramsey

contrast in right panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.18 Contrast decay in two regions of interest using annulus’ with thickness 2 px

(0.8 µm) and radii 14 px (6 µm), 48 px (19 µm) are plotted. V⊥ = 44.9 ER

and VZ = 17.4 ER was used for these measurements. Error bars are 1σ (stan-

dard deviation) uncertainty of the Ramsey contrast obtained from jackknifing.

The sparsely filled region (19 µm) has higher contrast due to the lower filling

fraction compared to near the center of the cloud (6 µm). . . . . . . . . . . . 168

6.19 In the weak transverse confinement regime, both off-site s-wave interactions,

induced by the SOC phase between lattice sites, and on-site p-wave interac-

tions between atoms contribute to dephasing [60]. Their strength is controlled

by the vertical confinement Vz and transverse confinement V⊥, strongly influ-

encing the observed coherence time T2. . . . . . . . . . . . . . . . . . . . . . 169

6.20 T2 is measured without transverse confinement (V⊥ = 0). In the inset the

atom lifetime τ , limited by inelastic p-wave loss, is plotted as a function of Vz.

Theory modeling Ramsey contrast decay based on the 1D spin Hamiltonian

using experimental measured parameters is overlaid in red. The error bands

are based on the uncertanties of the experimental parameters. Error bars are

1σ (standard deviation) uncertainty of the fitted T2 and τ values. . . . . . . 170



xxxix

6.21 All 1D lattice measurements are fit to a stretched exponential Ce(−T/T2)α where

α is fixed. We re-fit the data varying α and plot the χ2/DOF for each fitting

iteration. χ2 is minimized for α = 1.38 (starred point). . . . . . . . . . . . . 171

6.22 T2 dependence on stretched exponential parameter α. Red star corresponds

to the fitted α = 1.38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.23 A weak transverse confinement V⊥ is applied. This leads to increased atom

lifetime τ , as well as a reduction of T2 at intermediate Vz = 23.2ER and a

enhancement of T2 at deep Vz = 46.4ER. . . . . . . . . . . . . . . . . . . . . 173

6.24 Lattice Gaussian confinement calibration. The trap frequency is measured for

atoms solely confined in both horizontal lattice beams, each at a power equiv-

alent to the trap depth V⊥. The oscillations are initiated by rapidly switching

off the superimposed horizontal dipole trap. We note, that for the evaluation

the gravitational sag needs to be taken into account, and that employing a

harmonic approximation for estimating the sag induces discernible errors in

the beam parameters. Numerical evaluation of the Gaussian beam curvature

at the position of the atomic sag allows the construction of a fit function from

which the beam waist radius is extracted to be w = 62.2(14) µm. . . . . . . . 175

6.25 Rabi spectroscopy in shallow lattice confinement is studied. The detuning

span in each measurement is -2 kHz to 2 kHz. The Rabi pulse duration was

optimized for each measurement to maximize the excited state fraction at zero

detuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.26 Left: Rabi spectroscopy for V⊥ = 2.8 ER and Vz = 5.8 ER. Wannier-Stark

transitions are clear, as depicted in schematic on right. Note, this picture

is only correct when neglecting the harmonic confinement of the lattice as

V⊥ → 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



xl

6.27 Left: Rabi flopping is plotted depending on region-of-interest (ROI). Here,

the ROI are thin rings of thickness 2 px with corresponding radii in legend.

Right: Fitted π time as a function of ROI. Rabi drive is homogeneous within

experimental uncertainty over the spatial extent of the atomic distribution. 178

7.1 Contact interaction-based spin squeezing. Using Vz ≫ V⊥, so JSE,z ≪ JSE,⊥,

atoms on each layer of the 3D lattice interact strongly via intralayer Heisen-

berg interactions JSE,⊥ and behave as collective spins. These collective spins,

on different layers, interact via JSE,z under the same interaction Hamiltonian

in Chapter 6. Figure adapted from [89]. . . . . . . . . . . . . . . . . . . . . . 189

7.2 Left: Lattice filling fraction versus optical lattice beam waists as dictated

by the SU(10) repulsive Fermi-Hubbard Hamiltonian. This calculation is in

the ‘atomic limit’, where U/t ≈ 10 and thus tunneling is neglected in the

Hamiltonian in Eq. 7.2. This calculation is using the current experimental

beam waists w0, which are approximately 60 µm in each direction. In this

calculation, T/TF = 0.20, and the total atom number N = 104 atoms. Right:

At unit filling, the repulsive SU(N) model is expected to exhibit novel ordering.

The SU(2) model exhibits antiferromagnetic correlations and the SU(3) model

is expected to show striped ordering. Figure reproduced from [242]. . . . . . 191

7.3 Calculated dipole-dipole interactions for a 200 × 200 square of atoms. The

optical lattice is oriented along the x and y directions. k⃗ indicates the k-vector

of the clock laser, while the quantization axis B⃗ is fixed for all calculations.

The Clebsch-Gordan coefficient will depend on the clock mF states chosen

and is set to unity for this calculation. Left: We plot the function Uij from

Eq. 7.9. Right: We plot the frequency shift δ stemming from Eq. 7.8. . . . 197



xli

7.4 Probing dipole-dipole frequency shifts in our optical clock. Top: We vary

the initial excitation angle in our Ramsey interferometer, modifying δ from

Eq. 7.9. We also drive the π and σ+ transitions with markedly different

Clebsch-Gordan coefficients. Bottom: We vary the orientation of our clock

laser with respect to the optical lattice. As expected, we observe the largest

frequency shift near the Bragg resonance as displayed in Fig. 7.8. Figure

adapted from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.5 Upper left: Our 1S0 → 3P0 clock transition, used for the dipolar studies in

Fig. 7.4. Upper right: Laser orientations for lattice, clock laser, and dressing

beams. The clock laser is oriented near a ‘Bragg’ condition satisfying ψ =

arccosπ/ka ≈ 30.8◦. Lower: Electronic states for our three-level dressing

scheme. As calculated in Eq. 7.11, a dressed state is formed with an effective

decay rate Γ̃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.6 Left: Rabi spectroscopy on 1S0 → 3P0 clock transition with the dressing

laser on (off) plotted in purple (blue). A 4.33(7) Hz shift is measured with

dressing laser on resonance. Right: Ramsey spectroscopy (Tdark = 2 s) with

the dressing laser highly detuned and on resonance. When highly detuned,

we see minimal contrast loss. On resonance, we observe contrast loss and the

emergence of spatial frequency shifts. . . . . . . . . . . . . . . . . . . . . . 200

7.7 Probing enhanced dipole-dipole interactions via Ramsey spectroscopy. We

strongly enhance the dipolar coupling via applying a dressing laser at 1354

nm addressing the 3P0 → 1P1 state In this study we vary three experimental

parameters: (1) We perform spectroscopy with our dressing laser at 1354 nm

on and off. (2) We change the initial excitation angle angle between π/4, π/2,

and 3π/4. (3) We vary the readout angle φ of our final π/2 pulse at the output

of our Ramsey interferometer. . . . . . . . . . . . . . . . . . . . . . . . . . 201



xlii

C.1 Entropy per particle in the ODT as a function of reduced temperature. ωx,ωy,

ωz, and N are assumed from the table below. . . . . . . . . . . . . . . . . . 227



Chapter 1

Introduction

1.1 Background

Quantum physics experiments with cold atoms and molecules have progressed enor-

mously over recent decades. To highlight a few examples outside the focus of this thesis:

Neutral atoms have cemented themselves as a leading candidate for developing a quantum

computer achieving entangling fidelites > 99% and using error correction for large-scale pro-

cessing [1, 2]. Quantum simulation studies now probe magnetism and many-body physics

at the microscopic level [3, 4]. Fundamental physics studies with laser cooled molecules

have placed bounds on the existence of a electron electric dipole moment [5, 6] and atom-

interferometer platforms have measured the fine structure constant α at the part-per-trillion

level [7]. The list of exciting results goes on and on...1

While aspects of this field are quickly changing, some simple ideas connect all sub-

disciplines. Much of the attraction to this research is rooted in the capability to build pristine

quantum systems from the ground up. Here, the internal degrees of freedom of particles can

generally be well-approximated as a conceptually simple two-level system. Denoted as a

qubit, a quantum spin, or a clock even small systems of these two-level particles gives rise

to remarkable phenomena - particularly when interactions are introduced [8, 9] and spin-

statistics are considered [10, 11]. Introducing quantum correlations via spin entanglement
1 To further exemplify the quick pace of the field: this list will likely be outdated by the time a future

reader picks up this thesis.
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between constituent particles provides an exciting vista for creating systems of increasing

size while maintaining high fidelity entanglement [12, 13, 14].

Clocks embody this idea by precisely controlling all external perturbations to our two-

level system. With laboratory perturbations meticulously controlled, clocks offer the capa-

bility of realizing a quantum sensor sensitive to perturbations of interest [15, 16]. First and

foremost, this has opened the door for tests of fundamental physics [17, 18, 19, 20, 21, 22].

By the nature of clock spectroscopy, studies of interactions at high density also provides a

probe to understand the physics of coherent atom-light interactions in a new regime of many

emitters [23, 24]. Improving clocks will thus pay dividends by further expanding the scope

of these studies and ultimately lead to a redefinition of the SI second [25].

1.2 Why an optical lattice clock?

How do we improve a clock? First, we need to quantitatively evaluate its ‘performance’.

A reasonable place to start is to characterize the clock stability - the statistical frequency

uncertainty of our clock when it is averaged over a time period τ .

Before divulging into a discussion about uncertainty, let’s emphasize why measurement

noise is so important. First, the essential quantity a physics experiment outputs is a measured

signal with a corresponding uncertainty. Quoting either a signal or noise independently is

not so relevant - practically one can either amplify or attenuate either of these values in

the lab while the underlying physics process is unchanged. Secondly, the magnitude and

time-dependence of noise is generally more insightful. Whether technical noise like camera

readout noise, or fundamental noise like Brownian motion and quantum projection noise,

characterizing these noise terms is generally much more important to either understand or

improve a physics experiment than tuning a parameter to make a signal as large as possible.

Thus, developing tools to quantitatively apprehend noise is imperative.

To characterize a clock’s error, we start by defining a fractional error y(t) ≡ (f(t) −

fR)/fR corresponding to deviations of our clock’s frequency f(t) from a reference frequency
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fR
2 . A natural next step would be to calculate the variance of our frequency errors

V(y) = ∑N
i (yi − y)2/N . However, for many noise terms relevant to clocks (e.g. Brownian

motion in optical cavities displaying 1/f frequency noise), the mean y does not converge in

the limit of large samples. Thus a metric that captures the time-dependence associated with

noise, while making minimal assumptions about the functional form of the underlying noise

process is more appropriate. Here, we define the Allan variance: [26, 27]

σ2
y(τ) =

1
2(N − 1)

N−1∑
i=1

[
ỹ(τ)i+1 − ỹ(τ)i

]2
(1.1)

The conceptual difference here is that we evaluate deviations from measurements

(ỹ(τ)i+1 − ỹ(τ)i), binned over averaging intervals τ rather than deviations of individual da-

tum from the sample mean y. This gives us a versatile tool to evaluate the time-dependent

stability of our clock.

In addition, the accuracy of an atomic clock, or how our clock’s absolute frequency

f deviates from the reference frequency fR, is of importance. One could envision fR as

the unperturbed transition frequency of a particle fully decoupled from its environment [28].

Practically, an experimenter needs to tabulate all systematic shifts from fR with correspond-

ing uncertainties to evaluate a clock’s accuracy. We briefly detail the predominant systematic

shifts for our clock in the coming page.

Next, we turn our eye to the fundamental noise terms for a clock’s stability; this

will guide our choice of clock design after all. Given that our two-level quantum system is

fundamentally discretized, this gives rise to the so-called quantum projection noise (QPN)

[29]. Consider a single particle, placed in an initial state |ψ⟩ = α |↓⟩ + β |↑⟩ 3 . Using

spectroscopy techniques [30], coherences of our system containing information are encoded

in the populations of |↓⟩ and |↑⟩. Yet any measurement will project this particle into |↑⟩ or
2 One might question the validity of eliciting a perfect frequency reference fR for this calculation. Indeed,

this is just to simplify our explanation of clock stability. Any practical measurement requires a comparison
of multiple independent clocks, each with finite noise. In chapter 3, we will detail how > 2 independent
oscillators is required to triangulate the noise of individual clocks.

3 |α|2 + |β|2 = 1



4

|↓⟩. Other than the trivial case α or β = 1, where we have no interferometer sensitivity, a

single measurement of |ψ⟩ is indeterminant no matter how accurately the state is prepared

or read out. To achieve the best clock stability, the task is immediately clear - make many

identical copies of our particle and rather perform N projective measurements in parallel.

Figure 1.1: Synchronous clock comparison. Probing O(1000) atoms for O(1) second interro-
gation times, optical lattice clocks measure differential frequency shifts with statistical uncer-
tainties at the 10−19 level in ∼ 1 hour timescales. The blue (red) data points use 3000 (1000)
atoms and direct observe a factor of

√
3 improvement in stability according to the reduction

in quantum projection noise from Eq. 1.2. 19 digits of precision (≈ 100 µHz/ 429 THz) is
the same order of magnitude as the accuracy budgets of the most accurate clocks world-
wide [31, 32]. Figure reproduced from [33].

σQPN(τ) =
1

2πf0
√
NTτ

. (1.2)

The Allan deviation corresponding to quantum projection noise is displayed in Eq. 1.2. We

provide a detailed discussion of the clock spectroscopy techniques to arrive at this formula

in Chapter 3 and rather use this section to conceptually emphasize the three key quantities

to improve clock stability: one wants to maximize the total atom number N , the coherent

spectroscopy time T , and the clock oscillation frequency f0.



5

Let’s start with f0 - clocks that oscillate ‘faster’ at higher frequency have improved

stability. To operate a clock with a large oscillation frequency f0, we need to pick a two-level

system where the energy separation is large. Historically this decision was largely dictated by

engineering constraints, given we need coherent radiation at our atomic energy splitting to

manipulate our particle of choice. Thus, microwaves were a natural choice of local oscillator

and fountain clocks probing GHz-level hyperfine splitting of alkali atoms like cesium were

the state-of-the-art [34, 35].

The past 30 years has seen a revolution of optical technology, pioneered by groups

at JILA, NIST and other metrology labs worldwide, opening the door to realize clocks

operating at optical frequencies. Lasers locked to Fabry-Pérot cavities routinely achieve

Hz-level linewidths [36, 37, 38], with cryogenic silicon cavities emerging as the frontrunner

in recent years [39, 40]. The challenge to count optical frequencies oscillating at hundreds

of THz was solved in the early 21st century via elegant techniques to downconvert optical

signals to the microwave domain [41, 42, 43, 44, 45, 46]. These two technological advances

have distinguished two clock candidates with suitable optical transitions: neutral atoms

and ions. With microwave clocks now in the rearview mirror, even ‘XUV’ transitions are

actively being explored with a similar technological revolution ongoing [47, 48]. Currently

the low-lying Thorium isomer transition has been identified as the most promising candidate

and investigations to spectroscopically identify the transition with increasing precision are

ongoing [49, 50, 51]. Currently the JILA XUV frequency comb experiment has the most

stringent measurement of this transition, achieving 300 kHz-level precision and measuring

the ratio of the 229Th and 87Sr transitions [52].

With our design of clock platform narrowed to ions and neutral atoms, our next task to

optimize clock stability is to use as many particles as possible. Here, the choice is clear. The

strong Coulomb interactions that enable robust ion trapping and interactions for quantum

gates [53, 54] makes scalability beyond tens of ions very challenging [55]. Although efforts are

ongoing [56], many ions trapped in a single Paul trap essentially behave as a ‘crystal’ [57]
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where collective modes introduce challenging motional systematic effects. Comparatively,

trapping neutral atoms in optical lattices formed with standing waves of light provides a

robust, scalable confinement where N > 104 is straightforwardly achieved. We will detail

the progress and challenges of confining atoms with optical lattices in the coming pages.

We have narrowed our search for achieving the optimal clock stability to trapping neu-

tral atoms in optical lattices. The final optimization parameter in Eq. 1.2 is the coherent

interrogation time T . Although up to now we have treated our stability parameters f0 and N

as independent variables, here we already face the first challenge: even the earliest clock stud-

ies showed that coherent interrogation times depended strongly on the number of atoms [58].

Naive approximations of spin-polarized, non-interacting fermions were insufficient, motivat-

ing subsequent studies to understand collisions with increasing precision [59]. Recent work

demonstrated elegant techniques to cancel s and p-wave interactions in a one dimensional

lattice clock, strongly diminishing collisional shifts [60]. We immediately see that optical

lattice clocks occupy a unique space, lying at an intersection of precision measurement and

many-body physics.

The continued improvements of 1D lattice clocks over the past 20 years appears to be

a perpetual success story: Recent upgrades to our 1D lattice clock utilizing an in-vacuum

buildup cavity have enabled optical lattices with a very large mode volume, achieving record

stability of mid-10−18 level at 1 second [21]. Differential AC stark shifts between the electronic

ground and clock state are addressed by use of ‘magic wavelength’ traps, where the ground

and excited state polarizabilities are exactly matched [61]. The relatively simple AC stark

shift model in a 1D lattice has allowed these shifts to be systematically characterized at the

low-10−19 level [62]. Tabulating all systematic shifts including blackbody radiation, these

1D clocks are highly accurate at the high 10−19 level [32]. Leveraging the relatively robust

design and operation of 1D lattice clocks has opened the door for dark matter studies [19] and

new timekeeping techniques [63]. Looking to the future, current explorations are ongoing to

study quantum enhanced metrology on these platforms [64]. For future studies, notions of
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proper time [65] and time dilation [66] might even be required to quantitatively understand

millimeter separated clouds studied at the 10−21 level.

In summary, loading into a single standing-wave optical lattice one can trap hundreds

of thousands of atoms and probe them for tens of seconds. In terms of both clock stability

and accuracy this clock platform is clearly the winner, with no apparent end in sight to the

exciting vista of physics ahead.

1.3 Why a Fermi-degenerate three-dimensional optical lattice clock?

Yet, this thesis describes operating a clock using a Fermi-degenerate gas loaded into a

three dimensional lattice. The technical requirements to realize this system are necessarily

much more demanding: To achieve Fermi degeneracy, the experiment cycle time is longer

due to evaporative cooling. Twice as many lasers are required for our narrow-line cooling

and trapping procedure. Contact interactions are ≈ ×103 stronger in 3D confinement. The

density is comparatively so high, that nearly all the atoms in our sample fit into a single

10 µm2 camera pixel on the 1D lattice experiment. In the face of all these technical hurdles,

what is the motivation to build this experiment?

In the previous section, we motivated our clock as a quantum sensor. One would

naturally ask next: what regimes can we place our sensor to probe the most interesting

physics? While there is great interest in studying clock operation at large distances where

gravitational effects may be enhanced [15], there is an equally exciting frontier exploring

clock operation at the very highest atomic densities. Indeed, the canonical formulas for

atom-light interactions that we provide in Chapters 2 and 3 fall to the wayside when the

spacing between atoms is commensurate with the light wavelength λ. Rather, concepts like

the excited lifetime Γ must be regarded as collective and may be tuned based on system

parameters like the confinement geometry [67]. When motion is introduced to atoms in the

3D lattice, tunable anisotropic spin models emerge between strongly interacting fermions that

can be probed via clock spectroscopy [68]. Controlling these interactions at high density will
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open the door to engineer quantum enhanced sensors with clock stability exceeding the QPN

bounds detailed above [12, 13, 14].

Figure 1.2: Illustration of interactions probed on this experiment. Consider the hierarchy
of energy scales decreasing from left to right. Left: The basic ingredients of our three-
dimensional lattice are captured by the Fermi-Hubbard model. Atoms may tunnel to neigh-
boring sites at a rate t, at the cost of an interaction energy U if the site is occupied. Middle:
At half filling in the Mott-insulating regime, atoms interact via superexchange interactions.
These dynamics are modelled by a Heisenberg Hamiltonian. Right: In a deep lattice where
motion is restricted, atoms interact via weak, long-range dipole-dipole interactions. The co-
herent portion can be understood as a exchange of photons.

Energy scales of experiment
On-site contact energy U 1 kHz
Rabi frequency Ω 100 Hz
Tunneling t 25 Hz
Superexchange JSE ∝ t2/U 1 Hz
Dipolar coupling UDD ∝ Γ0 1 mHz

Table 1.1: Interaction scales in our optical lattice. These values are all tunable, and thus
the order of magnitude of these parameters is most important.

The interaction landscape in our 3D optical lattice contains a hierarchy of energy

scales as depicted in Fig. 1.2. The basic ingredients of our three-dimensional lattice are first
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captured by the Fermi-Hubbard model:

ĤFH = −t
∑

j,σ∈{g,e}
(ˆ̃c†j,σ ˆ̃cj+1,σ +H.c.) + U

∑
j

ˆ̃c†j,eˆ̃cj,eˆ̃c
†
j,g
ˆ̃cj,g. (1.3)

Here, ˆ̃c†j,σ(ˆ̃cj,σ) creates (annihilates) a fermion on site j with state σ in the lab frame. Atoms

may tunnel to neighboring sites at a rate t, at the cost of an interaction energy U if the site is

occupied [69]. Owing to the Pauli exclusion, two atoms may only occupy the same site if they

are different electronic states, denoted |g⟩ = 1S0 and |e⟩ = 3P0 for the ground and clock

states respectively. Both t [70] and U [71] can be directly probed via clock spectroscopy and

play an important role in clock operation. As we will detail in Chapter 6, tunneling places

stringent limitations on clock coherence [72, 73]. Given U ≈ kHz is the dominant interaction

energy scale and much larger than our clock drive Ω, doubly occupied sites can be spectrally

removed from our atomic ensemble [71]. Thus, the door is opened to prepare many-body

states in lattice that are less sensitive to decoherence from contact interactions [33].

At high filling in the Mott-insulating regime (U ≫ t), motion is restricted as doubly

occupied sites are highly energetically unfavorable. Rather, the dynamics of atoms are char-

acterized by superexchange interactions where perturbative spin exchange processes occur

at a rate JSE = 4t2/U [74, 75, 76]. These dynamics are modelled by a quantum Heisenberg

Hamiltonian:

ĤHeis. =
∑
j

JSE(j)ˆ̃sj · ˆ̃sj+1. (1.4)

Here, we introduce spin operators ˆ̃sαj for α ∈ {X, Y, Z} referring to Pauli matrices for atoms

on sites indexed by j. This Hilbert space is simplified compared to the Fermi-Hubbard

Hamiltonian as we only consider states below the energy gap ≈ U . More importantly,

the Heisenberg Hamiltonian is a canonical spin model of interest in understanding quan-

tum magnetism. The physics of superexchange is central to describing magnetic phenom-

ena such as antiferromagnetism [77, 78] and is believed to play a role in superconductiv-
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ity [79]. Several ultracold atom experiments have employed optical lattices to explore low-

temperature bosonic ferromagnetic and fermionic antiferromagnetic correlations induced by

superexchange [80, 81, 82, 83, 3, 84, 85, 86]. In our clock platform, we gain the flexibility

to tune the initial state evolving under ĤHeis. with our clock drive. As we will explain in

Chapter 6, we use this tunability to realize an XXZ-style Hamiltonian that can be directly

employed for the generation of large scale quantum entanglement over the entire 3D lattice

system [87, 88, 89, 68].

In concept, the lattice depth can be made sufficiently deep that the superexchange

interaction strength JSE is much smaller than any parameter in Table 1.1. Here, atoms are

pinned in place and at first glace one may assume that our atomic ensemble would finally

be devoid of any many-body interactions. Astonishingly, atoms still interact via weak, long-

range dipole-dipole interactions that are proportional to the single-body decay rate Γ0. The

coherent portion of these interactions can be understood as a exchange of photons:

ĤDD =
∑
j

∑
i ̸=j

U ij
DD

ˆ̃s+i ˆ̃s−j . (1.5)

Here the spin flip operators are ˆ̃s±j = ˆ̃sXj ± iˆ̃sYj . These collective dynamics are now solved via

examining the populations and coherences of the atomic density matrix ρ̂ evolving under a

master equation dρ̂/dt = − i
ℏ [ĤDD, ρ̂]+L[ρ̂] including non-Hermitian, dissipative interactions

L ∝ Γ0. ĤDD is anisotropic spin model that can admit squeezing [90] just like our Heisenberg

Hamiltonian ĤDD. In contrast to the superexchange interactions, the dipole-dipole interac-

tions U ij
DD are long-range, extending beyond the nearest neighbor coupling, and contain terms

proportional to both 1/r and 1/r3. As we will detail in Chapter 7, the relative orientation

of the optical lattice and clock beam dramatically modifies U ij
DD via constructive interference

of atomic dipoles. These dipole-dipole interactions also represent a systematic clock shift of

order ≈ 10−18 at the same level as current state-of-the-art accuracy evaluations for optical

lattice clocks [32]. Although 1D clocks are not operating at a high enough density that these
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dipolar shifts currently present a limitation, our 3D clock platform can still be posed as an

apparatus to explore a next generation of clock systematics that will be increaingly relevant

as clock stability continues to improve.

We now see that there are a number of different interaction mechanisms in our 3D

lattice, each admitting rich Hamiltonians that we directly probe with clock spectroscopy.

During the course of my Ph.D., we investigated each of these models and proposed solu-

tions to minimize the deleterious aspects of these interactions to improve clock performance.

Looking to the future with a firm understanding of these interactions in hand, we can set

more ambitious sights. One goal is to use these tunable, anisotropic spin models to generate

entanglement for improved clock stability. These anisotropic spin models can be likened as a

one axis twisting Hamiltonian to intuit the squeezing dynamics, where the metrological gain

depends weakly on the range of interactions [91]. By introducing quantum correlations via

these interactions, our ensemble of N atoms are no longer identical and the 1/
√
N scaling

in Eq. 1.2 is surpassed.

A different perspective is to use our clock to probe these interactions at finer energy

scales and with increasing complexity to reveal novel physics. For the superexchange study

reported in Chapter 6, the clock dynamics are well modelled by approximating our ensemble

as piecewise chains where small clusters of atoms separated by holes interact. For future

studies, using box potentials to remove the external harmonic confinement and pushing

to lower temperatures could realize sufficiently large uninterrupted chains of atoms that

dynamics become computationally intractable. The dipole-dipole interactions on the clock

transition that we studied were in the perturbative regime, where the coherent interrogation

times T were much shorter than the interaction timescale 1/Γ0. For this, the modelling

of these dynamics could be strongly simplified from a full master equation treatment and

effects like excited state decay changing the ⟨ˆ̃sZ⟩ projection could be ignored. As we will

detail in Chapter 7, using dressing lasers to mix states with larger dipole moments enables

entering the regime Γ̃ T ≈ 1 where once again theory breaks down and the dynamics are
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much richer. To use these dipole-dipole interactions for spin squeezing, ensuring that the

interaction strength is at least commensurate with the interrogation time is also a necessary

prerequisite.

In summary while our 3D lattice clock requires a demanding overhead of technical

resources for operation, it also opens the door for explorations into the physics of atoms

and light in a novel regime. Although the next steps to further control these interactions

will be challenging, these future studies will undoubtedly pay dividends in advancing the

capabilities of optical lattice clocks operating at the state-of-the-art.

1.4 Outline of thesis

First in Chapter 2, we give an overview of our atom of choice: fermionic 87Sr. The

unique properties of alkaline-earth atoms give rise to a versatile experimental toolbox, in-

cluding novel laser cooling techniques, enhanced evaporative cooling, and most importantly

narrow-linewidth transitions for clock spectroscopy. Starting with chunk of metal heated to

460◦ C, we detail how we combine these cooling techniques to realize a nuclear spin-polarized

Fermi gas of 87Sr atoms.

Next in Chapter 3, we outline the requirements for achieving clock operation in a three-

dimensional optical lattice. Using our Fermi gas, we load atoms into the ground motional

band of our lattice. Combined with our cryogenic silicon cavity, we perform seconds-long,

coherent interrogation of our confined atoms.

In Chapter 4, we describe the realization of the first all-optical timescale, surpassing

the performance of state-of-the-art microwave timescales. Here, we leverage the excellent

stability of our silicon cavity at both short and long averaging times to achieve superior

timing error over month-long timescale operation.

Next in Chapter 5, we detail the progress and challenges of operating clocks at high den-

sity. Specifically, achieving high fidelity in situ imaging, required for imaging spectroscopy

of clock systematics, mandates a new set of imaging techniques. Using highly saturated
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imaging, we confirm filling fractions > 90% in the band-insulating regime.

Finally in Chapter 6, we combine all pieces to study the atomic coherence time in our

3D optical lattice. We identify superexchange interactions as an important clock systematic,

and quantitatively study the effect of these interactions on Ramsey fringe contrast.

In conclusion, we provide an outlook for future studies in Chapter 7. We provide

preliminary data for ongoing experiments and share future exciting research directions on

this experimental platform.

The central results of this thesis are summarized in the following published works and

preprints:

· W. R. Milner, S. Lannig, M. Mamaev, L. Yan, A. Chu, B. Lewis, M. N. Frankel,

R. B. Hutson, A. M. Rey, and J. Ye, arXiv (2024).

· W. R. Milner, L. Yan, R. B. Hutson, C. Sanner, and J. Ye, Phys. Rev. A 107,

063313 (2023).

· W. R. Milner, J. M. Robinson, C. J. Kennedy, T. Bothwell, D. Kedar, D. G. Matei,

T. Legero, U. Sterr, F. Riehle, H. Leopardi, T. M. Fortier, J. A. Sherman, J. Levine,

J. Yao, J. Ye, and E. Oelker, Phys. Rev. Lett. 123, 173201 (2019).

Additional published work I contributed to during the course of my thesis:

· R. B. Hutson, W. R. Milner, L. Yan, J. Ye, C. Sanner, Science 383, 384 (2024).

· W. J. Eckner, N. D. Oppong, A. Cao, A. W. Young, W. R. Milner, J. M. Robinson,

J. Ye, and A. M. Kaufman, Nature 621, 734 (2023).

· D. Kedar, J. Yu, E. Oelker, A. Staron, W. R. Milner, J. M. Robinson, T. Legero,

F. Riehle, U. Sterr, and J. Ye, Optica, 10 464 (2023).

· T. Bilitewski, A. Piñeiro Orioli, C. Sanner, L. Sonderhouse, R. B. Hutson, L. Yan,

W. R. Milner, J. Ye, and A. M. Rey, Phys. Rev. Lett. 128, 093001 (2022).

https://arxiv.org/pdf/2402.13398.pdf
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.063313
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.063313
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.173201
https://www.science.org/doi/10.1126/science.adh4477
https://www.nature.com/articles/s41586-023-06360-6
https://opg.optica.org/optica/fulltext.cfm?uri=optica-10-4-464&id=528812
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.128.093001
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· C. Sanner, L. Sonderhouse, R. B. Hutson, L. Yan, W. R. Milner, and J. Ye, Science

374, 979 (2021).

· BACON Collaboration, Nature 591, 564 (2021).

· J. M. Robinson, E. Oelker, W. R. Milner, D. Kedar, W. Zhang, T. Legero, D. G.

Matei, S. Hafner, F. Riehle, U. Sterr, and J. Ye, Optics Letters 46, 592 (2021).

· H. Leopardi et al., Metrologia 58, 015017 (2021).

· A. W. Young, W. J. Eckner, W. R. Milner, D. Kedar, M. A. Norcia, E. Oelker, N.

Schine, J. Ye, and A. M. Kaufman, Nature 588, 408 (2020).

· Sonderhouse L., C. Sanner, R. B. Hutson, A. Goban, T. Bilitewski, L. Yan, W. R.

Milner, A. M. Rey, and J. Ye, Nature Physics 16, 1216 (2020).

· C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. R. Milner,

G. E. Marti, A. Derevianko, and J. Ye, Phys. Rev. Lett. 125, 201302 (2020).

· M. Bodine et al., Phys. Rev. Research 2, 033395 (2020).

· J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F.

Riehle, U. Sterr, and J. Ye, Optica 6, 240 (2018).

https://www.science.org/doi/10.1126/science.abh3483
https://www.science.org/doi/10.1126/science.abh3483
https://www.nature.com/articles/s41586-021-03253-4
https://opg.optica.org/ol/fulltext.cfm?uri=ol-46-3-592&id=446851
https://iopscience.iop.org/article/10.1088/1681-7575/abd040/meta
https://www.nature.com/articles/s41586-020-3009-y
https://www.nature.com/articles/s41567-020-0986-6
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.201302
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033395
https://opg.optica.org/optica/fulltext.cfm?uri=optica-6-2-240&id=405188


Chapter 2

Ultracold strontium

In Chapter 1, we motivated the design of our 3D optical lattice clock based on elegant

spin models we can realize with fermions at high density. To achieve this in the laboratory,

we need to prepare ensembles with a sufficiently low temperature to achieve these high fill-

ing fractions in our 3D optical lattice. As we will explain in this chapter, fermionic 87Sr

is very well suited for this task. The atomic properties of strontium allow for laser cool-

ing to near quantum degeneracy, efficient evaporative cooling to prepare highly degenerate

Fermi gases, and spin-polarizing techniques to ultimately realize a nuclear spin-polarized,

degenerate Fermi gas.

Previously described as an exploratory atomic species in earlier Ph.D. thesis’ from

the Ye lab [92, 93], strontium is now a workhorse element for ultracold atom experiments

featuring many attractive properties. This includes electronic transitions at visible and near-

IR wavelengths spanning a wide range of different linewidths, and both abundant bosonic and

fermionic isotopes. We leverage the combination of these properties to prepare a degenerate

Fermi gas of 87Sr. This Fermi gas is the linchpin of our 3D optical lattice clock experiment,

and the starting point for all results in this thesis. The goal of this chapter is thus to provide

a broad overview of the experimental techniques and physics insights required to prepare

this Fermi gas starting from a chunk of metal heated to 460◦ C.
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2.1 Strontium

Much of the relevant atomic physics of strontium stems from the fact it is in the

‘alkaline-earth’ family, meaning it has two valence electrons. This should be contrasted

to the standard hydrogen-like ‘alkali’ atoms with a single valence electron including cesium,

rubidium, potassium, lithium. Here both the spatial and spin portions of the wavefunction for

the two valence electrons can either be parallel (triplet state) or anti-parallel (singlet state).

Just like the ground state of helium (‘parahelium’), the spins of the strontium electronic

ground state is a singlet state [94].

2.1.1 Properties

We define the total spin S, which is the vector sum of the two electron spins S = s1+s2.

We also define a similar orbital angular momentum operator L = l1+l2, and the total angular

momentum J = L + S [95]. The energy levels are then described by the standard Russell-

Saunders notation (2S+1LJ). Our singlet electronic ground state has by definition S = 0, and

is also the lowest orbital angular momentum state L = 0.1 Thus we arrive at the starting

point: the electronic ground state 1S0.

Before diving into transitions from our ground state, it is insightful to consider some

of the properties of this state. The presence of the nuclear spin I introduces a hyperfine

interaction with an additional quantum number F = I+ J. It turns out, only the fermionic

isotope 87Sr has a nuclear spin I = 9/2. This can be understood by the nuclear shell model,

where owing to the Pauli exclusion principle nucleons are well described as non-interacting

fermions occupying increasing energy states. For 87Sr Z = 38, A = 49 and there is an

unpaired neutron in the 1g9/2 level [96]. For the bosonic isotopes, A = 46, 48, 50 and due to

an even number of neutrons paired off they have no nuclear spin (I = 0)2 . These hyperfine
1 The historical, spectroscopic notation for L takes the form 0 → S, 1 → P, 2 → D, 2 → F, then

alphabetical ordering.
2 This is referred to an ‘even-even’ nucleus where generally I = 0.
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Figure 2.1: Level structure of 87Sr. Dipole-allowed transitions where ∆L = ±1 and ∆S = 0
are shown in green. Dipole-forbidden, intercombination transitions between singlet (S = 0)
and triplet (S = 1) states are shown in red. 3PJ and 3DJ energies are broadened to make
the plot more readable.
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Figure 2.2: Zeeman shifts of relevant states in 87Sr. For the J ̸= 0 states with hyperfine
structure, an external B field was chosen for each plot so the Zeeman shifts are commensurate
with the hyperfine splitting.
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states are shifted in energy by

∆EHF/h = A

2K + Q

2

3
4K(K + 1)− I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1) , (2.1)

where A and Q are the magnetic dipole and electric quadrupole constants for a given elec-

tronic state and K = F (F + 1) − J(J + 1) − I(I + 1). Their values are tabulated here for

the two predominant higher lying states in Table 2.1.

Hyperfine splitting
State A (MHz) Q (MHz) Shift (MHz)
3P1, F = 7/2
3P1, F = 9/2
3P1, F = 11/2

260.084 [97] 35.658 [97]
1414
284
-1174

1P1, F = 7/2
1P1, F = 9/2
1P1, F = 11/2

-3.4 [98] 39 [98]
37
-29
-6

Table 2.1: Hyperfine splitting for 1P1 and 3P1 states.

With a basic understanding of the different electronic states, we next turn our attention

to transitions between these states. For a given transition between electronic states, much

of the physics is encoded in the transition frequency ν and the linewidth Γ. It is difficult to

calculate these values ab initio [99] but these quantities can be straighforwardly measured

in the laboratory. The first transitions to discuss are electric dipole-allowed3 transition

according to ∆L = 1 and ∆S = 0. The relevant electronic transitions on our experiment are

plotted in Fig. 2.1, with dipole-allowed transitions in green. The 1S0 → 1P1 transition with

Γ = 2π× 30.2 MHz is the predominant dipole-allowed transition used on our experiment for

fast imaging and initial cooling of our thermal gas.

Intercombination transitions (∆S = 1) between singlet and triplet states are nominally

dipole forbidden and thus require state mixing processes to be driven. These mixing processes
3 This selection rule can be understood by parity arguments where the dipole operator d ∝ x and the

only non-zero matrix elements are ∆L = 1.
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are comprehensively described in the following work from our group [100]. In brief summary,

the 3P1 state has an admixture of the 1P1 state owing to ‘spin-orbit’ coupling of the form

li ·si. In addition, the hyperfine interaction also provides a state mixing mechanism providing

a weak admixture of 1P1 in 3P0. Thus, these dipole-forbidden transitions 1S0 → 3P1 and
1S0 → 3P0 have correspondingly smaller linewidths of ≈ 2π × 7 kHz and ≈ 2π × 1 mHz

respectively owing to admixture of the 1P1 state. The magnetic structure of each of these

states is plotted in Fig. 2.2. Additionally, the linear magnetic field sensitivities are tabulated

in Table 2.2.

B-field sensitivity
1S0, F = 9/2 168.8×mF Hz/G
3P0, F = 9/2 278.8×mF Hz/G
3P1, F = 7/2 −467×mF kHz/G
3P1, F = 9/2 85×mF kHz/G
3P1, F = 11/2 381×mF kHz/G
1P1, F = 7/2 −311×mF kHz/G
1P1, F = 9/2 57×mF kHz/G
1P1, F = 11/2 254×mF kHz/G

Table 2.2: Linear sensitivities at low magnetic field in the absence of quadratic shifts.

The 1S0 → 3P0 ‘clock’ transition with a linewidth of ≈ 2π×1 mHz forms the basis for

essentially all the scientific explorations detailed in Chapter 1. To gain some intuition about

the spectroscopy of this transition, we plot the transitions between magnetic sublevels of 1S0

and 3P0 in Fig. 2.3. Note, this is simply the differences of the energy levels plotted in Fig. 2.2.

Interestingly the minimally magnetically-sensitive transition is |mF | = 5
2 → |mF ′ | = 3

2 ,

owing to a fortuitous cancellation of the differential sensitivities. For all clock spectroscopy

in this thesis, we drive the |mF | = 9
2 → |mF ′ | = 9

2 , although it may be worthwhile to use

more magnetically insensitive transitions for future studies. The magnetically insensitive

properties of this |mF | = 5
2 → |mF ′ | = 3

2 transition was first employed to achieve record

stability between independent optical lattice clocks [40].
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Figure 2.3: Zeeman splitting for 1S0 → 3P0 transition. Pulse duration for all transitions
corresponds to a π pulse for |mF | = 9

2 → |mF ′ | = 9
2 with peak excitation fraction pe = 1.

Note the minimally magnetically-sensitive transition is |mF | = 5
2 → |mF ′ | = 3

2 in the center
of the plot.

2.1.2 Experimental apparatus

With a basic understanding of the strontium level structure in hand, we next focus on

an overview of the experimental apparatus to coherently probe these various transitions. In

summary, a UHV vacuum system is required so the background-gas-collision limited lifetime

is much longer than any clock dynamics we wish to study. As we detail in Chapter 3, loss

measurements of atoms trapped in our lattice bound our vacuum lifetime to > 100 s. The

efforts to assemble this vacuum system and characterize it’s performance are detailed in Sara

Campbell’s Ph.D thesis [101]. A schematic of the apparatus is depicted in Fig. 2.4. Pumping

to achieve UHV is done with a 150 L/s ion pump on main chamber and 3 L/s pump on oven
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assembly. Strontium atoms are heated to 460◦ C in the AOSense atom source, then cooled

with a Zeeman slower stage as detailed in Section 2.2.1. In the science chamber, multiple

stages of cooling and trapping are implemented to ultimately achieve Fermi degeneracy.

In many respects, this vacuum system is fairly simple with no atomic transport of cold

atoms, and thus all laser cooling, trapping, and clock spectroscopy is done at the center

of the chamber. It has also been incredibly reliable and is essentially the only part of the

experiment untouched during the course of my Ph.D.

150 L/s 
Ion Pump

3 L/s 
Ion Pump

Science
Chamber AOSense

Source

Figure 2.4: Vacuum chamber for the experiment. Commercial AOSense atomic source deliv-
ers a collimated beam of 87Sr that is laser cooled to Fermi degeneracy in the Science chamber.
We use a 150 L/s ion pump on the main chamber to achieve UHV and 3 L/s pump on the
oven assembly.

A cross-section of the ‘science’ chamber is depicted in Fig. 2.5. The obvious downside

to avoiding transport is that every single laser beam addressing the atoms must enter a
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Figure 2.5: Cross-section of science chamber. The imaging objective lens is positioned 100
mm from the atoms. Our vertical clock laser, red and blue MOT beams, vertical lattice, and
imaging beams all go through this imaging system oriented along gravity. A full description
of this setup is provided in Chapter 3. Between the objective lens and anti-Helmholtz coils
is optical access for an oblique optical path ≈ 10◦ tiled from the vertical path, including
our vertical optical dipole trap and transparency beam. Compensation coils are farther
away from the chamber, thus not in view, providing weak (< 10 G) fields to establish a
quantization axis.
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Figure 2.6: Schematic of trapping and cooling lasers on the main breadboard surrounding
the science chamber. Most optical elements are omitted for clarity. Each of these lasers
plays a crucial role for both cooling atoms to quantum degeneracy and for loading into our
3D optical lattice. Inset: Intensity (proportional to the confinement strength) of the ODT
and optical lattice lasers is plotted.
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Figure 2.7: Layout of the Sr2 control system. Computers are interfaced over the Sr2 network.
Experimental hardware is either directly connected to the network (orange) or connected
to computers (black). By design, any computer can then communicate with any piece of
experimental hardware.
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single chamber of the vacuum system with finite optical access. This technical hurdle is

exemplified fairly well in this figure. The vertical optical path includes an intricate design

to accommodate laser cooling, trapping, clock spectroscopy, and a high-resolution imaging

system. The details of this optical design are summarized in Chapter 5. We also have an

‘oblique’ optical path tilted ≈ 10◦ used for auxiliary beams including our vertical dipole

trap. A schematic of the many lasers surrounding our vacuum chamber is shown Fig. 2.6.

By the end of Chapter 3, a reader will be familiar with all of these lasers!

Before diving into the details of all the laser systems on Sr2, it is useful to give a broad

overview of the experimental control and data storage/analysis. How do we engineer and

control dozens of DAC analog voltages, TTL digital signals, and lasers systems separated

across different rooms in an organized and flexible way? And how do we turn this complicated

sequence into a meaningful measurement of our atomic ensemble to learn some physics? The

essence of our experimental control, developed by previous Ph.D. student Ross Hutson, is

based on a network protocol called Labrad designed to communicate with equipment over a

lab network.

To gain some intuition about the functionality of our experimental control, a simpli-

fied schematic is depicted in Fig. 2.7. All computers, denoted YeSrX, are connected to the

Sr2 network and can communicate with each other. Similarly all lab hardware is either

directly connected to these computers or to the lab network. One immediately sees the im-

plementation of this design: via Labrad any computer can talk to any piece of hardware (e.g.

‘YeSr9 ’ can tell ‘YeSr10 ’ to take an image of the atoms). The remaining challenge is thus

programming and synchronizing in hardware all equipment to run a tailored experimental

sequence of choice. Here, python servers called the sequencer and conductor servers allow a

user to program a choice sequence with a flexible graphical user interface (GUI) and then

ensure that all lab hardware is appropriately programmed.4 The real power in this home-
4 Postdoc Eric Oelker did a nice job of summarizing these servers in more detail here:

https://github.com/PickyPointer/SrE/wiki
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built design is that essentially all software is written in python and the setup is designed

to be modular. Thus, there are seemingly no constraints on the amount of hardware or

compatible devices to use. For example, we routinely use spectrum analyzers to coarsely

log the locking performance of the lasers on our experiment and environmental sensors to

monitor the temperature and humidity at various locations on our experiment as depicted

in Fig. 2.7. The main drawback is also in the nature of a home-built solution - cryptic errors

occasionally arise that require the user to have some literacy in python debugging. The se-

quencer GUI is displayed on our analysis computerYeSr20, and the conductor and sequencer

servers are physically executed on YeSr10. All data storage is on the computerYeSr22, where

cameras save compressed images in .hdf5 format. All-in-all, this Labrad and python based

experimental control works very well for Sr2.

2.2 Fermi-degenerate 87Sr

We summarize the process of making a nuclear spin-polarized Fermi gas, step-by-step

in this section.

2.2.1 Broadband laser cooling

In this section, we briefly summarize our ‘Blue’ Magneto-Optical Trap (MOT) op-

erating at ≈ 461 nm employing the 1S0 → 1P1 transition. Given the large linewidth

Γ = 2π × 30.2 MHz, this transition is used to effectively capture atoms over a wide veloc-

ity range. Using a commercial atom source from AOSense strontium atoms are sublimated

at 460◦ C, then cooled with a Zeeman slower and two-dimensional MOT. Given that the

hyperfine splitting for 1P1 is commensurate with transition linewidth, spectroscopy is in

a somewhat peculiar regime where hyperfine splitting is resolved (i.e. F = 7/2, 9/2, 11/2

manifolds) but individual mF states are not. A 50 G/cm magnetic field gradient from the

anti-Helmholtz coils depicted in Fig. 2.5 is used for Blue MOT operation. With a cooling

laser intensity I/Isat ≈ 1, we trap ≈ 100 million atoms with a temperature ≈ 1 mK close to
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Figure 2.8: Photo of blue MOT. The only stage of the experiment that can be seen by the
naked eye!

Doppler temperature of ℏΓ
2kB = 725 µK [102]. This is nearly a closed, cycling transition with

1:40000 probability atoms decays to the 1D2 state, which then decay to the 3P2 state or the
3P1 state with 1:2 probability. The 3P2 state is very long lived (2π×Γ ≪ 1 Hz), so to address

this dark state we turn on repumping lasers that cycle the 3P2 → 3S1 and 3P0 → 3S1

dipole-allowed transitions and pump atoms back to 1S0 via the 3P1 state. Trapping ≈ 100

million atoms may sound like a very large number, but as we will detail in the coming sec-

tions the different cooling steps to achieve Fermi degeneracy and dramatically increase the

phase space density are unavoidably lossy. A photo of our blue MOT is shown in Fig. 2.8.

The only stage of the experiment where imaging the atoms with an iPhone is conceivable!

2.2.2 Narrow-linewidth laser cooling

The cooling techniques described in Section 2.2.1 are similar to standard Doppler cool-

ing methods used in alkali experiments where temperatures of ≈ 1 mK are readily achieved.
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Next these alkali experiments typically use ‘sub-Doppler’ cooling techniques to circumvent

the Doppler temperature limit. Strontium offers a drastically different perspective, using

narrow-line cooling transitions where the Doppler limit prescribed by the linewidth Γ is not

the limitation, but rather the photon recoil energy. For the 1S0 → 3P1 transition where

Γ ≈ 2π×7 kHz, the Doppler temperature is ℏΓ
2kB = 179 nK [103], while the recoil temperature

ℏ2k2
2m = 460 nK where the wavevector k = 2π/λ. This opens the door to laser cooling gases to

near quantum degeneracy, and also conveniently allows all-optical evaporative cooling.5 An

additional limitation to consider is the maximum laser cooling force, given by Fmax = ℏkΓ/2.

For this transition in strontium Fmax ≈ 16 mg, meaning transitions with Γ ≪ 2π × 1 kHz

are generally ineffective to support atoms against the force of gravity. For example, this was

problematic in the alkaline-earth species calcium, necessitating quenching the transition with

the 1D2 state to enhance Γ [105]. As we will detail in this section, we even use additional

techniques making spatial regions of our atom cloud ‘transparent’ to cooling light to address

limitations imposed by the recoil temperature [106, 107].

Before diving into the details of narrow-line cooling and trapping, this is a good oppor-

tunity here to briefly overview some of the properties of trapping atoms with light fields. We

blend a number of very good references in this section here [108, 109, 75, 110]. Neutral atoms

interact with light because they are polarizable. That is, an oscillating electric field directed

at an atom will cause it’s charge distribution to oscillate. A semi-classical treatment captures

much of the physics, where a two-level quantum system interacts with a classical electric field

E(r, t) = êẼ(r)exp(−iωt)+c.c., inducing a dipole p(r, t) with magnitude p = αE according

to a complex polarizability α depending on the external drive frequency ω. We classically

solve the equations of motion to gain some intuition about the functional form of α(ω). Here

we model our system as a driven, classical harmonic oscillator
5 Utrap ≈ µK deep optical dipole traps are straightforward to realize with commercial fiber lasers, but the

transfer to this trap will be very lossy unless Utrap ≫ T where T is the atomic ensemble temperature. A rule
of thumb is that the equilibrium temperature T = Utrap/η where η = 10 [104]. For alkali experiments with
high magnetic sensitivity as the ground state is J = 1/2, magnetic trapping can be employed and Utrap ≈ 1
mK may be used.
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ẍ+ Γẋ+ ω2
0x = −eẼ/m (2.2)

with damping rate Γ and resonance frequency ω0. With the ansatz x(t) = x0e
−iωt, we solve

ex0 =
e2/m

ω2
0 − ω2 − iΓωẼ → α(ω) = e2/m

ω2
0 − ω2 − iΓω . (2.3)

Next we solve for the potential depth U , often referred as an AC stark shift, and scattering

rate Γsc for our harmonic oscillator. Substituting Γ = e2ω2

6πϵ0mc3
:6

U = −p · E = − 1
2ϵ0c

Re(α)I = −3πc2
2ω3

0

 Γ
ω0 − ω

+ Γ
ω0 + ω

I, (2.4)

Γsc = ṗ · E = ω

ϵ0c
Im(α)I = 3πc2

2ℏω3
0

 Γ
ω0 − ω

+ Γ
ω0 + ω

2

I. (2.5)

Here, I is the intensity of our applied field. If we operate near resonance, ω0 ≈ ω and

the ‘counter-rotating term’ ω0 + ω can be omitted. Then, Eq. 2.5 and Eq. 2.4 is simplified

to Γsc = 3πc2
2ℏω3

0

(
Γ
∆

)2
I and U = −3πc2

2ω3
0

Γ
∆I where ∆ ≡ ω − ω0.

There are two important points to make on our formulas for U and Γsc. First, the

sign of trap depth U depends on detuning ∆, where atoms are attracted to light fields ‘red-

detuned’ (∆ < 0) and repelled when ‘blue-detuned’ (∆ > 0). This can be intuited as our

dipole p · E oscillating in-phase or out-of-phase with respect to the applied field. Secondly,

Γsc ∝ 1/∆2 while U ∝ 1/∆ motivating operating at large detuning ∆ to fractionally mini-

mize scattering. This technique of using far-off resonance traps (FORT) works remarkably

well and is generally applicable for essentially all atomic species using telecommunication

wavelength lasers that are commercially available with high optical power (> 10 W). Oper-

ating at λ ≈ 1 µm, these lasers are highly red-detuned from visible and near-IR resonances.

This principle is the basis for our 813 nm optical lattice and 1064 nm optical dipole traps

that we will detail in the coming chapters.
6 This expression comes from the Larmor formula for the radiative power of an oscillating dipole. Also,

SI units are used for this derivation.
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While this semi-classical derivation gives us a nice introduction to trapping atoms,

it leaves out a few important details that we will revisit later. First, we do not address

saturation effects in our treatment here. Based on Eq. 2.5, one would conclude that the

scattering rate Γsc is limited only by the available laser intensity I. In reality, the scattering

rate is limited by the transition linewidth and the maximum scattering rate is Γ/2.7 Thus,

Eqs. 2.5 and 2.4 are only strictly correct in the highly detuned regime at low saturation where

Γ ≫ Γsc and thus the population of the excited state is negligible. We employ the effects

of saturation to achieve quantitative imaging at high density in Chapter 5. Second, this

semi-classical derivation does not capture coherent atom-light interactions again due to the

fact the population of the excited state is always negligibly small. We detail this theoretical

framework in Chapter 3, which is critical to realize clock spectroscopy. Particularly with our

clock transition, we largely neglect the contributions of dissipation (Γ ≈ 0) and dynamically

control the populations and coherences of our two-level quantum system with external fields.

To quantitatively understand trapping our strontium atoms, there are a few remaining

pieces to add to arrive at a full expression for the polarizability α(ω). There are many

excellent resources that have derived α(ω) in full detail [95, 111, 112], and the goal of this

section is just to provide a reader with an intuitive overview for calculating the polarizability

to finally arrive at an expression for the scalar, vector, and tensor shifts.

Our semi-classical expression for Γ is strictly not correct8 and does not consider the

dipole-selection rules presented above that strongly modify the coupling strength between

different states. To properly address this, the coupling strength is prescribed by the dipole

matrix element d = −e(x1 + x2) between two states |g⟩ and |e⟩.

Γge =
ω3
ge

3πϵ0ℏc3
2Je + 1
2Jg + 1 | ⟨g| |d| |e⟩ |

2. (2.6)

7 One perspective to understand saturation for an unfamiliar reader is the modelling of atomic populations
via rate equations. Including the effects of saturation is necessary to understand phenomena like population
inversion and lasing.

8 For the dipole allowed alkali transitions (i.e. the D lines), the semi-classical calculation for Γ actually
agrees within a few percent [108].
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Here the double lines ||.|| denote the so-called reduced dipole matrix element that only

depends on the radial portion of the electron wavefunction.9 Additionally, to properly

determine the polarizability, we need to tabulate all states. As we saw in the level diagram

from Fig. 2.1, there are contributions from many different electronic states denoted |e′⟩.

Considering these two effects, the polarizability α(ω) is now expressed as:

α(ω) ∝
∑
e′

ωge′ | ⟨g| |d| |e
′⟩ |2

ℏ(ω2
ge′

− ω2) . (2.7)

To fully determine α(ω) we need sum over different mF values. We next simplify Eq. 2.7 by

breaking α(ω) in individual terms based on mF dependence:

α(ω) = αs(ω) + αv(ω)
mF

2F ξk ·B+ αt(ω)
3m2

F − F (F + 1)
2F (2F − 1) (3|ϵ ·B|2 − 1). (2.8)

The prefactors αi(ω) are dependent on Wigner-j symbols and are derived in [95, 111,

112]. We see that Eq. 2.8 is dramatically simplified with respect to Eq. 2.7 and just depends

on the frequency of our external light field ω, some basic properties of the light field like the

k-vector k and polarization ϵ and on the direction of the magnetic field B which sets the

quantization axis for our experiment. From Eq. 2.8 the AC stark shift of a given state |i⟩

from an external field with intensity I and frequency ω is: ∆νi = αi(ω)I/h.

There are a few key insights to gain from Eq. 2.8. The ‘Scalar’ shift αs(ω) is just

dependent on frequency of field ω and is devoid of any mF dependence. The ‘Vector’ shift

αv(ω), behaves like a fictitious magnetic field with a linearmF dependence just like a Zeeman

shift. It also depends on light polarization circularity ξ. We use linear light polarization in

this chapter (ξ = 0) and thus neglect any vector shifts. Finally, the ‘Tensor’ shift is m2
F

dependent. This mF sensitivity is important for the spin selection techniques we use later

in the chapter.
9 The electron wavefunction is separable and can be decomposed into radial and angular portions. The

overlap of the angular portion can be simplified in terms of selection rules and the exact coefficients are
expressed in terms of Wigner symbols.
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Figure 2.9: AC stark shifts for 3P1 F = 9/2 states after application of transparency beam.
Scalar (αS), tensor (αT ), and combined (αS + αT ) shifts are plotted. Detuning is plotted
from bare 3P1 → 3S1 transition omitting hyperfine structure. We operate with this beam
≈ 25 GHz detuned.
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With a basic understanding of trapping atoms with light fields, we turn our attention

back to narrow line cooling. To achieve the coldest temperatures possible, we wanted to

address the limitations placed by the photon recoil temperature ℏ2k2
2m = 460 nK. One method

to achieve this is by intentionally introducing AC stark shifts leveraging the many different

electronic states of 87Sr. To shift the 3P1 state, we use light detuned from the dipole-allowed
3P1 → 3S1 transition. As we will detail, making the regions in the center of our dipole trap

AC stark shifted from resonance creates a ‘transparent’ region at high density [106, 107].

This transparent region thermalizes with the edges of the cloud being actively laser cooled,

with the conceptual idea of preparing of low entropy region at the center. We note that

in addition to shielding the reabsorption of cooling photons, this technique also addresses

light-assisted inelastic collisions that may lead to heating [113]. We plot the scalar shifts

αs(ω), tensor shifts αt(ω) and the combined AC stark shift α(ω) = αs(ω)+αt(ω) in Fig. 2.9.

We operate with this beam ≈ 25 GHz detuned from the bare 3P1 → 3S1 transition omitting

hyperfine structure. Although the main effect is scalar shift from our blue detuned beam,

including the tensor shift is necessary to fully calculate the AC stark shift.

To fully understand the effects of our transparency beam, including the spatial intensity

distribution of the beam when modelling is also necessary. We first provide a quick overview

on Gaussian beams before presenting this calculation. The transverse intensity profile of

a coherent laser beam can be decomposed into Hermite-Gaussian (HG) modes which are

solutions of the paraxial Helmholtz equation [114]. For essentially all the beams on our

experiment, the intensity from the output of a single mode fiber is well approximated as the

lowest order of these HG modes:

I(x, y, z) = 2P
πw2(z)exp

− 2x
2 + y2

w2(z)

, w(z) = w0
(
1 + z2

z2R

)
, zR = πw2

0/λ. (2.9)

Here x, y, and z are Cartesian coordinates and P is the total power in beam. We see

the power in our beam falls off in the transverse direction with intensity 1/e2 at r2 = w(z)2
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Figure 2.10: Spatial variation of transparency beam shifts. Plotted left is peak AC stark
shifts for 3P1 F = 9/2 states at the center of the Gaussian beam. Plotted right is spatial
variations of these AC stark shifts for 5 mW power, 30 µm beam waist, 25 GHz detuning,
and for the mF = |5/2| state. Shifts are normalized to the 3P1 linewidth Γ3P1 = 2π× 7 kHz.
We see that ∆ ≥ Γ3P1 within a spatial extent of ≈ 50 µm.

where r2 = x2 + y2. w0, the width of the beam at its narrowest point at z = 0, is generally

called the waist. This is reflected in Fig. 2.10, where the AC stark shift depends on the

intensity I(r). To gain some intuition, we normalize the AC stark shift to the 3P1 linewidth.

For 5 mW power, 30 µm beam waist, and the mF = |5/2| state, the AC stark shift is

greater than 3P1 linewidth Γ within a ≈ 50µm radius. Given the intensity of our cooling

lasers ≪ I/Isat at the end of our narrow-line cooling sequence, power-broadening effects are

ignored and this area corresponds to the ‘transparent’ region where the detuning ∆ ≥ Γ.10

These laser parameters were chosen so the transparent area roughly matches the waist of

our VODT beam. We note that these transparency beam calculations do not include the

AC stark shifts arising from the 1064 nm dipole trap. Although the AC stark shifts from

the dipole trap are far less than the peak transparency beam shift of ≈ 1000 Γ3P1 , they are
10 The exact definition of the ‘transparent’ region is a little ill-defined. Given the scattering rate Γ ∝ 1/∆2,

so one might argue that a large detuning would be more appropriate (e.g. ∆ ≥ 10 Γ , Γ → Γ/100).



36

ShutterIF
D

L

IF
D

L

Is
ol

at
or

Is
ol

at
or

λ/2

80 MHz

80 MHz

Dichroic

To Experiment

Beam
Sampler

Beam
Sampler

PBS

To Wavemeter

80 MHz

Shutter

To Experiment

To Wavemeter

Volume
Bragg

Grating

Isolator

λ/2

ECDL

Anamorphic
Prism 
Pair

λ/2

Figure 2.11: Left: Transparency beam setup. A volume Bragg grating is used to minimize
resonant scatter from the 25 GHz detuned laser. Right: Repumper setup. These two
lasers drive the transitions 3P0 → 3S1 and 3P2 → 3S1 respectively to deplete the metastable
electronic states for readout and laser cooling purposes.

still ≈ Γ3P1 . Similar to [115], we use circularly polarized light for our ODT to minimize

differential shifts.

Our transparency laser setup is depicted in Fig. 2.11, along with our repumping laser

system discussed in Section 2.2.1. These are fairly standard laser systems, where light from

an External-Cavity Diode Laser (ECDL) [116] or Interference Filter Diode Laser (IFDL) [117]

are coupled into a fiber. The cited papers nicely summarize the design of these lasers that

we use. In essentially all laser systems, we use both an AOM and shutter to control the

intensity of the light. This way the AOM is used for fast switching, while the shutter ensures
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that the light is fully extinguished.11 For the transparency beam, we use a Volume Bragg

Grating (VBG) to ensure that residual, resonant light on our laser ≈ 25 GHz offset from the

carrier is further filtered.

2.2.3 Evaporative cooling

We use the combination of narrow-line cooling and our transparency scheme to prepare

a sample with temperature T = 2 µK [107]. This section is a natural place to next outline the

requirements to reach highly quantum degenerate gasses. As we will detail, the appropriate

benchmark for our temperature T is the Fermi temperature TF . We provide a detailed

overview of the thermodynamics of Fermi gases in Appendix C, and use this section to

briefly summarize the key points.

As we will detail, the physics of non-interacting Fermi gases can largely be encoded

in a few, fairly simple equations. First, we write the Hamiltonian for our atoms trapped in

a tightly focused Gaussian beam. This can be well-approximated as a quantum harmonic

oscillator:

H = 1
2m(p2x + p2y + p2z) +

1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). (2.10)

Practically, the trapping frequencies ωx, ωy, ωz depend on the beam parameters of our optical

dipole trap. The energy levels of this quantum harmonic oscillator are simple: ϵ(nx, ny, nz) =

ℏ(ωxnx + ωyny + ωznz).

How do our atoms distribute themselves among the rungs of this quantum harmonic

oscillator? This is elegantly captured by the Fermi-Dirac distribution, where the probability

an atom occupies an energy level ϵi is:
11 1 mW of visible light contains ≈ 1015 photons and even a single resonant photon can dramatically

affect the internal states of our atoms. For our imaging system, we use two cascaded AOMs to suppress any
leakage light into the diffracted order.
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ni =
1

1
ζ
eβϵi + 1

. (2.11)

Here, β = 1/kBT and ζ = eβµ where µ is the chemical potential. This formula must naturally

satisfy the following condition ∑i ni = N .12 At T = 0, atoms fill up the harmonic oscillator

states one-by-one up to Fermi-Energy EF = kBTF = ℏω̄(6N)1/3 where ω̄ = (ωxωyωz)1/3.

This distribution is depicted in Fig. 2.12 for a T = 0 Fermi gas. At finite temperate, the

degeneracy parameter T/TF determines the population of states above EF and thus the holes

below EF . This picture is exactly analogous in later chapters to the density distribution in

the optical lattice, where the lattice filling and thus the fraction of holes is also dictated by

the temperature. To enter the regime where holes are minimal, we must ensure T ≪ TF .

Explicitly, the entropy scales as S ≈ kBNπ
2T/TF , as derived in Appendix C.

After our narrowline laser cooling, our ensemble is at T = 2 µK corresponding to

T/TF ≈ 2.0 [107]. Although direct laser cooling to degeneracy with bosons has been

achieved [106, 118, 119], these schemes generally require compression and re-thermalization

techniques analogous to evaporative cooling and to my knowledge deeply degenerate Fermi

gases (T/TF ≤ 0.1) have not been produced via laser cooling. To reach T/TF ≪ 1 on this

experiment, we employ evaporative cooling.

The details of our evaporative cooling scheme are outlined in [120], so we will just

provide a brief overview. The basic idea behind evaporative cooling is conceptually fairly

simple [121]. Reducing the trap depth Utrap, hot atoms spill out of the dipole trap. Ensuring

the system remains in thermal equilibrium, entropy is carried away with these lost atoms.

The first challenge encountered in evaporative cooling of fermions is the Pauli exclusion

principle. In order to enjoy s-wave13 collisions at low temperature, non-identical fermions are

required. This is generally achieved using ensembles with mixtures with different hyperfine

states [122]. The optimization of evaporative cooling also requires ensuring that the elastic
12 The chemical potential µ is perhaps the one variable in this formula lacking an immediate intuition.

One could argue µ is the normalization constant ensuring
∑

i ni = N is satisfied.
13 The only partial wave not frozen out at low temperature.
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Figure 2.12: SU(N) fermions. For a T = 0 spin-polarized gas, bosons all occupy the ground
motional state, while fermions occupy each rung of the harmonic oscillator up to the Fermi
energy EF . With an N -component Fermi gas, each spin component interacts with N −
1 collisional partners, strongly enhancing the interaction strength. Figure adapted from
Ref. [107].

collision rate is large compared to any heating or loss rates in the system. This places an

immediate additional challenge - the collision rate increases at high density but so does

deleterious effects like the three-body loss rate. Strontium-87 is well suited to address both

of these issues. First and foremost, the large nuclear spin manifold with (N = 10) states

ensures that atoms have many different collisional partners as shown in Fig. 2.12. Second,

the SU(N) symmetry from the J = 0 electronic ground state means that the nuclear and

electronic degrees of freedom are decoupled and all nuclear spin states have an identical

scattering length [123]. Finally, the three-body loss rate for 87Sr in the electronic ground

state is K3 = 2.0(0.2) × 10−30cm3 s−1 [71], lower than alkali counterparts like 87Rb where

4.3(1.8) × 10−29cm3 s−1 [124]. Combining these pieces, highly degenerate Fermi gases can

be prepared as depicted in Fig. 2.12. In addition, evaporative cooling with 87Sr is highly
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efficient and Fermi gases with T/TF ≈ 0.2 can be prepared with evaporation times < 1

second. This is highly relevant for optimizing clock stability, where dead time can limit

clock stability.

Figure 2.13: Non-interacting thermometry of an expanded Fermi gas. From the image in the
left, we extract T/TF = 0.072(9). The ‘ring’ structure in the Gaussian residuals reflects the
incompressible nature or Fermi pressure of the fermionic atoms; owing to the Pauli exclusion
principle the density in the center of the cloud is smaller than prescribed by a Gaussian fit.
When fit to the Fermi-Dirac distribution, residuals are strongly reduced.

Next we need to experimentally determine the degeneracy parameter T/TF . Time-

of-flight imaging provides a convenient, reliable method to extract this parameter. After

ballistic expansion, the atomic distribution reflects the in-situ momentum distribution and

the shape of the distribution determines T/TF . To see this clearly, we write express the

semi-classical phase-space distribution based on H defined above:

w(r, p;T, µ) = 1
(2π)3

{
exp

[
β( p

2

2m + Vhar(r)− µ)
]}−1

. (2.12)

This is a good approximation in the limit N is large and thus many states are occupied [125].

We note that the real space and momentum distributions can be determined from Eq. 2.12:

n(r;T, µ) =
∫
d3p w(r, p;T, µ),

p(r;T, µ) =
∫
d3r w(r, p;T, µ).

(2.13)
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Figure 2.14: Optical dipole trapping laser system operating at 1064 nm. Given this laser is
hundreds of THz detuned from any resonance and not applied during clock spectroscopy, it
is one of the few lasers on the experiment that does not require frequency stabilization. We
share this light with KRb and MidIR comb experiments in the Ye Lab. Photonic crystal
fibers are important to ensure that stimulated Brilluoin scattering (SBS) is minimized.

We next consider ballistic expansion where r → r0 − p0 t /m with r0 and p0 the trapped

position and momentum of a particle and Vhar = 1
2mω

2r2. For simplicity, we just take the

r0 = 0 case. Then after expansion:

w(r, p;T, µ) → 1
(2π)3

{
exp

[
βγ( p

2

2m − µ/γ)
]}−1

. (2.14)

One sees the fugacity ζ = eβµ is unchanged under time-of-flight and rather the tem-

perature and chemical potential µ are re-scaled by a factor γ = 1 + ωt2. Thus even in
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time-of-flight measuring ζ can be used to determine in-situ degeneracy parameter T/TF .

Explicitly, Li3(−ζ) = −1
6(T/TF )3 and Lin refers to a polylogarithmic function of order n. This

re-scaling is more rigorously treated for all r in the following work [126].

We present time-of-flight images of our Fermi gas in Fig. 2.13. Here we use absorption

imaging to extract the density distribution. We provide a detailed overview of imaging

cold atoms in Chapter 5, including a description of the challenges of imaging dense clouds

in-situ. We see that the atomic distribution after ballistic expansion is circular, reflecting

the isotropic momentum distribution of non-interacting fermions. Note that the momentum

distribution is completely independent of the trapping frequencies, unlike the in situ density

distribution where the spatial aspect ratio of the cloud is determined by the ratio of trapping

frequencies. Fitting ζ from the distribution in Fig. 2.13. we extract a T/TF = 0.072(9). In

this analysis, we ignore interaction effects. These effects were modelled in [107], where

interactions can be introduced to the Hamiltonian in Eq. 2.10 as a mean-field term of the

form VMF = g(N−1)n(r) where g = 4πℏ2a/m, a = 97a0 is the s-wave scattering length [127],

N = 10, and n(r) is from Eq. 2.13. Intuitively, the repulsive interactions mimic the Fermi

pressure from quantum degeneracy and yield an erroneously low fitted T/TF at the 10−20%

level for typical operating parameters. Thus a more conservative T/TF to report would be

< 0.1 for the data in Fig. 2.13. Exploring quantitative thermometry of interacting Fermi

gases on this experiment with T/TF ≪ 0.1 could be a very fruitful future research direction.

To prepare our degenerate Fermi gas, we use the laser system depicted in Fig. 2.14.

This laser system is very similar to those employed in many quantum gas experiments. We

use a Mephisto NPRO to seed a fiber amplifier that can deliver 50 W of power at λ = 1064nm.

To avoid stimulated Brillouin scattering, we use photonic crystal fibers. Given this laser is

hundreds of THz red-detuned from any resonance, there is no need to stabilize its frequency.
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Figure 2.15: AC stark shifts from TenS4 laser. Plot is centered around the bare 3P1 transition
in absence of hyperfine splitting. The net AC stark shift vanishes for the mF = 9/2 state
when the TenS4 laser is ≈ 250 MHz blue-detuned from the F = 11/2 transition (highlighted
with a gold star).
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2.2.4 Nuclear-spin polarization

As displayed in Fig. 2.13, we nicely prepare highly degenerate Fermi gasses with

T/TF ≪ 0.1 using all 10 nuclear spins. However, for the spin models in Chapter 1 we

want to confine ourselves to a two-level system based on the ground (1S0) and clock (3P0)

electronic states. Thus, we need to devise a scheme to spin-polarize our sample to have just

a single nuclear spin state.

One option would be to turn on resonant light to pump the unwanted nuclear spins out

of the trap. In concept, with a sufficiently large magnetic field that the Zeeman shifts between

states are much larger than the 3P1 linewidth, optical pumping might work. However, given

T/TF ≈ 0.1, TF ≈ 200 nK and T ≈ 20 nK, a single absorbed 3P1 photon with TR = 460

nK is disastrous! In practice, all attempts we made to achieve spin-polarizing with optical

pumping resulted in substantial heating.

As we recall from Section 2.2.2, we can create blue-detuned traps that are highly re-

pulsive. Thus another option is to design a potential that is highly repulsive for all mF

states except our target state. This can be achieved using the tensor shift m2
F dependence

from Eq. 2.8 to get a strong, differential mF shift. We call our spin-dependent potential, the

‘Tensor Stark shift spin selector’ (TenS4).14 To gain some intuition about how this scheme

works, we plot the scalar and vector polarizabilities in Fig. 2.15. The scalar polarizabil-

ity αs(ω) is fairly simple, and we see three discontinuities according to the three hyperfine

manifolds calculated in Table 2.1. Including the tensor shifts αt(ω), we plot the total po-

larizability α(ω) = αs(ω) + αt(ω). We see this admits a rich structure with many different

zero-crossings in the total polarizability. For |mF | = 9/2 state, αs(ω) = αt(ω) at ≈250 MHz

blue-detuned from the F = 11/2 transition, while the potential is strongly repulsive for other

mF states.

In practice, we found our TenS4 scheme effectively removed |mF | = 5/2, 3/2, 1/2 states
14 ‘Optical Stern Gerlach’ is a more conventional name for this technique.
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Figure 2.16: Absorption imaging on 1S0 → 3P1 F = 11/2 transition. Spin populations are
plotted left before and right after polarization via resonant pulses. We intentionally deplete
the mF states that experience a weak force from the TenS4 potential.

with the strongest repulsive potential. We used optical pumping to remove the |mF | = 7/2

and mF = 9/2 states as depicted in Fig. 2.16. The spectroscopy presented here used red

absorption imaging on 1S0 → 3P1 transition, where application of a 5 G bias field allows

individual mF states to be spin resolved. Quantitative red absorption imaging is challenging,

so the purpose of this measurement was just to ensure mF populations are depleted. With

≈ kHz linewidth, untrapped atoms are quickly Doppler shifted out of resonance, requiring

I/Isat ≫ 1 to scatter as many photons as possible. As detailed in Chapter 5, in this highly

saturated regime the total atom number is just proportional to the number of ‘missing’

photons in the absorption beam.

While conceptually we have presented a dispersive, spin-polarized scheme, we still need

to determine the residual heating from this potential and optimize its parameters to achieve

the lowest T/TF . This practically requires optimizing the pulse duration of our potential to

balance fully depleting the unwanted mF states and minimizing heating. This optimization

is depicted in Fig. 2.17. The left panel shows the total atom number declining as atoms are

pushed out of the ODT. The T/TF as a function of pulse duration is plotted in the right
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Figure 2.17: TenS4 optimization as a function of pulse duration. If the pulse duration is not
sufficiently long to fully deplete unwanted spins, they will remain trapped and collide with
the mF = −9/2 target state to cause heating. Choosing an optimal pulse duration of 750µs,
we achieve T/TF = 0.15.

panel. The peak in the T/TF plot at intermediate pulse durations is a rethermalization effect

- if the pulse is not sufficiently long to fully deplete unwanted spins, they will remain trapped

and collide with the mF = −9/2 target state to cause heating. Picking an optimal pulse

duration of 750 µs, we achieve T/TF = 0.15. As we will detail in Chapter 5, this T/TF is

sufficiently low entropy to admit lattice filling fractions > 90%.

To create our TenS4 potential, we use the laser system depicted in Fig. 2.18. The laser

is a commercial Moglabs laser, that uses a high powered injection locked laser seeded by an

IFDL. We lock the IFDL to a γ ≈ 1 Hz linewidth laser stabilized to a ULE Fabry-Pérot

cavity [37]. At slow timescales, we steer this laser to our silicon cavity via our frequency

comb. A critical component of this laser system is a filter cavity to strip away resonant light

≈ 250 MHz detuned from the F = 11/2 transition. Given the frequency stability of our

laser system is more than sufficient (γ ≪ Γ3P1)15 , we lock the length of the filter cavity to

our TenS4 via a PDH feedback scheme [128] using the cavity piezo as the feedback actuator.
15 As we are so detuned from resonance, this condition is likely not necessary.
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Figure 2.18: TenS4 laser system. A Fabry-Pérot filter cavity is used to strongly suppress any
residual light near resonance ≈ 250 MHz from the carrier. We lock the length of the filter
cavity to our TenS4 laser, prestabilized to a 1 Hz linewidth ULE stabilized laser [37], via a
PDH feedback scheme using the cavity piezo as the feedback actuator.

We found that using this filter cavity was crucial to achieve T/TF = 0.15.



Chapter 3

Three-dimensional optical lattice clock

In Chapter 2, we provided an account of the various trapping and cooling techniques

required to prepare a highly degenerate Fermi gas. In this chapter, we can begin to focus

on unique applications of our strontium quantum gas. As we will detail, trapping atoms

in optical lattices formed with standing waves of light opens the door to study qualitatively

new physics. Traditionally the so-called Lamb-Dicke regime was desired, where the lattice

trapping frequency νlat is much larger than the recoil frequency shift νR allowing for coherent

atom-light coupling without changing the atom’s motional state. Alternatively, in real-space

the motional extent of the atom’s wavefunction x0 ≈
√
h/mνlat is small compared to our

clock probe wavelength.1 However strictly speaking, so long as the sideband is spectroscop-

ically resolvable (Ω ≪ νlat), coherent electronic operations are still decoupled from changing

the atom’s motional state. Entering this tightly confined regime using optical lattices opens

the door for coherent atom-light operations and motivates developing highly phase stable

lasers to optimize interferometric sensitivity. As we will detail in this chapter, second-scale

optical phase coherence requires lasers locked to ultrastable Fabry-Pérot cavities. The state-

of-the-art optical phase stability to-date has been achieved with silicon cavities operating

at cryogenic temperatures to minimize thermal-noise fluctuations [39, 40]. Combining these

pieces, we demonstrate second-scale atom-light coherence using clock spectroscopy. These

measurements motivated studies of atomic coherence in Chapter 6 to understand the inter-
1 Yet another perspective is that the optical lattice and corresponding band structure strongly enhances

the effective mass of the trapped atoms.



49

play of single-particle dephasing and interactions.

3.1 Overview

We use this section to provide an overview of the physics of atoms trapped in optical

lattices. There are many excellent references that present the concepts of this section in

full mathematical rigor [109, 75, 110]. Thus, the goal of this section is just to provide a

conceptual physics intuition. The single-particle Hamiltonian is:

ĤOL = p2

2m + U0 cos2(kz). (3.1)

U0 is the lattice depth and typically expressed in units of the recoil energy ER = ℏ2k2
2m . One

key assumption here is that this is a homogeneous system that extends to infinity. Extensions

to the calculations in this chapter including effects of the harmonic confinement have been

done [129]. U0 cos2(kz) is a periodic potential, allowing solutions for the wavefunction to

be determined using Bloch’s theorem. This tells us the solutions are of the form Ψn
q (z) =

eiqxun(z). un(z) is a function with the same periodicity as the lattice, and the values n and

q refer to the Band index and quasimomentum respectively. These wavefunctions can be

solved using the truncated Hamiltonian method from [130] and are plotted in Fig. 3.1. We

see the solutions Ψn
q (z) ‘Bloch waves’ are totally delocalized in real space.

Although we have arrived at the eigenstates of ĤOL, it is challenging to conceptually

connect these delocalized Bloch waves to an intuitive picture of atoms in a lattice tunneling

or colliding. A basis where atoms are localized to individual lattice sites indexed j would be

more appropriate [110]. Here we transform to the Wannier basis:

W n
j (z) =

1
C

∑
q

Ψn
q (z)e−iqj/ℏ. (3.2)

C is a normalization constant proportional to the number of quasimomentum q being

summed. Although not eigenstates of ĤOL, this is still an orthonormal basis with only
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Figure 3.1: The solutions to the periodic potential in Eq. 3.1 are Bloch waves characterized
by quasimomentum q. Left and right panels are wavefunctions for the ground band (n = 0)
and first band (n = 1) respectively. Localized Wannier functions are plotted in black, arising
from constructive and destructive interference of Bloch waves.

one Wannier function centered on a given lattice site. These Wannier functions are plotted

in black in Fig. 3.1.

It is insightful to also examine the eigenenergies of Eq. 3.1. As plotted in Fig. 3.2, these

eigenenergies form bands indexed n, each with a dispersion relation depending on q. We

additionally plot the ‘bandgap’, the energy offset between bands, as a function of the lattice

depth U0. The bandgap increases and bands flatten (bandwidth is decreased) as lattice depth

is increased. We compare the numerically solved bandgap with the trap frequency in the

harmonic approximation νlat,HO = 2νR
√

U0
ER

, in the conceptual limit that atoms are localized

in deep, isolated traps. Although the harmonic approximation qualitatively captures the

bandgap behavior, it misses an anharmonic correction of −ER(n + 1) [131]. In the limit

U0 ≫ ER, this correction becomes increasingly negligible.
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Figure 3.2: Left: Eigenenergies are plotted for wavefunctions in Fig. 3.1 for a lattice depth
of 7 ER. Energies have a dispersion relation depending on the quasimomenta q. Right:
Bandgap is plotted as a function of lattice depth for the first (second) bandgap in black
(blue). Bandgap increases and band flatten (bandwidth is decreased) as lattice depth is
increased. The bandgap in the harmonic approximation νlat,HO = 2νR

√
U0
ER

is plotted with a
red dashed line for comparison.

3.1.1 Lattice loading

From Fig. 3.1 and Fig. 3.2, we see optical lattices provide a geometry to confine atoms

in localized traps where the motional extent of the atom’s wavefunction is small compared

to our clock probe wavelength. We also see in Fig. 3.1 that the n = 0 wavefunction is much

more localized than the n = 1 band. In the optical lattice, νlat can easily exceed tens of kHz

for realistic beam parameters, achieving the Lamb-Dicke condition νlat ≫ νR. Transitioning

from our Fermi gas where νtrap ≈ 100 Hz to our optical lattice with νlat ≈ 50 kHz requires an

involved adiabatic loading procedure to minimize heating and ensure all atoms are loaded

into the ground (n = 0) band.

Our evaporative cooling and lattice loading procedure is depicted in Fig. 3.3. In the

top panel, we plot the trapping frequencies νtrap of our horizontal and vertical dipole traps,

HODT and VODT respectively. From T = 0 → 4 seconds, we are performing a standard

forced evaporation sequence arriving at a spin-polarized Fermi gas using the techniques
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Figure 3.3: Lattice loading sequence. Top: Trapping frequencies νtrap for our optical dipole
trap during evaporative cooling and lattice loading. Bottom: External confinement fre-
quencies νext for lattice beams during loading. Trap depths in ER are labelled in plot.

reported in Chapter 2. During this sequence, the optical lattice is turned off.

When turning on the lattice, we need to carefully consider the lattice band structure.

The calculations above are for a 1D lattice (i.e. Eq. 3.1 is just a function of x). While the

wavefunctions and eigenenergies are fully separable so the 3D wavefunction and eigenenergies

are trivial to calculate2 , one needs to be mindful that for the first excited band with two

n = 0 and one n = 1 Bloch states the eigenenergy for certain quasimomenta is lower energy
2 |ψ⟩ = |ψ(x)⟩ ⊗ |ψ(y)⟩ ⊗ |ψ(z)⟩
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Figure 3.4: Sideband spectroscopy. No observable red sideband indicates atoms are nearly
entirely in the ground motional state (n̄x, n̄y, n̄z ≈ 0). Figure reproduced from [33].

than the ground band (all n = 0 Bloch states) [132]. Thus in a 3D lattice, the bandgap only

starts to open at 2.24ER. To avoid populating higher bands, we strongly reduce the Fermi

energy by decompressing the VODT before even turning the lattice on. Next, we ramp the

lattice from 0ER to 2.5ER. With the ground and first band no longer degenerate, we strongly

compress the VODT to reach high density in the center of the combined dipole trap and

lattice potential. This compression stage in the combined potential is motivated to ‘mode-

match’ to the final density distribution in the lattice to minimize mass transport. Once the

lattice depths are above 2.24ER, we are more flexible in terms of lattice ramping. We ramp

to 10ER, then to the final operational trap depth, generally in 200 ms steps. Additionally,

the Gaussian intensity profile of our transverse optical lattice beams wj,wk introduces an

‘external confinement’: ν2ext,i = 2ER

m

(2U0,j−
√

U0,j

w2
j

+ 2U0,k−
√

U0,k

w2
k

)
. This formula includes the

change in ground state energy as the laser intensity decreases from the trap center, requiring
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2

1

Figure 3.5: ‘Band mapping’ provides a complementary measurement to examine the band
populations. Square density distribution indicates that atoms are in the ground band or ‘1st
Brillouin Zone’. Slight assymetry is likely due to vertical lattice being tilted with respect to
imaging system.

a −
√
U0 correction. The external confinement frequencies νext for lattice beams are plotted

for comparison with νtrap in Fig. 3.3.

Next we need to confirm if we populated any higher bands during our lattice loading

procedure. ‘Sideband’ spectroscopy with our clock transition is a very convenient tool to

quantitatively measure higher band populations. As depicted in Fig. 3.4, we drive trapped

atoms on the 1S0 → 3P0 transition. In addition to the hνclock energy required to excite

an atom to 3P0, an additional +hνlat (−hνlat) of energy will drive a ‘blue’ (‘red’) sideband

exciting an atoms to the n+ 1 (n− 1) motional state. Atoms in the ground motional state
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can only be driven by the blue sideband. No observable red sideband indicates atoms are

nearly entirely in the ground motional state (n̄x, n̄y, n̄z ≈ 0).
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Figure 3.6: Lattice laser systems. Both vertical and horizontal lattices use commercial fiber
lasers from Prescilaser. Left: Vertical lattice laser system. Right: Horizontal lattice laser
system. Horizontal lattice is frequency stabilized to frequency comb referenced to silicon
cavity. Vertical lattice laser is frequency stabilized to horizontal lattice laser via heterodyne
detection. Volume Bragg Grating (VBG) is employed on both systems to remove any residual
light that may cause detrimental AC stark shifts.

An alternative method called ‘Band mapping’ can also be used to examine the band

populations. This is more conventionally employed on optical lattice experiments without

the spectroscopy properties of strontium. We adiabatically lower the lattice depth so the

quasimomentum q is conserved. After ballistic expansion we probe the momentum distri-

bution as expressed in Chapter 2. As displayed in Fig. 3.5, the square shape reflects the

maximum quasimomentum of ±ℏk in the ground band. While this method is not as quan-

titative as using coherent spectroscopy in Fig. 3.4, it serves as an independent confirmation

of our band populations. The laser systems used to create our optical lattice is displayed in

Fig. 3.6.

Although we have confirmed that we load all atoms into the ground band, residual
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heating processes can still drive atoms to higher motional states. These heating processes

can place limitations on the achievable coherent spectroscopy times. The predominant mech-

anism is parametric heating from trapping laser intensity fluctuations:

Γn±2←n = π2

8 ν
2
trapSI(2νtrap)(n+ 1± 1)(n± 1). (3.3)

In Fig. 3.7, the parametric heating rates Γ2←0 are plotted for our optical dipole trap and

optical lattice lasers. Following the techniques outlined in Ref. [133], we use low amplitude-

noise VCOs to provide the RF drive for our trapping laser AOMs and tune the intensity

feedback loop to avoid any appreciable servo bump near 2νtrap. With some care to avoid

technical resonances when lattice loading, Γ2←0 can be much less than any timescale of

interest including the clock state Γ3P0 .

Figure 3.7: Parametric heating rates Γ2←0 are plotted for optical dipole trap left and optical
lattice laser right. Note that given Γ ∝ ν2trap, the heating rates are substantially lower for
the optical dipole trap.

As a final confirmation of our optical lattice performance, we measure the lifetime of

trapped ground state atoms in Fig. 3.8. Parametric heating from our optical lattice lasers

and the finite lifetime of our vacuum chamber can both lead to loss. The atoms are held in
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Figure 3.8: 1S0 lattice lifetime. The atoms are held in a deep 3D lattice and the atom
number loss is measured as a function of hold time. In this measurement V⊥,1 = 66.5ER,
V⊥,2 = 69.9ER, and Vz = 43.7ER. A 1/e time of 108(5) seconds is fit to the data. The atom
loss is likely limited by a combination of parametric heating from the optical lattice and the
vacuum lifetime. This technical loss timescale is long compared to all dynamics studied in
this thesis.

a deep 3D lattice and the atom number loss is measured as a function of hold time. A 1/e

time of 108(5) seconds is fit to the data.

3.2 Clock spectroscopy: Putting it all together

From the previous section, we confirmed that we load atoms into our 3D lattice in the

ground motional band with high fidelity (n̄x, n̄y, n̄z ≈ 0). This allows us to make a convenient

assumption not afforded to 1D lattice clocks - all atoms are in an identical motional state.

Next, we transition into a description of coherently addressing the electronic states of our

strontium atoms. From Section 2.2.2, we discussed how the trapping for each electronic state

|i⟩ is dictated by the polarizability αi(ω). To achieve state insensitive trapping, we operate
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𝝳 = 

Figure 3.9: Rabi spectroscopy. Here ω0 is the energy difference between our ground and
clock states, and ωc is the frequency of our optical local oscillator. Varying the detuning
δ = ωc − ω0 with a π pulse area, a spectroscopic feature is resolved with full-width at half-
maximum inversely proportional to the pulse duration duration ∆ν ≈ 0.8/Tpulse.

at the ‘Magic’ frequency where α 1S0(ω) = α 3P0(ω) at λmagic = 813 nm. Addressing the

vector and tensor shifts in a 3D lattice was solved in [33], where a correct choice of lattice

polarizations and detunings can cancel the scalar and tensor shifts for all beams. Vector shifts

are nominally zero for all linear-polarized beams and further suppressed by the k · B term

for two of the lattice beams. Operating at the magic wavelength allows another convenient

assumption, as we can treat electronic and motional degrees of freedom as decoupled. That

is we can write the wavefuction of all N atoms in the lattice as:

|ψ⟩ =
(
(α |g⟩+ β |e⟩)⊗ |nx = 0, ny = 0, nz = 0⟩

)⊗N
. (3.4)

With Eq. 3.4 in mind and the atoms prepared in our choice motional state, we next ask

how we dynamically change the electronic portion of wavefunction? As depicted in Fig. 3.9,

the dynamics with a coherent clock drive can be understood from a driven, two-level system.
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Figure 3.10: Left: Modified Allan deviation for both our room-temperature 40 cm ULE
cavity and 21 cm silicon cavity operating at 124 K. Both cavity systems frequency noise
is limited by thermal noise arising from Brownian motion of the amorphous (SiO2/Ta2O5)
mirror coatings. Right: Fundamental noise terms for ULE and Si cavities are tabulated
for a number of system parameters. The improved mechanical properties of Si (i.e. Spacer
Brownian, Subtrate Thermoelectric, Subtrate Brownian noise terms are negligible) and the
reduced operational temperature compared to ULE realize a lower thermal noise floor as
depicted left.

Here, ω0 is the energy difference between our ground and clock states, ωc is the frequency of

our optical local oscillator, and the detuning δ = ωc−ω0. The coupling between |g⟩ and |e⟩ is

characterized by the Rabi frequency Ω0. We judge the fidelity of rotations by the excitation

fraction pe = Ng

Ng+Ne
, where Ng (Ne) refers to the number of atoms in the ground (excited)

state satisfying N = Ng + Ne. On resonance (δ = 0), we use a ‘π pulse’ duration Tpulse to

achieve nearly unity excitation so Ω0Tpulse = π. As a function of detuning, pe varies as:

pe(δ) =
Ω2

0
Ω2

0 + δ2
sin
π

√
Ω2

0 + δ2

2Ω0

2

. (3.5)

In order to achieve high fidelity clock operations, minimizing temporal perturbations to both

the atomic energy splitting ω0 and the optical local oscillator frequency ωc is imperative. We

will detail studies of perturbations to the atomic resonance frequency ω0 on this platform
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in Chapter 6. The Rabi frequency Ωn on the carrier transition (|g, n⟩ → |e, n⟩) depends

explicitly on the motional state n and Lamb-Dicke parameter η2 = νR
νtrap

via:

Ωn = Ω0(1− η2n) (3.6)

We see from Eq. 3.5 that to optimize spectroscopy resolution, we need to extend our

pulse duration Tpulse. Explicitly the full-width at half-maximum of our Rabi lineshape is

∆ν = 0.8/Tpulse. Practically this requires engineering lasers with optical coherence times

commensurate with Tpulse. The purpose of this section is to outline synthesizing this optical

local oscillator and delivering phase coherent light to atoms trapped in our 3D lattice.

3.2.1 Ultrastable laser systems

Currently, the state-of-the-art performance for optical local oscillators is achieved using

lasers locked to Fabry-Pérot cavities. Using ultra-low-expansion (ULE) cavities, one can

routinely achieve Hz-level linewidths [36, 37, 38]. Recently, cryogenic silicon cavities have

surpassed these ULE cavities achieving linewidths as low as 8 mHz [39, 40]. Dating back to

Eq. 1.1 in Chapter 1, we pointed out that the Allan deviation is an appropriate measure of a

clock or local oscillator’s frequency noise. In Fig. 3.10, we plot the modified Allan deviation

for both our 40 cm ULE cavity and 21 cm silicon cavity operating at 124 K. Both of these

cavities are thermal-noise-limited. That is, all technical noise terms have been sufficiently

suppressed that the frequency noise is limited by thermal fluctuations of our mirror coatings.

This ‘thermal-noise’ depends on the cavity temperature T , the coating loss angle φcoat. and

the Fourier frequency f and can be directly expressed in terms of a power spectral density:

Scoat.(f) ∝ kBTφcoat./f . Silicon has a coefficient of thermal expansion (CTE) zero-crossing

at T = 124 K, and thus allows operation at lower temperatures than room temperature

afforded to ULE cavities. This reduced thermal noise directly translates into extended light

coherence times as quantitatively studied in [39].
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Figure 3.11: Distribution center layout is plotted. Light from the 40 cm ULE cavity seeds
injection-locked diodes (ILD). Additive noise from injection locking is negligible with respect
to the silicon cavity noise model as verified in Fig. 3.12. To distribute phase-stable laser light
to many different experiments, fiber noise cancellation (FNC) is employed, where a Michelson
interferometer is used to detect additive fluctuations to be removed via feedback.

Our 124 K silicon laser system along with the stability transfer to 698 nm is well

documented in [40, 120]. In summary, although the strontium clock transition is at λclock ≈

698 nm, silicon is opaque at this wavelength. However silicon is transparent at 1.5µm,

where commercial telecommunication lasers with free-running linewidths of ≈ 1 Hz can be

purchased. To transfer this frequency stability, we lock the repetition rate of a frequency

comb to our silicon cavity. Thus the tooth of our comb closest to λclock is an optical tone with

the stability properties of our silicon cavity. We can conveniently lock our 40 cm ULE system

to this tone at low bandwidth. An overview of this stability transfer scheme is provided in
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Si3 Thermal noise floor

Figure 3.12: Left: The additive noise of injection locking was measured by beating the seed
light with the output of the injection locked diode. An AOM was used to shift the frequency
to enable a heterodyne measurement, avoiding technical noise close to DC. Additive noise
is well below the silicon noise model from [40] for essentially all Fourier frequencies. Right:
Measurement of additive noise from distribution center via beating two independent FNC
loops. Closing the box surrounding the distribution center optics is important to fully
suppress high frequency noise below the Si3 thermal noise floor.

Chapter 4.

While the excellent frequency stability of our silicon cavity is well-calibrated, the next

task is to distribute this light to our experiment, as well as the other clocks in JILA. Dis-

tributing this light while adding negligible noise to our optical carrier is not trivial and

each link of our frequency chain needs to be careful calibrated. The optical layout for

our ‘distribution center’ is depicted in Fig. 3.11. Light from the 40 cm ULE cavity seeds

injection-locked-diodes (ILD). To distribute phase-stable laser light to many different exper-

iments, fiber noise cancellation (FNC) is employed, where a Michelson interferometer can be

used to detect additive fluctuations through optical fibers to remove via feedback [134]. One

of these paths is used to lock our 40 cm ULE cavity to the optical frequency comb [40].

The purpose of the injection locked diodes is to optically amplify our clock laser while

adding minimal frequency noise. We measured the additive noise from the injection locking
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process as plotted in Fig. 3.12. For this measurement, we beat the seeding light with the

optically amplified light via a heterodyne beat offset with an AOM. Thus, any differential

noise between the seed and amplified light will appear on this beat. This heterodyne tech-

nique is designed to decouple our measurement from different noise sources at low frequency

(e.g. 60 Hz noise, ground loops, vibrations, temperature fluctuations). The additive noise is

well below the silicon noise model from [40] for essentially all Fourier frequencies.

3.2.2 Vertical clock path

Figure 3.13: Left: The optics layout for our vertical clock laser. Clock light propagates co-
linear with the MOT and imaging beams. Right: Clock beam propagation. The Gaussian
beam is focused at the dichroic to achieve the necessary retro condition for FNC. The laser
beam size at the atoms is ≈ 300µm, corresponding to a maximum Rabi frequency inhomo-
geneity of 1% across the cloud as confirmed in Fig. 6.27

We next need to deliver our amplified, phase-stable clock light to our trapped atoms.

To remove any additive noise during the light delivery using the interferometer depicted in

Fig. 3.11, we want to retro-reflect light from a phase reference as close to atoms as possible.

We achieve this phase reference by using a single dichroic optic as both the lattice retro-

reflector and clock reference. Our optics layout for our clock path is displayed in Fig. 3.13.
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The clock beam is delivered to atoms by traversing through our vertical imaging system.3

Both the 0th and 1st diffracted orders of our 60 MHz AOM are employed for FNC. The

1st order is the light that is ultimately shined on the atoms, while the 0th order provides an

additional convenient phase reference that is never extinguished. We use a sample-and-hold

technique detailed in [120] to engage the 1st order servo when turning on our clock drive.

One convenient attribute of our 3D lattice is that we achieve the Lamb-Dicke condition

in all three axes, relaxing constraints about clock laser alignment. This can be contrasted

to 1D lattice clocks, where atoms are very weakly confined (νtrap ≈ 100 Hz) in the radial

direction and great care must be taken to make the 1D lattice and clock highly co-linear [131].

We also plot the clock beam size in Fig. 3.13. To achieve the retro-reflection condition

necessary for FNC, the beam must be focused at the dichroic. This leads to a beam size

of ≈ 300µm at atoms. Given a cloud size of 30µm, we expect a maximum Rabi frequency

inhomogeneity of 1% across the cloud as confirmed with measurements in Chapter 6.

To judge the performance of our 1st order FNC, in Fig. 3.14 we plot the in-loop error

signal with both feedback engaged and disengaged. When disengaged, we observe a large

amount of low-frequency noise likely from path length fluctuations. Given our clock light is

sent through a MOT optics path including optics on large posts 6" above the ground, this

is perhaps not so surprising. When locked, we suppress this noise to well below the silicon

noise model from [40].

For reference, the measured coating curves for the objective lens and dichroic are

plotted in Fig. 3.15. Vertical lines are for 461, 689, 698, and 813 nm respectively. All

beams are designed to pass through objective, with transmission T > 99%. The dichroic

was designed to retro-reflect the lattice light at 813 nm and transmit other beams. Thus, for

our clock retro-reflection we rely on a percent-level reflection. While using a single optic as

both the lattice and clock retros would appear to be a perfect solution, there is one technical

constraint - the dynamic range of clock optical power is fairly limited, placing limitations
3 A detailed description of this imaging system is provided in Chapter 5.
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Figure 3.14: The in-loop error signal for our 1st order fiber noise cancellation setup. When
disengaged, we observe a large amount of low-frequency noise from path length fluctuations.
When the feedback loop is engaged the in-loop error signal, and thus any uncancelled noise,
is well below the silicon noise model from [40].

on the usable Rabi frequency Ω ∝
√
I. To achieve Hz-level clock spectroscopy, one needs to

use optical powers ≪ 1 nW while still retroing enough optical power to perform FNC with

high SNR. Usually this is accomplished by having two distinct optics for the lattice retro

and clock phase reference, placed in a hermetically sealed box so relative length fluctuations

between them are negligible. Then, an ND filter can be inserted between these optics to

attenuate the optical power as much as desired. A different spectroscopy method to achieve

high sensitivity, which we will present in the next section, is Ramsey spectroscopy. Here the

sensitivity is determined from the dark time Tdark where the light is extinguished, avoiding

constraints for operating with a low Rabi frequency.
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Figure 3.15: Measured coating curves for the objective lens and dichroic. Vertical lines
are for 461, 689, 698, and 813 nm. All beams are designed to pass through objective with
transmission T > 99% in top. The dichroic is designed to retro-reflect the lattice at 813 nm
and transmit other beams as plotted in bottom.

3.2.3 Second-scale coherent spectroscopy

Finally, we combine the ground motional state lattice loading and ultrastable laser syn-

thesis for clock spectroscopy. In Fig. 3.16, we present results coherently interrogating atoms

over seconds-long timescales. For these measurements, we employ ‘Ramsey spectroscopy’.

While the conceptual idea of increasing the coherent interrogation time for increased sen-

sitivity is exactly analogous to Rabi spectroscopy from Fig. 3.9, the details of this scheme
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are slightly different. Atoms are first placed in a coherent superposition state with a ‘π/2

pulse’ Ω0Tpulse = π/2, so |ψ⟩ = (|g⟩ + |e⟩)/
√
2 ≡ |X⟩. Next, the atoms precess over a dark

time Tdark where the light is extinguished. The detuning ∆ = ωc − ω0 results in an accumu-

lated phase shift φtotal = ∆Tdark + δφ, including a random laser phase δφ that stocastically

increases as the dark time is extended. As we will detail in future chapters, interactions

between atoms may also lead to phase shifts that can be spectroscopically probed. This

phase shift φtotal is mapped into the excitation fraction pe in the final π/2 pulse. In this

measurement, we intentionally step the laser frequency ωc to scan out Ramsey ‘fringes’. To

study the limits of our atom-light coherence, we vary our dark time Tdark from 100 ms, to

1 s, to 4 s from top panel to bottom. Even up to 4 s dark time, we maintain atom-light

coherence. We additionally see that the fringe visibility is decreased as Tdark is extended,

strongly motivating the studies of ‘atomic coherence’ in Chapter 6.
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Figure 3.16: Probing atom-light coherence via Ramsey spectroscopy. For this sequence
we employ dark times of top left: Tdark = 100 ms, top right: 1 s, and middle left:
4 s respectively. Red lines are sinusoidal fits. The loss of fringe visibility is discussed
comprehensively in Chapter 6, due primarily to single-particle dephasing from lattice photon
scattering at the deep lattice depths employed for this measurement. Middle right: Mean
phase excursion between two silicon cavities at 1542 nm is plotted. Figure is adapted from
Ref. [39]. Bottom: During the Ramsey dark time Tdark, a phase shift is accumulated due
to both the laser detuning ∆ intentionally applied for each experimental realization and a
random phase δφ accumulated by the silicon cavity. This net phase shift is translated into
a modification of the excitation fraction with a final π/2 pulse around the Y axis.



Chapter 4

Demonstration of an all-optical timescale

The research in this chapter is reported in the following publication: W. R. Milner,

J. M. Robinson, C. J. Kennedy, T. Bothwell, D. Kedar, D. G. Matei, T. Legero, U. Sterr, F.

Riehle, H. Leopardi, T. M. Fortier, J. A. Sherman, J. Levine, J. Yao, J. Ye, and E. Oelker,

Phys. Rev. Lett. 123, 173201 (2019).

4.1 Introduction

Time plays a vital role in day-to-day life. You look at your phone, see the time is 9:30

AM, and realize you only have 5 minutes before you are late for group meeting. Thus time

is relative [135] and apparently unidirectional. But where does the time come from?

4.1.1 Why an all-optical timescale?

The worldwide time standard, Coordinated Universal Time (UTC), is synthesized from

a global network of atomic clocks and disseminated at monthly intervals. 1 National metrol-

ogy institutes bridge the gap between updates of UTC by broadcasting independent time

scales derived from ensembles of microwave local oscillators steered to accurate atomic fre-

quency standards [136, 137]. To advance the frontier of precision timekeeping, the develop-

ment of both improved local oscillators and atomic frequency standards is imperative. This
1 The monthly Circular T report from BIPM!

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.173201
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Figure 4.1: Cavity drift comparison between conventional ULE cavities and our 21 cm,
cryogenic silicon cavity. In terms of cavity drift, the crystalline cavity outperforms the
amorphous ULE cavity by many orders of magnitude.
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will pay dividends for a wide array of applications, ranging from navigation and geodesy to

studies of fundamental physics [138, 139, 140, 141, 142, 19].

Optical atomic clocks [143, 103, 144, 141, 145, 31], show promise as frequency stan-

dards for time scale applications. Recent efforts to incorporate optical clocks into existing

microwave timescales have lead to improved performance [146, 147, 148]. However, despite

the fact that optical clocks have demonstrated mid-10−17 level stability in one second of

averaging [40, 149], time scales steered to optical standards have thus far required weeks

of averaging to reach 10−16 level precision [150, 148]. This disparity in performance arises

due to down conversion of noise from the local oscillator – a consequence of steering to an

atomic standard in the presence of dead time – which degrades the long-term stability of

the time scale [148]. This limitation motivates the development of local oscillators with

improved stability, particularly at averaging times around the typical interval between clock

measurements (103 to 105 s). Improvements in local oscillator stability allow a timescale to

maintain a competitive level of performance even when relaxing the requirements on optical

clock uptime.

After a decade of development [151, 152], cryogenic silicon reference cavities are now a

proven platform for laser stabilization at the mid-10−17 level [153, 39]. The exceptional short-

term stability of these local oscillators has enabled advances in optical clock stability [40].

These systems outperform all free-running local oscillators, both optical and microwave,

at averaging times below 1 × 104 seconds [40]. Our silicon cavity also exhibits orders-

of-magnitude lower frequency drift and superior long-term stability compared to all other

OLOs [154, 153].

Despite the many attractive features of silicon cavities already characterized, the long

term stability of these reference cavities was relatively unexplored. Historically, realizing a

free-running Fabry-Pérot with long term stability commensurate with the best microwave

local oscillators seemed impossible [150]. Rather, efforts were focused on improving cavity

short-term stability (i.e. 0.5−10 Hz frequency band) for optimal clock performance [40, 149].
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Quantitatively characterizing the long-term frequency stability required either painstaking

measurements over multiple weeks with our 87Sr clock, or direct comparisons with an in-

dependent local oscillator exhibiting commensurate performance. As we will detail in the

forthcoming chapters, both approaches were used to determine the cavity long-term stability

in good agreement.

As plotted in Fig. 4.1, initial measurements of the silicon cavity frequency over long

averaging times with our 87Sr clock clearly demonstrated that our crystalline cavity had

far lower drift than any amorphous ULE cavity by many orders of magnitude. However,

additional work was required to ensure the instability, or the deviations from the linear drift,

were sufficiently small to challenge the performance of hydrogen masers. To address this, we

installed super-polished optics for all optics in our optical cavity setup, including windows

in the cavity housing and the alignment mirrors incident to the cavity, along with improving

the thermal control of the cavity environment. Both of these technical improvements were

implemented to limit the effects of parasitic etalons on our cavity stability. Additionally,

active optical power stabilization in cavity transmission was crucial to reduce frequency

excursions arising from laser intensity fluctuations.

4.2 Realizing an all-optical timescale

In this thesis chapter we summarize the first realization of a time scale based on an op-

tical local oscillator (OLO) which outperforms state-of-the-art microwave oscillators steered

to either microwave or optical frequency standards. This all-optical time scale scale consists

of an ultrastable laser based on a cryogenic silicon reference cavity that is steered daily to

an accurate 87Sr lattice clock [155] over a month-long campaign. During this period, the

frequency stability of the OLO surpasses that of the hydrogen masers in the UTC(NIST)

time scale at all averaging intervals up to multiple days, demonstrating the requisite stability

for improved time scale performance. Our analysis indicates that daily steering of the OLO

frequency with 50% clock uptime allows for a time scale instability below the 10−17 level
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within 85 days of operation. Our local oscillator frequency is easily predictable using con-

ventional time scale steering algorithms, allowing us to limit the estimated time error to only

48± 94 ps after 34 days of operation. The continuous availability of the OLO coupled with

the on-demand performance of our optical clock make our system viable for future inclusion

in UTC(NIST). This new variant of time scale harnesses both the improved accuracy and

stability of optical standards and provides a viable blueprint for the upgrade of time scales

worldwide.

4.2.1 Interface with optical clock

We combine our local oscillator with an accurate optical frequency standard to form

an all-optical time scale. Over a 34 day interval, a strontium lattice clock with systematic

uncertainty of 2.0× 10−18 [155] is used to track the OLO frequency with 25 percent uptime.

Daily measurements of the OLO allow us to build a reliable predictive model of its frequency

evolution. As new frequency data become available, the model is updated to better reflect its

current behavior. The OLO is steered using the model to correct for changes in its frequency

over time, and any residual frequency fluctuations ultimately determine the time scale sta-

bility. The analysis required to realize the time scale was carried out in post-processing,

though we emphasize that our approach is compatible with real-time implementation.

To track frequency excursions larger than the low-10−16 level during intervals when the

optical clock is offline, the OLO must be compared with two independent ultrastable lasers

based on a 6 cm silicon cavity operated at 4 K [153] and a 40 cm ultra-low expansion (ULE)

cavity [156]. Because the three systems have comparable short-term stability, one can use

a three-cornered hat analysis to identify any significant frequency jumps in the OLO and

update the predictive model accordingly.

A schematic of our optical time scale is presented in Fig. 4.2a. In order to reference the
87Sr clock laser to the 124 K silicon cavity, we transfer its optical stability from 1542 nm to

a prestabilized laser at 698 nm using a femtosecond Er:fiber frequency comb with negligible
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Figure 4.2: (a) An array of three lasers are locked to ultrastable Fabry-Pérot resonators. A
femtosecond frequency comb transfers the stability of the OLO (124 K Si cavity) from 1542
nm to a prestabilized laser at 698 nm used to perform clock spectroscopy in a 1D 87Sr lattice
clock. (b) AT1, a free running microwave time scale at NIST is compared continuously
against the OLO signal over a fiber optic link using a hydrogen maser (ST14) as a transfer
oscillator. An optical fiber link between JILA and NIST allows for stable transfer of the
optical time scale to NIST for future integration into UTC(NIST).
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Figure 4.3: (a) The OLO frequency (Si) is measured at 698 nm using a 87Sr lattice clock. A
linear plus exponential trend, a + bt + ce−

t
d , agrees well with the raw frequency data. The

fit parameters are a = 24.16 Hz, b = −9.632 Hz/day, c = −23.17 Hz, and d = 7.813 days.
(b) The residuals of the OLO comparisons against the 87Sr clock and the NIST AT1 time
scale after subtracting the drift trend from (a) from both datasets.
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additive instability [40]. The frequency corrections applied to AOM1 by the stability transfer

servo are recorded to monitor the relative frequency fluctuations between the 40 cm ULE

cavity and the OLO. The stabilized 698 nm light is then tuned to resonance for the 87Sr

clock transition using AOM2. The AOM2 correction signal is recorded and yields the OLO

frequency relative to the 87Sr transition. An optical beatnote at 1542 nm between the OLO

and the 6 cm Si cavity serves as a continuous monitor of their frequency difference. Fig. 4.2b

depicts AT1, a free running microwave time scale at NIST. Using a hydrogen maser as a

transfer oscillator, AT1 is compared remotely with the local oscillator over a stabilized fiber-

optic link. To enable this comparison, the OLO is down converted to the RF domain using

a frequency comb. This provides an additional record of the long-term performance of the

OLO that is nearly continuous (95% uptime) over the measurement campaign. We note

that AT1 is chosen rather than UTC(NIST) due to its superior stability over the averaging

intervals of relevance to this study.

A record of the OLO frequency during the data campaign spanning from a modified

Julian date (MJD) of 58430 to 58464 is presented in Fig. 4.3a. The clock ran daily with the

exception of MJD 58444 and 58447. Three days before the first measurement, the optical

power incident on the cavity was changed to reset an intensity noise servo. Consistent

with prior silicon cavity drift studies, the frequency evolution of the OLO after adjusting

the incident optical power is well modeled by a constant linear drift plus an exponential

relaxation term: a+ bt+ ce−
t
d [153]. Fig. 4.3b shows the residuals of the OLO comparisons

with the clock and AT1 after subtracting the modeled drift trend determined by a fit to the
87Sr clock data. Perfect correlation between the two data sets is not expected as both AT1

and the microwave link contribute additional instability to the Si-AT1 record. During the

interval between clock operation on MJD 58441 and 58442, two frequency jumps on the OLO

were identified with a combined amplitude of 5.02×10−15. For future applications of optical

timescales, it is important to add redundancy in the form of multiple optical local oscillators

with commensurate performance. A correction of the same magnitude is applied to all data
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after this step when performing the analysis presented in this work. No significant change

in the long-term drift trend of the local oscillator was observed following these excursions.

Under real-time operating conditions, we anticipate an additional time error of less than 5

ps from these two jumps.

To realize a time scale, the OLO frequency record in Fig. 4.3a is steered using a

predictive model to minimize its offset from the atomic frequency standard. The predictive

model utilizes a Kalman filter to estimate the frequency of the OLO at a given time based on

prior measurements with the clock. Kalman filtering techniques are commonly used in time

scales to model the frequency of hydrogen masers [157, 158]. The drift in the OLO frequency

between daily measurements is well approximated by a quadratic function: k0 + k1t + k2t2

2 .

The model prediction is determined by a state vector [k0, k1, k2] that is updated epoch-

by-epoch when the 87Sr clock is running. We stress that this technique does not utilize a

priori knowledge of the drift coefficients from Fig. 4.3a. When the clock is online, the Kalman

filter adapts rapidly to follow the current drift trend of the cavity and the prediction remains

accurate provided the drift does not change significantly between daily measurements.

To evaluate the performance of a time scale, one typically compares it against a refer-

ence time scale with significantly lower timing uncertainty. To our knowledge, no such time

scale at this performance level exists. Instead we treat the 87Sr clock as an ideal frequency

reference and examine the fractional frequency offset between the steered OLO record and

the clock transition frequency, hereafter referred to as the prediction error. We define the

time error of our time scale as the integral of the prediction error over time.

If the frequency record were continuous, the time error could be determined to within

the measurement precision of the clock. However, a finite gap of time separates the frequency

measurements in Fig. 4.3a, ranging from the 5 second interrogation cycle of our experiment

to 24 hours between daily measurements. Most of the time error accumulates during the

longer gaps, when the Kalman filter must accurately predict changes in the OLO frequency

without new measurement data from the clock. The time error contribution from a gap
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Figure 4.4: An estimate of the time error evolution of the optical time scale over the 34
day data campaign results in an integrated value of 48 ± 94 ps. The peak-to-peak value
of 197 ps is dominated by a four day window that includes the two days when the 87Sr
clock was not operated. The RMS spread in time error for two time scales based on repeated
simulations of a maser steered to either a microwave or optical frequency standard are shown
for comparison.
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is simply the gap duration multiplied by the mean prediction error during this interval.

Instead, we estimate the mean prediction error by averaging the values before and after the

gap and multiply by the gap duration to compute an estimated time error. We compute a

1σ confidence interval for the estimated time error through repeated simulations of the OLO

frequency during each gap.

4.2.2 Optical timescale performance

An estimate of the integrated time error of our optical time scale is presented in Fig. 4.4.

After 34 days of integration our time scale accumulates an error of 48±94 ps. For comparison

we simulate time scales consisting of a hydrogen maser steered to a 133Cs fountain for 24

hours/day and a hydrogen maser steered to a 87Sr optical clock for 6 hours/day using the

same Kalman filter and noise models for the maser and fountain described in [150]. The

typical performance of both time scales is assessed by computing time errors from repeated

simulations, and their RMS spread over a 34 window is depicted in Fig. 4.4. Both exhibit a

larger time error than the all-optical time scale.

Because the optical clock is run intermittently, the long-term stability of the time scale

will be limited by a 1/
√
τ(s) slope arising from aliased local oscillator noise akin to the Dick

effect [150, 148]. Determining this stability limit requires an accurate characterization of the

OLO. We evaluate the stability of our OLO by analyzing the frequency noise of the residuals

in Fig. 4.3b. One complicating factor are the gaps in the frequency record during clock

downtime. A gap-tolerant Allan variance similar to [159] is used to compute an estimated

stability of the OLO out to multiple day averaging intervals.

The result of this analysis is plotted in Fig. 4.5. The OLO stability is fit to a noise model

that includes the known thermal noise floor [40] and a random walk frequency noise term,

resulting in an instability at long averaging times consistent with σRW = 1.3× 10−18
√
τ(s).

The OLO maintains an instability below 10−15 out to 6 × 105 s, more than an order of

magnitude improvement over the previous characterization of this system [39]. The frequency
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stability of the Si-AT1 record is presented as well and its value at averaging times past 105 s

agrees with the clock measurement within statistical uncertainty. At shorter averaging times,

the stability is consistent with a noise model accounting for instability from the microwave

link, the OLO, and AT1 [160].

With an accurate noise model for the OLO in hand, we now consider the anticipated

long-term stability of our time scale as a function of optical clock duty-cycle. Similar to

Refs. [148, 150], we simulate a lengthy local oscillator frequency record using the model

presented in Fig. 4.5 with the drift trend from Fig. 4.3a added. This record is then steered

to a simulated 87Sr lattice clock for a fixed interval each day using the same Kalman filtering

techniques described above. We compute an Allan deviation of the prediction error to

determine the stability of the time scale. To quantify the impact of our improved local

oscillator we carry out the same analysis for a similar time scale where the OLO has been

substituted with a hydrogen maser. The noise model for the simulated hydrogen maser

is based on the typical stability of the best performing masers in the UTC(NIST) time

scale [150].

Fig. 4.6 shows the results of our analysis. As anticipated, the long-term stability

of the time scale improves with increased clock uptime and reduced local oscillator noise

and is reasonably consistent with the expected instability limit from aliased local oscillator

noise past 106 s. When the optical clock is run with the same duty cycle, the steered

OLO significantly outperforms a steered hydrogen maser at all averaging times. Even when

steering one hour per day, our time scale is more stable than a hydrogen maser steered

with a 50 percent duty cycle. This capability allows for competitive time scale performance

with significantly relaxed uptime requirements. Based on this analysis, we expect a stability

of approximately 1.8 × 10−17 after a 34 day campaign with an average clock uptime of 6

hours/day. This is in good agreement with the observed integrated time error of 48± 94 ps

over 34 days, or 1.6± 3.2× 10−17 in fractional units. When operating the clock 12 hours per

day, our all-optical time scale remains at or below the 2× 10−16 level at all averaging times
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and is projected to reach a stability below 10−17 after only 85 days of operation. Additional

effort on automation should allow for a clock duty cycle well above 50%.

4.2.3 Signal transfer overview

To supplement the intermittent frequency measurements of our optical local oscillator

(OLO) with the 87Sr lattice clock, the OLO frequency was also compared continuously with

AT1, a free running microwave time scale operating at NIST. AT1 is chosen rather than

UTC(NIST) because of its improved stability at averaging times below 106 s. To facilitate

this comparison, the OLO frequency is down converted to the RF domain using a self-

referenced Er:fiber frequency comb. The frequency difference (fbeat) between the OLO and

the nearest comb tooth is stabilized to 35 MHz by actuating on the comb repetition rate

(frep ≈ 250 MHz) as described by the relation: fbeat = fSi−nfrep−fceo. Here, fSi is the OLO

frequency, n is an integer, and fceo is stabilized to 35 MHz using an f-2f interferometer. The

repetition rate, frep inherits the stability of the OLO and is used to synthesize an RF signal

by measuring the optical beat between adjacent comb teeth. This signal is mixed down to

1 MHz using a RF signal synthesized from a NIST hydrogen maser, hereafter referred to

as ST14, and counted with a 1 s gate time using a zero-dead-time lambda-type frequency

counter. This allows us to continuously monitor ySi-ST14, the fractional frequency difference

between the OLO and ST14. The fractional frequency difference between ST14 and the AT1

timescale (yST14-AT1) is measured in tandem at NIST and we use both to compute the Si-AT1

beat as follows: ySi-AT1 = ySi-ST14 + yST14-AT1. Because the NIST time scale measurement

system (TSMS) records yST14-AT1 in 720 s intervals, the Si-ST14 record is decimated in three

steps by a factor of 720 and interpolated to the TSMS time stamps prior to computing

ySi-AT1. To transfer ST14 from NIST to JILA, a 1 GHz signal synthesized from ST14 is

used to amplitude modulate a 1.3 micron wavelength laser which is transmitted over a group

delay stabilized fiber-optic link [161]. Over the 34 day data campaign, the microwave fiber

link and frequency comb located at JILA maintained a 95% uptime to determine the ySi-AT1
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Figure 4.6: Expected fractional frequency stability of the optical time scale. The stability of
our optical time scale is analyzed for two optical clock duty cycles. Our optical time scale
is compared to a hydrogen maser based time scale steered to an optical lattice clock with
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Figure 4.7: Schematic of the frequency comparison measurement between the OLO and the
NIST AT1 time scale. A hydrogen maser, ST14, is used as a transfer oscillator. ST14 is
compared locally with AT1 and remotely with the OLO using a stabilized fiber optic link
and the Si-AT1 signal is computed from the two measurements. The OLO is down-converted
to the microwave domain using a frequency comb. The analysis presented in Fig. 4.3b and
Fig. 4.5 is generated by data from the frequency comb located at JILA. To characterize the
noise added by the microwave link, a local measurement of Si-ST14 is performed at NIST
over 5 days using a second frequency comb. This utilizes an existing phase-stabilized optical
fiber link which adds negligible instability.
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beat.

We note that drawing conclusions about the performance of the OLO from the Si-AT1

record is more nuanced than evaluating its stability directly using an optical clock. In this

case, both the reference (AT1) and the link used to transfer microwave signals from NIST

to JILA contribute appreciable instability to ySi-AT1. Interpreting the stability of ySi-AT1

requires comprehensive knowledge of these contributions. To estimate the instability added

by AT1, we use the measurement of AT1 presented in Ref. [160]. The instability added

by the microwave link is determined by performing a differential measurement. Over a 5

day interval during the data campaign (MJD 58438-58442), the OLO was transferred to

NIST over a phase stabilized optical fiber link and measured against ST14 locally using

a second Er:fiber frequency comb [162]. Because the optical link adds negligible noise to

the OLO [163], we may estimate the noise added by the microwave link by examining the

difference between these frequency records: ylink = ySi-ST14(JILA) − ySi-ST14(NIST).

Fig. 4.8 depicts the time series of the three microwave signals after subtracting the

linear frequency drift of ST14 and the OLO drift trend from Fig. 4.3a. Each signal has been

decimated by an additional factor of 10 so that each is dominated by the long term perfor-

mance of the oscillators rather than short term microwave link noise. This plot highlights

the improved stability of the OLO in comparison with ST14.

The long term stability of the OLO can be inferred from the Allan deviation of the

Si-AT1(JILA) record in Fig. 4.8. The plot also includes a model of the anticipated stability

where the measured link noise, a noise model of AT1, and the OLO model from Fig. 4.5 are

added in quadrature. Because of the shorter duration of the microwave link noise measure-

ment, its magnitude is only known out to 105 s and its contribution to the model is set to

zero at longer averaging times. At averaging times less than 105 seconds, the data is in good

agreement with the model and is slightly below the model prediction at longer averaging

times. This data suggests that the intermittent measurements of the OLO with the Sr clock

provide an accurate picture of its true long-term performance.
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Figure 4.8: Frequency comparison between the OLO and the NIST AT1 time scale. (a)
Time series of the beats between the various oscillators highlighting the improved stability
of the OLO. The traces are labeled to indicate that they were measured either locally at
NIST or remotely at JILA and are offset for clarity. (b) Fractional frequency stability of the
Si-AT1(JILA) record. The data is compared against a model including contributions from
AT1, microwave link noise, and the OLO model from Fig. 4.5
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4.2.4 Kalman filter modeling

To minimize the time error during periods when an accurate frequency reference is

unavailable, a time scale local oscillator must have a predictable frequency. The frequency

of the local oscillator can then be steered using a predictive model to keep it as close to

the value of the frequency reference as possible. Kalman filtering techniques are often used

to construct such a model based on periodic measurements of the local oscillator frequency

against an atomic frequency reference [150, 148]. For a hydrogen maser, a linear model of

the form f(t+∆t) = k̂0+ k̂1∆t is typically used to track its frequency drift over time, where

k̂0 is an estimate of the maser frequency at time t and k̂1 = df
dt (t) is an estimate of its linear

frequency drift rate.

For the OLO, a linear model is sufficient to form a time scale with competitive perfor-

mance. However, the presence of random walk frequency noise and the exponential term in

its frequency drift tend to add a slight curvature to the OLO frequency evolution. We found

that it was more optimal to model the OLO frequency using a quadratic function of the form

f(t + ∆t) = k̂0 + k̂1∆t + 1
2 k̂2∆t

2, where the additional term represents the estimate of the

time derivative of the linear drift rate. As shown below, this function is typically written

in matrix form, and the coefficients k̂0, k̂1, and k̂2 form what is known as the state estimate

vector.

For the analysis presented in Fig. 4.4 the time separation between updates of the

Kalman filter state vector was ∆t = 1 s. For the nth epoch, the local oscillator frequency at

time tn is predicted using the state estimate vector at tn−1 and its expected evolution over

the interval ∆t.


k̂0[n|n− 1]

k̂1[n|n− 1]

k̂2[n|n− 1]

 =


1 ∆t 1

2∆t
2

0 1 ∆t

0 0 1




k̂0[n− 1]

k̂1[n− 1]

k̂2[n− 1]

 (4.1)

The vector k[n|n − 1] is known as the prior estimate of the state at epoch n. The local
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oscillator frequency is steered by applying a frequency correction of k̂0[n|n− 1] during each

epoch. In the event that no new measurement with the optical clock occurs during this

epoch, the new state estimate vector is simply set equal to the prior estimate.


k̂0[n]

k̂1[n]

k̂2[n]

 =


k̂0[n|n− 1]

k̂1[n|n− 1]

k̂2[n|n− 1]

 (4.2)

This is the behavior of the steering algorithm when the optical clock is offline. If the

clock is operational and a new frequency measurement is available during epoch n, we may

asses the fidelity of the model prediction by comparing the prior prediction of the local

oscillator frequency, k̂0[n|n− 1], with the measurement:

∆f [n] = y[n]− k̂0[n|n− 1] (4.3)

where y[n] is the measurement of the frequency detuning of the free-running local oscillator

relative to the atomic transition and ∆f [n] is the prediction error (ie the residual detuning

after steering the OLO). If the optical clock is viewed as an ideal frequency reference, ∆f [n]

represents the residual frequency fluctuations of the local oscillator after steering. As de-

scribed in the next section, this quantity can be analyzed to estimate the time error of the

time scale. Following the measurement the state vector is updated as follows:


k̂0[n]

k̂1[n]

k̂2[n]

 =


k̂0[n|n− 1]

k̂1[n|n− 1]

k̂2[n|n− 1]

+∆f [n]Kn (4.4)

The matrix Kn is known as the optimal Kalman filter gain for epoch n. The gain matrix Kn

determines the relative weight of the measurement and the prior estimate when computing

the new state estimate vector and is optimized using knowledge from past measurements

and the known noise properties of the local oscillator. The procedure for calculating Kn is
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beyond the scope of the current discussion. The reader is referred to the canonical text on this

subject [164]. Nonetheless, we provide some of the parameters for tuning the Kalman filter

below as a reference for readers with expertise in Kalman filtering who wish to reproduce

the filter used in this work for steering a comparable local oscillator.

When computing the optimal Kalman filter gain, two co-variance matrices must be

specified by the user corresponding to process noise and measurement noise. Process noise

represents uncertainty in the future state of the local oscillator. For our system, this is

dominated by the random-walk frequency noise which limits the local oscillator stability at

1-day averaging intervals. Measurement noise represents uncertainty in the current frequency

measurement due to relative noise between the optical clock and the local oscillator.

The process noise in our Kalman filter is characterized by the Q matrix, defined as

[Q11, 0, 0; 0, Q22, 0; 0, 0, Q33]. Q11 corresponding to the random walk noise of silicon cavity,

is set to be 5.1 × 10−36(s/s)2 which is based on the random walk coefficient from the local

oscillator noise model in Fig. 4.5. Q22 and Q33, corresponding to random run noise and

higher-order noise, are negligible. In practice, these two values are set to 2.2× 10−46(s/s2)2

and 3.5× 10−57(s/s3)2 respectively. The prediction error is not particularly sensitive to the

values of Q22 and Q33. Only coarse tuning of these parameters is required to guarantee the

performance of our filter. The measurement noise is characterized by the R matrix which

has a value of 2.5×10−33(s/s)2 corresponding to the Allan variance of the thermal noise floor

of the local oscillator. To test the robustness of the Kalman filter, the R matrix parameter

was varied by an order of magnitude in either direction and the analysis presented in Fig.4.4

was recomputed. We found that this impacted the peak-to-peak time error over the 34 day

campaign by less than 5 percent.

To minimize the time error, the time scale steering algorithm must accurately predict

and correct for changes in the local oscillator frequency over time. If the exact frequency

evolution of the local oscillator were somehow known, one could compute the time error over

a given interval by multiplying the mean prediction error during this period by the elapsed
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time ∆t. In this work, a 87Sr lattice clock with low-10−18 level systematic uncertainty [155]

and mid-10−17 level stability at 1s [40] serves as a nearly ideal reference for monitoring the

frequency of the OLO. Due to the intermittency of the measurement record, the exact mean

fractional error in the Kalman filter prediction during the gaps between measurements is not

known. Instead, the mean prediction error is estimated by averaging the values immediately

before and after the gap. This estimation is then multiplied by the gap duration to compute

a time error for the gap in question. The contributions from each gap are integrated to

produce the dark blue trace in Fig.4.4. Immediately following a longer gap, the prediction

error may be appreciable due to a discrepancy between the predicted and actual drift of the

OLO during the gap. The prediction error drops rapidly in the subsequent epochs as the

state vector is adjusted to compensate according to Eq. 4.4.

There is inherent uncertainty in calculating the time error using this method, since the

true mean prediction error during a gap likely differs from the estimated value. To estimate

this uncertainty, we assume that during any long gaps between measurements the frequency

corrections applied to the OLO by the steering algorithm are only effective in removing the

linear plus exponential drift trend shown in Fig. 4.3a. The residuals are assumed to have a

frequency stability identical to that of Fig. 4.3b and Fig. 4.5. Using the noise model from

Fig. 4.5, we simulate a frequency record for each gap longer than 3 minutes during the 34 day

campaign and compute both the mean prediction error for the entire gap and an estimate

of the mean prediction error computed by averaging the prediction error for the first and

final data points. By multiplying difference between the true and estimated means by the

gap duration, we compute the uncertainty in the time error for the simulation. By running

1000 simulations, we compute a 1σ confidence interval for the time error by computing the

standard deviation of the simulation result for each gap. Integrating this over the entire

34 day campaign, we calculate a time error uncertainty of ±94 ps. The results of each

simulation and the resulting 1σ confidence interval for the integrated time uncertainty are

shown in Fig. 4.9. This 1σ confidence interval corresponds to the light blue shaded region
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Figure 4.9: Time error uncertainty. Using the OLO noise model from Fig. 4.5, we simulate a
frequency record for each gap between frequency measurements with the optical clock. We
estimate the uncertainty in the time error calculated in Fig.4.4 by computing the difference
between the estimated mean frequency and true mean frequency of the OLO during each
gap and multiplying by the gap duration. The outcome of repeated simulations along with
a 1σ confidence interval (dashed line) are depicted. This corresponds to a 1σ confidence
interval of ±94 ps over the 34 day campaign.



92

in Fig. 4.4.

4.2.5 Expected time scale instability

To determine the anticipated stability of the time scale, we simulate a lengthy frequency

record for the OLO based on the noise model in Fig. 4.5 and the drift trend from Fig. 4.3a.

This record is then steered using the Kalman filter described in Eqs. 4.1 through 4.4. To

simulate the clock uptime, the state vector is updated according to Eq. 4.2 during epochs

when the clock is offline and updated according to Eq. 4.4 when the clock is running. Unlike

the case of a real data set, the true frequency of the local oscillator is known at all times.

Therefore, the prediction error in Eq. 4.3 may be computed for every epoch, not just those

when the clock is operating. This prediction error is simply the residual frequency noise

of the simulated local oscillator after being steered to the clock. We then determine the

expected fractional frequency stability of the time scale by taking an Allan deviation of

these residuals.

Fig. 4.6 compares the anticipated stability of our all-optical timescale with that of a

single Hydrogen maser from the UTC(NIST) time scale steered daily to an optical clock.

Here, we extend this analysis by also considering time scale local oscillators from other

metrology institutes [146, 147]. To explore the applicability of our OLO to these time scales,

we repeat the analysis from Fig. 4.6 using an oscillator noise model that is representative of

the Hydrogen masers in the UTC(PTB) time scale [147].

For the simulations in Fig. 4.6, the clock is operational for the same time window each

day. In this case it is straightforward to compute the expected stability limit at long averaging

times due to aliased noise from the local oscillator. This noise contribution, colloquially

known as the Dick effect limit, is a well studied consequence of steering a local oscillator to

an atomic reference in the presence of dead time [165, 150].

In Table 4.1, we consider the expected time scale stability when steering the three local

oscillators assuming a single measurement per day ranging in length from 1 to 20 hours. The
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Si NIST maser PTB maser
1 hr/day 2.4× 10−17 2.8× 10−16 8.7× 10−17
6 hr/day 1.8× 10−17 1.2× 10−16 4.1× 10−17
12 hr/day 1.2× 10−17 7.0× 10−17 2.5× 10−17
20 hr/day 4.0× 10−18 3.0× 10−17 9.9× 10−18

Table 4.1: Expected time scale instability after 34 days (3×106 s) of averaging based on the
Dick effect limit for steering each oscillator for different optical clock uptimes. This assumes
that the uptime is grouped into a single run per day.

Si NIST maser PTB maser
12 hr runs (1 run/day) 1.2× 10−17 7.0× 10−17 2.5× 10−17
6 hr runs (2 runs/day) 6.2× 10−18 6.6× 10−17 2.0× 10−17
3 hr runs (4 runs/day) 3.3× 10−18 6.1× 10−17 1.8× 10−17
1 hr runs (12 runs/day) 1.3× 10−18 4.1× 10−17 1.6× 10−17

Table 4.2: Expected time scale instability after 34 days (3×106 s) of averaging based on the
Dick effect limit for steering each oscillator. We assume a total uptime of 12 hours/day dis-
tributed over a varying number of evenly spaced clock measurements per day. The all-optical
time scale (Si) shows a significant improvement with increasing measurement frequency.
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Figure 4.10: Anticipated fractional frequency stability of three different local oscillators
steered to an optical clock with several uptime configurations. Panel (a) assumes a single
1 hour clock measurement per day. The dashed lines in panel (b) show the stability for a
single 12 hour run per day, while the solid line assumes twelve 1 hour runs that are evenly
spaced throughout the day.
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Dick effect limit for the OLO is more than a factor of two better for all run configurations.

As the reliability of optical clocks continues to improve, we anticipate that both the total

uptime and the frequency of clock measurements will increase. Table 4.2 shows the expected

performance for a 50% uptime when the clock is run multiple times per day at evenly spaced

intervals. Increasing the measurement frequency results in a modest improvement for the

two masers and a dramatic improvement for the OLO. This is a consequence of the local

oscillator being limited by random walk frequency noise (1/f 2 slope in the frequency domain)

at the Fourier frequencies that contribute to the Dick effect. The Dick limit, which depends

on the local oscillator frequency noise at harmonics of the measurement frequency, falls off

rapidly when more measurements are performed per day.

The results of time scale simulations for each oscillator are plotted in Fig 4.10.

Fig 4.10(a) shows the anticipated time scale stability for a single 1 hour run per day.

Fig 4.10(b) depicts the case of 50% uptime. Both the stability for a single 12 hour run

per day and twelve evenly spaced 1 hour runs are shown for each oscillator. The stability of

each simulation past 106 s agree well with the anticipated Dick effect limit from Table 4.1

and Table 4.2.

In Fig. 4.4, the performance of the all-optical time scale is compared against two

simulated time scales consisting of a hydrogen maser steered to either a 87Sr lattice clock or a
133Cs fountain clock. The noise model for the hydrogen maser is based on the best performing

oscillator in the UTC(NIST) time scale [150]. Both the instability and systematic uncertainty

of a 133Cs fountain are large enough to have a significant impact on the performance of the

time scale over 34 days. The instability assumed for the fountain is identical to that in [150],

while the systematic uncertainty is assumed to be 1.71× 10−16 [166].

We repeatedly simulate a 34 day frequency record for the hydrogen maser and steer it

to a simulated record of either a 87Sr lattice clock or a 133Cs fountain clock that accounts for

their respective instability. The same Kalman filter described in [150] is used for the steering

algorithm. To account for the systematic uncertainty of the fountain clock a constant frac-
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tional frequency offset chosen from a normal distribution with a standard deviation equal

to the assumed systematic uncertainty of the Cs fountain is added to the steered frequency

record. The resulting fractional frequency record represents the exact mean fractional fre-

quency offset from an ideal reference for every epoch and may be integrated to compute the

time error for each simulation. We repeat the simulation 800 times and calculate the RMS

value of the accumulated time error for each epoch to represent the typical performance of

each time scale. The result is plotted in Fig. 4.4.

As depicted in Fig. 4.12, the OLO stability at short averaging intervals may also

be inferred by measuring against two reference ultrastable lasers and performing a three-

cornered hat analysis. The OLO and the reference systems based on a 4 K Si cavity and 40

cm ULE cavity are limited by their respective cavity thermal noise floor of σ = 4.6× 10−17,

8.2 × 10−17, and 1.1 × 10−16 [40, 153, 156]. Given their comparable short-term stability,

one may easily identify any jumps in the OLO frequency larger than the mid 10−16 level by

examining the time series of its frequency difference with the two reference systems. When

a jump is detected, the predictive model of the OLO can be updated using this information.

Between evaluations with the optical clock on MJD 58442 and 58443, two jumps in

the OLO frequency were observed using this technique. Fig. 4.11 displays beat between the

OLO and the ultrastable laser based on the 4 K Si cavity, the reference laser with the lowest

instability and frequency drift rate. A 15000 s interval around each frequency jump is fit

to a linear plus Heaviside function: ax + b + d[x > c]. Here, the c fit coefficient determines

the time of the jump in seconds, while the d fit coefficient determines the magnitude of the

jump. Fig. 4.12 shows all three beats during this interval and confirms that both events

were frequency jumps on the OLO as the beat between the two reference systems shows no

frequency jumps.

The first jump was immediate and has a magnitude in fractional frequency units of

1.94 × 10−15. The second jump occurred when the residual amplitude modulation (RAM)

servo for the OLO ran out of range. At this time, we elected to change the sign of the
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Figure 4.11: Frequency jumps in the difference frequency between the OLO and a reference
ultrastable laser based on a 4 K Si cavity. The data are fit to a linear plus Heaviside
function to determine the time and magnitude of the jump. The two frequency steps are fit
to 1.94×10−15 and 3.08×10−15 respectively. Data colored in grey in panel (b) corresponding
to the interval when the RAM servo was being debugged is omitted to avoid biasing the fit.
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Figure 4.12: Three-cornered hat analysis of the OLO frequency jumps presented in Fig. 4.11.
Examining all three beats, the frequency jumps are clearly attributable to the time scale local
oscillator (124 K).
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feedback to lock on the opposite side of the error signal. This allowed us to relock the servo

without significantly changing the temperature of the electro-optic modulator as any changes

in temperature inside the enclosure housing the ultrastable laser can degrade its stability.

After relocking, an offset in the OLO frequency was observed. Over a 20 minute interval, the

sign of the feedback was changed several times to investigate this effect. When fitting the

frequency step in Fig. 4.11, only the data outside of this time period is used. The blue data

corresponds to the data considered in the fit, while the grey data taken during the locking

process was omitted. This second frequency excursion had a magnitude of 3.08 × 10−15. A

corresponding correction was applied to all data after each frequency step to account for the

measured frequency excursion.

We note that the occurrence of such a jump when the clock is offline can still be

corrected for in real time using this approach. If the jump is identified prior to calculating the

Kalman filter prediction for epoch n, a constant frequency shift may be added to k̂0[n|n− 1]

in Eq. 4.1. The time error introduced by a jump in the frequency of the OLO depends on

the time required to identify the jump and apply an appropriate correction to the predictive

model to compensate for it. Due to the excellent short-term stability of the three ultrastable

lasers, this can happen almost immediately. Under the assumption that these two jumps,

on average, are identified and corrected for within 1000 s we would anticipate an additional

time error of only 5 ps.

4.3 Outlook

By combining an improved local oscillator with an accurate high-uptime optical clock,

we have demonstrated a novel time scale architecture with enhanced stability. Additional

technical upgrades of our silicon cavity can further improve our optical time scale stability,

including greater passive thermal isolation, shorter optical path lengths and operation closer

to the silicon coefficient of thermal expansion zero crossing. In addition, reducing the optical

power incident on the cavity offers the capability to reduce the linear drift [153].
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Future efforts will leverage existing time transfer infrastructure in Boulder, CO to

incorporate this optical technology into the UTC(NIST) time scale. An underground fiber

network is in place to support phase-stabilized optical signal transfer from JILA to NIST

with negligible excess noise [163, 167]. Using a femtosecond frequency comb [162, 168], our

optical time scale signal will be linked to UTC.
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Figure 4.13: Frequency ratio measurements between optical clocks at NIST and JILA. Error
bars to the left side of each data point represent statistical uncertainty, whereas error bars on
the right represent the quadrature sum of statistical and systematic uncertainties. Lightly
shaded regions correspond to the final uncertainty (1 standard deviation) of each ratio:
5.9×10−18, 8.0×10−18 and 6.8×10−18, for Al+/Yb, Al+/Sr and Yb/Sr, respectively. Figure
reproduced from [169]

.

4.3.1 Applications

In this section, we briefly describe two experiments using the infrastructure from our

optical timescale work. The first example is realizing an optical clock network in Boulder
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for frequency ratio measurements with 18 digits of both precision and accuracy. Compar-

isons between optical clocks can circumvent the accuracy and stability limitations of mi-

crowave clocks to measure frequency ratios at unprecidented precision and accuracy. These

measurements, currently undergoing worldwide [170], are an important step towards the re-

definition of the second [25]. To compare clocks between JILA and NIST, microwave and

optical signals must be transferred between labs with high fidelity. This was achieved using

the infrastructure plotted in Fig. 4.7.Over the course of ≈ 6 months, measurements were

made comparing our strontium clock frequency with the NIST Yb optical lattice clock and

Al+ ion clock as plotted in Fig. 4.13. These measurements culminated in the following ra-

tios: Al+/Yb = 2.162887127516663703(13), Al+/Sr = 2.61170143178146302(21), Yb/Sr =

1.2075070393433378482(82).

In addition to forming an novel optical timescale, the data in Fig. 4.3 was used to

place bounds on coupling to dark matter at low energy [19]. The details of this analysis

are described in detail in the following Ph.D. theses [171, 172], so I will just provide a

few conceptual remarks here. There are theoretical proposals that ultralight dark matter

can couple to oscillations of the fine structure constant α [173]. Many of the components

of our clock also depend directly on α, including our 87Sr clock transition frequency, the

oscillation frequency of a hydrogen maser, and even the lattice constant of our silicon cavity.

As displayed in Fig. 4.14, comparisons of our silicon cavity frequency with either a hydrogen

maser or our 87Sr clock provide differential sensitivity to α. Given the comparison is made

to the free-running silicon cavity, the excellent long-term stability of Si3 was critical to place

competitive dark matter bounds.

4.3.2 Future improvements

There are a number of technical upgrades that may further improve the long-term

stability of our silicon cavity apparatus. First we will discuss the principles of etalons and

strategies to mitigate their effects. Parasitic etalons are a known source of instability in



102

Figure 4.14: The 87Sr clock transition frequency, the oscillation frequency of a hydrogen
maser, and the lattice constant of our silicon cavity all depend directly on the fine structure
constant α. Via atom-cavity comparisons, we realize differential α sensitivity to place bounds
on the coupling of ultralight dark matter. Figure reproduced from [19]

.
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optical experiments that have stringent noise requirements at low Fourier frequencies. Etalon

effects can degrade the performance of a number of subsystems used in optical frequency

metrology including ultrastable lasers, optical frequency combs, and fiber optic links as well

as the sensitivity of advanced interferometric gravitational wave detectors [174, 175, 176]. To

illustrate this concept, we consider the case of laser intensity modulation due to a parasitic

etalon, though we note that this effect can also lead to phase noise and residual amplitude

modulation (RAM).

δP (t) = PC + PE + 2
√
PCPE cos

(
2πδx(t)

.
λ

)
(4.5)

Here PC is the optical power in the carrier, PE is a portion of the total power that traverses

a slightly different path than the carrier due to scattering off a rough optical surface or an

undesired back reflection off of a transmissive optic or photodiode, and δx(t) is the time-

Figure 4.15: Measurement of the coefficient of thermal expansion (CTE) zero crossing. The
temperature of Si3 was stepped by ∼10 mK and the cavity frequency was monitored by both
the direct Si3/Si4 beat and the Si3/H-Maser comparison via a frequency comb.
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varying path length difference between the two interfering fields. One sees immediately that

this effect can be mitigated by reducing either PE or δx(t). To limit PE in our optical setup,

we used superpolished mirrors and lenses to reduce optical scatter to < 10 ppm per surface.

To limit back reflections from photodiodes, Faraday isolators were installed in front of each

detector and their optical windows were removed. Active temperature stabilization of our

vacuum chamber was also added to improve the stability of the optical path length between

the laser and reference cavity.

When characterizing the OLO prior to beginning this experiment, a strong correlation

between slow drift in the optical power incident on the cavity and the laser frequency mea-

sured with the Sr clock was observed over a week long measurement. To address this, a

photodetector was installed in transmission and a servo was added to stabilize the transmit-

ted optical power.

The sensitivity of the Si reference cavity to temperature fluctuations is minimized by

operating as close as possible to the temperature where the coefficient of thermal expansion

(CTE) crosses through zero. Shortly after the completion of the data campaign, a mea-

surement of the zero crossing temperature similar to that described in [154] revealed that

we were operating approximately 4.5 mK above the optimal temperature. The data from

this measurement is plotted in Fig. 4.15. The parabolic behavior of the cavity frequency

is simple to intuit: one sweeps from a negative CTE coefficient to a positive value, with a

zero crossing in the middle corresponding to the vertex of the parabola. Further details of

this measurement are outlined in [171]. Using the measured temperature fluctuations on the

innermost cryogenic shield, the thermal transfer function between this shield and the cavity,

and the measured offset from the CTE zero crossing, one may estimate the temperature

induced frequency instability of the OLO during the data campaign. As shown in Fig. 4.16,

we estimate a contribution that is roughly consistent with the measured cavity noise term

shown in Fig. 4.5. However, no clear temporal correlation between the estimated cavity tem-

perature fluctuations and the frequency residuals from Fig. 4.3b was observed. Though this
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Figure 4.16: Frequency instability arising due to temperature fluctuations assuming an offset
of 4.5 mK from the zero-crossing temperature for the Si coefficient of thermal expansion.
The data agrees well with the cavity model from Fig. 4.5 between 104 − 105s.

analysis is inconclusive, it suggests that operating closer to the CTE zero crossing will likely

be required to significantly improve the OLO stability at averaging times which determine

the Dick effect limit of the time scale stability (103 − 105 s).

Finally, we also discuss the possibilities of realizing optical cavities with frequency

drift improved beyond the values reported in this work. Although the exact mechanisms for

drift in crystalline cavities is still speculative, the optical power dependence revealed in [153]

provided some hints. After waiting for a settling time long compared to any thermal time

constant, the drift of Si4 showed a strong dependence on the circulating optical power. Given

that Si4 used amorphous SiO2/Ta2O5 dielectric coatings, there was great interest in studying

the drift properties of the all-crystalline Si6 cavity using Al1−xGaxAs/GaAs coatings [177]
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and test if the small but finite drift was due to properties of the mirror coatings. As shown in

Fig. 4.17, preliminary drift studies show that Si6 displays an even reduced drift compared to

Si3. Thermal engineering at cryogenic temperatures to achieve the same frequency stability

at long averages times poses a challenge [152], however these initial studies show a very

promising future for continuing to advance optical timekeeping. Work on Si6 is currently

ongoing to improve upon the cavity drift and timescale results reported in this chapter.

Additionally the use of multiple silicon cavities will add the necessary redundancy to address

occasional downtime from lasers unlocking.
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Figure 4.17: Measurement of the drift of the all-crystalline cavity Si6 including
Al1−xGaxAs/GaAs coatings. The Si3 drift is determined from daily measurements with our
87Sr clock and already subtracted from the black data. We fit a linear drift of −2.3×10−20/s
plotted in red. Figure adapted from [172].



Chapter 5

Operating optical clocks at high density

The research in this chapter is reported in the following publication: W. R. Milner, L.

Yan, R. B. Hutson, C. Sanner, and J. Ye, Phys. Rev. A 107, 063313 (2023).

5.1 Introduction

Enabled by the combination of ultralow temperature and three-dimensional confine-

ment, when Sr2 first came online in 2017 there was a initial set of very exciting results.

First, it was revealed that upon achieving state-insensitive trapping in a 3D lattice record

atom-light coherence times were observed [33]. Interaction studies next showed the emer-

gence of many-body interactions shifts substantially richer and more complicated than simply

summing pairwise interactions [71]. All of these results were realized using an elegant spec-

troscopy technique relying on in situ, high resolution imaging to resolve differential frequency

shifts on both spatial and spectral energy scales [178]. As highlighted in Fig. 5.1, images

of ground and excited state atomic distributions provides a map for spatial variations of

the clock frequency to be precisely measured. This self-synchronous clock comparison al-

lows for rejection of clock laser noise and common-mode clock shifts (e.g. BBR temperature

gradients) to achieve QPN-limited stability.

For future experiments, our eyes were ambitiously set on studying minute, unexplored

clock shifts occurring at high atomic density. The foremost experiment was probing dipolar

interactions, occurring at mHz energy scales between neighboring atoms [23, 179, 180, 24].

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.063313
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More broadly, operation of our ultracold 87Sr clock platform at high density would open

the door to a slew of new, exciting research directions. For example, spin-orbit coupling

generated from clock addressing will enable explorations of cluster state generation and

tunable spin models [181, 68]. Lattice thermometry [182] and studies of novel physics such

as SU(N) magnetism [123, 183] are also enabled by our 10 nuclear spin components. Finally,

there was reason to believe preparing insulating states in our 3D lattice where tunneling is

inhibited could suppress motional dephasing effects [72, 70].

From the state-preparation work described in Chapter 2, we were confident we could

prepare nuclear spin-polarized samples with a necessarily low temperature (T/TF < 0.2)

to achieve high filling (na3 > 0.9). Following spin polarization [107, 184], the Pauli exclu-

sion principle mandates there is at most one atom per lattice site in the ground motional

state. To ensure this ground state motional occupation during lattice loading we operate

with kBT < kBTF < ℏωbg, where T , TF , ℏωbg refers to the atomic temperature, Fermi tem-

perature and lattice bandgap respectively [132]. At the highest density affordable with one

fermion per lattice site, this system realizes an insulating state of matter where tunnelling

is suppressed [72, 185].

However, one important technical hurdle lay in our way: the imaging spectroscopy

techniques reported in [178] cannot be trivially applied at high density. In our lattice where

the average distance between atoms (λmagic/2 = 407 nm) is comparable to the probe wave-

length (λimage = 461 nm), imaging with a weak, resonant probe is strongly perturbed. Both

collective effects mediated by dipolar interactions [186] and density-dependent effects such as

lensing of the probe beam [187, 188] introduce errors to the reconstructed density distribution

at high density.

5.1.1 Imaging spectroscopy

To mitigate these systematic effects, different techniques can be used to reduce the

absorption cross section and make the cloud ’optically thin’. These techniques can be broadly
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Figure 5.1: Imaging spectroscopy. In situ images of ground and excited state atoms following
left Ramsey and right Rabi spectroscopy reveal spatially-differential frequency shifts. A
magnetic field gradient (0.26 G/cm) was intentionally applied, so the atomic resonance
frequency matches the clock laser frequency in a narrow spatial region. Reproduced from
Ref. [178].

divided into two categories: dispersive imaging at large detuning from resonance [189, 190,

191] and saturated imaging at high intensity [192, 193, 194, 195].

5.1.2 Background on imaging techniques

We provide a brief overview of different imaging techniques for cold atoms in this

section. The discussion here is based largely on the following seminal text in Ref. [187].

Essentially all information about cold atoms is retrieved from analyzing their interactions

with coherent light fields [196, 197]. The relevant physics emerges from a semi-classical

picture where one may consider the complex index of refraction:

nR = 1 + σ0nλ

4π
( i

1 + δ2 + I/Isat
− δ

1 + δ2 + I/Isat

)
(5.1)

where δ is the normalized detuning in half linewidths (δ = ν−ν0
Γ/2 ), n is the atomic density,

and σ0 is the two-level absorption cross section σ0 = 3λ2

2π .

For a plane wave E0e
ik0z incident on our atom cloud, the k-vector is modified by



110

k = k0nR. This has two immediate consequences: the light is attenuated (corresponding

to the imaginary part of nR) and also phase shifted (corresponding to the real part of nR).

So E → tE0e
iφ, where t = exp(− ñσ0

2
1

1+δ2+I/Isat
), φ = − ñσ0

2
δ

1+δ2+I/Isat
and ñ =

∫
n dz is

the integrated column density along the imaging axis z. Information encoded in the atomic

density ñ may thus be extracted by studying the phase shift or attenuation of the probe

beam.

First we discuss ‘absorption’ imaging. Absorption imaging is historically the standard

imaging technique employed on ultracold atom platforms and was used for the discoveries

of the Bose-Einstein Condensate [198, 199] and degenerate Fermi gas [122]. The attractive-

ness of absorption imaging is rooted in its simplicity, requiring only a single beam, and its

capability to achieve a high signal-to-noise ratio without the constraint of a high numeri-

cal aperture (NA) as demanded in fluorescence imaging. For essentially any measurement

probing dilute ensembles in time-of-flight, absorption imaging is the technique of choice.

Absorption imaging extracts the column density ñ by analyzing of missing photons from our

probe beam and relating it to the attenuation parameter t. Thus, one operates on-resonance

so δ = 0 and φ = 0 and E → tE0 so the intensity on camera is Iabs = |E|2/2 = I0t
2. In

the low-saturation regime (I/Isat ≪ 1), the column density is simply logarithmically related

to the transmission and I = I0e
−ñσ0 referred as the Beer-Lambert law in chemistry text-

books. The full equation to extract ñ including saturation effects as discussed in Eq. 5.5. In

summary, at high saturation each atom scatters photns at a rate Γ/2 and instead there is a

linear relation between atom number and missing photons. The full expression accounts for

both effects and ñ = 1
σ0

[
log(s0/s1)+ (s1 − s0)

]
where s0 (s1) are the saturation intensities in

images (with) without atoms.

As seen in the paragraph above, even if our probe beam tE0e
iφ contains phase sensitive

information a simple image of the beam on our camera will only reveal spatial variations of t2.

Retrieving this phase information requires spatially filtering the scattered and unscattered

components of the probe beam as displayed in Fig. 5.2. A simple technique to achieve this
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Figure 5.2: Schematic for Dark Ground imaging. The scattered field tE0e
iφ and the unscat-

tered field E0 are separated in the Fourier plane, so the signal on the CCD is sensitive to
the φ2 in Eq. 5.2.

is employing Dark Ground (DG) imaging, where the unscattered field in blocked the Fourier

plane. Perhaps surprisingly, just blocking this unscattered component of the beam gives a

phase sensitive signal.

IDG = |E − E0|2/2 = I0/2
(
1 + t2 − 2 t cos(φ)

)
. (5.2)

At large detuning δ ≫ 1, we can approximate t ≈ 1 and cos(φ) ≈ (1 − 1
2φ

2). Then,

IDG ≈ I0φ
2 and we realize a method to directly examine phase shifts of our probe beam.

We note this dispersive imaging technique is slightly simpler than phase contrast imaging,

which requires phase shifting the unscattered beam by π/2 radians.

Our first measurements for in situ imaging at high density used DG imaging. The

measurements are shown in Fig. 5.3. The gray line is the atom number measured with

time-of-flight absorption imaging, where the optical density is sufficiently low that system-

atic errors can be ignored. While we were satisfied to see that the apparent atom number

saturated at high detuning and was in reasonable agreement with dilute absorption imaging,

there were still residual doubts about this technique. First, using DG imaging demanded

precise fabrication and alignment of custom optics developed by the Keck lab at JILA. Thus,

we found that using this technique required a painstaking alignment procedure for operation
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that was susceptible to systematic drifts. Additionally, careful studies of dispersive imaging

had shown that residual systematic effects at finite detuning are non-negligible and required

using differential measurement schemes at opposite detuning to be addressed [200].

Figure 5.3: Dark-ground imaging measurements. Left: Atom count appears to saturate at
large detuning. Anomalously large atom number at ≈ −100 MHz was repeatable, but never
investigated. Right: Image of atomic distribution in Fermi gas via dark-ground imaging is
plotted.

A much simpler strategy to overcome these systematic errors at high density, which

was ultimately used for the main results reported in this chapter, is to use resonant, highly

saturated imaging techniques to make the cloud optically thin. For fluorescence imaging,

this is particularly attractive as the signal-to-noise ratio does not degrade as one strongly

increases the probe intensity. Rather in fluorescence imaging the signal-to-noise is entirely

determined by the number of collected photons, which is practically limited by the NA.

Thus operating with an I/Isat >> 1 the scattering rate is homogeneous for all atoms and

largely immune to beam intensity, frequency, and pointing fluctuations. The details of this

measurement scheme are outlined in Section 5.2.
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Figure 5.4: Imaging system calibration. Top left: We measured the point-spread-function
(PSF) using an illuminated pinhole propagating through a mock imaging system including
our objective lens and experiment viewport. Magnification of imaging system can be changed
with the ‘focusing lens’ in the diagram. Top right: The image of our PSF is shown.
Bottom: We plot the azimuthal average of the imaged PSF in green dots. We compare
to the calculated PSF (blue) and to an Airy disk fit (red) of the data. We observe a 6%
disagreement between the fitted and calculated radii.
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5.1.3 Imaging system

While systematic errors at high density may place challenges on imaging, there is a

far more strict restriction that must first be addressed: the diffraction limit. The spatial

resolution of an imaging system is fundamentally limited by the Numerical Aperature NA =

n sin(θ) where θ is the half-angle of the maximum cone of light that can enter the imaging

system. In geometric terms, one needs to ‘collect’ the large k-vectors of light to study fine

spatial structure. Practically, one must also reduce all aberrations of the imaging system to

be ‘diffraction-limited’.

Imaging system calibration is shown in Fig. 5.41 . We measured the point-spread-

function (PSF) using an illuminated pinhole propagating through a mock imaging system

including our objective lens and experiment viewport. This was compared with calculated

Airy disk distribution I(x) ∝
(
2J1(x)

x

)2
where x ≡ ka sin θ. Here, k is the standard wavenum-

ber, a is the aperture size, and θ is the angle of observation. We observe a 6% disagreement

between the fitted and calculated radii.

A schematic of our vertical imaging is shown in Fig. 5.5. The details of the interface

with the vertical clock laser and optical lattice are detailed in Chapter 3. The most important

optical element in our imaging system, which sets our imaging resolution, is our objective

lens. We use a commercial Thorlabs AL50100G aspheric lens with fobj. = 100 mm and NA =

0.20. Diffraction limited performance is achieved with this lens in an ‘infinite conjugate ratio’

configuration. This means the lens is designed to collimate light from a point source and thus

the lens is placed fobj. away from the atoms. Despite being inexpensive, it works quite well

and the custom AR coating from LaserOptik is plotted in Fig. 3.15. A lens from Thorlabs

ACT508-400-A-ML with fint. = 400 mm is used to form an intermediate imaging plane. The

magnification of imaging system is now fint./fobj. ≈ 4. When designing our imaging system,

we wanted to have the flexibility to quickly change the imaging system magnification without
1 Thanks to Jonathan Friduss for taking these measurements.
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having to move our camera or re-align optics. Mitutoyo sell lens systems with a fixed image-

object distance, in this case 280 mm. Thus one can swap in different lens systems and

enjoy variable magnification while the image-object distance does not change. To ensure the

imaging resolution is not compromised, the NA of this magnification stage needs to be larger

than or equal to the primary objective NA (i.e. so we don’t ‘throw away’ the high k-vectors

with our secondary imaging stage). For the images in this chapter, we used a Mitutoyo

375−039 with magnification 10× and NA = 0.21.

As outlined in Chapter 3, we also wanted to have the flexibility to tilt our imag-

ing system to avoid etalons of our imaging beam or superlattices with our vertical lattice

formed between the viewports. The historical vertical imaging system, whose details are

in [101], featured a clever design where the vertical lattice was reflected off the objective

lens. However, we found that achieving the simultaneous conditions of diffraction-limited

imaging and a stable vertical lattice were practically not feasible. One could form a deep,

well retro-reflected vertical lattice, then observe severely distorted imaging and vice-versa.

Thus, having the capability to adjust the imaging system orientation and vertical lattice

retro-reflector independently was direly needed.

As seen in Fig. 5.5, the JILA shop constructed a very nice mount that achieved this

condition. Now, the vertical lattice is transmitted through the objective and reflected off

a dichoic mounted on the 2 inch Polaris mount. The HR coating of the dichoic is plotted

in Fig. 3.15. However, we still needed to determine what degree of tilt was tolerable to

remain diffraction-limited. Aberrations from tilting the imaging beam are depicted Fig. 5.6

as simulated in the ray-tracing software OSLO. These simulations consider the full imaging

system including the viewport, which crucially breaks the symmetry of the imaging system.

The black circle is the diffraction-limited spot size. Given this ray-tracing software does

not account for diffraction, we want to just be in the regime where the aberrations are

small compared to the diffraction-limit. A tilt θ < 0.5◦ appears to be safe. While all this

engineering may seem like overkill, having all the degrees of freedom to optimize this juncture
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of beams was fairly critical.

5.2 Saturated imaging at high density

Using highly saturated imaging to mitigate imaging errors, with a saturation parameter

far greater than the optical depth, we accurately confirm the density distribution in our

3D optical lattice in good agreement with thermodynamic calculation. We extend previous

work using high intensity fluorescence imaging [192], confirming the accuracy of this imaging

technique in a new high density regime with a degenerate Fermi gas of 87Sr [107, 201]. With

atomic densities as high as 6 × 1014 atoms/cm3, we observe systematic agreement with

atom counts obtained via time-of-flight absorption imaging and identify the range where the

extracted atomic density distribution is not blurred by our imaging pulse.

Our high intensity imaging scheme is outlined in Fig. 5.7. The combination of atomic

level structure and relatively large mass of 87Sr is particularly well suited for our imaging

technique, providing a cycling transition with a large scattering rate while avoiding significant

motional effects from the imaging pulse. The transition from 1S0 to 1P1 with linewidth

Γ = 2π × 30.2 MHz provides a large photon scattering rate with minimal depumping to

dark states during the imaging time [202]. During a 1 µs pulse at full saturation about 100

photons per atom are scattered and the atoms accelerate at a = ℏkΓ
2m where k is the imaging

light wavenumber and m is the atomic mass. The net momentum transfer amounts to a

Doppler shift of kaτ = 2.8 MHz which is much less than the transition linewidth Γ/2π.

Finally, the linear displacement for a 1 µs pulse at full saturation is just aτ2

2 = 0.6 µm. This

linear displacement and corresponding Doppler shift can be largely cancelled in fluorescence

imaging by retroreflecting the incident beam. The spread in transverse position due to

random momentum transfer from spontaneous emission is ℏk
6mt

3/2
√
Γ/2 < 0.1 µm over a 1

µs pulse duration and small compared to our 1.3 µm imaging resolution [203]. Using highly

saturated absorption imaging, we measure the column density distribution ñ in our optical

lattice in Fig. 5.7a. Accounting for the lattice spacing a = 407 nm corresponding to the 87Sr
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Figure 5.5: Left: Vertical imaging system schematic is shown. Objective lens with NA
= 0.2 and variable magnification stage are depicted. Right: Mount constructed by JILA
machine shop is shown. Tilt meter can precisely determine the degree that the objective is
tilted with respect to the viewports.
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Figure 5.6: Left: Tilt of imaging beam with respect to viewports causes aberrations. Right:
Aberrations from tilting probe beam simulated in OSLO. Note these aberrations arise from
the relative angle between the probe beam and viewports, and thus cannot be compensated
by adjusting the objective lens. Operating ≤ 0.5◦ is necessary to strongly avoid these aber-
rations.

magic wavelength at 813 nm, the scaled column density ña2 is plotted.

Saturated absorption and fluorescence imaging are beneficial in comparison to standard

imaging techniques in a number of ways. In this highly saturated regime the scattering rate

is largely immune to beam intensity, frequency, and pointing fluctuations. Given the satura-

tion intensity Isat = 40 mW/cm2 for the imaging transition, a Gaussian probe beam with 20

mW of optical power and a 100 µm waist corresponds to a peak intensity of I ∼ 3000 Isat,

within the typical constraints of a standard imaging laser system. Given that the probe beam

is attenuated through the atom cloud, a saturation parameter I/Isat much greater than the

optical depth is required to fully saturate the imaging transition. We note parallels between

fluorescence and absorption imaging at high saturation. In both cases, the extracted atom

number is determined by a single variable. For fluorescence imaging, this corresponds to the

number of collected photons per atom and for saturated absorption imaging the number of

missing photons per atom in the probe beam. Thus, both fluorescence and saturated absorp-

tion imaging can be calibrated via a single absolute atom number measurement. For images
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Figure 5.7: Schematic of our clock platform. Vertical and horizontal imaging systems with
numerical apertures of 0.2 and 0.1 respectively provide measurements of the 2D density
distribution ñ. Accounting for the lattice spacing a = 407 nm, ña2 is determined from
highly saturated absorption imaging. To mitigate imaging errors, the atoms are highly
saturated and each scatters photons with a maximum rate of Γ/2. Measurements from our
high resolution imaging system integrated along gravity are presented in panel (a), where the
density distribution is extracted for thermodynamic modeling. Images from the horizontal
imaging system in panel (b) are just used to determine our atom cloud aspect ratio for our
inverse Abel transform.
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in our 3D lattice, we determine our atom number via clock excitation fraction fluctuations

arising from quantum projection noise (QPN) [29].

For fluorescence imaging, only a single image of collected fluorescence in an arbitrary

direction is required, minimizing fringing and simplifying image processing substantially.

Fluorescence imaging also avoids limited dynamic range issues suffered from high intensity

absorption imaging. Strategies such as multiple measurements at varying intensity to de-

termine the atomic density in different regions of the cloud may be taken to confront this

issue [194, 195]. The primary disadvantage of fluorescence imaging in comparison to absorp-

tion imaging is that the signal-to-noise is generally worse. To optimize signal-to-noise ratio

(SNR) in fluorescence imaging, the photon collection efficiency and therefore the numerical

aperture (NA) of the imaging system, must be maximized. In our experiment, the vertical

and horizontal imaging systems have numerical apertures of 0.2 and 0.1, corresponding to

collection efficiencies of approximately 1% and 0.25%. Alternatively, if spatial resolution is

not required then the pulse duration can be extended enhancing the number of detected

photons.

5.2.1 In situ imaging characterization

To initially benchmark our saturated imaging techniques used for Fig. 5.8, we probe an

uncharacterized Fermi gas via extremely-high intensity fluorescence to guarantee that com-

plete saturation is achieved and collective effects are negligible. In this extreme regime, the

absorption imaging signal-to-noise is very poor. For later measurements to achieve optimal

signal-to-noise, we employ a more reasonable intensity for absorption imaging, although still

under the operating condition of I/Isat ≫ OD. Absorption imaging at I ∼ Isat and high

intensity fluorescence imaging are presented side-by-side for comparison. To study these

systematic errors at high density, we prepare a sample with optical depth > 200 by pro-

ducing a degenerate Fermi gas with 10 nuclear spin components, ≈ 2 × 105 atoms and a

T/TF of approximately 0.1 in a crossed dipole trap. The errors associated with low intensity
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absorption imaging can be seen twofold. First, the reconstructed optical depth from absorp-

tion detection in Fig. 5.8a is far too low, two orders of magnitude less than the expected

value of ∼ 200. This erroneously low optical depth is attributed to effects such as enhanced

forward emission and lensing of probe light [187]. Secondly, the reconstructed optical depth

in Fig. 5.8b increases after a 500 µs time-of-flight expansion conclusively demonstrating the

density dependence of these observed systematic errors.

In comparison, saturated fluorescence imaging yields a far larger reconstructed optical

depth and diffuses following expansion as expected. We compare this reconstructed 2D

density distribution with the expected distribution corresponding to a Fermi gas. Using

independently measured experimental values, we calculate this distribution with no free

parameters [204]. The total atom number and reduced temperature T/TF are determined

from time-of-flight absorption imaging at low density with an optical density ∼ 1. The

trapping frequencies are extracted from parametric confinement modulation. Using these

parameters, we calculate both an in situ and 500 µs time-of-flight Fermi gas profile for

comparison with our measurements. We observe qualitative agreement between measurement

and calculation in Fig. 5.8c and Fig. 5.8e at these extremely high optical depths.

Intrigued by the measurements presented in Fig. 5.8, we undertake a quantitative study

on the fidelity of our saturated imaging technique. We present a calibration method for flu-

orescence detection, using the total number of collected fluorescence photons for comparison

with an accurate atom number reference. Absorption imaging at low density following time-

of-flight expansion serves as an appropriate calibration. Following expansion for 7 ms, the

optical depth is ∼ 1 and systematic imaging errors can be safely ignored. To indepen-

dently calibrate the atom number in our 10 spin Fermi gas, we prepare a thermal sample

and use measured density fluctuations to determine the effective absorption cross section

[205, 206, 207]. In Fig. 5.9a we ensure this calibration shows agreement with a simple linear

model for atom numbers ranging from 0.5 × 105 to 4 × 105, varied by controlling our final

evaporation trap depth. For the 3 µs pulse duration used, the fitted calibration is in rea-
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sonable agreement with independent calculation using the measured quantum efficiency and

imaging system numerical aperture. To ensure that the imaging transition is fully saturated,

the laser intensity at 1 µs pulse duration is increased until the collected photon number

plateaus, as seen in the figure inset.

To perform accurate spatially resolved measurements, we must also determine the

blurring induced by our imaging pulse. Just as collective effects introduce errors to the

reconstructed density distribution, any systematic changes to ñ introduced by our imaging

pulse must be determined. To calibrate this blurring in Fig. 5.9b, we extend the fluorescence

pulse duration and examine the peak column density as atoms diffuse. The inset shows

averaged images from 500 ns and 2 µs pulse durations. We note that we observe no atom

loss or molecular formation over the full 2 µs range, confirmed by the detected photon count

increasing linearly with pulse duration. To minimize blurring, we carefully retroreflect our

probe beam by optimizing the backcoupled light through the probe optical fiber. At pulse

durations up to 1 µs, we confirm that the peak column density decreases by < 5%.

5.2.2 Band insulator demonstration

Motivated by the calibration reported in Fig. 5.9, we directly determine the 3D density

distribution in a deep optical lattice via saturated in situ absorption imaging. We form

a cubic lattice with trap depths of approximately 60, 70, and 50 Er in three orthogonal

directions, where Er is the lattice photon recoil energy ≈ h × 3.5 kHz. Following forced

evaporation with 10 nuclear spin states we spin polarize using a focused beam detuned from

the 3P1 intercombination line to form a state-dependent potential, removing nearly all but

the mF = -9/2 atoms [107, 184]. Clock spectroscopy confirms ≈ 90% spin purity. An

additional step of spin purification is applied by coherently driving the mF = -9/2 atoms

into the excited clock state and removing any residual spins with a resonant imaging pulse.

Absorption imaging directly provides us with the column density distribution ñ, integrated

through the vertical axis along gravity as depicted in Fig. 5.7a. Based on our Fig. 5.9b
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Figure 5.8: A comparison of high intensity fluorescence and standard absorption imaging
(I ∼ Isat) at optical depths exceeding 200 in our highly degenerate Fermi gas is shown. In
situ absorption imaging at low intensity yields strikingly erroneous measurements at high
density. The calculated 2D Fermi gas distribution according to our experimental parameters
is shared for comparison in qualitative agreement.
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Figure 5.9: (a) Calibration method for in situ fluorescence detection using atom counts
from time-of-flight absorption imaging. Collected photon counts from both the vertical
and horizontal imaging systems are plotted, with solid and dashed lines representing fits to
the horizontal and vertical measurements respectively. Inset: Collected photon count with
vertical imaging system as a function of I/Isat at 1 µs pulse duration. (b) Peak column density
as a function of fluorescence pulse duration. Measurements are normalized by 1.9 × 1011
atoms/cm2, the column density at the shortest pulse duration of 500 ns. Images at 500 ns
and 2 µs in inset are plotted for comparison. The error bars denote the standard error of
the mean.

analysis, we choose a pulse duration of 1 µs to minimize blurring and a saturation intensity

of 54(4), substantially larger than peak optical density of ∼ 15. To spatially probe the band

insulator plateau we use an imaging magnification of 38.8 to achieve an effective pixel size of

412 nm, roughly equal to the lattice constant a = 407 nm. We note that our effective pixel
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size is smaller than our optical resolution of 1.3 µm, thus our imaging system is optically

oversampled. To extract the 3D density distribution, we use an inverse Abel transform

[208]. Given our vertical imaging is not along an axis of cylindrical symmetry, n must be

appropriately scaled by the aspect ratio of the spatial density distribution. The aspect ratio

is independently calibrated using the absorption imaging measurement in Fig. 5.7b.

At this high magnification, the SNR in fluorescence imaging for a 1 µs pulse duration

is limited by a combination of read noise and photon shot noise. We found that even after

extensive averaging the extracted 3D density distribution using an inverse Abel transform

was sensitive to small fluctuations in ñ. Thus, saturated absorption imaging with a superior

SNR provides a more robust technique to characterize the 3D density distribution. This

extracted 3D density distribution is plotted in Fig. 5.10a.

To judge the fidelity of our measured 3D density distribution, we compare the line cut

at both z = 0 and y = 0 with calculation in Fig. 5.10b. To estimate the density distribution,

we use a thermodynamic calculation in the local density approximation. [182, 183]. The

ingredients of this calculation include values for the entropy-per-particle, harmonic confine-

ment, and total atom number. Given the density distribution only depends on the ratio of

the respective harmonic confinements, the measured aspect ratios from Fig. 5.7 are used for

our thermodynamic calculation. The total atom number N is determined from quantum

projection noise measurements. To estimate the entropy-per-particle including heating from

lattice loading, we perform a “round-trip” measurement where we load the atoms from our

optical dipole trap into the three-dimensional optical lattice and then reverse the sequence

to load them back into the dipole trap [182, 71]. Measuring a reduced temperature in time-

of-flight of T/TF = 0.151(4) and 0.179(7) before and after lattice loading respectively, we

determine an entropy-per-particle increase of 0.25(6) kB. Inferring half of that entropy in-

crease in the actual lattice loading, we estimate an entropy-per-particle s/kB = 1.56(6) in the

lattice. From the data in Fig. 5.10b, we fit s/kB = 1.49 in good agreement with prediction.

Although we did not perform a cross-dimensional thermalization measurement to directly
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Figure 5.10: (a) The three-dimensional density distribution and the corresponding lattice
filling fraction are determined from in situ absorption image in Fig. 5.7a and the use of an
inverse Abel transformation. (b) A linecut along z = 0 and y = 0 provides the data points in
circles. Errorbars are both the statistical uncertainty of the Abel transformation and atom
number uncertainty added in quadrature. We start with a prediction based on thermody-
namic calculation, using independently measured values for the entropy-per-particle, atom
number, and harmonic confinement. The best fit to the data results in a 10% reduction
of the measured aspect ratio ωy/ωx and 5% reduction of the predicted entropy-per-particle.
The red line captures this fit, with entropy-per-particle uncertainty in the shaded band. The
blue dashed line is a fit to Gaussian in qualitative disagreement with na3.
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verify thermal equilibrium, the uncertainty in our predicted entropy-per-particle is included

in the shaded band of the thermodynamic calculation in Fig. 5.10b [209, 210]. We note that

the extended plateau region is larger than our 1.3 µm imaging resolution. We compare na3

to a Gaussian fit and observe strong disagreement near the center of the cloud owing to the

fermionic nature of the atoms in our optical lattice.

5.2.3 Density diffusion

Here we provide supplemental analysis to the data presented in Fig. 5.9b. In panel

A of Fig. 5.11, we plot the integrated counts along the x axis of each image. We see an

asymmetry emerge along the direction of the probe beam as the pulse duration is extended.

This asymmetry suggests that the observed density diffusion may arise from inhomogeniety

between the incident and retroreflected beams. While the power is certainly mismatched,

this could also be due to either imperfect spatial alignment or mode mismatch given the

divergence of the probe beam.

We also plot the total counts in each image as a function of pulse duration in panel B.

The linear character of the counts over the full pulse duration range suggests that we do not

observe appreciable atom loss or pumping to dark states. The counts at each pulse duration

are normalized to the counts at 500 ns. The inset shows the Gaussian RMS width of the

cloud as a function of pulse duration.

5.2.4 Signal-to-noise comparison between imaging techniques

In the main text of the paper we refer to both saturated absorption and fluorescence

imaging. We provide a quantitative comparison of the signal-to-noise ratio (SNR) between

the two techniques here. We express our signal-to-noise for a detection pixel in terms of the

normalized variance V(N)/N , where N denotes the number of atoms within the respective

detection region. For fluorescence imaging the SNR is simply determined by the shot noise

associated with the number of detected photons. To calculate the total atom number, we
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Figure 5.11: Panel (a) shows the integrated counts from the images in Fig. 5.9b of the main
text along the x axis as a function of pulse duration. The total counts at each pulse duration
is plotted in panel (b), normalized by the counts at 500 ns. Given the detected photon count
increases linearly with pulse duration, we observe minimal atom loss or molecular formation
over the full 2 µs range. The inset shows the Gaussian RMS width of the cloud as a function
of pulse duration.
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first convert the fluorescence counts detected on our camera to the number of collected

photons. Then, using the collection efficiency of our imaging system and scattering rate of

our atomic transition we determine the conversion of detected photons per atom. On our

CCD camera, we measure na counts in a given pixel. Using the quantum efficiency q of the

imaging system, and the camera conversion gain g in units of counts per photo electron,

we infer na

qg
photons. At full saturation, the atomic scattering rate is Γ

2 and the number

of photons scattered per atom is Psc = Γ
2 × τ , where τ is the pulse duration. Finally, we

denote the collection efficiency as Y , determined by the numerical aperture of our imaging

system and by radiation pattern anisotropies. Combining terms, the total atom number is

N = na

gqY Psc
. Using error propagation, we determine the variance VFl(N).

VFl(N) =
(
∂N

∂na

)2
V(na) =

( 1
gqY Psc

)2
gna (5.3)

Here, we have used the fact that the distribution of generated photo electrons ne is

Poissonian. Thus, V(na) = V(g × ne) = g2V(ne) = g2ne = gna. Combining terms:

VFl(N)/N = 1
qY Psc

. (5.4)

The SNR associated with absorption imaging is more complicated given the formula

for the atom number in Eq. 5.5 has both logarithmic and linear terms and involves two

images na and nb with and without atoms present. Here, A and σ0 refer to the effective pixel

size accounting for the imaging system magnification and effective atomic absorption cross

section, respectively. Similar to fluorescence imaging, an appropriate error propagation of

the na and nb terms determines Eq. 5.6 and Eq. 5.7. We summarize the formulas here and

point a reader to reference [211] for a full derivation.

N = A

σ0
log(nb

na
) + 2

Γτgq (nb − na) (5.5)

VAbs(N) = gÃ2( 1
na

+ 1
nb

) + gB̃2(na + nb) + 4gÃB̃ (5.6)
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Ã = A

σ0
, B̃ = 2

qgτΓ (5.7)
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Figure 5.12: Numerical aperture dependence on density distribution. Black curve is the
actual density distribution. Depends very weakly on NA. For our NA (0.2), low-pass filtering
is minimal. Thus, these measurements provide a fairly robust probe for temperature in the
lattice.

We compare the different techniques in Fig. 5.13 using the experimentally relevant

parameters for our imaging system. In both cases, a 1 µs resonant pulse is used with a

numerical aperture of 0.2 and a quantum efficiency of 85%. For the fluorescence SNR in

blue, the transition is assumed to be fully saturated and scatters photons with a rate of Γ/2.

For the I/Isat = ∼ 55 we use for our inverse Abel measurements, the SNR in absorption

imaging is superior to fluorescence imaging in regions where the column density is higher

than 2 atoms/a2. Particularly given our peak density of ña2 = ∼ 20 in Fig. 5.7a, absorption

imaging provides a better SNR in the regions of high density where we extract our peak

filling fraction. At a critical OD of 0.17, fluorescence detection under our experimental
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Figure 5.13: SNR comparison between absorption and fluorescence imaging. The relevant
imaging parameters from the main figures of the paper are used for this calculation. For
absorption imaging the atom count variance scales inversely proportional with intensity in
the non-saturated limit I ≪ Isat, and proportional with intensity in the high saturation
limit. The variance is for both imaging methods proportional to 1/τ . In the fully saturated
regime (and assuming no technical noise) the normalized variance for fluorescence imaging is
independent of atomic column density. To avoid imaging defects at the high densities used
in clock operation, an I/Isat > 50 was used in all imaging measurements. The black dashed
line indicates the intensity used for our inverse Abel measurements.

parameters provides a superior SNR at all imaging intensities. We note these calculations

neglect technical noise, in particular camera readout noise, which can be accounted for by

offsetting V(na) accordingly. This contribution will disproportionately reduce the SNR of

fluorescence imaging, as the fluorescence counts are substantially lower than the absorption

counts.

To probe fine spatial details in our atomic cloud, an imaging resolution smaller than the

length scale of these spatial features is required. To achieve this condition, a sufficiently large

numerical aperture imaging system must be utilized and aberrations must be minimized. In
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this case, the imaging resolution is fundamentally limited by diffraction. We verified the

diffraction-limited performance of our NA = 0.2 objective lens by propagating a point source

at 461 nm through a test setup (including all imaging path optics and vacuum viewports)

and measuring the point-spread function.

While absorption and fluorescence imaging rely on the same light scattering process

(they only collect different parts of the scattered EM field [187]), the signal amplitudes for

these two methods scale differently with the NA. When collecting fluorescence, the solid

angle coverage of the imaging system proportionally affects the signal down to the lowest

spatial frequencies. This is not the case for absorption imaging, where the amplitude of

spatial frequency components below the NA-dependent bandwidth is constant as the NA

is further increased (assuming the lens fully covers the probe beam). In other words, for

fluorescence imaging, most of the signal light gets collected in the outer ring fraction of the

lens aperture, which renders it particularly susceptible to lens imperfections.

5.2.5 Density distribution calculation

To accurately model the density distribution in our 3D lattice, we use a thermody-

namic calculation in the local density approximation. The general Hamiltonian for SU(N)

symmetric fermions in a 3D lattice in the atomic limit takes the following form:

HAL = U

2
∑

i,σ ̸=σ′
n̂i,σn̂i,σ′ +

∑
i,σ

Vin̂i,σ. (5.8)

Here for a fermion with number operator n̂ and spin index σ on a lattice site i, there

are just two competing energy scales: an interaction energy U between particles and a

position dependent energy offset Vi according to the harmonic confinement. By using the

local density approximation µ = µ0 − V (x, y, z), where V (x, y, z) = 1
2m(ω2

xx
2 +ω2

yy
2 +ω2

zz
2)

and µ0 corresponds to the peak chemical potential in the lattice. For the spin-polarized

system in this work, U = 0 and σ = 0 so the calculations are substantially simplified.
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Ultimately, we want to express the density distribution n(µ, T ) in terms of the chemical

potential, atomic temperature, and position in the lattice. On a lattice site i, we express the

Grand partition function Z and Grand potential Ω :

Z(µ, T ) = 1 + eβµ, (5.9)

Ω = −kBT ln(Z).

From here, we determine the entropy and occupancy per lattice site i:

s(µ, T ) = −∂Ω
∂T

= kB ln(Z) + ∆s,

∆s = −kB
Z
βµeβµ, (5.10)

n(µ, T ) = −∂Ω
∂µ

= 1
Z
eβµ. (5.11)

We accurately determine the total atom number Nlat from in situ absorption imaging

and total entropy Slat via time-of-flight fitting to a non-interacting Fermi-Dirac profile.

From these two quantities we determine the predicted entropy-per-particle s/kB. Similarly,

we express the entropy s and occupation n on a given lattice site using Eq. 5.10 and Eq. 5.11

expressed in terms of T and µ. Given the density distribution only depends on the ratio

of the respective harmonic confinements, the measured aspect ratios from Fig. 5.7 are used

for our thermodynamic calculation. We then determine global parameters T and µ0 to

ensure the integrated entropy and occupancy over all lattice sites equals our experimentally

measured values of Slat and Nlat. A linecut of n(µ, T ) at z = 0 and y = 0 is plotted in

Fig. 5.10b.
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5.2.6 Inverse Abel transform

A generic inverse Abel transform assumes cylindrical symmetry and uses a 2D pro-

jection to reconstruct the 3D distribution. Limited to this analysis, constraints are placed

on both the geometry of our trapping potential and the choice of imaging axis to ensure

cylindrical symmetry. Borrowed from similar alkaline-earth experiments realizing highly ef-

ficient evaporation, we use a crossed dipole trapping geometry to provide a strong vertical

confinement [212, 213]. Imaging along this axis of vertical confinement is preferable as the

corresponding optical depth is the smallest and the imaging resolution is enhanced by the

vertical imaging system.

We outline our reconstruction procedure here using measurements of the atomic cloud

aspect ratios and an inverse Abel transform. A similar trapping geometry and reconstruction

procedure was used in prior work [182]. To understand our density reconstruction along an

axis without cylindrical symmetry, we treat our system as an ellipsoid with radii rx, ry, rz.

With N total atoms, the volume of this system is Vlat = 4
3πrxryrz and thus the density is

nlat = N/Vlat. We extract the inverse Abel transform using the data in Fig. 5.7a imaged

along the vertical direction. We take the y axis as a symmetry axis, given the largest Band

insulator plateau will occur along the x axis with the weakest harmonic confinement. The

modification to our reconstruction procedure occurs here, where the density distribution must

be appropriately rescaled to reflect the actual volume and therefore density of our atomic

sample. The inverse Abel transform taking the y axis as a symmetry axis produces a density

distribution corresponding to volume of VAbel = 4
3πrxrxry and density nAbel = N/VAbel. This

density distribution nAbel must then be rescaled by VAbel/Vlat to reflect the actual volume

Vlat. Here, VAbel/Vlat = rx/rz. We fit the Fig. 5.7b image from our horizontal imaging system

to a 2D Gaussian function and determine rx/rz = 2.11. Given excess noise around the origin,

the x = 0 point is interpolated with the neighboring point in Fig. 5.10a. This reconstruction

procedure was cross-checked with simulated density distributions to ensure its fidelity. The
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three-point Abel transform method was used for this work, which has been independently

studied to verify its fidelity [214].

5.3 Atom number calibration

To calibrate our atom number, we analyze quantum projection fluctuations using the

narrow-linewidth clock transition between the 1S0 and 3P0 states in 87Sr. Using a clock

laser stabilized to our 8 mHz linewidth silicon reference cavity, rotation noise due to laser

instability can be neglected in these measurements [215]. Additionally, fluctuations in total

counts are < 2% and not a limiting systematic for determining the atom number calibration.

5.3.1 Quantum projection noise

Referenced in many texts [29], by preparing atoms in a superposition of 1S0 to 3P0 the

variance V of the measured excitation fraction is related to the mean atom number N̄ and

mean excitation p̄e by:

VQPN = p̄e(1− p̄e)
N̄

. (5.12)

To determine this variance, we do many subsequent measurements of pe under identical

operating conditions. For a measurement i to determine pie, two fluorescence counts C̃i
g and

C̃i
e are read off a region of interest of our camera including our atoms. These counts are

subtracted by two averaged dark frames B̄g and B̄e to yield Ci
g = C̃i

g − B̄g, Ci
e = C̃i

e − B̄e.

We would like to determine the coefficient a that satisfies N i
e = aCi

e/τ , N i
g = aCi

g/τ . We can

immediately see that the excitation fraction has no dependence on this coefficient:

pie =
�aCi

e

�aCi
e +�aCi

g

. (5.13)

However, the total atom number N i = a(Ci
e +Ci

g)/τ = aCi
t/τ does. Rewriting Eq. 10,

we see a measurement of the variance VQPN , the mean excitation p̄e, and the mean total
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counts C̄t can determine a.

VQPN = p̄e(1− p̄e)
aC̄t/τ

(5.14)

The coefficient a can be interpreted as the "atoms per count per pulse duration". In

principle, with knowledge of the quantum efficiency, gain, scattering rate, numerical aperture,

and radiation pattern one could calculate this value. Practically, assumptions about the

radiation pattern based on the quantization axis and probe light polarization make this

calculation more difficult. In practice, it is much more straightforward to directly measure

a than to individually measure each of these values with high accuracy.

The observed variance of the excitation fraction Vpe has contributions from quantum

projection noise (QPN), photon shot noise (PSN), and camera readout noise (RN):

Vpe = VQPN + VPSN + VRN . (5.15)

Here g is the detector gain in units of counts per electron.

VPSN = p̄e(1− p̄e)
C̄t

× g, (5.16)

VRN = R2

C̄t
2 (2p̄

2
e − 2p̄e + 1). (5.17)

VPSN can be understood intuitively considering the ratio VQPN/VPSN . The number

of signal electrons (equivalently the number of collected photons multiplied by the camera

quantum efficiency) per atom determines the relative scaling of VQPN and VPSN .

VQPN

VPSN
= 1
g × a

(5.18)

To determine a we need to accurately calibrate VRN and VPSN . We see at pe = 1,

VPSN , VQPN = 0. Thus, measuring Vpe at pe = 1 will independently determine VRN .
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Figure 5.14: Readout noise calibration. A π pulse on our optical clock transition is used so
pe ≈ 1 and Vpe = R2

C̄t
2 + C. We use 4 pulse durations between 5 and 20 µs to vary Ct. We

fit R = 100.2± 24.6 and C = 2.73× 10−6 ± 1.02× 10−6.

We wish to fit R and ensure it is consistent with the cameras specified readout noise.

To extract this value, we use 4 pulse durations between 5 and 20 µs to vary Ct. This is

illustrated in Fig. 5.14. In practice, we fit

Vpe =
R2

C̄t
2 + C. (5.19)

We fitR = 100.2±24.6 and C = 2.73×10−6±1.02×10−6. For our circular ROI there are

X = 889 pixels in the masked radius. For the calibrated gain g = 1.59 counts/e- and readout

noise r = 2.4 e- respectively , Rcalc =
√
Xgr = 94.7 in agreement with R = 100.2±24.6. We

note that the gain and readout noise of the camera are close to specification. Dark counts

over our 30 ms exposure are < .1 e- and considered negligible.

Next, we wish to determine aQPN . To do so, we perform a second measurement at

pe = 0.5. The variance of this dataset contains contributions from VQPN , VPSN , and VRN .
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Figure 5.15: aQPN calibration. The atoms in our optical lattice are placed in a superposition
of the ground and clock states with a π/2 pulse so pe ≈ 0.5 for these measurements and Vpe

is fit to Eq. 18. We determine aQPN = 1.72± 0.16.

Using the measured R value, we subtract the VRN contribution. Next, we fit the data in

Fig. 5.15 to:

Vpe =
0.5(1− 0.5)
aC̄t/τ

+ 0.5(1− 0.5)
C̄t

× g. (5.20)

We fit aQPN = 1.72± 0.16. This is in reasonable agreement with the calculated value

of 1.43 assuming Γ/2 scattering into 4 π while also accounting for the measured quantum

efficiency.

5.3.2 Readout noise

Here, we derive the readout noise term used in our variance measurements. The ex-

pressions used are somewhat different than other literature, given that we use averaged dark

frames B̄e and B̄g. Recall, pe = Ce

Ce+Cg
. To determine the readnoise contribution to the



139

excitation fraction, we perform standard error propagation:

VRN =
(
∂pe
∂Ce

)2
V(Ce) +

(
∂pe
∂Cg

)2
V(Cg). (5.21)

Here,
∂pe
∂Cg

= Ce

(Ce + Cg)2
= pe

(Ce + Cg)
, (5.22)

∂pe
∂Ce

= Cg

(Ce + Cg)2
= 1− pe

(Ce + Cg)
. (5.23)

To determine V(Ce) consider an X pixel region-of-interest for which we extract Cg, Ce

in two separate measurements. Each pixel contains r read noise in electrons. The single

pixel read noise in units of counts is thus g × ri. The total noise in this region of interest is

summed in quadrature pixel-by-pixel V(Cg),V(Ce) =
∑

X (ri × g)2 = Xr2g2 = R2. Plugging

terms in Eq. 5.21:

VRN = R2

C̄t
2 (2p̄

2
e − 2p̄e + 1). (5.24)

5.3.3 Imaging system parameters for Fig. 5.9a

In Table 5.1 and Table 5.2 is a summary of the imaging parameters for the measure-

ments in Fig. 5.9a. For Fig. 5.7 and Fig. 5.10, a 1 µs pulse duration was used. In Fig. 5.9b,

we vary the pulse length between 500 ns and 2 µs. Atom number fluctuations in time-of-flight

absorption imaging for these measurements have a standard deviation less than 2 %.

5.3.4 Outlook

In conclusion, we report on the observation of a spin-polarized, band insulating state

in our 3D optical lattice clock. This has been enabled by characterizing saturated in situ

imaging techniques to accurately determine our density distribution. Broadly, the satu-

rated imaging techniques in this work will be applicable for studies of SU(N) magnetism
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Parameter Value
Numerical aperture 0.23

Pulse duration 3 µs
Total photons scattered per atom at full saturation 287

Collection efficiency 1.3 %
Camera quantum efficiency 0.85

Imaging system quantum efficiency 0.65
Calculated photon count per atom 2.06
Measured photon count per atom 1.91(1)

Table 5.1: Vertical imaging system parameters.

Parameter Value
Numerical aperture 0.10

Pulse duration 3 µs
Total photons scattered per atom at full saturation 287

Collection efficiency 0.25 %
Camera quantum efficiency 0.78

Imaging system quantum efficiency 0.72
Calculated photon count per atom 0.402
Measured photon count per atom 0.445(3)

Table 5.2: Horizontal imaging system parameters.
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and thermodynamics in the Mott-insulating regime [71, 216]. With the high filling frac-

tion demonstrated in this work, many-body states arising from dipolar interactions can be

generated between atoms on neighboring lattice sites [23, 179].



Chapter 6

Observing coherent superexchange interactions

The research in this chapter is reported in the publication: W. R. Milner, S. Lannig,

M. Mamaev, L. Yan, A. Chu, B. Lewis, M. N. Frankel, R. B. Hutson, A. M. Rey, and J. Ye,

arXiv (2024).

6.1 Introduction

The introduction to this thesis emphasized the importance of improving clock precision

to advance the capabilities of optical lattice clocks. As we already stated, this requires

probing as many atoms as possible while maintaining a long coherent interrogation time T .

The challenge to the experimenter is thus to balance many different dephasing factors to find

the optimal operating conditions. In this chapter we provide a detailed study of coherence

times in our 3D optical lattice, building upon prior investigations [72]. In 1D lattice clocks,

coherence times have been extensively studied and a spin model has been developed that

successfully captures interaction-based dephasing [59]. In this regime, the key factor is the

interplay of s and p-wave interactions: At shallow lattice, atoms are delocalized and can

interact with distinguishable fermions on neighboring sites via s-wave interactions. At deep

lattice, atoms are confined to a single lattice site and interact solely via p-wave channels [60].

In our 3D optical lattice where atoms are strongly confined in all 3 directions, s-wave

interactions increase to the kHz level and are the dominant interaction energy scale. In

the Mott-insulating regime (U ≫ t) at high filling, doubly-occupied sites are energetically

https://arxiv.org/pdf/2402.13398.pdf
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unfavorable and motion is restricted. Dephasing in this regime arises from spin-exchange pro-

cesses known as superexchange. We provide an intuitive description of these interactions in

the following sections and detail an experimental study of their effects on clock spectroscopy.

6.1.1 Single-particle dephasing

We can broadly divide dephasing mechanisms in two-classes: single-particle dephasing

mechanisms that do not depend on the atomic density and interaction-based dephasing

mechanisms that do. We will start with single-particle dephasing mechanisms, which are

necessarily simpler. The fundamental single-particle dephasing mechanism is the 3P0 excited

state lifetime, with the most recent experimental study determining a lifetime of 118(3)

s [217].1 In some sense achieving spectroscopy times limited by the natural lifetime is the

ultimate goal, although one could envision Pauli-blocking [201, 218, 219] or erasure-style

schemes [220] to overcome this limitation.

Unsurprisingly, other single particle effects kick in at comparatively shorter timescales.

The predominant single-particle dephasing mechanism is Raman scattering of lattice pho-

tons from our 813 nm magic wavelength trap, affecting both the 1S0 ground and 3P0 clock

states. As depicted in Fig. 6.1, although our lattice laser frequency ωk is hundreds of THz

detuned from dipole allowed transitions, off-resonant scattering processes still occur at rates

approaching Hz-level in hundreds of ER deep lattices. For 1S0 (3P0), the dominant contribut-

ing state is 1P1 (3S1).

The effects of Raman scattering on clock coherence were carefully studied on Sr2 by

previous graduate student Ross Hutson and reported in Ref. [72, 221]. We briefly overview

the key findings of his measurements here, before diving into our own study building upon

those results. A simple benchmark of Raman scattering is to first examine the excited state

decay loss. Here, the atoms are shelved in |e = 3P0⟩ and the time-dependent decay to

|g = 1S0⟩ was examined as a function of lattice depth. The measurements are plotted in
1 Studies to directly determine the clock state lifetime on 1D lattice clock platforms are ongoing.
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Figure 6.1: Coherence time study on Sr2. Top left: Excited state lifetime measurements
agree well with Raman scattering-limited theory. Bottom left: Coherence time measure-
ments qualitatively agree with lattice scattering-limited dephasing at deep trap depths within
prefactors of ≈ 2. At shallow lattice, dephasing rates strongly increase likely due to mo-
tional effects. Right: Although our lattice laser frequency ωk is hundreds of THz detuned
from dipole allowed transitions, off-resonant scattering processes still occur at ≈ mHz rates.
Figure reproduced from Ref. [72].
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Fig. 6.1(a). This data is very well modelled by the calculated decay rate in red:

Γee =
∑
i

Γ′

eeVi(1−
√
ER/4Vi) + Γ0

ee. (6.1)

Here, Γ′
ee = 5.7(3) × 10−4 s−1 E−1R and Γ0

ee = 9(1) × 10−3 s−1. Γ′
ee is due to Raman

scattering. Γ0
ee is predominantly due to spontaneous emission from 3P0 and BBR-induced

pumping via 3D1. These decay coefficients are also tabulated in Ref. [222]. Vi are the lattice

depths in direction of the 3D lattice in units of ER.

Figure 6.2: Left: Motional dephasing arises due to spin-orbit coupling from incommensurate
lattice and probe wavelengths. Right: Dephasing rates are plotted. If the lattice spacing
a is commensurate with clock laser wavelength, dephasing rate γt is strongly minimized.
Sufficiently large lattice spacing via tunable spacing accordion lattices can strongly reduce
tunneling t, also minimizing γt. Figure adapted from Ref. [72].

With Raman scattering benchmarked, the next task was to study the effects of lattice-

induced scattering on clock coherence. Instead of monitoring the decay of populations, atoms

are put in a superposition state |ψ⟩ = (|g⟩+ |e⟩)/2 and the evolution of coherences over time

are detected via Ramsey spectroscopy. Here, a final π/2 pulse in the spectroscopy sequence

maps the coherences into populations that can be readily measured with resonant imaging
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light. The ‘coherence time’, or 1/e time for loss in contrast, is plotted in Fig. 6.1(b). The

red line is the calculated dephasing rate according to:

Γeg =
∑
i

Γ′

egVi(1−
√
ER/4Vi) + Γ0

eg. (6.2)

Here, Γ′
eg = 4.0(2) × 10−4 s−1 E−1R and Γ0

eg = 1.2(1) × 102 s−1. The coherence time

measurements qualitatively agree with lattice scattering at deep trap depths within prefactors

of ≈ 2.

At shallow lattice depths, the coherence times are substantially smaller than expected

from Raman scattering. This discrepancy was attributed to motional dephasing effects

due to tunneling. This motional dephasing mechanism is shown in Fig. 6.2. In our clock

operating conditions, the clock and lattice wavelengths of λclk = 698 and λmagic = 813 nm are

incommensurate. Thus on each site in our cubic lattice, indexed j and separated by a lattice

constant a = λmagic/2, the initial superposition state prepared is |ψ⟩j =
(
|g⟩ + iϕj |e⟩

)
/
√
2

with a spin-orbit coupled (SOC) phase ϕ = 2πa/λclk [70]. The analogy of SOC comes from

the coupling of spin and motion, although describing this as a discretized Doppler shift is

probably more intuitive for a clock person. Explicitly the dephasing is described according

to a Bessel function relation C(T ) = J0
(
4 t T sin(ϕ/2)

)
[73].2 It is also sensible define a

motional dephasing rate as the argument of this function γt ≡ 4 t | sin(ϕ/2)|. Here, t and

U are the tunneling coupling and on-site interaction strength respectively as detailed in

Chapter 3.

The interplay of Raman scattering and motional dephasing thus places a limitation on

clock coherence time: At deep lattices one is limited by Raman scattering and at shallow

lattices limited by tunneling. We note as pointed out in [72], operating in a blue-detuned

lattice at ≈ 390 nm does not substantially improve decoherence rates. Two strategies are

clear to address this challenge:

First, one could use accordion lattices to dynamically tune a the lattice constant. As
2 This Bessel function relation is derived in [223].
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depicted in Fig. 6.2, if a is sufficiently large (≫ λmagic/2), t and thus γt becomes negligibly

small. Alternatively, one could make choose a lattice spacing to make a and λclk com-

mensurate. Here, all atoms behave as indistinguishable fermions turning off both s-wave

interactions and tunneling induced dephasing. In other words, at high density the system is

in the band-insulating3 rather than Mott-insulating regime where motion and interactions

are Pauli blocked at full filling. While this is certainly a promising research direction that

we will likely ultimately pursue, it requires installing an accordion lattice and it is unclear

how one references the phase of the clock laser to the lattice.4

Secondly, one could envision tuning parameters of our Fermi-Hubbard Hamiltonian

to improve coherence times. The calculations in Fig. 6.2 are in the single particle limit in

a homogeneous lattice and make no assumptions about interactions or local-disorder. By

very definition, a Mott-insulator is a many-body state that behaves as an insulator due

to interactions, despite having a band structure that admits conductivity [224]. Thus one

would expect that operating the Mott-insulating regime (U ≫ t), one might be able to make

the lattice sufficiently shallow to avoid Raman scattering and still suppress tunneling from

interactions.

Additionally, experiments from the Ye lab Wannier-Stark, 1D lattice clock [21] and the

Kaufman lab tweezer clock [225] showed that long coherence times of 52.8(1.5) and 48(8)

seconds respectively could be achieved. In both systems, the largely negligible tunneling

coupling between sites strongly minimizes dephasing and raised the broader question of how

local disorder between lattice sites could further improve our 3D clock. That is, operating in

the regime where the site-to-site energy shift ≡ ∆E is much larger than the tunnel coupling

t, one would also expect to strongly suppress motional dephasing.
3 It might be more appropriate to call this many-body state a Pauli insulator.
4 Although as we will detail in the coming sections, this is not explicitly required for extracting the atomic

coherence time.
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6.1.2 Interaction-based dephasing

In summary, while Ross’ study provided ingenious ideas moving forward it also high-

lighted that both the coherence times on Sr2 somewhat mysteriously fell short of expectation

and that a quantitative understanding of interactions are a key next step. The single particle

limit is not so meaningful in a 3D lattice at high density!

In the next section, we give an overview of the relevant interactions in our 3D lattice.

We begin with the canonical Fermi-Hubbard model. We then show that at half-filling in the

repulsive limit, the Fermi-Hubbard Hamiltonian can be mapped to the Heisenberg Hamil-

tonian. Finally, we show that with our SOC phase, our dynamics can be generalized to an

XXZ Hamiltonian exhibiting anisotropy.

6.1.2.1 Fermi-Hubbard Hamiltonian

In a 3D lattice filled with a degenerate Fermi gas of spin-polarized 87Sr atoms in the

motional ground state [107], the system can be modelled with the Fermi-Hubbard Hamito-

nian where ground and excited state atoms on the same lattice site interact via the Hubbard

interaction parameter U , and motion is captured by a parameter tz for tunneling along the

z direction. We start from the two-well Fermi-Hubbard Hamiltonian with a energy tilt ∆E

between sites,

ĤFH = −tz
∑

σ∈{g,e}
(ˆ̃c†0,σ ˆ̃c1,σ +H.c.) + U

∑
j∈{0,1}

n̂j,en̂j,g +
∆E
2 (n̂1 − n̂0), (6.3)

Here, ˆ̃c†j,σ(ˆ̃cj,σ) creates (annihilates) a fermion on site j with spin σ in the lab frame. We

define n̂j,σ = ˆ̃c†j,σ ˆ̃cj,σ, and n̂j = n̂j,e+n̂j,g. To be explicit regarding the notation conventions in

this section: x, y, z refers to spatial directions with respect to the lab frame for all operators

in this chapter. The ∼ above operators emphasizes that they are in the lab frame, rather

than the rotated spiral frame explained in Section 6.1.2.3. Capitalized values X, Y , Z refers

to spin orientations on the Bloch sphere. Finally, we index sites according to j. Calculations
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in the following sections are confined to the z spatial direction, in which our clock is launched

and thus the SOC phase is imprinted.

The Fermi-Hubbard Hamiltonian is formed with the basis states for

|site j = 1, site j = 2⟩: |eg, 0⟩ , |0, eg⟩ , |e, e⟩ , |g, g⟩ , |e, g⟩ , |g, e⟩. In matrix form:

HFH/h =



U −∆E 0 0 0 −tz tz

0 U +∆E 0 0 −tz tz

0 0 0 0 0 0

0 0 0 0 0 0

−tz −tz 0 0 0 0

tz tz 0 0 0 0



(6.4)

The eigenvalues are plotted in Fig. 6.3. Next, the eigenstates and eigenvectors are

derived in the Mott-insulating limit U ≫ tz where we will be working. For simplicity, we

set ∆E = 0. The ground and most excited state are Taylor expanded to first order in tz.

Ordering the states by energy:

Energy Eigenenergy Eigenvector

E1 ≈ -4t2z/U ≈ (|g, e⟩ − |e, g⟩)/
√
2 - tz/U(|eg, 0⟩+ |0, eg⟩)

E2 0 (|e, g⟩+ |g, e⟩)/
√
2

E3 0 |e, e⟩

E4 0 |g, g⟩

E5 U (|0, eg⟩ − |eg, 0⟩)/
√
2

E6 ≈ U + 4t2z/U ≈ (|eg, 0⟩+ |0, eg⟩)/
√
2 + tz/U(|g, e⟩ − |e, g⟩)

We see that the ground state E1 is approximately a singlet state (|s⟩ ≡ (|g, e⟩ −

|e, g⟩)/
√
2). The states |e, e⟩ and |g, g⟩ are non-interacting due to the Pauli exclusion prin-

ciple. Other states are either a triplet state |t⟩ ≡ (|g, e⟩ + |e, g⟩)/
√
2) with E = 0 or

separated by an energy gap approximately equal to U . As we will detail in the next section,
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Figure 6.3: Eigenstates of the two-site Fermi-Hubbard model (∆E = 0). The ground state
in the Mott-insulating limit U ≫ tz, approximately a ‘singlet’ state, is 4t2/U lower than the
E = 0 ‘triplet’ states. Higher-lying states are separated by an energy gap U . At U = 0, the
energy seperation of the highest and lowest eigenstates is set by tunneling bandwidth 4t.

this separation of energy scales forms the basis for modelling the system as the Heisenberg

Hamiltonian.

It is also instructive to plot the solutions of the non-interacting Fermi-Hubbard Hamil-

tonian (U = 0). As a function of tilt (∆E), the energy spectrum is plotted in Fig. 6.4. In the

limit of large tilt |∆E| ≫ tz, the energy spectrum is dominated by doubly occupied states.

6.1.2.2 Heisenberg Hamiltonian

In the Mott-insulating limit U ≫ tz, the double-occupied states are separated by a

large energy gap ∼ U , which allows for restriction of dynamics in the single-occupied states

via second-order perturbation theory. We get the effective Hamiltonian for superexchange
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Figure 6.4: Non-interacting Fermi-Hubbard model (U = 0). As the the energy offset ∆E is
increased, the ground state becomes a doubly-occupied state. Note at ∆E = 0, energy is
again set by tunneling bandwidth 4t.

interaction,

Ĥeff = JSE

(
ˆ̃s0 · ˆ̃s1 −

1
4

)
, (6.5)

where

JSE = 4t2z
U

1
2

( 1
1−∆E/U + 1

1 + ∆E/U

)
= 4t2zU
U2 −∆E2 . (6.6)

Here the spin operators are defined as ˆ̃sj = ∑
αβ={e,g} ˆ̃c†j,ασαβ

ˆ̃cj,β/2, where σαβ are Pauli

matrices. ˆ̃sαj for α ∈ {X, Y, Z} refers to spin-1/2 matrices describing atoms on sites j in the

lab frame.

Expanding ˆ̃s0 · ˆ̃s1 = (ˆ̃s0 + ˆ̃s1)2/2 − 3/4, we obtain triplet states (|d⟩ ≡ |g, g⟩,

|u⟩ ≡ |e, e⟩,|t⟩ ≡ (|g, e⟩ + |e, g⟩)/
√
2) with zero energy, and the singlet state (|s⟩ ≡

(|g, e⟩ − |e, g⟩)/
√
2) with energy −JSE with respect to the triplet states. We note that

with four basis states this Hamiltonian is simpler than the Fermi-Hubbard Hamiltonian.

This is a convenient point to next understand how interactions affect our Ramsey fringe
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Figure 6.5: Contrast oscillations versus spin-orbit coupled phase ϕ. Maximum oscillation
amplitude occurs at ϕ = π. Note this condition is not so different than our operating
parameter 2πa/λclk ≈ 7π/6.

contrast. The oscillation of the contrast can be understood based on the time evolution of the

initial state generated by the first Ramsey pulse. This state has a spiral phase eijϕ imprinted

by the clock laser with Rabi frequency Ω, Ĥclock(θ)/ℏ = 1
2
∑

j(|Ω|eiθ× ˆ̃s+j eijϕ+H.c.), where θ

controls the rotation axis. We consider the initial state generated by the first Ramsey pulse

with |Ω|T1 = π/2,

|ψinit⟩ = e−iĤclock(θ=π/2)T1/ℏ |g⟩0 ⊗ |g⟩1

= 1√
2
(|g⟩0 + |e⟩0)⊗

1√
2
(e−iϕ/2 |g⟩1 + eiϕ/2 |e⟩1)

= 1
2
[
e−iϕ/2 |d⟩+ eiϕ/2 |u⟩+

√
2 cos(ϕ/2) |t⟩+ i

√
2 sin(ϕ/2) |s⟩

]
.

(6.7)

The dynamics in the dark time can be described by the singlet state |s⟩ acquiring a phase

eiJSET/ℏ. Then we apply the second Ramsey pulse with |Ω|T2 = π/2 with the same θ, and
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get the final state

|ψf⟩ = −ieiϕ/2 sin(JSET/2ℏ) sin2(ϕ/2) |d⟩+ 1
4e
−iϕ/2

(
3e−iJSET/2ℏ + (1− cos(ϕ))eiJSET/2ℏ + cos(ϕ)

)
|u⟩

+ i√
2
sin(JSET/2ℏ) sin(ϕ/2) sin(ϕ) |t⟩ −

1√
2
sin(JSET/2ℏ) cos(ϕ/2) sin(ϕ) |s⟩ .

(6.8)

In this case the Ramsey fringe contrast is given by C = 2|⟨ψf |ˆ̃sz|ψf⟩|/N , where ˆ̃sz =

ˆ̃sz1 + ˆ̃sz2. The contrast will thus undergo oscillatory dynamics,

C(T ) =
∣∣∣∣∣ cos2

(
ϕ

2

)
+ sin2

(
ϕ

2

)
cos(JSET/ℏ)

∣∣∣∣∣. (6.9)

These contrast oscillations ⟨ψf | ˆ̃sz |ψf⟩ are plotted in Fig. 6.5.

6.1.2.3 XXZ Hamiltonian

While dynamics for small system sizes can be exactly solved with the two spin mod-

els above, it relies on preparing a complicated initial state with SOC on each site, then

solving the ensuing dynamics with a fairly simple Hamiltonian. To gain intuition about

the dynamics, it is attractive to do a basis rotation where the initial state is simpler. As

depicted in Fig. 6.6, we rotate into a “spiral” frame where the initial state is uniform (all

atoms in the same superposition state) and the site-dependent laser phase ϕ on a site j is

absorbed into the spin operators across the lattice, ŝ±j = ˆ̃s±j e±ijϕ, ŝZj = ˆ̃sZj . Thus, we obtain

a superexchange spin Hamiltonian in the spiral frame

ĤSE =
∑
j

JSE(j)
[1
2
(
eiϕŝ+j ŝ

−
j+1 +H.c.

)
+ ŝZj ŝ

Z
j+1

]
. (6.10)

Once again, the superexchange interaction strength is JSE(j) = 4t2zU/(U2 − ∆E2
j ), which

is inhomogeneous due to the local potential difference between adjacent sites ∆Ej, includ-

ing gravity and the lattice Gaussian confinement. We see this interaction Hamiltonian is

anisotropic, as it exhibits exchange-symmetric XXZ-style anisotropy and an antisymmetric

spin exchange term. Observables such as atomic coherence reveal collective quantum dy-

namics on timescales of the averaged J̄SE over the ensemble, which is tuned by controlling

the inhomogeneity and the lattice depth.
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Figure 6.6: Spiral basis transformation. The site-dependent laser phase ϕ is absorbed into
the spin operators: ŝ±j = ˆ̃s±j e±ijϕ, ŝZj = ˆ̃sZj . Thus, the initial state in this transformed basis
is polarized state on the collective Bloch sphere.

We also give a brief overview of the 1D lattice interaction model. Given this inter-

action model has been extensively studied in optical lattice clocks [59, 216], we use it as

a benchmark, given that the 3D model is comparatively less explored. The corresponding

interaction dynamics are well described by a collective spin model that includes both on-site

p-wave interactions between atoms in different radial modes and off-site s-wave interactions.

Both s- and p-wave interactions contribute to decoherence and atom loss, and their contri-

butions can be balanced to optimize coherence times. A more detailed summary of the 1D

spin model including the relevant terms in the Hamiltonian is provided in Section 6.2.4.4.

Finally, we provide some broader context regarding why superexchange interactions

are relevant before diving into our experimental study [74, 75, 76]. The physics of superex-

change is central in describing magnetic phenomena such as antiferromagnetism [77, 78] and

is believed to play a role in superconductivity [79]. Several ultracold atom experiments have

employed optical lattices to explore low-temperature bosonic ferromagnetic and fermionic

antiferromagnetic correlations induced by superexchange [80, 81, 82, 83, 3, 84, 85, 86],

as well as some non-equilibrium superexchange-driven quantum dynamics in local density

probes [226, 227, 228, 229, 230]. In clocks, such interactions can also be directly em-

ployed for the generation of large scale quantum entanglement over the entire 3D lattice

system [87, 88, 89, 68]. Thus, we can engineer a large, coherent spin ensemble with inter-
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action precisely controlled to introduce and optimize quantum coherence, correlation, and

entanglement to advance the frontier of quantum metrology [231, 64, 232, 233].

6.1.3 Ramsey fringe contrast measurements

In this section, we overview the basic experimental techniques and analysis to extract

the Ramsey contrast. The experimental schematic is depicted in Fig. 6.7A. After evaporation,

we confine the atoms in a retroreflected, cubic lattice operating at the magic wavelength of

λmagic = 813 nm with lattice constant a ≈ 407 nm [33]. Beginning with a nuclear-spin

polarized Fermi gas with a temperature T/TF ≈ 0.2, the atoms are adiabatically loaded

into the ground band of the 3D lattice [107, 33]. The lattice depth
(
V⊥
)
of the transverse

(horizontal with respect to gravity) confinement is tuned independently from the depth

of the vertical confinement
(
Vz
)
by adjusting the optical power in the corresponding lattice

beams. Our two-level spin system is established between the ground 1S0
(
|g⟩
)
and metastable

electronic ‘clock’ state 3P0
(
|e⟩
)
. We coherently drive the clock transition |g,mF = −9/2⟩ ↔

|e,mF = −9/2⟩ at λclk ≈ 698 nm with a vertical laser beam using an optical local oscillator

locked to an ultrastable silicon cavity [39].

To confine the atoms in our 3D lattice, we adiabatically ramp all lattice beams in three

150 ms steps. Starting at 0 ER, we ramp to 2.5 ER, then 10 ER, before ramping to our

final trap depth VF for clock spectroscopy. Here, ER = h2/8ma2 ≈ h× 3.5 kHz is the lattice

photon recoil energy, For measurements with VF ≤ 10 Er, we ramp 0ER → 2.5ER → VF

then hold. To prepare for clock spectroscopy in our magic wavelength lattice, we ramp off

the XODT trap over 100 ms, while leaving the lattice depths at VF .

After loading the lattice, we put the atoms into a superposition of |g⟩ and |e⟩ and

perform Ramsey spectroscopy. For detection, in situ absorption imaging along the vertical

direction is employed and approximately 100 photons per atom are scattered over a 1 µs pulse

duration with minimal blurring compared to the diffraction-limited point-spread function of

1.3 µm [234, 24]. Two images of the ground and clock state atoms, their numbers denoted
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Figure 6.7: Left: Ultracold fermions are confined in the ground band of a three-dimensional
optical lattice with tunable confinement. Lattice depths can be independently varied by
changing the optical power of retro-reflected beams in the transverse V⊥ or vertical direc-
tion Vz. In situ imaging allows to spatially resolve interactions and dephasing via imaging
spectroscopy [178]. Right: Dynamics are described via the Fermi-Hubbard model with tun-
neling tz, interaction energy U , and a site-to-site energy shift ∆Ej from the lattice Gaussian
confinement. Atoms along the z axis on sites indexed j − 1, j are initialized in a superpo-
sition state of the ground state |g = 1S0⟩ and the metastable electronic state (‘clock’ state)
|e = 3P0⟩, where the clock laser imprints local phase shift ϕ due to spin-orbit coupling. De-
phasing of the coherence is proportion to an effective superexchange rate: 4t2zU/(U2−∆E2

j ).



157

Figure 6.8: Ramsey spectroscopy is employed to study the coherence time. An XY8 pulse
sequence is used to mitigate single-particle dephasing. The dephasing and rephasing of
individual spins is depicted on the Bloch sphere during the echo sequence. For the final π/2
pulse two choices of the randomized phase ϕ1,2 are shown (light and dark purple) to illustrate
the spread of resulting excitation fractions in individual realizations.

Ng and Ne, are taken to determine the excitation fraction pe = Ne/(Ne + Ng). For a

chosen region-of-interest PA of our imaged density distribution, we record the local excitation

fraction pAe = NA
e /(NA

e + NA
g ). This is shown in Fig. 6.7A, where the excitation fractions

are evaluated in spatially separate regions P1 and P2 to determine both the Ramsey fringe

contrast and relative atomic coherence using imaging spectroscopy [178].

To evaluate atomic coherence at different lattice confinement, we measure the Ramsey

fringe contrast for varying dark time T . An XY8 sequence consisting of eight π pulses

along the two orthogonal rotation axes in the equatorial place of the Bloch sphere is used to

remove single particle dephasing as depicted in Fig. 6.8 [235, 236]. To decouple the atomic

coherence measurement from the finite atom-light coherence time (∼3 s) [39], the phase

of the final Ramsey π/2 pulse is randomized. Parametric plots of the excitation fractions
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Figure 6.9: To determine the coherence time T2, the contrast decay is fit to an exponential
C(T ) = C0e

−(T/T2) as a function of dark time T . The contrast is determined via parametric
plots of excitation fractions in regions P1 and P2 of the ensemble as depicted in Fig. 6.7.
Error bars are 1σ (standard deviation) obtained from jackknifing.

from concentric regions P1 and P2 (P1 < 6µm and 6 µm < P2 < 12µm with respect to

the trap center) are used to determine the contrast as shown in Fig. 6.9. These parametric

plots show ellipses, where a maximum likelihood estimator determines the ellipse contrast

and jackknifing is used to extract 1σ (standard deviation) errorbars for all Ramsey contrast

measurements [178]. The system is sufficiently homogeneous in the spatial regions P1 and

P2 that the contrast C is approximately the same. No statistically significant phase shift

between P1 and P2 is measured, indicating that the XY8 pulse sequence largely removes any

spatially varying frequency shift.

Our saturated imaging procedure using our high-resolution (NA = 0.2) vertical imaging

system is detailed in Chapter 5. We extract the contrast of our atomic ensemble using

imaging spectroscopy where the local excitation fractions in two spatially separated regions
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Figure 6.10: Simulated ellipse fitting fidelity. We sample data from a known distribution
(C = 0.80, φ = 0), anc examine the convergence of the fitted contrast as a function of data
points. Single realizations of simulation are plotted as callouts. We see contrast measure-
ments are biased and thus one can underestimate contrast is not enough data is collected.
≳ 40 data points were taken for reported measurements in this chapter to ensure than these
systematic errors are minimal.

are compared. Ellipse fitting is used, where parametric plots in regions P1, P2 trace an

ellipse = 1
2 +

C
2 cos

(
2πf1,2T + φ0

)
[178]. The differential frequency shift f1,2 between spatial

regions of interest following our XY8 decoupling sequence is consistent with zero. This is

illustrated in Fig. 6.9, where the parametric plots show a straight line with no opening

angle. We use jackknifing to determine the 1σ (standard deviation) contrast error bars. For

n excitation fraction measurements at a given dark time T , we first determine the contrast

C̄ using all data points. Next, we cycle through all n datapoints and recompute the contrast

C ̸=i excluding the i-th data point. Summing all contributions we estimate the uncertainty:

Var(C) = n−1
n

n∑
i
(C̄ − C ̸=i)2

It is useful to determine the necessary data to experimentally measure the contrast
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with low uncertainty. To evaluate this, we simulate our ellipse fitting fidelity. We sample

data from a known distribution (C = 0.80, φ = 0), and examine the convergence of the

fitted contrast as a function of data points as plotted in Fig. 6.10. We see that contrast

measurements are biased and thus one can underestimate contrast is not enough data is

collected. ≳ 40 data points were taken for reported measurements in this chapter to ensure

than these systematic errors are minimal.

6.2 Observing coherent superexchange interactions

Combining an understanding of the various dephasing mechanisms and spectroscopy

sequences detailed above, we next describe our study of the effects of interactions on our

clock spectroscopy. In the current experiment we independently vary the lattice confinement

to explore the 1D and 3D lattice spin models, including the crossover between the two

regimes. To do so we load a degenerate Fermi gas of 87Sr atoms into a 3D lattice with

tunable confinement, allowing us to vary the interaction strength and tunneling rates. The

interaction effects on spin coherence between the ground and metastable clock state are

directly recorded on Ramsey fringes. In a vertical 1D lattice, we achieve coherence times of

∼20 s when minimizing the contribution of s and p-wave interactions. As a weak transverse

confinement is turned on, s-wave interactions are increased by orders of magnitude and

very fast dephasing is observed. At deep transverse confinement, favorable coherence times

are partially recovered, and coherent superexchange interactions are manifested directly in

oscillations of the Ramsey fringe contrast persisting over a timescale of multiple seconds.

Before quantitatively modelling the different dephasing mechanisms, we wished to

broadly scan over a large interaction parameter space by varying V⊥ and Vz. The extracted

quality factor Q = πC0T2ν is plotted in Fig. 6.11, where ν is the clock transition frequency

≈ 429 THz. We identify two interesting regimes to investigate further: (1) In the 1D lat-

tice regime with no transverse confinement the longest coherence times are observed; (2)

With deep transverse confinement where the average J̄SE/h ≳ 1 Hz, coherent superexchange
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Figure 6.11: The quality factor Q = πC0T2ν where ν ≈ 429 THz is plotted over a wide range
of transverse and vertical confinement. Two candidate regimes are identified to investigate
further. The weak or zero transverse confinement regime (i), where the longest optical
lattice clock T2 times have been reported [21]. Regime (ii), where fast initial contrast decay
is observed due to superexchange interactions. The deep 3D lattice regime (iii) was studied
on this platform in [72] where the coherence time is limited by Raman scattering of lattice
photons.
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dynamics are observed on the Ramsey fringe contrast over a timescale of seconds. As previ-

ously reported [72], the deep 3D lattice regime (3) where J̄SE/h ≪ 1 Hz reveals a limit on

the coherence time primarily due to Raman scattering of lattice photons on |e⟩ atoms. The

dark times in this study (T < 16 s) are short compared to both the 1S0 lattice lifetime and

vacuum lifetime as plotted earlier in Ch. 3.8.

6.2.1 3D lattice study: Superexchange interactions

Figure 6.12: Ramsey contrast decay is studied in a 3D lattice at fixed Vz = 17.4 ER and thus
tz, while V⊥ is varied between approximately 70 and 20 ER primarily modifying U . Decay
curves at V⊥ = 28.1 ER left, and 44.9 ER right, are plotted. Error bars are 1σ (standard
deviation). Red lines are theory, averaging contrast decay in 1D chains initialized from a
thermal distribution of the 3D cloud with fitted temperatures of 350(14) nK for V⊥ = 28.1
ER and 322(17) nK for V⊥ = 44.9 ER. The error bands stem from the uncertainty on the
temperature and T2.

In Fig. 6.12, we show the contrast decay as a function of dark time for V⊥ > Vz, finding a

clear oscillatory feature on timescales of the superexchange rate J̄SE. For these measurements

Vz is fixed to 17.4ER at which tz ≈ h × 14.2 Hz, where ER = h2/8ma2 ≈ h × 3.5 kHz is



163

the lattice photon recoil energy. J̄SE is tuned by varying V⊥ between 19.7 and 67.4ER,

thus varying U/h from 1.2 to 2.3 kHz. In the V⊥ ≫ Vz regime, the system is comprised of

isolated vertical tubes along z as shown in Fig. 6.11. We assume all atoms within each tube

are pinned in place even for non-unity filling, since the local potential difference is much

stronger than tunneling (∆Ej ≫ tz). We further assume that every uninterrupted chain

of neighbouring atoms within a given tube undergoes evolution under the superexchange

Hamiltonian ĤSE. Their evolution is independent of other chains, and the contrast is an

average over all chains. The curves in Fig. 6.12 show numerical predictions averaging over

the full 3D system using calibrated experimental parameters, an optimized temperature and

include the overall slow decay in contrast reported in Fig. 6.11, which find good agreement

with the measurements. The extracted temperatures indicates that our experiments operate

at a central filling fraction of ≈ 0.5 atoms per lattice site.

To extract the superexchange rates, we vary V⊥ and fit the experimentally measured

contrast decay to the function CSE(T ) = Ae−T/T2 + Bcos(2πfT )e−T/Tosc + D. In Fig. 6.13

the measured oscillation frequencies f are first compared to results derived from the same

full many-body Hamiltonian used to generate the theory curves in Fig. 6.12 (empty red

squares). Here, the oscillation frequencies are extracted in the same way as for the mea-

surement data. Additionally, we are also comparing to a simplified theoretical model that

averages over contributions of two-site pairs (blue line), which is expected to be valid for

low to intermediate filling fractions where long chains are unlikely. This calculation includes

higher-order interaction effects such as bond-charge corrections to the tunneling rate tz. The

agreement with both theoretical models is excellent for intermediate V⊥ between 22.5 and 45

ER. For the deepest V⊥, the experimentally measured rate appears to be higher-frequency.

Numerical calculations suggest this could arise from additional interaction inhomogeneity or

light-scattering effects [237] that favor higher frequency contributions. At shallow V⊥ < 20ER

where V⊥ ≈ Vz, our theoretical approximation of isolated vertical tubes breaks down and

in-plane interactions become relevant. In Fig. 6.13, the dark times of the contrast decay data
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Figure 6.13: Left: Fitted contrast oscillation frequencies (black points) are compared to
the fit results obtained from the full simulations as shown in panels A, B (red empty squares)
and calculated superexchange frequency (blue line) including bond-charge corrections to tz,
which averages the expected oscillations with local ∆Ej and U along the imaging direction.
Error bars are 1σ (standard deviation) uncertainty of the fitted frequency. Right: Contrast
curves approximately collapse when dark times are rescaled by the calculated oscillation
frequency (blue line). A simple simulation sampling spin chains with different lengths and
coupling strengths (gray dashed line) is overlaid.

are rescaled by the calculated superexchange rate from the two-site model (blue line). The

rescaled data collapse to a single curve, reflecting the underlying superexchange dynamics

in all measurements. This is also in agreement with a more general theoretical model that

attempts to capture the effects of finite temperature and trap inhomogeneity without explic-

itly invoking experimental details. Instead, the superexchange couplings and chain lengths

are randomly sampled from probability distributions that aim to capture the experimental

parameters and inhomogeneity. We do not expect perfect rescaling due to varying JSE(j)

inhomogeneity owing to a change in lattice curvature as a function of V⊥.

For additional confirmation of the superexchange oscillations, we explored using other
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decoupling pulse sequences than just XY8. The Ramsey fringe contrast for both XY8 and a

single π pulse are plotted in Fig. 6.14. We see that the oscillation dynamics are not so different

for the different sequences. Exploring driven superexchange dynamics could be an interesting

research direction for future studies. Additionally, the atom loss in these measurements is

plotted in Fig. 6.15. We clearly see that we are in the regime where superexchange dynamics

JSE are much quicker than the atom loss rate 1/τ where τ = 19(1) s is the fitted 1/e time

constant. This is promising step for future quantum simulation studies, as atom loss strongly

hinders the fidelity of these experiments.

Figure 6.14: We explored contrast decay using both an XY8 decoupling sequence and a
standard spin echo sequence with a single π pulse. The solid lines are fits using the model
CSE(T ).

In order to study the properties of the interactions further, we vary the lattice filling

and the energy offsets ∆Ej of the local lattice tilt in Fig. 6.16. First, the fraction of atoms
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Figure 6.15: Atom loss in superexchange regime. For atom loss, we fit a 1/e time constant
τ = 19(1) seconds with V⊥ = 44.9ER and Vz = 17.4ER conditions. Statistical errorbars in
this measurement are susceptible to long term drifts of the total atom number.

participating in superexchange is reduced by imprinting holes in the lattice. Beginning with

maximum filling, before Ramsey spectroscopy a variable clock laser pulse duration is used

to shelve atoms in |e⟩ with spatially uniform probability, and subsequently the remaining |g⟩

atoms are removed with resonant light at 461 nm. The ensuing contrast decay as a function

of the total atom number N is plotted in Fig. 6.16. The oscillation amplitude, reflecting the

fraction of atoms participating in superexchange, is strongly decreased as N is reduced due

to the increasing number of holes. Due to the reduced filling fraction at the wings of the

atom cloud, this effect is also observed when choosing the region of interest to be an annulus

and increasing its radius compared to P2 as shown in Fig. 6.18.

As the position of the atoms in the combined potential of gravity and the lattice

confinement is shifted vertically the site-to-site energy shift ∆Ej, and consequently the su-
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Figure 6.16: All measurements presented here are performed at trap depths Vz = 17.4 ER

and V⊥ = 44.9 ER. The fraction of atoms participating in superexchange is modified by
reducing the filling fraction via uniformly adding holes as depicted in left panel. In (i), the
initial state is a near unity filled sample of ground state atoms. Next, atoms are placed
in a superposition state with tunable pulse area. Light resonant with |1S0⟩ is turned on to
imprint holes, with the remaining atoms in |3P0⟩ as shown in (ii). The contrast decay is
plotted in right as the clock pulse area and thus total atom number N is reduced compared
to the initial atom number N0. The solid lines shown in right panel are fits using the model
CSE(T ). Error bars are 1σ (standard deviation).

perexchange interaction strength, is strongly modified. We precisely move the cloud position

at the µm scale. Figure 6.17 displays these oscillations as a function of cloud position z. We

compare the oscillation frequency with a heuristic simulation analogous to Fig. 6.13 of the

Ramsey contrast in Fig. 6.17 (red line). Averaging the Ramsey signal along the z-direction

during imaging strongly suppresses the effect of locally enhanced JSE(j) where U = ∆Ej.

The asymmetry of the background trap gradient around z = 0 leads to a reduction of the

oscillation frequency at large z where ∆Ej > U . The frequency of the simulation shows

qualitative agreement with the measured oscillation.

For the measurements in Fig. 6.17, we displace the position of the atoms in the lattice

potential to locally change ∆Ej. This requires precise adjustment of the density distribution

at the µm level. To accomplish this, we use our horizontal imaging system with imaging

parameters in [234]. We used a commercial, piezo actuated mirror that moves the XODT
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beam to adjust the center position of the atomic density distribution.
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Figure 6.17: In left panel, the superexchange coupling is modified by changing the position of
the atoms in the lattice potential varying the site-to-site energy shift ∆Ej. At the positions
indicated by vertical red lines tunneling becomes resonant and strongly enhances the local
JSE(j). However, averaged over the whole cloud this only slightly modifies the oscillation
frequencies. Oscillations in contrast at different vertical positions z are shown in middle
panel; curves are shifted vertically according to z position. These measured oscillation
frequencies are compared with a heuristic superexchange simulation (red line) of the Ramsey
contrast in right panel.

Figure 6.18: Contrast decay in two regions of interest using annulus’ with thickness 2 px
(0.8 µm) and radii 14 px (6 µm), 48 px (19 µm) are plotted. V⊥ = 44.9 ER and VZ = 17.4 ER

was used for these measurements. Error bars are 1σ (standard deviation) uncertainty of the
Ramsey contrast obtained from jackknifing. The sparsely filled region (19 µm) has higher
contrast due to the lower filling fraction compared to near the center of the cloud (6 µm).
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6.2.2 1D lattice study: s and p-wave interactions

Figure 6.19: In the weak transverse confinement regime, both off-site s-wave interactions,
induced by the SOC phase between lattice sites, and on-site p-wave interactions between
atoms contribute to dephasing [60]. Their strength is controlled by the vertical confinement
Vz and transverse confinement V⊥, strongly influencing the observed coherence time T2.

In the previous section, we detailed the study of superexchange interactions in our 3D

lattice. Modelling the system via an XXZ Hamiltonian is only valid in the regime Vz ≪ V⊥,

for which the system acts as individual vertical tubes and each site with an atom acts as a

spin-1/2 particle. In this section we detail studies in our 1D lattice, along with the crossover

regime to 3D. Prior work [60] has also shown that in the 1D lattice confinement along z

(V⊥ = 0), interactions are weak and instead single-particle eigenstates defined in terms of

vertical Wannier-Stark eigenstates (eigenstates of the 1D lattice and gravity) and transverse
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Figure 6.20: T2 is measured without transverse confinement (V⊥ = 0). In the inset the
atom lifetime τ , limited by inelastic p-wave loss, is plotted as a function of Vz. Theory
modeling Ramsey contrast decay based on the 1D spin Hamiltonian using experimental
measured parameters is overlaid in red. The error bands are based on the uncertanties of
the experimental parameters. Error bars are 1σ (standard deviation) uncertainty of the
fitted T2 and τ values.

eigenmodes create an energy lattice where atoms remain frozen. In this 1D limit, on-site

interactions favor spin alignment between atoms, locking them into large collective spins of

Wannier-Stark level n along gravity , Ŝα
n , whose dynamics is described by the same type

of spin Hamiltonian as superexchange but with modified couplings and an additional onsite

term. ĤLS = Ĥon−site + Ĥoff−site. Here, Ĥon−site ∼ ∑
n Ŝ

Z
n Ŝ

Z
n describes the on-site p-wave

interactions (see Fig. 6.19), and Ĥoff−site includes the off-site s-wave interactions and takes

the same form as ĤSE by replacing the spin-1/2 operators with large-spin operators. In this
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work, we bridge these two regimes by varying the transverse lattice confinement V⊥. We

extend the theoretical description of Ref. [60] to the regime Vz ≫ V⊥, where in each pancake

the weak transverse lattice defines a new set of transverse eigenmodes with renormalized

spin couplings.
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Figure 6.21: All 1D lattice measurements are fit to a stretched exponential Ce(−T/T2)α where
α is fixed. We re-fit the data varying α and plot the χ2/DOF for each fitting iteration. χ2

is minimized for α = 1.38 (starred point).

In 1D (V⊥ = 0), both on-site p-wave and off-site s-wave interactions contribute to

the contrast decay (see Fig. 6.19). The observed T2 coherence time and atom lifetime are

plotted as a function of Vz in Fig. 6.20. Varying Vz provides two distinct regimes to probe the

physics of contrast decay. At large Vz, atoms become localized in Wannier orbitals along the

z-lattice and interact predominantly via on-site Ising-type p-wave interactions that contribute

to slow contrast decay with T2 ∼ 1/
√
Ns (Ns is the atom number per pancake), as observed

in previous studies [59]. As Vz decreases, the reduced p-wave interaction leads to slower
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Figure 6.22: T2 dependence on stretched exponential parameter α. Red star corresponds to
the fitted α = 1.38.

decoherence rate. However, the Wannier-Stark states become increasingly delocalized along

z and atoms experience progressively stronger off-site s-wave interactions. The interplay

between s-wave and p-wave interactions leads to spin wave instabilities that contribute to fast

contrast decay with T2 ∼ 1/Ns. With increasing s-wave interaction strength, this instability

rate increases as Vz decreases. The crossover between these two mechanisms occurs around

Vz = 17.4ER, with a correspondingly longest coherence time of 19(5) s. While experiment

and theory largely agree with each other, the discrepancy at long coherence times could

arise from unexpected reduction of the s-wave interaction strength from re-thermalization
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Figure 6.23: A weak transverse confinement V⊥ is applied. This leads to increased atom
lifetime τ , as well as a reduction of T2 at intermediate Vz = 23.2ER and a enhancement of
T2 at deep Vz = 46.4ER.

processes neglected in the theory. The 1D lattice employed in this study operates with a

much higher density than previous studies [21, 60]. Thus, the atom lifetimes (see Fig. 6.20

inset), limited by inelastic p-wave loss are correspondingly much shorter [21].

For the V⊥ = 0 measurements in Fig. 6.11, as a function of dark time T , a stretched

exponential function C0e
−(T/T2)α is fit to the Ramsey contrast to extract a T2 coherence time

for T > 1 s. For V⊥ = 0, we expect intra-site, all-to-all p-wave interactions to lead to

Gaussian decoherence. We extract a single value α = 1.38 by minimizing the combined χ2

for all measurements for V⊥ = 0. χ2 as a function of α is plotted in Fig. 6.21. The fitted T2

time for each α value is plotted in Fig. 6.22. For all other measurements with V⊥ > 0, we
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set α = 1 when fitting T2.

Upon introduction of a weak transverse confinement (V⊥ ≪ Vz), the increasing lo-

calization of the transverse modes in the x-y plane leads to enhancement of s-wave inter-

actions. Additionally, due to decreased overlap of transverse modes, p-wave interactions

are suppressed, which in turn substantially improves atom lifetimes as shown in Fig. 6.23.

Meanwhile, different trends in the coherence time are observed between the intermediate

Vz = 23.2ER and deep Vz = 46.4ER lattices. For Vz = 23.2ER, the weak transverse confine-

ment increases s-wave interactions within pancakes, enhancing the population of unstable

spin wave modes, and a subsequent decrease of T2. For Vz = 46.4ER, the system remains in

the quasi-stable Ising dominated regime and T2 increases as p-wave interactions decrease.

6.2.3 Lattice inhomogeneties

In this section, we describe the role of spatial inhomogeities in our 3D lattice on our

observed contrast oscillations. The superexchange coupling strength JSE(j) depends on the

site-to-site energy shift ∆Ej between atoms on lattice sites j along the clock axis z. Calculat-

ing ∆Ej requires determining the atom’s location in the lattice Gaussian confinement during

clock spectroscopy. Thus, understanding the details of our lattice loading procedure is key.

First, we consider the trapping potential in the XODT before lattice loading. The XODT po-

tential including the gravitational tilt is UXODT (j)/ℏ = (1/2mω2
XODTa

2)(j−jXODT)2+mgaj,

where j is a dimensionless position in units of the lattice spacing, jXODT is the center position

of the XODT beam, and ωXODT = 2π× 250 Hz, thus UXODT (j)/ℏ = (44.7 Hz) (j− jXODT)2

+ (873.1 Hz) j. The bottom of this displaced parabola is at js, where the atomic density

distribution is centered.

Next, we consider the potential of the optical lattice. We align the center of the

lattice beams to the atom cloud in the XODT. Thus, the center of the transverse lattice

beams is located at js. After ramping down the XODT beams, the offset of the verti-

cal lattice potential, generated by the two transverse lattice beams, is therefore Ulat =
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Figure 6.24: Lattice Gaussian confinement calibration. The trap frequency is measured
for atoms solely confined in both horizontal lattice beams, each at a power equivalent to
the trap depth V⊥. The oscillations are initiated by rapidly switching off the superimposed
horizontal dipole trap. We note, that for the evaluation the gravitational sag needs to be
taken into account, and that employing a harmonic approximation for estimating the sag
induces discernible errors in the beam parameters. Numerical evaluation of the Gaussian
beam curvature at the position of the atomic sag allows the construction of a fit function
from which the beam waist radius is extracted to be w = 62.2(14) µm.

−2V⊥ exp(−2a2(j − js)2/w2) + mgaj, where w is the transverse lattice beam waist radius

extracted in Fig. 6.24. Thus, the minimum of Ulat is at j < js. Because we turn off the

1064 nm trap in a deep lattice where tunneling is frozen, the atom position is centered at

js throughout the Ramsey spectroscopy. Therefore, the cloud is significantly displaced from

the center of the lattice potential, as depicted in Fig. 6.17.
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Figure 6.25: Rabi spectroscopy in shallow lattice confinement is studied. The detuning
span in each measurement is -2 kHz to 2 kHz. The Rabi pulse duration was optimized for
each measurement to maximize the excited state fraction at zero detuning.

The XODT trap frequency νXODT is calibrated via sloshing measurements, where the

atoms are displaced in the dipole trap and their spatial oscillations at νXODT are measured.

We do a similar measurement to determine the Gaussian confinement from the lattice beams.

Here, the atoms are loaded from the XODT into a 2D lattice formed by both transverse

lattice beams. As depicted in Fig. 6.24, the oscillation frequency is plotted as a function of

transverse trap depth V⊥.

The effects of this inhomogeneity can be readily observed with coarse Rabi spectroscopy

in a fairly shallow lattice. As seen in Fig. 6.25, as the lattice confinement is varied the carrier

and apparent ‘sideband’ transitions are strongly modified. At shallow transverse lattice

depths where the Gaussian confinement is weak, Wannier-Stark peaks at approximately



177

Figure 6.26: Left: Rabi spectroscopy for V⊥ = 2.8 ER and Vz = 5.8 ER. Wannier-Stark
transitions are clear, as depicted in schematic on right. Note, this picture is only correct
when neglecting the harmonic confinement of the lattice as V⊥ → 0.

mga are observed as shown in Fig. 6.26. As the transverse confinement, and thus the

inhomogeneity, is increased these peaks are broadened. Finally, we checked spatial Rabi

frequency inhomogeneity as shown in Fig. 6.27. It is minimal over the region-of-interest

< 40 px used in these measurements.

6.2.4 Modelling

In this section we provide details of the modelling used to compare theory and data.5

Using the spin model explained in Section 6.1.2.3, and accounting for the inhomoegeities

outlined in the previous section, the contrast oscillations in our 3D lattice can be well mod-

elled. Additionally, the coherence times and atom loss in the 1D lattice are well captured

using the canonical 1D spin model [60, 59].
5 This section was written with tight collaboration from theorist Ana Maria Rey, and her students Mikhail

Mamaev and Anjun Chu, along with Stefan Lannig.
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Figure 6.27: Left: Rabi flopping is plotted depending on region-of-interest (ROI). Here, the
ROI are thin rings of thickness 2 px with corresponding radii in legend. Right: Fitted π
time as a function of ROI. Rabi drive is homogeneous within experimental uncertainty over
the spatial extent of the atomic distribution.

6.2.4.1 Heuristic averaging of superexchange dynamics

In our experiment operating under the conditions Vz ≪ V⊥, we ignore tunneling in the

transverse directions and consider superexchange dynamics only along the z direction. To

capture the superexchange dynamics, we need to include a spatially varying superexchange

rate JSE(j), due to the tilt generated by gravity and the confinement generated by the

Gaussian profile of the lattice beam. In addition to the site-to-site energy shift ∆Ej, the

reduction of the transverse lattice power at |j − js| ≳ w/a (with lattice constant a) also

decreases the on-site interactions Uj and therefore induces a weak j-dependence. Instead

of applying Eq. (6.6), to avoid artifacts from the divergence present in this approximation,

we obtain JSE(j) from an independent diagonalization of Eq. (6.3) at each lattice site j.

For simplicity, we focus on the region with uniform density in the x-y plane and therefore

consider the variation of JSE only in vertical direction.

Here we assume the oscillatory dynamics are mainly generated by two-atom chains.
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So we can heuristically generalize Eq. (6.9) to average over all possible local one-atom and

two-atom chains in our system. We define n(j) as the local filling fraction of lattice sites

labelled by j, such that the total atom number in each vertical tube is Ntube =
∑

j n(j). In

the following, two adjacent lattice sites along z direction are considered but all quantities

are given with respect to individual lattice sites. The probability to have only one atom in

these two lattice sites is p(1)(j) = n(j)[1 − n(j)], and the probability to have two atoms is

p(2)(j) = [n(j)]2. Here, the magnetization of a one-atom chain is ⟨s̃z,(1)(j)⟩ = ⟨ψf |ˆ̃sz|ψf⟩ =

1/2, and in a local two-atom chain ⟨s̃z,(2)(j)⟩ = {cos2(ϕ/2) + sin2(ϕ/2) cos[JSE(j)T/ℏ]}/2

(see Eq. (6.9)) and thus the average magnetization per size is ⟨s̃z(j)⟩ = ∑
k p

(k)⟨s̃z,(k)⟩. We

then average over all spatial positions to obtain the Ramsey contrast

C(T ) = 1
Ntube

∣∣∣∣∣∑
j

2⟨s̃z(j)⟩
∣∣∣∣∣

=
∣∣∣∣∣1−∑

j

[n(j)]2
Ntube

sin2
(
ϕ

2

)
+
∑
j

[n(j)]2
Ntube

sin2
(
ϕ

2

)
cos(JSE(j)T/ℏ)

∣∣∣∣∣.
(6.11)

By fitting a function of the from Ae−T/τosc cos(J̄SET/ℏ) to the oscillatory term in C(T ) we

obtain the oscillation frequency J̄SE/h, which is the basis for the solid red lines in Figs. 6.13

and 6.17. The bond-charge corrections ∆tz taken into account for the blue line in Fig. 6.13

are scaled with Uj to account for the inhomogeneity across the atom cloud. The error bands

are derived from the uncertainty of this fit parameter. We choose a temperature of ∼ 370 nK

to roughly match the peak-to-peak oscillation amplitude of 2 sin2(ϕ/2)∑j[n(j)]2/Ntube ∼ 0.7

observed in most measurements (as displayed in Figs. 6.17 and 6.12).

We note that this approach of estimating the oscillation frequency does not provide a

comprehensive and quantitative model for the coherence as it neglects effects from longer

chains and the dynamical decoupling pulse sequence. These are taken into account in the

following section.
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6.2.4.2 Superexchange contrast dynamics

Now we generalize Eq. (6.5) to the case of many-atoms. Here we work in a “spiral”

frame where the initial state is uniform (all atoms in the same superposition state) and the

site-dependent laser phase ϕ is absorbed into the spin operators across the lattice, ŝ±j =

ˆ̃s±j e±ijϕ, ŝZj = ˆ̃sZj , where j is the lattice index along z direction.

This transformation lead to the following 1D spin-spin interaction Hamiltonian [68],

ĤSE =
L−1∑
j=1

JSE(j)
[
cos(ϕ)

(
ŝXj ŝ

X
j+1 + ŝYj ŝ

Y
j+1

)
+ ŝZj ŝ

Z
j+1 + sin(ϕ)

(
ŝXj ŝ

Y
j+1 − ŝYj ŝ

X
j+1

)]
,

JSE(j) =
4t2zU

U2 −∆E2
j

,

(6.12)

where L is the number of sites, and JSE(j) the superexchange interaction strength. The

latter depends on both the on-site Hubbard interactions and the local potential difference

∆Ej = 1
2mω

2
lata

2[(j + 1 − j0)2 − (j − j0)2], where j0 is the bottom of the lattice confining

potential.

The first three terms act as an XXZ Hamiltonian with spin anisotropy ∼ sec(ϕ),

which induces contrast decay. The last two terms are a Dzyaloshinskii-Moriya (DM) type

interaction, which breaks exchange symmetry due to the chirality of the imprinted clock

laser phase. The latter has been studied in the context of exotic chiral properties such

as skyrmions. At the collective mean-field level such an interaction has no effect. In our

case since the interaction strengths JSE(j) are inhomogeneous, the DM interaction will also

generate contrast decay, as each atom will feel an unequal force from its left and right

neighbours due to the lack of exchange symmetry.

The Ramsey decay dynamics are modeled by initializing a product state of all spins in

a uniform superposition state following the first Ramsey pulse as written above,

|ψinit⟩ = e−i
π
2
∑

j
ŝY
j
⊗
j

|↓⟩j . (6.13)

The chain then undergoes time-evolution under the Hamiltonian, interspersed with echo
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pulses during the XY8 sequence. For a sequence including a single echo pulse we write,

|ψf (t)⟩ = e−iĤSEt/2e−iπ
∑

j
ŝX
j e−iĤSEt/2 |ψinit⟩ . (6.14)

An XY8 sequence instead applies eight pulses about different axes as depicted in the main

text Fig. 6.8. After time-evolving the state, a final Ramsey pulse with an arbitrary phase θ

is performed,

|ψf,θ(t)⟩ = e−i
π
2
∑

j[cos(θ)ŝYj +sin(θ)ŝX
j ] |ψf (t)⟩ . (6.15)

The contrast of the uninterrupted chain is obtained by measuring the excited state fraction,

Nθ(t) = ⟨ψf,θ(t)|
∑

j

(
ŝZj + 1

2

) |ψf,θ(t)⟩ . (6.16)

For a single independent chain, contrast is obtained via,

C(t) = 1
L
[maxθNθ(t)−minθNθ(t)] . (6.17)

If there are multiple independent chains, their contributions to the excited state fraction

Nθ(t) must be summed together for each angle θ before performing the maximization and

minimization above.

A single site L = 1 has unity contrast C = 1 at all times. Chains with few sites

will exhibit persistent oscillations of contrast, whereas chains with many sites will undergo

decay, with revivals only occuring on timescales ∼ 1/L. Inhomogeneity in the superexchange

couplings JSE(j) will also wash out revivals or oscillatory dynamics at longer times. The

contrast dynamics from many summed, disordered chains thus generally exhibits only one or

two oscillations before saturating to a constant value determined by how many of the chains

had isolated single sites.

We compare this theory to the experiment by using specific lattice parameters, interac-

tion coupling coefficients, and averaging over the 3D distribution which yields a theoretically

predicted contrast C(T ). Since the experiment also finds a slower decay on timescale ∼ 1/T2

measured in Fig. 6.11, we normalize the resulting contrast obtained from numerical sim-

ulation of the superexchange Hamiltonian by a further factor C(T ) → C(T )e−T/T2 . The
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resulting theoretically predicted contrast is shown as solid lines in Fig. 6.12 of the main

text, which is in good agreement with the measurements. The shaded region on the theory

curves corresponds to an uncertainty of ±2 s for the T2 in this adjustment factor (in line

with the T2 measurement uncertainty). The corresponding calibrated parameters used in

these simulations are given in Table 6.1.

V⊥ [ER] N ωlat/h [Hz] j0 − js [a] U/h [kHz] T2 [s]
19.6 22,100 12.4 35 1.17 5.7
22.5 13,000 14.3 31 1.27 6.9
28.1 14,800 17.8 25 1.44 9.1
33.7 17,700 21.4 20 1.59 11.4
44.9 22,500 28.5 15 1.86 10.4

Table 6.1: Parameters for 3D lattice simulations. For transverse lattice depth V⊥ we provide
the atom number N , the lattice harmonic confinement frequency ωlat along the z direction,
the position of the cloud j0 − js relative to the minimum of the lattice confinement (in units
of lattice spacing), the on-site Hubbard repulsion U at the center of the lattice, and the
lifetime of atomic coherence T2 (beyond decay caused by superexchange).

In addition, we provide a more simple theoretical prediction without invoking explicit

experimental conditions. We randomly sample a large number of chains with lengths L

drawn from a Poisson distribution P (λ) with low Poisson parameter λ < 1, appropriate for

an initial thermal distribution. The coupling strengths Vj in each chain are drawn from a

Gaussian distribution of mean JSE(j) and standard deviation ϵJSE(j), with ϵmeant to capture

inhomogeneity in the superexchange interactions. As ϵ increases, the contrast oscillations

reduce in amplitude to the profile observed in the experiment. The curve in Fig. 6.13 of the

main text shows the prediction for Poisson parameter λ = 0.25 and ϵ = 0.4. This curve is

also adjusted by a factor of e− 1
5TJSE/h to account for slower atomic decay, using an effective

lifetime of five superexchange cycles, which is in line with the experimental lifetimes and

yields good agreement with all measured data.
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6.2.4.3 Corrections to Fermi-Hubbard Parameters

Due to wavefunction overlap with adjacent sites, additional interaction and tunneling

terms are present in the Fermi-Hubbard Hamiltonian. We identify the main contributions to

be bond-charge type effects [238] and an admixture of higher bands due to the gravitational

tilt.

Bond-charge interactions are those with interactions between adjacent sites and addi-

tionally an exchange of the particles. This can be cast into the form of a tunneling term,

thus directly correcting the tunneling energy t′z = tz +∆tz with

∆tz = −
4πℏ2a−eg
m

∫
d3xψ3

0ψ1, (6.18)

where ψj = ψ(x, y, z − ja) describes the ground band Wannier function ψ at lattice site j.

For lattice depths of Vz = 17.4 ER and V⊥ = 44.9 ER we obtain ∆t ≈ h × 1.2Hz, which

corresponds to an increase of about 8% with respect to the bare value of tz ≈ h× 14.2Hz.

A direct calculation of the Wannier-Stark wavefunction suggests an additional correc-

tion to the tunneling energy on the order of ∼ 10%. However, the exact calculation of the

full contribution remains challenging because we estimate that all higher bands would be

needed to be taken into account for a faithful quantification [71]. Because these effects are

barely above our experimental uncertainty we are mostly neglecting these corrections in this

work.

6.2.4.4 1D large-spin Hamiltonian

To model the contrast decay in Fig. 6.19 and Fig. 6.20 we describe the Vz ≫ V⊥

regime in 3D optical lattice clocks using the assumption that the spins in each pancake are

locking into a large spin based on Ref. [60, 59], which leads to the following 1D large-spin
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Hamiltonian:

ĤLS = Ĥon−site + Ĥoff−site,

Ĥon−site/ℏ =
∑
n

[
J0,nŜn · Ŝn + χ0,nŜ

Z
n Ŝ

Z
n + C0,nN̂nŜ

Z
n

]
,

Ĥoff−site/ℏ =
∑
n

[
J1,nŜn · Ŝn+1 + χ1,nŜ

Z
n Ŝ

Z
n+1 +D1,n(ŜX

n Ŝ
Y
n+1 − ŜY

n Ŝ
X
n+1)

]
.

(6.19)

The collective spin operators are defined as ˆ̃Sn = ∑
nxny

∑
αβ={e,g} ˆ̃c†nxnyn,ασαβ

ˆ̃cnxnyn,β/2 in

the lab frame, where σαβ are Pauli matrices, ˆ̃cnxnyn,α are fermionic annihilation operators for

radial mode labelled by (nx, ny) assuming separable potential in pancakes, Wannier-Stark

level n along gravity and internal state α. N̂n is the atom number operator for Wannier-Stark

level n. We transform into the “spiral” frame by unitary transformation Ŝ±n = e±inϕ ˆ̃S±n and

Ŝz
n = ˆ̃Sz

n. The interaction parameters are

J0,n = η0(V n,n
eg − Un,n

eg )/2, χ0,n = η0(V n,n
ee + V n,n

gg − 2V n,n
eg )/2,

C0,n = η0(V n,n
ee − V n,n

gg )/2, J1,n = −η1Un,n+1
eg cosϕ,

χ1,n = −η1Un,n+1
eg (1− cosϕ), D1,n = −η1Un,n+1

eg sinϕ.

(6.20)

where ϕ = 2πa/λclk is the spin-orbit-coupled clock phase between nearest-neighbor sites

of the lattice, with a the lattice spacing. η0 and η1 are dimensionless overlap integrals for

on-site and nearest-neighbor interaction respectively,

η|n−m| =
√
2π
kL

(
Vz
ER

)−1/4 ∫
dz [Wn(z)]2[Wm(z)]2, (6.21)

where ER = ℏ2k2L/2m is the lattice recoil energy, with wave number kL = π/a, and Wn(z) is

the wave function of a Wannier-Stark state centered at site n.

The s-wave (Uαβ) and p-wave (Vαβ) interaction strengths (α, β = {g, e}) are calculated

by averaging a Fermi-Dirac distribution over radial modes,

Un,m
αβ = 8πℏaαβ

m

kL√
2π

(
Vz
ER

)1/4 ∑
nxmxnymy

snxmxsnymy

Nnxnyn

Nn,init

Nmxmym

Nm,init
,

V n,m
αβ =

6πℏb3αβ
m

kL√
2π

(
Vz
ER

)1/4 ∑
nxmxnymy

(pnxmxsnymy + snxmxpnymy)
Nnxnyn

Nn,init

Nmxmym

Nm,init
,

(6.22)
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where aαβ is the elastic s-wave scattering length, and b3αβ is the elastic p-wave scattering

volume. As the atoms are nuclear-spin polarized (mF = ±9/2 → m′F = ±9/2 tran-

sition between 1S0 and 3P0 states), to fully anti-symmeterize the wavefunction the fol-

lowing scattering lengths are required aeg = a−eg, b3eg = (b+eg)3 [60, 216]. Defining the

wave function for a radial mode (nx, ny) is φnxφny , we have snm =
∫
dx [φn(x)]2[φm(x)]2,

pnm =
∫
dx [(∂xφn(x))φm(x) − φn(x)(∂xφm(x))]2. Here Nnxnyn are the initial population

in radial mode (nx, ny) and lattice site n under a Fermi-Dirac distribution, Nnxnyn =[
exp[(ϵnxny−µn)/kBTR]+1

]−1
, where the chemical potential for each lattice site µn is chosen

to match the initial atom number for each Wannier-Stark level Nn,init =
∑

nxny
Nnxnyn, and

TR is the radial temperature. Errorbands in Fig. 6.19 and Fig. 6.20 include the uncertainty

of s-wave and p-wave scattering parameters, 0.5ER uncertainty of lattice depth, as well as

20% uncertainty in radial temperature.

Apart from unitary evolution under ĤLS, inelastic on-site p-wave e-e collision can lead

to two-body loss of the atom number as observed in previous studies [59, 216]. We describe

the atom loss based on the following Lindblad master equation,

ℏ
d

dT
ρ̂ = −i[ĤLS, ρ̂] +

∑
n

Γ0,nLn(ρ̂), (6.23)

where ĤLS is the Hamiltonian given in Eq. (6.19). The Liouvillian for e-e loss is given by

Ln(ρ̂) =
∑

nxnymxmy

[
L̂nxnymxmy ρ̂L̂

†
nxnymxmy

− 1
2{L̂

†
nxnymxmy

L̂nxnymxmy , ρ̂}
]
, (6.24)

where L̂nxnymxmy = ˆ̃cnxnyn,e
ˆ̃cmxmyn,e. We use the averaged e-e loss rate over the radial modes

to maintain the large-spin description,

Γ0,n = η0Ṽ
n,n
ee /4, (6.25)

where we replace the elastic p-wave scattering volume b3ee in V n,m
ee by inelastic p-wave scatter-

ing volume β3
ee to get Ṽ n,m

ee . For simplicity, we assume Un,m
αβ , V n,m

αβ and Ṽ n,m
ee approximately

unchanged under atom loss. Due to the XY8 pulse sequence, one can assume the atom loss
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for ground and excited states is symmetric, and obtain the following equation for atom loss,

d

dT
Nn = −Γ0,n

2 N2
n, (6.26)

which gives an exact solution

Nn(T ) =
Nn,init

1 + Γ0,nNn,initT/2
. (6.27)

We fit the total atom number measured in the experiment integrating through all lattice

layers with the fitting function A/(1 + BT ) using fitting parameters A,B to extract the

atom loss rate, and then compare with the analytic solution above.

We perform numerical simulation based on truncated Wigner approximation (TWA)

[239]. The key idea is to solve the mean-field equations of Eq. (6.23) with random sampling

of initial conditions. For the initial state (“spiral” frame) with all the spins pointing towards

+X direction, we set SX
n (0) = Nn,init/2, Nn(0) = Nn,init, and sample SY

n (0) and SZ
n (0) using

a Gaussian distribution N (µ = 0, σ2 = Nn,init/2).

In the case of V⊥ = 0, we consider the radial modes as harmonic oscillator modes with

trapping frequency ωR =
√
4Vz/mw2

L, where wL is the Gaussian beam waist of the vertical

lattice. We determine the radial temperature TR by comparing the density distribution

projected to the x-y plane between theory and experiment at 17.4ER, which leads to TR =

250nK at this lattice depth. Since the lattice depth is ramping up adiabatically, the ratio

kBTR/ℏωR should be roughly a constant, we use TR(nK) = 60×
√
Vz/ER to generate atom

distribution in radial modes.

In the case of V⊥ > 0, the radial modes are generated by the potential of a 2D

lattice with lattice depth V⊥ plus harmonic oscillator with trapping frequency ωR =√
4(Vz + V⊥)/mw2

L, where we assume the Gaussian beam waist is nearly the same for

all lattice beams, i.e. wL ≈ w. The compression step in the loading sequence leads to

a lower temperature compared to the case of V⊥ = 0, and we use radial temperature

TR(V⊥ > 0) = 0.42× TR(V⊥ = 0) to generate atom distribution in radial modes.
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The validity of the 1D spin model is based on the frozen-mode approximation [60, 111],

which is to assume all the atoms are fixed in their single-particle eigenstates due to negligible

effects of interaction on the single-particle energy spectrum, ensured by Nn,initJ0,n ≪ ℏωR

and Nn,initJ0,n ≪ mga. We restrict our calculation within V⊥ ≤ 6ER to avoid the breakdown

of this approximation.

6.2.5 Conclusion

In conclusion, we have used our degenerate Fermi gas 3D optical lattice clock with

anisotropic and tunable tunneling rates in the presence of spin-orbit coupling to directly

probe different regimes of interaction effects described by the Fermi-Hubbard Hamiltonian.

Superexchange interactions are identified as an important systematic effect that degrade

the precision of optical lattice clocks operating with high filling at timescales h/J̄SE. We

demonstrate that we can both microscopically model and control these interactions in the

3D optical lattice.

For clock metrology, we can either reduce the magnitude or control the form of the

superexchange interactions to enhance clock performance. For example, we can increase the

lattice constant a sufficiently large to reduce the tunneling rate to a negligible value [72].

Alternatively, a variable lattice spacing can be used to make a commensurate with λclk to

achieve ϕ mod 2π = 0. Without SOC (ϕ mod 2π = 0) the isotropic Heisenberg Hamiltonian∑
j
JSE(j)ŝj ·ŝj+1 is recovered, and any coherent spin state becomes an eigenstate accumulating

only a trivial global phase. On the other hand, collective superexchange interactions can

be used to produce spin entanglement for quantum enhanced sensing [91]. At intermediate

in-plane tunnelling rates, these isotropic, Heisenberg interactions couple the single particles

within each plane to collective spins [89]. Thus, by reducing single-particle inhomogeneities

via potential shaping or layer selection [240], the collective spins across all planes can be

squeezed by SOC-induced XXZ interactions investigated here.



Chapter 7

Outlook

Over the course of the past three Chapters, we discussed different studies on our ex-

perimental platform all geared towards both furthering our understanding and advancing

the performance of optical lattice clocks. This included improvements to the long-term

stability of our optical local oscillator for timekeeping purposes, imaging studies to enable

clock operation at high density, and explorations of our clock coherence revealing oscilla-

tions in the Ramsey fringe contrast arising from superexchange interactions. These studies

fulfill the promise of Chapter 1, aiming to understand the fundamental interactions between

constituent particles in our optical lattice clock. These studies revealed that in both our

superexchange and dipole-dipole studies, the experimental observables of interest were very

well captured by the spin models presented in Chapter 1. Harnessing these anisotropic spin

models opens the door to both novel many-body physics studies and employing spin entan-

glement to achieve clock stability below the standard quantum limit. In this chapter, we

outline some preliminary forays in these research directions.

7.1 Superexchange enhanced metrology

Building upon the results in Chapter 6, it is enticing to next outline a plan to use these

superexchange interactions for enhanced metrology. The proposal here is inspired by theory

work from Ana Maria Rey’s group [89]. To both model and realize spin squeezing, it is often

advantageous to have highly collective states where the system can be well-approximated as
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Clock

Figure 7.1: Contact interaction-based spin squeezing. Using Vz ≫ V⊥, so JSE,z ≪ JSE,⊥,
atoms on each layer of the 3D lattice interact strongly via intralayer Heisenberg interactions
JSE,⊥ and behave as collective spins. These collective spins, on different layers, interact via
JSE,z under the same interaction Hamiltonian in Chapter 6. Figure adapted from [89].

a state oriented on the generalized Bloch sphere. The metrological improvement of this state

over a coherent spin state1 is characterized by the Wineland parameter ξ2 [241]:

ξ2 = N
⟨∆S⊥⟩
|S|2

. (7.1)

ξ2 depends on the spin variance perpendicular to the orientation of the Bloch vector ⟨∆S⊥⟩

and the length of Bloch vector |S| proportional to the Ramsey contrast. The experimental

challenge is generally to engineer interactions to induce squeezing and reduce ⟨∆S⊥⟩ while

minimizing loss of contrast from these operations.

With this philosophy in mind, we present the squeezing scheme depicted in Fig. 7.1.

From the results in Chapter 6, we realize an XXZ-style, anisotropic Hamiltonian along the

clock direction. As pointed out in [89], this Hamiltonian can be modelled as a one-axis

twisting Hamiltonian and is expected to admit spin-squeezing. To address contrast loss,

we plan to engineer strong, intralayer Heisenberg interactions so JSE,z ≪ JSE,⊥. This can

1 Using the notation from Chapter 6, |ψCSS⟩ = e
−iπ

2

∑
j
ŝYj
⊗

j |↓⟩j
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be accomplished by tuning Vz ≫ V⊥. This interactions lock the constituent spins in each

plane into large collective spins, which then interact between different layers via the XXZ

Hamiltonian presented in Chapter 6.

A promising parameter regime for implementing this strategy is around region (1) iden-

tified in Fig. 6.11. Although in the 1D limit with V⊥ = 0 we obtain the maximal value of the

coherence time T2, the amount of usable entanglement in this regime is limited [59] due to

the presence of strong p-wave loss. However, we observe that the transition from pancakes

to “waffles” by introducing a weak transverse corrugation of V⊥ ≳ 5ER strongly reduces

the atom loss by increasingly localizing the atoms in the transverse directions. Due to the

lack of clock-induced SOC within each waffle, the in-plane superexchange leads to isotropic

Heisenberg interactions, which feature energy gaps between sectors with different total spin

length. These collective spins are expected to be robust to holes and loss, as numerically

modelled in [89]. Inhomogeneous superexchange coupling2 in our optical lattice will likely

need to be reduced to minimize the contrast loss detailed in Chapter 6. The predominant

contribution to this inhomogeneous coupling is variations of the site-to-site energy ∆E aris-

ing from the lattice Gaussian confinement. To address this, box potentials [240] or even

significantly increasing the waist of our lattice beams should strongly suppress these energy

shifts.

Reducing the lattice external confinement will also pay dividends for potential future

studies of SU(N) physics. The repulsive SU(N) Fermi-Hubbard model is expected to exhibit

interesting phases at integer filling and low temperature: The SU(2) model has already been

studied extensively and exhibits antiferromagnetic ordering [77, 78]. The SU(3) model is

expected to show striped ordering [242]. More exotic phases are expected for N > 3, where

intuiting a simple picture of ordering is more challenging compared to lower dimensions.

Consider the density distribution depicted in Fig. 7.2, where we now load all 10 nuclear

spins denoted σ into our 3D lattice. Given we are no longer nuclear spin-polarized, doubly
2 JSE(j) ̸= JSE(j + 1)
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SU(2) SU(3)

-9/2 9/2-7/2 -5/2

N

mF

Figure 7.2: Left: Lattice filling fraction versus optical lattice beam waists as dictated by the
SU(10) repulsive Fermi-Hubbard Hamiltonian. This calculation is in the ‘atomic limit’, where
U/t ≈ 10 and thus tunneling is neglected in the Hamiltonian in Eq. 7.2. This calculation
is using the current experimental beam waists w0, which are approximately 60 µm in each
direction. In this calculation, T/TF = 0.20, and the total atom number N = 104 atoms.
Right: At unit filling, the repulsive SU(N) model is expected to exhibit novel ordering.
The SU(2) model exhibits antiferromagnetic correlations and the SU(3) model is expected
to show striped ordering. Figure reproduced from [242].

occupied sites are not suppressed by the lattice bandgap as prescribed by the band insulating

regime. The filling fraction is still determined by the partition function Z, modified from

Eq. 5.9 in Chapter 5 to now include a repulsive interaction strength U :

Z(µ, T ) =
N∑

σ=0

(
N

σ

)
e
−β
(

U
2 σ(σ−1)−µσ

)
. (7.2)

Given strontium does not possess a magnetic Feshbach resonance allowing the capabil-

ity to independently tune the s-wave scattering length, simultaneously achieving the Mott

insulating condition U/t ≈ 10 and not having an excessively large chemical potential µ is

challenging. The parameters U , t are dictated by the optical lattice depth and µ is largely

determined by the lattice beam waist. Thus one needs to operate at the lattice depth where

U/t ≈ 10, which corresponds to ≈ 9ER, then select a sufficiently large beam waist that µ

is sufficiently small to minimize doubly occupied sites. As we see in Fig. 7.2, with lattice
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beam waists ×2 larger than our current setup we expect to realize this condition. Cur-

rently experiments are ongoing to probe these SU(N) phases [243], including schemes to

employ spin-resolved imaging on the 3P1 transition [244] similar to the methods described

in Chapter 2.

7.2 Enhanced dipole-dipole interactions

Up to this point in this thesis, all interactions between atoms in the lattice have been

mediated by collisions. This strongly constraints the length scale of interactions, given the

wavefunctions of particles need to strongly overlap for any appreciable interaction strength.

In our superexchange interaction study, we thus only considered on-site, s-wave collisions and

neglected next-nearest neighbor contributions which are many orders of magnitude smaller.

In this final thesis section, we present a new paradigm in our three-dimensional optical lattice:

electric dipole-dipole interactions. These interactions exhibit qualitatively different behavior.

Although their interaction strength is ≈ 100× smaller, they possess long-range character

including terms in the dipolar Hamiltonian that scale as 1/r and depend strongly on the

lattice geometry. Just like the superexchange interactions, an anisotropic spin model emerges

from these dipolar interactions that opens the door for spin-squeezing and novel many-body

physics studies. Finally we discuss strategies to magnify these dipolar interactions, with the

aim of making their strength is commensurate with the Hz-scale superexchange coupling.

Trapped atoms in optical lattices provide a powerful interface for probing atom-light in-

teractions [245]. These studies build upon Dicke’s seminal work revealing that at sufficiently

high atomic densities, where the mean atom-atom distance d is considerably smaller than the

probe wavelength λ, atoms behave as a ‘super-atom’ and exhibit superradiance [246]. Using

lattices to trap many quantum emitters in periodic arrays, while having the capability to

tune this ratio d/λ, is expected to open the door to a host of cooperative phenomena [247].

One exciting direction is the creation of ‘subradiant’ states, where destructive interference

between oscillating atomic dipoles can extend the collective lifetime of the system beyond the
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single-particle spontaneous emission rate Γ [67]. Akin to Pauli blocking, one could envision

that as clock coherence times approach the natural 3P0 lifetime these subradiant states could

see use [248]. Additionally, these atom-light studies can aid our microscopic understanding of

optics phenomena like the apparent maximum index of refraction observed in materials [249].

The long-lived clock state in 87Sr offers the capability to probe the many-excitation regime

where the population ⟨sZi ⟩ can be coherently tuned spectroscopically to any projection on

the Bloch sphere. We note this is in the stark contrast to Alkali species, where the absence

of long-lived electronic states makes coherently preparing states with any appreciable popu-

lation in the excited state (⟨sZi ⟩ ≫ −N/2) infeasible. In principle all dynamics ranging from

subradiance to cooperative frequency shifts can be exactly solved via the quantum master

equation, where the temporal evolution of the populations and coherences is encoded in the

density matrix ρ̂:

dρ̂

dt
= − i

ℏ
[Ĥ0 + ĤDD, ρ̂] + L[ρ̂] (7.3)

= 1
i

∑
i

[
ω0

2 s
Z
i , ρ̂

]
− iΓ

2
∑
i ̸=j

g(k|rij|)
[
s+i s

−
j , ρ̂

]
− Γ

2
∑
i,j

f(k|rij|)
[{
s+i s

−
j , ρ̂

}
− 2s−j ρ̂s+i

]
.

(7.4)

f(v) = 3
2

[
sin2 θ

sinv
v

+ (3 cos2 θ − 1)
(sinv

v3 − cosv
v2

)]
, (7.5)

g(v) = −3
2

[
sin2 θ

cosv
v

+ (3 cos2 θ − 1)
(cosv

v3 + sinv
v2

)]
. (7.6)

The elastic and dissipative portions of the dipole-dipole interactions are captured by the

formulae g(v) and f(v) respectively. One sees that the Hermitian portion of the Hamiltonian

g(v)[s+i s−j , ρ̂] corresponds to the exchange of photons between atoms and the non-Hermitian

part of the Hamiltonian, denoted L[ρ̂], corresponds to dissipative effects (i.e. independent

and cooperative emission). Here, rij = ri − rj is the vector that connects sites i and j in

lattice and θ denotes the angle between the quantization axis and rij. From a metrology
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perspective, deleterious frequency shifts that would compromise our clock accuracy would

manifest in the coherences ⟨s+i ⟩, requiring a solution of Eq. 7.3. The equations of motion

for any observable can be calculated by the relation dA
dt

= Tr[dρ̂
dt
A]. Following the treatment

from Ref. [23], we find:

d⟨s+i ⟩
dt

= −i∆⟨s+i ⟩ −
Γ
2 ⟨s

+
i ⟩+

Γ
2
[
f(k|rij|)− ig(k|rij|)

]
⟨sZi s+j ⟩. (7.7)

Here, ∆ is the detuning of the clock laser from the atomic resonance. The first two terms

in Eq. 7.7 are single-particle terms apparent in all Ramsey spectroscopy. We see that the

dipole-dipole frequency shift is proportional to the term ⟨sZi s+j ⟩ in the density matrix. Solving
d⟨sZ

i
s+
j
⟩

dt
is quite involved, as the Hilbert space for the full density matrix scales as 2N making

exact calculations for the 104 particles in our optical lattice intractable. However determining
d⟨sZ

i
s+
j
⟩

dt
can be dramatically simplified by making a perturbative expansion for small ΓT,

so the calculation is effectively reduced to summing pairwise interactions corresponding to

N(N −1) polynomial complexity3 [23]. The total frequency shift δ, determined by summing

the aggregate shift on each atom i from all other atoms j ̸= i is:

δ

Γ ≈ 1
N

∑
i

∑
i ̸=j

Uij
1
2 cos 2ΩT , (7.8)

Uij = g(k|rij|) cos kxij − f(k|rij|) sin kxij. (7.9)

We emphasize that Eq. 7.8 is only valid in the regime that ΓT ≪ 1. Thus we assume

that ⟨sZi ⟩ is unchanged during our Ramsey dark time. The next higher order correction to

Eq. 7.8 is ∝ UijΓT and can be understood as ⟨sZi ⟩ being modified due to the decay rate Γ

from the excited state. For Eq. 7.9 the clock is assumed to be oriented along the x direction,

so xij is the projection of rij in the x direction and kxij corresponds to the spin-orbit-coupled

phase from Chapter 6.
3 For each one of the N total atoms, we need to sum the interaction contributions from the N − 1 other

atoms.
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There are a few qualitative remarks to make about Eq. 7.8. First, the interaction

strength Uij and thus the ensuing frequency shift δ depends on the array geometry. The

terms in g(v) and f(v) can strongly interfere either constructively or destructively. Secondly,

the net shift δ directly depends on the initial pulse area ΩT and thus excitation angle. For

standard Ramsey spectroscopy a π/2 pulse area with ΩT = π/4 is used, corresponding to

δ = 0. The largest frequency shifts4 thus occur at initial pulse areas of π/4 and 3π/4.

Finally, within prefactors Uij resembles the interaction energy between two classical dipoles

oscillating out of phase with the exact same trigonometric terms g(v) and f(v) [250].

To gain some intuition about the spatial dependence of Uij and δ, we plot these func-

tions in Fig. 7.3. For this calculation, we vary the orientation of our clock laser k-vector

with respect to the lattice spacing along x and y, and we use a 200 × 200 square of atoms.

In the ‘forward’ direction we observe constructive interference, consistent with the intuition

that an emitted photon will propagate co-linearly, in-phase with the clock k-vector. We

additionally plot the frequency shift δ, determined by summing over all other atoms j ̸= i.

When the clock laser is oriented near a ‘Bragg’ condition satisfying ψ = arccosπ/ka ≈ 31◦,

constructive interference occurs for far-field 1/r terms corresponding to the largest frequency

shifts.

We quantitatively studied these dipole-dipole frequency shifts on our 3D lattice clock

as reported in Refs. [24, 221]. The findings of this study are briefly summarized in Fig. 7.4,

and we point the reader to these references for a more detailed description. Experimental

parameters that strongly modify the clock frequency δ are the initial excitation angle, the

choice of electronic transition, and the clock laser orientation. First, we varied the initial

pulse area ΩT for our Ramsey interferometer and observed that our clock frequency shift δ

is proportional to cos 2ΩT as expected from Eq. 7.8. Characterized by the Clebsch-Gordan

(CG) coefficients, the coupling strength varies strongly between different clock states as

plotted in Fig. 2.3. We explored this dependence by driving the π and σ+ transitions, whose
4 This is also consistent with the value |⟨sZi s

+
j ⟩| being maximal at π/4 and 3π/4.
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CG coefficients differ by nearly an order of magnitude. Finally, we studied the dependence

of frequency shifts on the orientation of our clock laser with respect to the optical lattice.

As expected, we observed that clock shifts were dramatically increased at the Bragg angle

compared to normal incidence.

These first studies were in the perturbative regime, where the coherent interrogation

times T were much shorter than the interaction timescale 1/Γ. Using dressing lasers to

mix states with larger dipole moments enables entering the regime Γ̃T ≈ 1. The modelling

of these dynamics in this regime becomes much richer, as effects like excited state decay

changing the ⟨sZ⟩ projection can no longer be ignored.

Our dressing scheme is conceptually depicted in Fig. 7.5. As first proposed in [251], a

dressing laser at 1354 nm addressing the 3P0 → 1P1 state is turned on to strongly enhance

the dynamics of our 1S0 → 3P0 clock transition. To gain some insight of the single-particle

dynamics, we write down the Schrödinger equation following the derivation in [251].5 The

states for our three-level system are defined above in Fig. 7.5.

iċ2(t) =
Ωd

2 c3(t),

iċ3(t) =
Ωd

2 c2(t)− i
Γ3

2 c3(t)−∆c3(t).
(7.10)

Given Γ ≫ Ωd, the excited state |3⟩ can be adiabatically eliminated ċ3(t) = 0. Thus, c3(t) =
Ωd

2∆+iΓ3
c2(t). We form a dressed state |2̃⟩ = |2⟩ + α |3⟩, where the mixing angle α = Ωd

2∆+iΓ3
.

Plugging c3(t) into the top equation in Eq. 7.10, we arrive at iċ2(t) = Ω2
d

2
2∆−iΓ3
4∆2+Γ2

3
c2(t) =

(∆̃ − iΓ̃/2)c2(t). We define an effective detuning ∆̃ and an effective decay rate Γ̃ from our

dressed state |2̃⟩.

∆̃ = ∆Ω2
d

4∆2 + Γ2
3
,

Γ̃ = Γ3Ω2
d

4∆2 + Γ2
3
.

(7.11)

5 Postdoc Ben Lewis wrote helpful notes that I reference for this derivation.
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x

y

Figure 7.3: Calculated dipole-dipole interactions for a 200×200 square of atoms. The optical
lattice is oriented along the x and y directions. k⃗ indicates the k-vector of the clock laser,
while the quantization axis B⃗ is fixed for all calculations. The Clebsch-Gordan coefficient
will depend on the clock mF states chosen and is set to unity for this calculation. Left: We
plot the function Uij from Eq. 7.9. Right: We plot the frequency shift δ stemming from
Eq. 7.8.
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Figure 7.4: Probing dipole-dipole frequency shifts in our optical clock. Top: We vary the
initial excitation angle in our Ramsey interferometer, modifying δ from Eq. 7.9. We also drive
the π and σ+ transitions with markedly different Clebsch-Gordan coefficients. Bottom: We
vary the orientation of our clock laser with respect to the optical lattice. As expected, we
observe the largest frequency shift near the Bragg resonance as displayed in Fig. 7.8. Figure
adapted from [24].
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𝛙

Figure 7.5: Upper left: Our 1S0 → 3P0 clock transition, used for the dipolar studies in
Fig. 7.4. Upper right: Laser orientations for lattice, clock laser, and dressing beams. The
clock laser is oriented near a ‘Bragg’ condition satisfying ψ = arccosπ/ka ≈ 30.8◦. Lower:
Electronic states for our three-level dressing scheme. As calculated in Eq. 7.11, a dressed
state is formed with an effective decay rate Γ̃.

The effective decay rate Γ̃ is of particular relevance for the studies here. Using Eq. 7.11

with realistic beam parameters with our dressing laser, we expect a peak AC stark shift ∆̃ = 8

mHz at ∆ = Γ3/2 and a peak decay rate of Γ̃ = 0.5 Hz on resonance (∆ = 0). We note this

is 3P0 → 1P1 transition is an ‘M1’ transition, where the relevant dipole matrix element is

µ ·B and B is the magnetic component of the dressing laser.

In Fig. 7.6, we share Rabi and Ramsey spectroscopy probing these single-particle ef-

fects. To our surprise, our first AC stark measurements revealed an shift of 4.33(7) Hz,
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Figure 7.6: Left: Rabi spectroscopy on 1S0 → 3P0 clock transition with the dressing
laser on (off) plotted in purple (blue). A 4.33(7) Hz shift is measured with dressing laser on
resonance. Right: Ramsey spectroscopy (Tdark = 2 s) with the dressing laser highly detuned
and on resonance. When highly detuned, we see minimal contrast loss. On resonance, we
observe contrast loss and the emergence of spatial frequency shifts.

much larger than expected. This larger shift is actually due to off-resonant E1 effects. Sim-

ilar to Raman scattering of lattice photons at 813 nm as discussed in Ch. 6, lasers hundreds

of THz detuned from any resonance can still have non-negligible effects for Hz-level clock

spectroscopy. An additional feature is no increase of the clock Rabi frequency Ωc. A single

dressing beam driving 3P0 → 1P1 induces a dipole moment oscillating at hundreds of THz

that is effectively ‘integrated away’. As pointed out in the initial proposal [251], an EIT

scheme using two phase-coherent lasers simultaneously driving 3P0 → 1P1 and 1S0 → 1P1

should coherently induce an enhanced dipole moment for the 1S0 → 3P0 clock transition.

We additionally explored Ramsey spectroscopy (Tdark = 2 s) with the dressing laser. When

highly detuned from resonance, we see minimal contrast loss. On resonance, we observe

contrast loss and the emergence of intriguing spatial frequency shifts.

To try to gain some intuition about the spatial frequency shifts we observed in Fig. 7.6,

we employed a spectroscopy scheme similar to our first dipolar study in [24]. We tune three
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Figure 7.7: Probing enhanced dipole-dipole interactions via Ramsey spectroscopy. We
strongly enhance the dipolar coupling via applying a dressing laser at 1354 nm address-
ing the 3P0 → 1P1 state In this study we vary three experimental parameters: (1) We
perform spectroscopy with our dressing laser at 1354 nm on and off. (2) We change the
initial excitation angle angle between π/4, π/2, and 3π/4. (3) We vary the readout angle φ
of our final π/2 pulse at the output of our Ramsey interferometer.
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experimental parameters: (1) Turning our dressing laser at 1354 nm on and off, (2) Varying

the initial excitation angle, and (3) Changing the readout angle φ at the output of our

Ramsey interferometer. The intuition for each of these parameters is the following: (1)

governs whether or not we prepare a dressed state. (2) is motivated by the fact we expect

the strongest dipole-dipole interactions for a π/4 and 3π/4 excitation angle. Finally for (3),

it is insightful to vary the angle φ of the final Ramsey π/2 pulse as the selected readout

quadrature determines whether the atomic coherences and populations of the density matrix

ρ̂ are measured. Here, φ = ±90◦ corresponds to the ‘side of fringe’ and is thus directly

proportional to the atomic coherences.

The results of our study are plotted in Fig. 7.7. As aligned with out intution, we indeed

see the largest frequency shifts occur at π/4 and 3π/4, φ = ±90◦ and when the dressing

laser is turned on. This strongly suggests the observation of enhanced dipole-dipole shifts.

Work is ongoing to modify Eq. 7.8 to appropriately model the frequency shifts observed in

Fig. 7.7. A key piece missing to make this study fully conclusive is an understanding of the

spatial dependence of these observed shifts. Given that these dipole-dipole shifts dependent

strongly on the system geometry, changing the dressing laser orientation will be an important

addition to this study to confirm these results.

In conclusion, we report a set of novel studies on the three-dimensional optical lattice

clock at JILA and outline a number of interesting research directions building upon these

results to pursue next. Hopefully just like the author, a reader feels the same excitement for

the vista of physics opportunities lying ahead on the horizon.
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Appendix A

87Sr atomic data

This table summarizes the key atomic data for the fermionic strontium isotope 87Sr.

Although this information is widely accessible, compiling these values in a single location is

designed to be convenient for a curious experimentalist.
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Natural abundance 7.00(1)% [252]
Mass 86.9088775(12) amu [252]
Nuclear spin 9/2 [252]
1P1 Lifetime 5.263(4) ns [102]
3D1 Lifetime 2.18(1) µs [103]
3P1 Lifetime 21.28(3) µs [103]
3P0 Lifetime 118(3) s [217]
1P1 Isat 40.3 mW/cm2 [102]
3D1 Isat 0.32 µW/cm2 [103]
3P1 Isat 3.0 µW/cm2 [103]
3P0 Isat 0.53 pW/cm2 [217]
1P1 Doppler temperature 725 µK [102]
1P1 Recoil temperature 1.02 µK
3P1 Doppler temperature 180 nK [103]
3P1 Recoil temperature 460 nK
3P1 absolute frequency 434829121312334(38) Hz [253]
3P0 absolute frequency 429228004229872.99(8) Hz [254]
Scattering length agg 96.2(1) a0 [127]
Scattering length aeg− 69.1(9) a0 [71]
Scattering length aeg+ 160.0(2.4) a0 [71]
Melting point 777 C◦ [255]
Boiling point 1377 C◦ [255]
Vapor pressure at 25 C◦ 1.30× 10−7 Torr [255]
Vapor pressure at 480 C◦ 2.84 Torr [255]



Appendix B

List of experiments

Throughout the text of this thesis we refer to the various clock platforms and cavity

systems (e.g. Sr2, Si4, etc.). While I try to define this terminology when it first appears, I

believe a reference table is useful.
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Sr1

One-dimensional optical lattice clock focused towards clock
accuracy. The older generation of the experiment was used
for the optical timescale [63], dark-matter studies [19], and a
2×10−18 accuracy evaluation [155]. Around 2020 Sr1 was up-
graded to include an in-vacuum buildup cavity, enabling larger
lattice mode volume for far improved coherence times [21, 60].

Sr2
The three-dimensional optical lattice clock platform studied
in this thesis. Details of experiment construction are outlined
in [101].

Sr3

1D optical lattice clock with cavity QED setup built around
2021. Currently exploring using spin-squeezing to achieve
clock stability below the standard quantum limit [64]. De-
tails of experiment construction are outlined in [171].

MJM

40 cm ultra-low-expansion (ULE) cavity endearingly named
after Michael J. Martin, the graduate student who commis-
sioned the system. This cavity was the workhorse clock laser
system from 2012 until Si3 was installed in 2017. Details of
this cavity setup are provided in [111].

Si3

Cryogenic 21 cm silicon cavity operating at 124 K with amor-
phous SiO2/Ta2O5 dielectric coatings [39]. Installed in 2017,
and to this day has the record cavity stability of 4 × 10−17.
Cavity system used for the optical timescale work [63].

Si4

Cryogenic 6 cm silicon cavity with amorphous SiO2/Ta2O5 di-
electric coatings. Required novel 4 K cryostat design detailed
in [152]. Work to achieve thermal-noise limited stability de-
tailed in [171].

Si6

Same Si4 cryogenic system and silicon cavity spacer design,
but using upgraded Al1−xGaxAs/GaAs crystalline coatings
with lower loss-angle [177]. Details of upgraded cavity sys-
tem and novel birefringent noise studies in [256, 172].

Si7

Newest silicon cavity with primary aim to achieve better sta-
bility than Si3 by using same 21 cm spacer length but operat-
ing at 17 K. Using amorphous SiO2/Ta2O5 dielectric coatings
to circumvent the birefringent noise discovered on Si6 [256].



Appendix C

Fermi gas overview

One of the central features of our clock experiment is preparing an evaporatively cooled

Fermi gas. The purpose if this appendix is to provide a primer of Fermi gas basics. We have

a fairly simple, non-interacting Hamiltonian:

H = 1
2m(p2x + p2y + p2z) +

1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (C.1)

The energy levels of this quantum harmonic oscillator are well-know: ϵ(nx, ny, nz) = ℏ(ωxnx+

ωyny + ωznz). This trapping potential gives rise to the following density-of-states [257]:

g3D(ϵ) =
ϵ2

2ℏ3ωxωyωz
(C.2)

The occupation of these energy levels is prescribed by the Fermi-Dirac distribution:

F (ϵ, ζ) = 1
1
ζ
eβϵ + 1

(C.3)

We express the Fermi-Dirac function in terms of the fugacity ζ = eβµ. Our next task is

to turn these microscopic formulae into a thermodynamic treatment where the system can

be characterized by state variables (e.g. entropy, pressure) [258]. We define the partition

function for ν states:

Z =
∑
v

e−Eνβ (C.4)

Similarly, we define the Grand partition function as:

Z =
∑
N

eµNβZ (C.5)
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Figure C.1: Entropy per particle in the ODT as a function of reduced temperature. ωx,ωy,
ωz, and N are assumed from the table below.
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One can interpret e(µN−Eν)β as the probability to find the system with particle number

N and energy Eν . For a fixed T and Eν , configurations with larger N can be put together

in more ways and are thus have higher entropy. Finally, we define a Grand potential:

Ω = −kBT ln(Z) (C.6)

These expressions are generalized thermodynamic functions with no underlying as-

sumptions about spin statistics. The next step is to specify these functions for a Fermi gas.

If we consider a system of Fermions with energies E1, E2...Ej with occupations n1, n2...nj.

For j states each with nj occupation:

Z =
∏
j

∑
nj

enj(µ−Ej)β (C.7)

Considering for Fermions nj = 0 or 1:

Z =
∏
j

1 + e(µ−Ej)β (C.8)

Plugging Z into Ω:

Ω = kBT
∑
j

ln(1 + e(µ−Ej)β) = kBT
∑
j

ln(1− F (Ej, ζ)) (C.9)

To express the Grand potential in a continuous functional form instead of a sum, we

write the occupation of a state j in terms the density of states g(ϵ). Then, this sum can be

written as an integral between 0 and ∞.

Ω = kBT
∫ ∞
0

g(ϵ)ln(1− F (ϵ, ζ))dϵ (C.10)

Using Eq. C.2 for g3D(ϵ) and integrating by parts, we can express Ω in terms of ϵ and

F (ϵ, ζ), to write Ω in terms of polylogarithms.

Ω = − 1
6ℏ3ωxωyωz

∫ ∞
0

ϵ3F (ϵ, ζ)dϵ (C.11)
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To solve this integral in Eq. C.11, we used the following relation:

∫ ∞
0

ϵnF (ϵ, ζ)dϵ = Γ(n+ 1)Lin+1(−ζ)
βn+1 (C.12)

Here Lin refers to a polylogarithmic function of order n and Γ = (n−1)! as all n are positive

integers.

Ω = − 1
6ℏ3ωxωyωz

∫ ∞
0

ϵ3F (ϵ, ζ)dϵ = (kbT )4
ℏ3ωxωyωz

Li4(−ζ) (C.13)

With Ω, most relevant thermodynamic quantities can be determined (ie. S = ∂Ω
∂T

),

enjoying some of the derivative properties of polylogarithms:

z
∂Lis(z)
∂z

= Lis−1(z) (C.14)

∂Lis(eµ)
∂µ

= Lis−1(eµ) (C.15)

The entropy S can then be expressed in terms of Ω:

S = −∂Ω
∂T

= (kBT )3
ℏ3ωxωyωz

(
µLi3(−ζ)− 4kbTLi4(−ζ)

)
(C.16)

In the low temperature limit (kBT << EF ) one may employ the Sommerfeld ex-

pansion [259] so S ≈ kBNπ
2T/TF . This low temperature expansion, along with the full

expression are plotted in Fig. C.1. Additionally, one can express the total atom number N .

N = −∂Ω
∂µ

= − (kBT )3
ℏ3ωxωyωz

(
Li3(−ζ)

)
(C.17)

Substituting the definition for TF , one can relate the fugacity ζ to the reduced temperature

T/TF .

Li3(−ζ) =
−1

6(T/TF )3
(C.18)

Eq. C.18 shows an important property: the reduced temperature T/TF can be related

to a single parameter, the fugacity ζ. ζ can be related to the shape of the trapped Fermi

gas after ballistic expansion from time-of-flight. Time-of-flight absorption imaging provides
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a reliable probe to determine the atom number and reduced temperature, while parametric

heating measurements calibrate the trapping frequencies. Rough experimental parameters

on Sr2 are shared below.

Typical experimental parameters
ωr 100 Hz
ωz 200 Hz
N 104
T 24 nK
TF 240 nK
ζ 15, 000
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