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Engineering spin squeezing in a 3D optical lattice with interacting spin-orbit-coupled fermions
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One of the most important tasks in modern quantum science is to coherently control and entangle many-body
systems, and to subsequently use these systems to realize powerful quantum technologies such as quantum-
enhanced sensors. However, many-body entangled states are difficult to prepare and preserve since internal
dynamics and external noise rapidly degrade any useful entanglement. Here, we introduce a protocol that
counterintuitively exploits inhomogeneities, a typical source of dephasing in a many-body system, in combi-
nation with interactions to generate metrologically useful and robust many-body entangled states. Motivated by
current limitations in state-of-the-art three-dimensional (3D) optical lattice clocks (OLCs) operating at quantum
degeneracy, we use local interactions in a Hubbard model with spin-orbit coupling to achieve a spin-locking
effect. In addition to prolonging interparticle spin coherence, spin locking transforms the dephasing effect of
spin-orbit coupling into a collective spin-squeezing process that can be further enhanced by applying a modulated
drive. Our protocol is fully compatible with state-of-the-art 3D OLC interrogation schemes and may be used
to improve their sensitivity, which is currently limited by the intrinsic quantum noise of independent atoms.
We demonstrate that even with realistic experimental imperfections, our protocol may generate ∼10−14 dB
of spin squeezing in ∼1 second with ∼102−104 atoms. This capability allows OLCs to enter a new era of
quantum-enhanced sensing using correlated quantum states of driven nonequilibrium systems.
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I. INTRODUCTION

A major frontier of contemporary physics is the under-
standing of nonequilibrium behaviors of many-body quantum
systems and the application of these behaviors toward the
development of novel quantum technologies with untapped
capabilities [1]. To this end, ultracold atomic, molecular, and
optical systems are ideal platforms for studying unexplored
regimes of many-body physics due to their clean preparation
and readout, high controllability, and long coherence times
[2,3]. The exquisite capabilities of these systems have pushed
the frontiers of metrology, quantum simulation, and quantum
information science.

Optical lattice clocks in particular have seen some of
the most impressive developments in recent years, reaching
record levels of precision (∼3 × 10−19) [4,5] and accuracy
(∼1 × 10−18) [6,7]. These advancements required important
breakthroughs, including the capability to cool and trap
fermionic alkaline-earth atoms in spin-insensitive potentials
[8–10], the development of ultracoherent lasers [11–13] to
fully exploit an ultranarrow clock transition [14], the detailed
characterization of interatomic interactions [15–17], and,
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more recently, the preparation of a quantum degenerate gas in
a three-dimensional (3D) optical lattice [4,5,18]. Nonetheless,
all improvements in sensing capabilities to date have been
based on single-particle control of internal atomic degrees
of freedom. Such strategies will eventually have diminishing
returns due to practical difficulties in (i) suppressing deco-
herence from external (motional) degrees of freedom and
(ii) interrogating more particles without additional systematic
errors from interactions [5,14,19].

Pushing beyond the current independent-particle paradigm
requires leveraging many-body quantum correlations. Entan-
gled states such as spin-squeezed states [20–22] can enhance
measurement sensitivity, i.e., the uncertainty �θ in the esti-
mation of a parameter θ , below the standard quantum limit
�θ ∼ 1/

√
N for N uncorrelated particles [23,24]. The major

challenge for progress in this direction is that generating en-
tanglement requires interactions, which are generally undesir-
able because they degrade atomic coherence, thereby limiting
clock performance [14,19,25–28]. In fact, the most precise
and accurate optical lattice clocks (OLCs) were designed to
operate with fermionic atoms in identical nuclear and elec-
tronic states to suppress collisional decoherence [4,25,29], as
identical fermions cannot interact via the otherwise dominant
(s-wave) collisions at ultracold temperatures. However, an
initially spin-polarized Fermi gas still exhibits interactions at
later times due to spin-orbit coupling (SOC) that is induced
by the laser that drives the clock transition (i.e., the “clock
laser”) [30–33]. Specifically, the momentum kick imparted
by this laser imprints a position-dependent phase that induces
inhomogeneous spin precession and generates spin dephas-
ing, thereby making atoms distinguishable and vulnerable to
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collisions. While a deep lattice can suppress SOC, it also
intensifies the light scattering which currently limits the co-
herence time of the clock [18,34,35].

In this paper, we describe a scheme that can lead to metro-
logical advances in state-of-the-art OLCs through direct use
of quantum entanglement by harnessing the interplay between
nominally undesirable collisions and SOC. This scheme is
made possible in the weak SOC regime by the formation of
an interaction-energy gap that suppresses the SOC-induced
population transfer from the exchange-symmetric Dicke
manifold (spanned by spin-polarized and thus noninteracting
states) to the remainder of Hilbert space. Interactions thereby
prolong interparticle spin coherence through a spin-locking
effect, which additionally transforms the dephasing effect of
SOC into a collective spin squeezing process. To generate
spin squeezing, our protocol only requires the capability to fix
(i) the orientation of the clock laser and (ii) the optical lattice
depth. These controls are straightforward to incorporate into
current 3D clock interrogation sequences without sacrificing
atom numbers or coherence times. Additionally, we show
that by applying a modulated drive from the clock laser, one
can further prepare states that saturate the Heisenberg limit
�θ ∼ 1/N for phase sensitivity [20,22,24]. This capability
mirrors efforts in other settings, such as nitrogen-vacancy
centers in diamond [36,37] and trapped ions [38], to enhance
quantum metrology through the use of driven nonequilibrium
phenomena.

Despite an abundance of proof-of-principle experiments
with entangled states [24,39], so far only the remarkable
example of LIGO [40,41] has demonstrated a quantum ad-
vantage in a state-of-the-art quantum sensing or measurement
system. The new generation of 3D optical lattice systems have
fully quantized motional degrees of freedom [4], allowing
for precise control of collisional interactions. We demonstrate
how these interactions can naturally give rise to metrologi-
cally useful correlated many-body fermionic states, opening
a path to not only generate entanglement, but also harness it
to achieve a quantum advantage in a world-class sensor. Such
an advance will ultimately deliver gains to real-world applica-
tions, including timekeeping, navigation, telecommunication,
and our understanding of the fundamental laws of nature [42].

II. SPIN SQUEEZING WITH THE
FERMI-HUBBARD MODEL

We consider N fermionic atoms with two spin states
(labeled ↑ and ↓) trapped in a 3D optical lattice. In this discus-
sion, these spin states are associated with the two electronic
states of a nuclear-spin-polarized gas. At sufficiently low tem-
peratures, atoms occupy the lowest Bloch band of the lattice
and interact only through s-wave collisions. A schematic of
this system is provided in Fig. 1(a), where tight confinement
prevents motion along the vertical direction (z), effectively
forming a stack of independent 2D lattices. For simplicity and
without loss of generality, however, we first consider the case
when tunneling can only occur along one direction, x, and thus
model the system as living in one dimension.

An external laser with Rabi frequency � and wave
number kL along the tunneling axis resonantly couples
atoms’ internal states through the Hamiltonian Ĥlaser/h̄ =

∑
j �eikLx j ĉ†

j,↑ĉ j,↓ + H.c., where ĉ j,α is a fermionic
annihilation operator for an atom on site j with internal state
α ∈ {↑,↓} and x j is the position of site j. This laser imprints
a position-dependent phase that equates to a momentum kick
kL when an atom changes internal states by absorbing or
emitting a photon, thereby generating SOC [30,32]. After
absorbing the position dependence of the laser Hamiltonian
into fermionic operators through the gauge transformation
ĉ j,↑ → eikLx j ĉ j,↑, which makes Ĥlaser spatially homogeneous,
the atoms are well-described in the tight-binding limit by the
Fermi-Hubbard (FH) Hamiltonian [43],

Ĥ (φ)
FH /h̄ = −J

∑
j

(eiφ ĉ†
j,↑ĉ j+1,↑ + ĉ†

j,↓ĉ j+1,↓ + H.c.)

+ U
∑

j

n̂ j,↑n̂ j,↓, (1)

where J is the nearest-neighbor tunneling rate, the SOC angle
φ ≡ kLa determines the phase gained by spin-up atoms upon
tunneling from site j to site j + 1 (in the gauge-transformed
frame) with lattice spacing a = x j+1 − x j , U is the on-site
interaction energy of two atoms, and n̂ j,α ≡ ĉ†

j,α ĉ j,α is a
number operator.

The Fermi-Hubbard Hamiltonian can be rewritten in the
quasimomentum basis with annihiliation operators ĉq,α ≡
L−1/2 ∑

j e−iqx j ĉ j,α , where q is a quasimomentum and L is the
total number of lattice sites. In this basis, the single-particle
Hamiltonian exhibits shifted dispersion relations that signify
SOC [see Fig. 1(b)]:

Ĥ (φ)
FH,single/h̄ = −2J

∑
q

[cos(qa + φ)n̂q,↑ + cos(qa)n̂q,↓].

(2)

When U � J , interaction energies are too weak for collisions
to change the occupancies of single-particle quasimomentum
modes. Atoms are then pinned to these modes, which form
a lattice in quasimomentum space [see Fig. 1(c)] [33]. In
this strong-tunneling limit, the Fermi-Hubbard Hamiltonian
[Eq. (2)] can be mapped to a spin-1/2 system with a collective
ferromagnetic Heisenberg interaction and an inhomogeneous
axial field, given by [19,26,33]

Ĥspin/h̄ = −U

L
Ŝ · Ŝ −

∑
q

Bqŝz
q, (3)

where Ŝ = ∑
q ŝq is a collective spin operator, ŝq is a

spin-1/2 operator for mode q with components ŝr=x,y,z
q ≡

1
2

∑
α,β ĉ†

q,ασ r
αβ ĉq,β defined in terms of the Pauli matrices

σ r=x,y,z, the sums over q run over all occupied quasimo-
mentum modes, and Bq ≡ −4J sin(qa + φ/2) sin(φ/2) is the
SOC-induced axial field.

On its own, the collective Heisenberg term (∼Ŝ · Ŝ) in
Eq. (3) opens an energy gap f U , with f ≡ N/L the filling
fraction of spatial modes, between the collective Dicke states
|S = N/2, MS〉 and the remainder of Hilbert space [19,44–46]
with S < N/2. Here S and MS , respectively, label the eigenval-
ues of the collective spin operators Ŝ · Ŝ and Ŝz, with eigenval-
ues S(S + 1) for non-negative S ∈ {N/2, N/2 − 1, · · · } and
MS ∈ {−S,−S + 1, · · · , S}. The axial field Bq generally cou-
ples states within the Dicke manifold to states outside it. In
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z
q fU

(e)

(d)(c)

(b)(a)

| ↓, ↓, · · · ,

clock 
interr ogation 

pr otocol

FIG. 1. Schematic of the setup for spin squeezing. (a) We consider N fermionic atoms with two (pseudo)spin components, represented by
red and blue spheres, trapped in the ground band of an optical lattice (shown in 2D for the sake of presentation). Atoms tunnel to neighboring
sites at a rate J and experience on-site interactions with strength U . An external laser carrying a position-dependent phase eikL ·r couples the spin
states of the atoms. (b) After a gauge transformation, different spin states exhibit different dispersion relations with a relative phase φ = kLa,
where a is the lattice spacing. The external laser couples spin states with identical quasimomenta q in the gauge-transformed frame. (c) If
interactions are sufficiently weak, all motional degrees of freedom become frozen in momentum space, with atoms effectively pinned to fixed
quasimomentum modes q. The dynamics on the frozen q-space lattice can then be mapped to a spin model in which collisional interactions
correspond to a uniform, all-to-all ferromagnetic Heisenberg Hamiltonian with strength U/L, where L is the total number of lattice sites. (d) The
spin dependence of the dispersion relation is captured by a mode-dependent axial field Bq that generates inhomogeneous spin precession. This
axial field couples exchange-symmetric many-body Dicke states with total spin S = N/2 to spin-wave states with S = N/2 − 1. The all-to-all
interaction opens an energy gap f U (with f = N/L the filling fraction of spatial modes) between the Dicke states and the spin-wave states,
which forbids population transfer between them in the weak-field limit. (e) To generate spin squeezing via one-axis twisting, we initialize a
product state with all spins polarized in −ẑ (i.e., in |↓〉), and apply a fast external laser pulse to rotate all spins into +x̂. We then let atoms
freely evolve for a variable time t (with a spin-echo pulse), after which the amount of spin squeezing can be determined experimentally from
global spin measurements. The spin-squeezed state can be used for a follow-up clock interrogation protocol (see Appendix A).

the weak SOC limit (i.e., Bq 
 f U ), however, the interaction
energy gap suppresses population transfer between states
with different total spin S [see Fig. 1(d)]. In this regime,
the virtual occupation of states outside the Dicke manifold
can be accounted for perturbatively. The symmetries of SOC
as expressed in Eq. (3) dictate that this treatment should
yield powers of Ŝz when projected onto the collective Dicke

manifold at higher orders in perturbation theory. At second
order in perturbation theory (see Appendix B), we thus find
that SOC effectively yields a one-axis twisting (OAT) model
widely known to generate squeezing dynamics [20,22]:

Ĥeff/h̄ = −U

L
Ŝ · Ŝ − BŜz + χ Ŝ2

z , χ ≡ B̃2

(N − 1) f U
, (4)
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where B ≡ ∑
q Bq/N is the mean and B̃2 ≡ ∑

q (Bq − B)
2
/N

the variance of the axial field. The effect of the ∼Ŝ · Ŝ term is
to generate a relative phase between states with different total
spin S and thus has no effect on dynamics restricted to a fixed
S. Note also that the collective spin rotation from BŜz can be
eliminated by going into a rotating frame or by using a spin
echo.

The entire protocol for preparing a squeezed state via OAT,
sketched out in Fig. 1(e), reduces to a standard Ramsey pro-
tocol with a spin echo: After initially preparing a spin-down
(i.e., −ẑ) polarized sample of ultracold atoms populating the
lowest Bloch band of a lattice, a fast π/2 pulse is applied
with the clock laser to rotate all spin vectors into +x̂. The
atoms then freely evolve for a variable time t (possibly with
spin-echo π pulses), after which the amount of metrologically
useful spin squeezing, measured by the Ramsey squeezing
parameter

ξ 2 ≡ min
θ

〈var(Ŝ⊥
θ )〉 × N/|〈Ŝ〉|2, (5)

can be determined experimentally from global spin mea-
surements. Here 〈Ŝ〉 is the mean collective spin vector and
〈var(Ŝ⊥

θ )〉 is the variance of spin measurements along an axis
orthogonal to 〈Ŝ〉, parameterized by the angle θ ∈ [0, 2π ).

The above protocol concerns only the preparation of a spin-
squeezed state, which would then be used as an input state
for a follow-up clock interrogation protocol without SOC.
While increasing the lattice depth to turn off SOC during clock
interrogation is the simplest approach, this will limit the inter-
rogation time due to light scattering (see discussion below).
Alternatively, it is possible to keep the same lattice depth used
for the spin-squeezing generation by adding a specific pulse
sequence to suppress SOC. See details in Appendix A.

A. Model validity

The validity of the OAT model in Eq. (4) relies on two
key conditions concerning experimental parameter regimes.
First, the on-site interaction energy U should not be much
larger in magnitude than the tunneling rate J (clarified below);
otherwise, one cannot assume frozen motional degrees of
freedom (i.e., with atoms pinned to fixed quasimomentum
modes) and map the FH model to a spin model. Second, the
SOC-induced fields Bq ∼ J sin(φ/2) should be considerably
smaller in magnitude than the interaction energy gap f U ,
as otherwise one cannot perturbatively transform SOC into
OAT. These two conditions can be satisfied by appropriate
choices of U/J and the SOC angle φ, which are respectively
controlled by tuning the lattice depth and changing the angle
between the clock laser and the lattice axes [see Fig. 1(a)].

We demonstrate the importance of these conditions in
Fig. 2, where we show numerical results from exact simu-
lations of a 1D system with L = 12 sites. Therein, optimal
squeezing achievable under unitary dynamics is provided
in dB, i.e., −10 log10(ξ 2

opt), while the time at which this
squeezing occurs is provided in units of the nearest-neighbor
tunneling time 2π/J . At f = 1 atom per lattice site, i.e., half
filling of all atomic states in the lowest Bloch band, the spin
model [Eq. (3)] agrees almost exactly with the FH model
[Eq. (2)] up through (and exceeding) U/J = 8. The agreement

at half filling ( f = 1) is assisted by Pauli blocking of mode-
changing collisions. Below half filling ( f = 5/6), these two
(FH and spin) models show good agreement at U/J � 2,
while at U/J � 2 mode-changing collisions start to become
relevant and invalidate the frozen-mode assumption of the
spin model. Note that we chose filling f = 5/6 to demonstrate
that our protocol should work, albeit suboptimally, even in this
highly hole-doped case; in practice, optimized experiments
are capable of achieving fillings closer to the optimal f = 1
[47]. Interestingly, even with mode-changing collisions, the
FH model exhibits comparable amounts of squeezing to the
spin model and achieves this squeezing in less time. The spin
and OAT models agree in the regime of weak SOC with
B̃ ∼ J sin(φ/2) 
 f U , and exhibit different squeezing be-
haviors outside this regime as single-particle spin dephasing
can no longer be treated as a weak perturbation to the spin-
locking interactions.

In realistic implementations, the Gaussian profile of the
laser beams always introduces an additional effective har-
monic potential that modifies the translational invariance as-
sumed so far. We present a detailed discussion of the role
of the harmonic trap in Appendix C, where we demonstrate
that the addition of harmonic confinement barely modifies
the achievable spin squeezing with currently accessible trap-
ping frequencies. We find that the existence of single-particle
localized modes in the lattice with harmonic confinement
[48,49] helps to protect spin squeezing and shifts the optimal
parameter window to U/J � 2.

B. Two-axis twisting

The above scheme for OAT achieves optimal spin
squeezing that scales as ξ 2

opt ∼ N−2/3 with minimal
intervention, i.e., a standard Ramsey protocol. Further
improvements upon this scheme can be made by introducing
a time-dependent driving field that transforms the OAT
Hamiltonian into a two-axis twisting (TAT) one (see
Appendix D). While the OAT model initially generates
squeezing faster than the TAT model, the squeezing
generation rate of OAT (measured in dB per second) falls
off with time, while the squeezing generation rate for TAT
remains approximately constant until reaching a Heisenberg-
limited amount of spin squeezing with ξ 2

opt ∼ N−1 [20].
There are two general strategies for converting OAT into

TAT: by use of either a pulsed [50] or continuous [51] drive
protocol. For simplicity, we consider the latter in this paper,
although the pulsed protocol could provide additional advan-
tages, as explained at the end of Appendix A. Following the
prescription in Ref. [51], we use the clock laser to apply an
amplitude-modulated drive Ĥdrive(t )/h̄ = �0 cos(ωt )Ŝx. If the
modulation frequency ω satisfies ω  Nχ and J0(2�0/ω) =
±1/3, where χ is the OAT squeezing strength in Eq. (4)
and J0 is the zero-order Bessel function of the first kind,
then up to (i) an ∼Ŝ · Ŝ term that contributes only overall
phase factors and (ii) an ∼Ŝz term that can be eliminated
with a simple dynamical decoupling pulse sequence, the
effective Hamiltonian becomes Ĥ (+)

TAT/h̄ = (χ/3)(Ŝ2
z − Ŝ2

x ) or
Ĥ (−)

TAT/h̄ = (χ/3)(Ŝ2
y − Ŝ2

x ) (see Appendices D and E), which
squeezes an initial state polarized along the y or z axis,
respectively.
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FIG. 2. Benchmarking the spin and one-axis twisting models. Comparisons of maximum squeezing [top panels, (a.i) and (b.i)] and
optimal squeezing time [lower panels, (a.ii) and (b.ii)] between the Fermi-Hubbard (FH), spin, and one-axis twisting (OAT) models; obtained
numerically via the protocol depicted in Fig. 1(e) in a 1D lattice with L = 12 sites. Results are shown for half filling with N = 12, f ≡ N/L = 1
[left panels, (a.i.) and (a.ii)] and filling f = 5/6 [right panels, (b.i.) and (b.ii)] as a function of U/J and the SOC angle φ. In both cases, the
system is initialized in the corresponding ground state. Insets for both f = 1 and f = 5/6 show (in green) regions of the U -φ plane in which
both the optimal squeezing (in dB) and the corresponding squeezing time of all three models agree to within 20%. At half filling [(a.i) and
(a.ii)], mode-changing collisions are suppressed by Pauli blocking, resulting in almost exact agreement between the FH and spin models; both
of these models converge onto the OAT model in the gap-protected, weak SOC regime of large U/J , and small φ. The spin and OAT models
show similar behavior away from half filling [(b.i) and (b.ii)], but the presence of mode-changing collisions results in their disagreement with
the FH model as interactions begin to dominate at larger U/J . Even below half filling, however, the FH exhibits comparable amounts of
squeezing to the spin model across a broad range of U/J and φ, albeit at earlier times when U/J � 2.

III. EXPERIMENTAL IMPLEMENTATION AND
PRACTICAL CONSIDERATIONS

Thus far, we have largely considered the general prepa-
ration of spin-squeezed states with the FH model. Here, we
discuss the specific implementation of the above protocols in
the state-of-the-art 3D 87Sr OLC. If successful, such an imple-
mentation would break through the proof-of-principle stage
of spin squeezing efforts, and achieve a genuine metrological
enhancement of a world-class quantum sensor.

As required for our protocol, 3D 87Sr OLC has demon-
strated the capability to load a quantum degenerate gas into a
3D lattice at the “magic wavelength” (λlattice = 2a ≈ 813 nm)
for which both the ground (1S0,↓) and first excited (3P0,↑)
electronic states (i.e., the “clock states”) of the atoms expe-
rience the same optical potential [4]. Furthermore, the 3D
87Sr OLC currently operates at sufficiently low temperatures
to ensure vanishing population above the lowest Bloch band,

such that its dynamics are governed by the Fermi-Hubbard
Hamiltonian [Eq. (2)] [43].

An external clock laser with wavelength λL ≈ 698 nm
resonantly interrogates the 1S0 and 3P0 states of the atoms
and generates SOC [30]. While the relative wavelengths of
the lattice and clock lasers do not allow for weak SOC along
all three lattice axes, weak SOC along two axes can be
implemented by, for example, (i) fixing a large lattice depth
along the z axis, effectively freezing atomic motion along
z, and then (ii) making the clock laser nearly collinear with
the z axis, with only a small projection of its wave number
kL onto the x-y plane [see Fig. 1(a)]. The entire 3D OLC
then factorizes into an array of independent 2D systems with
N = f �2 atoms each, where � is the number of lattice sites
along each axis of the lattice. As in the 1D case, atoms
within the 2D system experience all-to-all interactions, as well
as SOC along two directions characterized by SOC angles
φx,y = kx,y

L a. Generally speaking, higher-dimensional systems
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FIG. 3. Optimal squeezing with one- and two-axis twisting in a 2D section of the 3D 87Sr optical lattice clock. (a) The maximum amount of
squeezing depends only on the atom number N = �2, where � is the number of lattice sites along each axis of the lattice. While the timescales
for squeezing generally depend on several experimental parameters, the time at which maximal squeezing occurs can be minimized at any
given lattice depth V0 by choosing SOC angles φ that saturate B̃/U ≈ 0.05, where B̃ is the variance of the SOC-induced axial field and U is
the two-atom on-site interaction energy. Panels (b) and (c) show these minimal squeezing times as a function of the depth V0 and linear size �

of the lattice. Lattice depths V0 are normalized to the atomic lattice recoil energy ER, and the upper axis on panels (b) and (c) marks values of
U/J at fixed lattice depths. In general, TAT achieves more squeezing than OAT for any system size, and achieves optimal squeezing faster for
N � 400 atoms, as denoted by a dotted line in panels (b) and (c).

(e.g., 2D vs 1D) are more desirable because they allow
packing more interacting atoms into a fixed system volume,
thereby increasing the maximally attainable amount of spin
squeezing.

Figure 3 shows, for both OAT and TAT protocols, the max-
imally attainable amount of spin squeezing and the shortest
time at which it occurs as a function of the lattice depth
V0 and linear lattice size � in a single half-filled 2D layer
(i.e., f = 1, N = �2) of the 3D OLC. Atoms are confined
along the direction transverse to the 2D layer by a lattice of
depth 60 ER, where ER is the atomic lattice recoil energy.
The maximally attainable amount of spin squeezing by each
protocol in Fig. 3 depends only on the atom number N , while
the shortest attainable time is determined by choosing the
largest SOC angles φx = φy ≡ φ which saturate B̃/U ≈ 0.05.
We impose this constraint on B̃/U to ensure validity of the
OAT Hamiltonian perturbatively derived in Appendix B (see
also Appendix F).

Currently, light scattering from the lattice beams induces
decoherence of the clock on a timescale of ∼10 seconds
[18,35], which is much shorter than the natural 3P0 lifetime
of ∼160 seconds (see Appendix G). This limitation imposes
significant constraints on achievable spin squeezing, as shown
in Fig. 4 where the maximal squeezing with spin decay in the
OAT case was determined using exact expressions for spin
correlators derived in Ref. [52], while in the TAT case these
correlators were determined by solving Heisenberg equations
of motion for collective spin operators [53] (see Appendix H).
Due to the fast growth of Heisenberg operators in systems
with all-to-all interactions, the latter method is not always
capable of simulating up to the optimal squeezing time, and
thus only provides a lower bound on the maximal squeezing
theoretically obtainable via TAT.

The results in Fig. 4 show that squeezing via OAT satu-
rates with system size around N ≈ 103 (� ≈ 30), while TAT
allows for continued squeezing gains through N = 104 (� =
100). Even with decoherence, our protocol may realistically
generate ∼10−14 dB of spin squeezing in ∼1 second with
∼102−104 atoms in a 2D section of the lattice, which is
compatible with the atom numbers and interrogation times
of state-of-the-art OLCs [4,5]. This amount of spin squeez-
ing exceeds those reported in the ground-state nuclear spin
sublevels of a state-of-the-art 171Yb OLC (∼6.5 dB) [54].
While the latter protocol might be used to transfer spin
squeezing to the electronic clock state, to date there has
been no demonstration of spin squeezing in an optical clock
transition.

In addition to light scattering, p-wave losses from inelas-
tic 3P0 collisions [17,19,55] can also degrade the maximum
achievable spin squeezing, which becomes more pronounced
for shallower lattices. More details on p-wave losses are
discussed in Appendix I, where we show that operating at
lattice depths V0 � 7ER may be necessary to suppress the
impact of inelastic collisions on spin squeezing, at the cost
of slightly increasing light scattering.

The sources of decoherence considered above are not
fundamental, and can be avoided by, for instance, using two
nuclear spin levels as spin-1/2 degrees of freedom that are
interrogated by far-detuned Raman transitions instead of a
direct optical transition [56]. The strength of SOC for Raman
transitions is tunable and, moreover, the lifetimes of ground
nuclear spin levels are longer than 100 seconds in the lattice
[18]. In this case, our protocol for preparing a squeezed state
would additionally end with a coherent state transfer from
nuclear to electronic degrees of freedom to retain metrological
utility for the atomic clock. If, for example, the −9/2 and
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FIG. 4. Optimal squeezing with decoherence via one- and two-axis twisting in a 2D section of the 3D 87Sr optical lattice clock (OLC). In
practice, decoherence due to light scattering limits the amount of squeezing that is attainable in the the 3D 87Sr OLC. Due to growing squeezing
times with increasing system size, the maximal squeezing obtainable via OAT saturates past � ≈ 30 sites along each axis of the lattice, with
N ≈ 103 atoms total. The more favorable size dependence of TAT timescales, however, allow for continued squeezing gains through � = 100
(N = 104). While the OAT results in (a) are exact, the TAT results in (b) reflect only a lower bound on the maximum squeezing obtainable,
albeit one that is likely close (within a few dB) to the actual value. Optimal squeezing times in the presence of decoherence are generally
smaller than the corresponding times shown in Fig. 3, as decoherence typically degrades squeezing before it reaches the decoherence-free
maximum. The decoherence considered in this paper also limits maximally achievable squeezing to ∼20 dB less than the decoherence-free
maxima shown in Fig. 3. Sample plots of squeezing over time for particular choices of lattice size (�) and depth (V0/ER) are provided in
Appendix J.

−7/2 nuclear spin states are used for the preparation of a
squeezed state, then the collective-spin entanglement of atoms
can be transferred to electronic states at the end of the spin
squeezing protocol with a σ− polarized π pulse. Such a
pulse can transfer |g,−7/2〉 to |e,−9/2〉 without affecting
|g,−9/2〉, where g and e, respectively, denote the ground and
excited (electronic) clock states.

IV. CONCLUSIONS

We have proposed a protocol to generate spin squeezing
in a fermionic 3D OLC by combining nominally undesirable
atomic collisions with SOC. We used quantum correlations in
a many-body fermionic system to push state-of-the-art quan-
tum sensors beyond the independent-particle regime, thereby
achieving a genuine quantum advantage. Such capability
could allow for major improvements in clock sensitivity and
bandwidth, enhancing not only traditional timekeeping ap-
plications such as measurement standards, navigation (GPS),
and telecommunications, but also geodesy and gravitational
wave detection, precision tests of fundamental physics, and
the search for new physics beyond the standard model [42].

ACKNOWLEDGMENTS

We acknowledge helpful discussions with M. Norcia, C.
Sanner, and M. Mamaev. This work is supported by the
Air Force Office of Scientific Research (AFOSR) Grant No.
FA9550-18-1-0319, the AFOSR Multidisciplinary University
Research Initiative (MURI) grant, the Defense Advanced Re-
search Projects Agency (DARPA) and Army Research Office
(ARO) Grant No. W911NF-16-1-0576, the National Science
Foundation (NSF) Grant No. PHY-1820885, JILA-NSF Grant

No. PFC-1734006, and the National Institute of Standards and
Technology (NIST).

APPENDIX A: CLOCK INTERROGATION
AFTER SQUEEZING

The protocols in our paper concern the preparation of
spin-squeezed states in an OLC. Here, we discuss the use of
these states in a follow-up clock interrogation protocol. For
simplicity, we restrict our discussion to the case of squeezing
in 1D, as in Sec. II of the main text, with the understanding
that a generalization of this discussion to higher dimensions is
straightforward.

A spin-squeezed state is generated by interactions and SOC
that are generally undesirable during the clock interrogation
protocol. In the parameter regimes considered in our paper,
interactions alone have no effect on clock interrogation: ab-
sent of coherence between states with different net spin S,
collective S · S interactions only generate unobservable global
phases within each fixed-S sector of Hilbert space. Therefore,
the remaining task to allow clock interrogation after spin
squeezing is to turn off SOC, which inhomogeneously detunes
atomic transition frequencies by an amount Bq that depends
on the quasimomentum q of an atom. The SOC-induced axial
fields Bq ∼ J sin(φ/2) depend on two tunable parameters: the
tunneling rate J and the SOC angle φ. The simplest way to
turn off SOC is thus to increase the lattice depth prior to clock
interrogation, taking J ∼ Bq → 0. Increasing the lattice depth
to turn off SOC is compatible with the current clock interro-
gation sequence, but is incompatible with ongoing efforts to
mitigate light scattering from the lattice beams (currently the
primary source of decoherence in the clock; see Appendix G)
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by using shallower lattices [35]. We thus devote the rest of
this section to discussing strategies for turning off SOC that
are compatible with using the same lattice depth for clock
interrogation as the spin-squeezing generation.

If we cannot take the tunneling rate J → 0, our remaining
control parameter for turning off SOC is the SOC angle
φ = kLa, where kL is the projection of the clock laser wave
number onto the lattice axis and a is the lattice spacing.
The squeezing protocol needs a clock laser with a small
but nonzero SOC angle φ 
 1, while the clock interrogation
protocol requires a clock laser with φ = 0. Simply using one
clock laser with φ �= 0 for the squeezing protocol and another
clock laser with φ = 0 for the clock interrogation protocol,
however, does not resolve this discrepancy, because a state
that is squeezed with respect to spin operators that are homo-
geneous (i.e., of the form Sx, Sy, Sz) in a particular gauge is
not necessarily squeezed with respect to spin operators that are
homogeneous in a different gauge. In this Appendix, we will
work explicitly in the “lab gauge” of the clock interrogation
protocol, in which the Fermi-Hubbard Hamiltonian is SOC-
free and the φ = 0 clock laser is homogeneous. To resolve
the fact that our squeezing protocol prepares a state that is
squeezed in the “wrong gauge,” we will construct a simple
pulse sequence that transforms the inhomogeneous spin oper-
ators accessible by the φ �= 0 laser into a homogeneous form
in our laboratory gauge.

Starting with a spin-down-polarized initial state

| − Z〉 ≡
⎛⎝∏

j

c†
j,↓

⎞⎠|vacuum〉, (A1)

our OAT protocol prepares the state∣∣ξ (θ )
OAT

〉 = e−iH (0)
FH t e−i(π/2)S(θ )

x | − Z〉, (A2)

where H (0)
FH is the Fermi-Hubbard Hamiltonian in Eq. (2)

without SOC; t is some free evolution time; and S(θ )
x is the

“rotated” spin-x-like generator induced by a clock laser with
SOC angle φ = θ , namely,

S(θ )
x = 1

2

∑
j

eiθ jc†
j,↑c j,↓ + H.c. (A3)

Defining on-site spin operators (in the laboratory gauge)

s( j)
z ≡ 1

2
(c†

j,↑c j,↑ − c†
j,↓c j,↓), (A4)

s( j)
x ≡ 1

2
(c†

j,↑c j,↓ + c†
j,↓c j,↑), (A5)

s( j)
y ≡ i

2
(c†

j,↓c j,↑ − c†
j,↑c j,↓), (A6)

we can identify the rotated collective spin operators

S(θ )
x ≡

∑
j

(
cos(θ j)s( j)

x + sin(θ j)s( j)
y

)
, (A7)

S(θ )
y ≡

∑
j

(
cos(θ j)s( j)

y − sin(θ j)s( j)
x

)
. (A8)

The state |ξ (θ )
OAT〉 is squeezed with respect to components of the

rotated collective spin vector Sθ ≡ (S(θ )
x , S(θ )

y , Sz). Therefore,

to take advantage of the squeezing in |ξ (θ )
OAT〉, the clock inter-

rogation protocol effectively needs to rotate this state by some
unitary exp (−iη · Sθ ), and then extract information about the
rotation vector η from collective spin observables of the form

〈Oθ 〉ηOAT ≡ 〈
ξ

(θ )
OAT

∣∣ eiη·SθOθe−iη·Sθ
∣∣ ξ (θ )

OAT

〉
, (A9)

where Oθ is some product of the rotated collective spin
operators in Sθ , e.g., S(θ )

x or S(θ )
x S(θ )

y . To turn off SOC during
clock interrogation, however, we are restricted to performing
rotations of the form exp (−iη · S0) and measuring homoge-
neous operators O0. We thus seek a “gauge-switching” op-
eration Gθ that maps homogeneous operators O0 onto rotated
operators Oθ via G†

θO0Gθ = Oθ . Equipped with Gθ , we could
decompose

〈Oθ 〉ηOAT = 〈
ξ

(θ )
OAT

∣∣ G†
θeiη·S0O0e−iη·S0 Gθ

∣∣ ξ (θ )
OAT

〉
= 〈

ξ̃
(θ )
OAT

∣∣ eiη·S0O0e−iη·S0
∣∣ ξ̃ (θ )

OAT

〉
(A10)

for a transformed state∣∣ξ̃ (θ )
OAT

〉 ≡ Gθ

∣∣ξ (θ )
OAT

〉
(A11)

that is now squeezed with respect to the homogeneous collec-
tive spin operators in S0, accessible with the SOC-free (φ = 0)
clock laser used during clock interrogation.

Given the definitions of the rotated spin operators S(θ )
x , S(θ )

x
in Eqs. (A7) and (A8), a suitable candidate for the gauge-
switching operator Gθ is the site-dependent rotation

Gθ =
∏

j

exp
(
iθ js( j)

z

)
. (A12)

To implement Gθ with “global” (i.e., non-site-selective) ex-
perimental controls, we decompose each local rotation into a
product of two reflections:

exp
(
i2αs( j)

z

) � exp
(
iπs( j)

x

)
exp

(
iπs( j)

α

)
, (A13)

where � denotes equality up to an overall phase, and s( j)
α ≡

cos αs( j)
x + sin αs( j)

y . This decomposition implies

Gθ � exp
(
iπS(0)

x

)
exp

(
iπS(θ/2)

x

)
, (A14)

which can be implemented using one SOC-free (φ = 0) clock
laser, and one clock laser with SOC angle φ = θ/2. Append-
ing the two π pulses given by Eq. (A14) to our squeezing
protocol thus prepares a state |ξ̃ (θ )

OAT〉 that is squeezed with re-
spect to the homogeneous collective spin operators Sx, Sy, Sz

accessible to the SOC-free (φ = 0) clock laser used during
clock interrogation.

As presented, the combined squeezing and clock interroga-
tion protocols require three clock lasers in total: one without
SOC (φ = 0), and one each for SOC angles φ ∈ {θ/2, θ}. We
can use Gθ , however, to decompose any pulse exp (−iβ · Sθ )
into composite pulses that use only S0 and Sθ/2:

exp (−iβ · Sθ ) = G†
θ exp (−iβ · S0)Gθ . (A15)

The state prepared by the OAT squeezing protocol, for exam-
ple, can be equivalently prepared via∣∣ξ (θ )

OAT

〉 = e−iH (0)
FH t G†

θe−i(π/2)S(0)
x Gθ | − Z〉

� e−iH (0)
FH t e−iπS(θ/2)

x ei(π/2)S(0)
x | − Z〉. (A16)
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Spin-echo pulses applied throughout OAT can likewise be
decomposed according to Eq. (A15), eliminating the need
for a clock laser with SOC angle φ = θ . Applying a con-
tinuous drive during a squeezing protocol, however, still
requires all three clock lasers. If carefully tuning the rel-
ative orientations of three clock lasers proves to be too
difficult in practice, converting OAT into TAT would there-
fore need to be done with a pulsed drive protocol, as in
Ref. [50].

APPENDIX B: DERIVATION OF THE EFFECTIVE
ONE-AXIS-TWISTING MODEL

Suppose we have a Hamiltonian of the form (h̄ = 1)

H = H0 + V, (B1)

with

H0 = −U

L
S · S, V = −

∑
n

Bns(n)
z + �Sx, (B2)

and we consider N-particle states initially in the ground-state
manifold G0 of H0, which have total spin S = N/2. If the
largest eigenvalue of V is smaller in magnitude than half of
the collective spin gap NU/L = f U , i.e., the energy gap under
H0 between G0 and its orthogonal complement E0, then we can
formally develop a perturbative treatment for the action of V
on G0. Such a treatment yields an effective Hamiltonian on
G0 of the form Heff = ∑

p H (p)
eff , where H (p)

eff is order p in V .
Letting P0 (Q0) be a projector onto G0 (E0), we define the
superoperators O and L by

OV ≡ P0VQ0 + Q0VP0, (B3)

LV ≡
∑
α,β

|α〉〈α|OV |β〉〈β|
Eα − Eβ

, (B4)

where H0 = ∑
α Eα|α〉〈α|. The first few terms in the expan-

sion of the effective Hamiltonian Heff are then, as derived in
Ref. [57],

H (0)
eff = P0H0P0, H (1)

eff = P0VP0, (B5)

and

H (2)
eff = − 1

2P0[OV,LV ]−P0, (B6)

with [X,Y ]− ≡ XY − Y X . The zero-order effective Hamilto-
nian H (0)

eff = H0 within the ground-state manifold. To calculate
H (1)

eff , we note that the ground-state manifold G0 is spanned by
the Dicke states

|m〉 ∝ SN/2+m
+ | ↓〉⊗n, S+ ≡

∑
n

s(n)
+ , (B7)

in terms of which we can expand the collective spin-z operator
as Sz = ∑

m m|m〉〈m|. We can likewise expand the collective
spin-x operator Sx in terms of x-oriented Dicke states |mx〉
as Sx = ∑

m m|mx〉〈mx|. The ground-state projector P0 onto
G0 can be expanded in either basis as P0 = ∑

m |m〉〈m| =∑
m |mx〉〈mx|. Defining the mean and residual fields,

B ≡ 1

N

∑
n

Bn, bn ≡ Bn − B, (B8)

we can then write

V = −
∑

n

(bn + B)s(n)
z + �Sx = −

∑
n

bns(n)
z − BSz + �Sx,

(B9)

and, in turn,

H (1)
eff = P0

(
−

∑
n

bnS(n)
z − BSz + �Sx

)
P0

= −
∑

n

bnP0S(n)
z P0 − BSz + �Sx, (B10)

where we used the fact that P0S j=z,xP0 = S j within the
ground-state manifold. By construction, the residual fields
are mean-zero, i.e.,

∑
n bn = 0. Using the particle-exchange

symmetry of the Dicke states, we can therefore expand∑
n

bnP0s(n)
z P0 =

∑
n,m,m′

bn|m〉〈m|s(n)
z |m′〉〈m′|

=
∑

n

bn

∑
m,m′

|m〉〈m|s(1)
z |m′〉〈m′| = 0, (B11)

which implies

H (1)
eff = −BSz + �Sx. (B12)

To calculate the second-order effective Hamiltonian H (2)
eff , we

let B0(E0) denote an eigenbasis of H0 for the excited subspace
E0, and set the ground-state energy to 0. We then define the
operator

I ≡
∑

|α〉∈B0(E0 )

|α〉〈α|
Eα

, (B13)

which sums over projections onto excited states with corre-
sponding energetic suppression factors, in terms of which we
can write

H (2)
eff = −P0VIVP0, (B14)

which is simply an operator-level version of the textbook
expression for second-order perturbation theory. The only part
of V which is off-diagonal with respect to the ground- and
excited-state manifolds G0 and E0 is −∑

n bns(n)
z , and the

individual spin operators in this remainder can only change
the total spin S by at most 1. It is therefore sufficient to expand
I in a basis for states which span the image of G0 under all s(n)

z
within the S = N/2 − 1 manifold. Such a basis is provided by
the spin-wave states

|mk〉 ∝
N∑

n=1

e2π ikn/N s(n)
+ |m − 1〉, (B15)

for k = 1, 2, · · · , N − 1 [25]. Using the fact that all spin-z
operators preserve the projection of total spin onto the z axis,
we then have that

H (2)
eff = − 1

f U

∑
m,k,n,n′

bnbn′ |m〉〈m|s(n)
z |mk〉〈mk|s(n′ )

z |m〉〈m|,

(B16)
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where the relevant matrix elements between the Dicke states
and the spin-wave states are [25]

〈m | s(n)
z | mk〉 = e2π ikn/N

√
(N/2)2 − m2

N2(N − 1)
, (B17)

which implies

H (2)
eff = − 1

f U

∑
m

(N/2)2 − m2

N2(N − 1)
|m〉〈m|

×
∑
k,n,n′

bnbn′e2π ik(n−n′ )/N . (B18)

Using the fact that
∑

n bn = 0, we can expand

∑
k,n,n′

bnbn′e2π ik(n−n′ )/N =
∑
n,n′

bnbn′

N−1∑
k=1

e2π ik(n−n′ )/N

=
∑
n,n′

bnbn′

N−1∑
k=0

e2π ik(n−n′ )/N , (B19)

where the sum over k vanishes for n �= n′ and equals N when
n = n′, so ∑

k,n,n′
bnbn′e2π ik(n−n′ )/N = N2B̃2, (B20)

where

B̃2 ≡ 1

N

∑
n

b2
n = 1

N

∑
n

(Bn − B)2. (B21)

We therefore have that

H (2)
eff = −

∑
m

(N/2)2 − m2

(N − 1) f U
B̃2|m〉〈m|, (B22)

where the (N/2)2 term contributes a global energy shift
which we can neglect, while the m2 term is proportional to
m2|m〉〈m| = S2

z . In total, the effective Hamiltonian through
second order in perturbation theory is thus

Heff = −U

L
S · S − BSz + �Sx + χS2

z , (B23)

with

χ ≡ B̃2

(N − 1) f U
. (B24)

We benchmark the validity of this effective Hamiltonian via
exact simulations of the spin [Eq. (3)] and OAT [Eq. (4)]
Hamiltonians in a system of 20 spins, finding that the relative
error in maximal squeezing (in dB) of the OAT model is less
than 3% when B̃/U < 0.06 (see Appendix F).

APPENDIX C: EFFECT OF A HARMONIC
CONFINING TRAP

Current 3D optical lattice implementations involve a har-
monic confining potential, which significantly alters the un-
derlying single-particle eigenstructure and can potentially
degrade accessible squeezing within our protocol. In this
Appendix, we examine the effect of a harmonic trap on our

protocol and discuss strategies to mitigate undesired effects.
We model the trap by the addition of the term

Ĥ� = h̄�
∑
j,α

( j − j0)2n̂ j,α (C1)

to our Fermi-Hubbard model [Eq. (2)], where j0 denotes
the trap center and � = m(ωa)2/2h̄ characterizes the trap
strength for atom mass m, trap frequency ω, and lattice
spacing a. In current state-of-the-art 3D 87Sr OLC implemen-
tations, values of ω ≈ 56 × 2π sec−1 can be achieved within
each 2D layer of weak SOC by utilizing in-plane lattice depths
of 5ER and a lattice depth of 60ER in the axial direction,
resulting in a value of �/J ≈ 0.01. We restrict our discussion
to 1D, although for a separable 3D lattice our arguments
should extend in a straightforward manner.

We briefly review the structure of the single-particle
eigenstates of the system, before discussing the effects on
squeezing. In the quasi-momentum basis, the eigenfunctions
ψn,α (q) = 〈q|n, α〉 are given by the π -periodic Mathieu
functions, with the corresponding energies described by the
Mathieu characteristic values [48]. In the presence of SOC,
using the gauge transformation described in the main text, we
obtain the relation

ψn,↑(q) = ψn,↓(q − φ/a). (C2)

In contrast to the case of a pure harmonic potential,
which generically has spatially delocalized single-particle
eigenstates, the addition of a tight-binding lattice causes
eigenmodes with quantum number n (index n labels the
eigenvalues in order of increasing energy) larger than
nc ≈ 2

√
2J/� to become localized at corresponding lattice

sites. Therefore, the sites at a distance nc/2 from the trap
center with potential energy 2h̄J define the boundary between
the delocalized modes at the trap center and the high-energy
localized trap edges. Tunneling in the region of localized
modes is typically suppressed by large potential energy
differences even in the presence of SOC. These modes are
thus largely decoupled and do not contribute to the trap center
dynamics. On the other hand, the delocalized modes may be
approximated by those of a quantum harmonic oscillator with
effective mass m∗ = h̄/(2Ja2) and frequency ω∗ = √

4J�.
As emphasized in the main text, the key requirements for

our protocol are (1) the validity of the spin model, which de-
pends on the pinning of particles in their initial single particle
modes and (2) the gap protection against SOC dephasing,
which arises from collective spin interactions. Concerning
the latter point, it is desirable to maintain a weak trap so as
to enable a large number of delocalized modes in the trap
center, which are the only type capable of contributing to
the generation of squeezing. Though the interactions between
these modes are not strictly all to all, they remain long ranged,
and can thus still lead to a spin-locking effect and a protective
gap [26,46]. For �/J = 0.01 we have nc = 28, enabling ∼103

contributing modes in each 2D layer of our system. Con-
cerning the validity of the spin model, from a single-particle
perspective the eigenmodes of our ↑ states will be initially
displaced in quasimomentum space from equilibrium by φ/a
as per Eq. (C2), and will generally undergo dipole oscillations
and not remain strictly pinned to their initial modes. However,
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FIG. 5. Dynamics of noninteracting spin-orbit coupled fermions in a 1D lattice with SOC angle φ = π/50, plus a harmonic trap with
�/J = 0.01. Starting with a spin-polarized cloud in ↓ ground state, an initial clock laser pulse is applied to rotate spins into x, and the atoms
are allowed to evolve during the dark time. We track the dynamics of the ↑ particle density for the cases of (a) N = 20 and (b) N = 60 atoms.
Panel (c) shows the time-averaged fluctuations of the ↑ particle density for each site index j from its initial value following the Ramsey pulse;
see Eq. (C3). For N = 60, we have filled all delocalized modes as well as several localized modes, resulting in a large region of no density
fluctuations at the trap center. Panel (d) contains the eigenspectrum for a single internal state in the presence of the trap (with the index n
labeling the eigenvalues in order of increasing energy), where the critical mode nc dividing the spatially delocalized and localized modes is
indicated by a black dash-dotted line. The highest occupied mode in the ↓ ground state for N = 20 and N = 60 is indicated by the green and
red solid lines, respectively.

as long as we ensure the displacement is small enough to guar-
antee a constant density distribution across the trap center, the
spin model will remain valid. The localized modes at the trap
edges can actually help to satisfy this condition, since they
can serve as a barrier against motion. This is demonstrated
in Fig. 5, where we show that filling all delocalized modes
guarantees that the trap center maintains a constant density;
we characterize this by the time-averaged fluctuations of the
↑ density at each site j about its initial value following the
Ramsey pulse,

δn j,↑ ≡
√

lim
t→∞

1

t

∫ t

0
dτ (〈n̂ j,↑(τ )〉 − 〈n̂ j,↑(0)〉)2, (C3)

choosing sufficiently large evolution times to ensure conver-
gence.

In the presence of interactions, an additional point of con-
cern is that the interplay between the trap and interactions may
induce resonances that enable the formation of a significant
doublon population,

Nd (t ) =
∑

j

〈n̂ j,↑(t )n̂ j,↓(t )〉, (C4)

which in turn may alter the density distribution and invalidate
the spin model. Since doublon formation in the localized
edges will not have consequences for our squeezing protocol,
we must only ensure that doublons are not formed in the trap
center, which requires U > �(nc/2)2 = 2J [49]. In Fig. 6,
we perform exact simulations to assess the effect of the trap
on our system. Though restricted to small system sizes, the
results demonstrate that for U/J � 2, the trap will always lead
to a decrease of squeezing due to the formation of doublons
in the trap center, while for U/J � 2, we are protected from
this process even for trap strengths much stronger than the
experimentally relevant ones.

APPENDIX D: TWO-AXIS TWISTING, DECOHERENCE,
AND THE RESIDUAL AXIAL FIELD

The protocol we use to transform OAT into TAT is as
previously proposed in Ref. [51]; we provide a summary of
this protocol here, in addition to some brief discussion of its
implications for decoherence and the residual ∼S · S and ∼Sz

terms of our OAT protocol. The TAT protocol begins with the
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FIG. 6. Dynamics of interacting spin-orbit coupled fermions in a 1D lattice plus a harmonic trap for U/J = 1 (a), 2 (b), and 4 (c). For a
1D lattice with 10 sites and an SOC angle φ = π/50, we apply a π/2 clock laser pulse to the ↓ ground state and let the system evolve during
the dark time. In (a.i)–(c.i) we show the squeezing dynamics of the system for both N = 10 (solid lines) and N = 9 (dashed lines) for a variety
of trapping strengths. In (a.ii)–(c.ii), we plot the time-averaged fluctuations in total particle density, δnj [as in Eq. (C3) but with n̂ j,↑ replaced
by

∑
α n̂ j,α]. In (a.iii)–(c.iii), we plot the growth of the doublon population Nd (t ) [see Eq. (C4)] as a function of time, noting the absence of

squeezing in the presence of a large doublon population. For the chosen trap strengths, the corresponding values of nc are 28 (�/J = 0.01),
14 (�/J = 0.04), and 6 (�/J = 0.2). In panels where the results for the homogeneous case (orange curves) are not visible, they are nearly
identical to the results for �/J = 0.01 (green curves). Here, we utilize periodic boundary conditions to minimize finite size effects.

OAT Hamiltonian with a time-dependent transverse field,

H = χS2
z + �(t )Sx, �(t ) = βω cos(ωt ), (D1)

where β is the modulation index of the driving field and the
drive frequency ω  Nχ , with N the total number of spins.
Moving into the rotating frame of �(t )Sx subtracts this term
from the Hamiltonian, and transforms operators O as

O → U (t )†OU (t ), (D2)

where

U (t ) ≡ exp

[
−i

∫ t

0
dτ �(τ )Sx

]
= exp [−iβ sin(ωt )Sx].

(D3)

In particular, the operators S̃± ≡ −Sz ± iSy (i.e., the raising
and lowering operators in the x basis) transform simply as

S̃± → U †S̃±U = e±iβ sin(ωt )S̃±. (D4)

For any operator O and drive frequency ω  ‖O‖, where
‖O‖ ≡ maxψ

√
〈ψ |O†O|ψ〉 is the operator norm of O (i.e.,

the magnitude of the largest eigenvalue of O), we can gener-
ally make a secular approximation to say

e±imβ sin(ωt )O =
∞∑

n=−∞
Jn(±mβ )einωtO

≈ J0(±mβ )O = J0(mβ )O, (D5)

where Jn is the nth order Bessel function of the first kind.
Expanding S2

z = 1
4 (S̃+ + S̃−)

2
, one can thus work out that the

effective Hamiltonian in the rotating frame of the drive is

Heff ≈ χ

2

(
[1 + J0(2β )]S2

z + [1 − J0(2β )]S2
y

)
. (D6)
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Driving with a modulation index β for which J0(2β ) = ±1/3
then gives us the effective TAT Hamiltonians,

H (+)
eff = χ

3

(
2S2

z + S2
y

) � χ

3

(
S2

z − S2
x

)
, (D7)

H (−)
eff = χ

3

(
S2

z + 2S2
y

) � χ

3

(
S2

y − S2
x

)
, (D8)

where � denotes equality up to the addition of a term propor-
tional to S2 = S2

z + S2
x + S2

y , which is irrelevant in the absence
of coherent coupling between states with different net spin. In
a similar spirit, one can work out that single-spin operators
transverse to the x axis transform as

s̃± ≡ 1
2 (−sz ± isy) → U †s̃±U = e±iβ sin(ωt )s̃± ≈ J0(β )s̃±,

(D9)

which implies that shifting into the rotating frame of the time-
dependent drive takes

sx → sx, sy,z → J0(β )sy,z, (D10)

and

s± → 1
2 [1 ± J0(β )]s+ + 1

2 [1 ∓ J0(β )]s−. (D11)

As the TAT Hamiltonians H (±)
eff are realized in a rotating

frame, to properly account for decoherence throughout the
TAT protocol, one must transform jump operators according
to Eqs. (D10)–(D11).

In practice, our protocols realize the OAT Hamiltonian in
Eq. (D1) with additional ∼S · S and ∼J terms [see Eq. (B23)].
The effect of the ∼S · S term is to generate a relative phase
between states with different total spin S (with e.g., S =
N/2 within the Dicke manifold). In the absence of coherent
coupling between states with different total spin, therefore,
the ∼S · S term has no effect on system dynamics. The ∼Sz

term, meanwhile, is important; the magnitude of this term
(as measured by the operator norm) is generally comparable
to that of the squeezing term χS2

z . Unlike in the case of
OAT, Sz does not commute with the TAT Hamiltonians, so

its effects cannot be eliminated by a single spin-echo π -
pulse exp(−iπSx) halfway through the squeezing protocol.
Nonetheless, we find that for N = 102 (103) atoms, ∼5 (10)
π pulses in a CPMG (Carr-Purcell-Meiboom-Gill) sequence
[58,59] suffice to mitigate the effects of the Sz term in the
TAT protocol (see Appendix E). Phase control over these
pulses, specifically choices of whether to apply exp(±iπSx)
or exp(±iπSy) in any given π pulse, can be used to construct
XY-n pulse sequences [60,61] that are robust to pulse errors.

APPENDIX E: DYNAMICAL DECOUPLING
IN THE TAT PROTOCOL

The effective Hamiltonian resulting from a perturbative
treatment of SOC is (see Appendix B)

Heff = −U

L
S · S − BSz + �Sx + χS2

z , (E1)

where U is a two-atom on-site interaction strength, L is the
number of lattice sites, B ≡ ∑

n Bn/N is a residual axial field
determined by the occupied quasimomentum modes {n} (with
|{n}| = N atoms total), � is the magnitude of a driving field,
and χ is an effective OAT squeezing strength. The effect
of the ∼S · S term is to generate a relative phase between
states with different total spin S (where S = N/2 within the
Dicke manifold). In the absence of coherent coupling between
states with different total spin, therefore, the ∼S · S term has
no effect on system dynamics, and we are safe to neglect it
entirely.

In the parameter regimes relevant to our discussions in the
main text, the operator norms of BŜz and χ Ŝ2

z in Eq. (E1)
will typically be comparable in magnitude. The OAT pro-
tocol sets � = 0, and eliminates the effect of BŜz with a
spin-echo π -pulse exp (−iπ Ŝx) applied halfway through the
squeezing protocol. The TAT protocol, meanwhile, effectively
takes χ Ŝ2

z + �Ŝx → Ĥ (±)
TAT (as defined in Appendix D) and

BŜz → J0(β±)BŜz, where J0 is the zero-order Bessel func-
tion of the first kind and β± is the modulation index of the
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FIG. 7. Optimal squeezing as a function of π pulses applied prior to the optimal TAT squeezing time in a CPMG sequence with (a) N = 100
and (b) N = 1000 atoms. Results are shown for OAT, TAT, and TAT±,z, where TAT±,z denotes squeezing via the Hamiltonian Ĥ (±,z)

TAT ≡
Ĥ (±)

TAT − J0(β±)〈B〉rms
f Ŝz. Details about experimental parameters for these simulations are provided in the text.
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amplitude-modulated driving field �, satisfying J0(2β±) =
±1/3. Unlike in the case of OAT, Ŝz does not commute with
the TAT Hamiltonian, so its effect cannot be eliminated with
a spin-echo. Nonetheless, this term can be eliminated with a
dynamical decoupling pulse sequence that periodically inverts
the sign of Ŝz while preserving Ĥ (±)

TAT.
Figure 7 shows the maximal squeezing generated by N =

102 and 103 atoms via OAT, TAT, and TAT in the presence
of the mean field J0(β±)BŜz as a function of the number
of π pulses performed prior to the optimal TAT squeez-
ing time. These pulses are applied in a CPMG sequence
(τn/2 − πx − τn/2)n, where τn/2 denotes Hamiltonian evolu-
tion for a time τn/2, πx denotes the application of an instanta-
neous π -pulse exp (−iπ Ŝx), and n is the number of pulses,
such that the optimal TAT squeezing time is tTAT

opt = (τn)n.
The label TAT±,z in Fig. 7 denotes squeezing through the
Hamiltonian Ĥ (±,z)

TAT ≡ Ĥ (±)
TAT − J0(β±)〈B〉rms

f Ŝz, where 〈B〉rms
f

is the root-mean-square average of B over choices of occupied
spacial modes {n} at fixed filling f of all spatial modes in
the lowest Bloch band of a periodic 2D lattice. While the
modulation index β+ is uniquely defined by J0(2β+) = 1/3,
there are two choices of β− for which J0(2β−) = −1/3; we
use that which minimizes |J0(β−)|. Figure 7 assumes an SOC
angle φ = π/50 (although results are independent of φ for
φ 
 1), a reduced field variance B̃/U = 0.05, and a filling
f = 5/6. Note that as the filling f → 1, the residual axial field
vanishes (B → 0), so TAT±,z → TAT.

APPENDIX F: NUMERICAL BENCHMARKING
OF THE OAT MODEL

Here we provide additional information about our bench-
marking of the OAT model against the spin model. This
benchmarking was performed via exact simulations of a 20-
spin system. Figure 8 shows the relative error in maximal
squeezing of the OAT model (measured against the spin
model) as a function of the reduced field variance B̃/U . Here
squeezing is measured in decibels (dB) by −10 log10 ξ 2 for the
squeezing parameter ξ 2 define in Eq. (5). The relative error in

re
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r(
%

)

B̃/U

FIG. 8. Relative error between maximal squeezing (measured
in dB) obtained by the OAT [Eq. (4)] and spin [Eq. (3)] models
of the main text in a system of 20 particles. The OAT model
correctly captures the maximal squeezing (in dB) of the spin model
to within 3% (marked by the horizontal reference line) within the
gap-protected regime B̃/U < 0.06.

maximal squeezing (in dB) by the OAT model is less than 3%
when B̃/U < 0.06.

In principle, spin-changing decoherence compromises the
validity of the OAT model, as its perturbative derivation in
Appendix B relies on spin population remaining primarily
within the Dicke manifold. This assumption breaks down in
the presence of, for example, spontaneous emission, which
transfers population outside of the Dicke manifold. Nonethe-
less, we find decent agreement between the OAT and spin
models when decoherence is sufficiently weak (see Fig. 9).

APPENDIX G: DECOHERENCE IN THE 3D 87Sr
OPTICAL LATTICE CLOCK

Currently, light scattering from lattice beams in the 3D
87Sr OLC induces decoherence on a timescale of ∼10 seconds
[18,35]. This decoherence acts identically on all atoms in an
uncorrelated manner, and can be understood by considering
the density operator ρ for a single atom, with effective spin
states ↓ and ↑ respectively corresponding to the 1S0 and 3P0

electronic states. Empirically, the effect of decoherence after
a time t within the {↓,↑} subspace of a single atom is to take
ρ → ρ(t ) with ρ(0) ≡ ρ and

ρ(t ) :=
(

ρ↑↑e−�↑↑t ρ↑↓e−�↑↓t

ρ∗
↑↓e−�↑↓t ρ↓↓ + (1 − e−�↑↑t )ρ↑↑

)
, (G1)

where �↑↑ ≈ �↑↓ ≈ � = 0.1 sec−1 are, respectively, decay
rates for ρ↑↑ and ρ↑↓. This form of decoherence can be
effectively modeled by decay and dephasing of individual
spins (respectively denoted �ud and �el in Ref. [52]) at rates
�. In the language of the section that follows, we would say
that this decoherence is captured by the sets of jump operators
J− ≡ {s( j)

− } and Jz ≡ {s( j)
z } with corresponding decoherence

rates γ− = γz = �.

APPENDIX H: SOLVING HEISENBERG EQUATIONS
OF MOTION FOR COLLECTIVE SPIN SYSTEMS

To compute squeezing of a collective spin system, we need
to compute expectation values of (homogeneous) collective
spin operators. We compute these expectation values using a
method recently developed in Ref. [53], and provide a short
overview of the method here. Choosing the basis {Sm} for
all collective spin operators, where Sm ≡ Sm+

+ Smz
z Sm−

− with
m ≡ (m+, mz, m−) ∈ N3

0 , we can expand all collective spin
Hamiltonians in the form

H =
∑

m

hmSm. (H1)

The evolution of a general correlator 〈Sn〉 under a Hamilto-
nian of the form in Eq. (H1) is then given by

d

dt
〈Sn〉 = i

∑
m

hm〈[Sm,Sn]−〉 +
∑
J

γJ 〈D(J ;Sn)〉

≡
∑

m

〈Sm〉Tmn, (H2)

where [X,Y ]± ≡ XY ± Y X ; J is a set of jump operators with
corresponding decoherence rate γJ ; the decoherence operator
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FIG. 9. Comparison between the OAT and the spin model in the presence of decoherence. (a) The difference between the maximal
squeezing (measured in dB) obtained by the OAT [Eq. (4)] and spin [Eq. (3)] models increases with the particle number N and the single-particle
spontaneous emission rate γ . This disagreement is attributed in part to the fact that spontaneous emission transfers population of the collective
spin state outside of the Dicke manifold, violating an assumption of the OAT model; see panel (b). The rate of population transfer outside of the
Dicke manifold increases with both particle number and spontaneous emission rate. (Parameters for simulations in this figure: U = 1000 Hz,
J = 200 Hz, and φ = π/20).

D is defined by

D(J ;O) ≡
∑
J∈J

(
J†OJ − 1

2
[J†J,O]+

)
, (H3)

and Tmn is a matrix element of the time derivative operator
T ≡ d/dt . These matrix elements can be calculated analyti-
cally using product and commutation rules for collective spin
operators. We can then expand correlators in a Taylor series
about t = 0 to write

〈Sn〉 =
∑
k�0

t k

k!

〈
dk

dtk
Sn

〉
t=0

=
∑
k�0

t k

k!

∑
m

Tmn;k〈Sm〉t=0, (H4)

where Tmn;k ≡ [T k]mn are matrix elements of the kth time
derivative. Expectation values of collective spin operators can
thus be computed via the expansion in Eq. (H4), which at short
times can be truncated at some finite order beyond which all
terms have negligible contribution to 〈Sn〉.

APPENDIX I: ACCOUNTING FOR p-WAVE
INELASTIC COLLISIONS

Inelastic 3P0 (electronic state e or ↑) collisions are detri-
mental for OLCs. For the nuclear-spin-polarized gas discussed
in this work, ee losses are only possible via the p-wave
scattering channel since s-wave collisions are suppressed by
Fermi statistics. The big advantage here compared to prior
experiments done in a 1D lattice at μK temperature [19]
is that in a Fermi degenerate gas loaded in a 3D optical
lattice, p-wave losses are further suppressed by the centrifugal
barrier and Pauli blocking, and only happen through a wave-
function overlap between atoms at different lattice sites. In
this Appendix, we quantify the effect of p-wave interactions
on squeezing. To account for p-wave losses, we describe the
dynamics using a master equation for the system’s density
matrix ρ̂,

d ρ̂

dt
= − i

h̄
[Ĥeff, ρ̂] + Lρ̂, (I1)

where Ĥeff = χ Ŝ2
z is the effective OAT Hamiltonian obtained

from the original Fermi-Hubbard Hamiltonian with SOC, and
L is the Lindblad superoperator that accounts for p-wave ee
inelastic collisions. This latter term can be written using a
pseudopotential approximation as [26]

Lρ̂ =
∑
kk′

�kk′

[
Âkk′ ρ̂Â†

kk′ − 1

2
(Â†

kk′ Âkk′ ρ̂ + ρ̂Â†
kk′ Âkk′ )

]
,

(I2)

where the jump operators are Âkk′ = ĉk,↑ĉk′,↑, and k, k′ sum
over all the populated quasi-momentum modes. The decay
matrix elements �kk′ are given by

�kk′ = 3π h̄b3
im

m

(∫
dr 3W [φk(r), φk′ (r)]

)
, (I3)

where bim = 121a0 [17,18] is the p-wave inelastic scattering
length (with a0 = 5.29 × 10−11 m the Bohr radius), φk(r) is
the Bloch function with quasimomentum k, and

W [φk(r), φk′ (r)]

≡ [(∇φ∗
k (r))φ∗

k′ (r) − φ∗
k (r)(∇φ∗

k′ (r))]

· [(∇φk(r))φk′ (r) − φk(r)(∇φk′ (r))]. (I4)

In Fig. 10, we show the averaged decay rate γ ≡∑
kk′ �kk′/�2, where � is the number of lattice sites along

the x and y axes, as a function of the lattice depth V0 along
these axes. Here, we assume the same lattice depth in the z
direction used in the main text, V = 60ER. The decay rate γ

is suppressed exponentially with increasing lattice depth V0.
To quantify the effect of these losses on the spin squeezing
generation process, we follow a similar methodology to the
one described in detail in Ref. [26]. The basic idea is to take
advantage of the so-called truncated-Wigner approximation
(TWA) [62,63], which allows us to capture the development
of spin squeezing using semiclassical phase-space methods.
In the TWA, the quantum dynamics are accounted for by solv-
ing mean-field equations of motion supplemented by noise.
The mean field equations are derived by assuming that the
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γ/χopt

2γ (s−1)

FIG. 10. p-wave loss rates. Both the averaged p-wave inelastic
collision rate γ (orange) and the ratio of this collision rate to the
optimal squeezing rate χopt (blue) are suppressed as the lattice depth
increases. χopt is obtained by choosing SOC angles φ that saturate
B̃/U ≈ 0.05, where B̃ is the variance of the SOC-induced axial field
and U is the two-atom on-site interaction energy.

many-body density matrix of the system can be factorized as
ρ̂ = ⊗

i ρ̂(i), where ρ̂(i) is the reduced density matrix of the
particle in quasimomentum mode qi [see Eq. (G1)]. Under this
assumption, the nonlinear mean-field equations are given by

dρ↑↑( j)

dt
= −

∑
j′

�k j k j′ ρ↑↑( j)ρ↑↑( j′),
dρ↓↓( j)

dt
= 0

(I5)

and

dρ↑↓( j)

dt
= ρ↑↓( j)

∑
j′

[
iχ (ρ↑↑( j′) − ρ↓↓( j′))

− 1

2
�k j k j′ ρ↑↑( j′)

]
, (I6)

where ρσσ ′ ≡ 〈ρ̂σσ ′ 〉. Since we are interested in the collective
behavior, one can define ρT

σσ ′ = ∑
j ρσσ ′ ( j). For these observ-

ables, the equations of motion simplify to

dρT
↑↑

dt
= − f γ (ρT

↑↑)2,
dρT

↓↓
dt

= 0 (I7)

and

dρT
↑↓

dt
= ρT

↑↓

[
iχ (ρT

↑↑ − ρT
↓↓) − 1

2
f γ ρT

↑↑

]
, (I8)

where f ≡ N/�2 is the filling fraction.
Under the TWA, one accounts for quantum fluctuations

during the dynamics by averaging over different mean-field
trajectories generated by sampling over different initial condi-
tions chosen to reconstruct the Wigner function of the initial
coherent spin state at t = 0 [26]. This method has proven to
be successful in simulating quantum spin dynamics. Using
this approach, Fig. 11 shows numerical simulation results of
squeezing over time in the presence of inelastic collisions.
For shallow lattices (V0 � 7ER), the effect of inelastic colli-
sions can limit the spin squeezing to ∼10 dB. Thus, in this
regime, losses are as relevant as light scattering. The role of
inelastic interactions could be mitigated by either operating
at deeper lattices as shown in Fig. 11, or by using nuclear
spin states to generate the squeezing instead of the clock states
directly.

APPENDIX J: TIME-SERIES OF SQUEEZING
VIA OAT AND TAT

Figure 12 shows an example of squeezing over time
via OAT and TAT, both with and without decoherence via
decay and dephasing of individual spins. The OAT model
initially generates squeezing faster than the TAT model, but
the squeezing generation rate of OAT (measured in dB per
second) falls off with time. The squeezing generation rate
for TAT, meanwhile, remains approximately constant (in the
absence of decoherence) until squeezing via TAT surpasses
that of OAT. In the absence of decoherence, OAT achieves
a maximal amount of squeezing that scales as ξ 2 ∼ N−2/3,
while TAT achieves Heisenberg-limited squeezing with

γ/χ = 0.02

γ/χ = 0.04

γ/χ = 0.08

γ/χ = 0.16
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N = 200
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FIG. 11. Squeezing via OAT in the presence of inelastic collisions. (a) For fixed particle number N = 100, the optimal squeezing decreases
as the inelastic collision rate increases. Panel (b) shows squeezing over time for γ /χopt = 0.04 (solid lines), which corresponds to U/J = 6,
and compares it with γ = 0 (dashed lines) for different particle numbers. Inelastic collisions prevent the growth of optimal squeezing with
particle number. For N = 1000, the maximum squeezing saturates to ∼10 dB.
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FIG. 12. Squeezing via OAT and TAT in a 2D section of the 3D 87Sr optical lattice clock, shown for (a) � = 40 and (b) � = 100 sites per
axis (with N = �2 atoms total), and a lattice depth of V0 = 4 ER, where ER is the atomic lattice recoil energy. Atoms are confined along the
direction transverse to the 2D layer by a lattice of depth 60 ER. Squeezing over time is shown for OAT (blue) and TAT (green), both with (solid
lines) and without (dashed lines) decoherence via uncorrelated decay and dephasing of individual spins at rates of 0.1 sec−1 (see Appendix G).

ξ 2 ∼ N−1. Note that our method for computing squeezing via
TAT in the presence of decoherence (described in Appendix
H) is not capable of computing squeezing for the full range

of times shown in Fig. 12; the corresponding time-series data
in this figure is therefore shown up to the point at which this
method breaks down.
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