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Quantum state manipulation and cooling  
of ultracold molecules

Tim Langen    1,2, Giacomo Valtolina    3, Dajun Wang    4 & Jun Ye    5 

In recent years, an increasingly large variety of molecular species have been 
successfully cooled to low energies, and innovative techniques continue 
to emerge to reach ever more precise control of molecular motion. In 
this Review, we focus on two widely employed cooling techniques that 
have brought molecular gases into the quantum regime: association of 
ultracold atoms into quantum gases of molecules and direct laser cooling 
of molecules. These advances have brought into reality the capability to 
prepare and manipulate both internal and external states of molecules on 
a quantum mechanical level, opening the field of cold molecules to a wide 
range of scientific explorations.

Over the past two decades, research on cold molecules has blossomed 
from a nascent field into a strong scientific current that expands the 
horizon of physical sciences1–3. The scientific community is currently 
witnessing a transition from early aspirations to impactful scien-
tific fruition and emergent technology. Pioneering ideas of cooling 
molecules to unexplored low-energy regimes4,5 have led the way to a 
more mature pursuit of goal-driven molecular quantum state control6. 
Chemical interactions are being studied with much greater details, 
including individual reaction pathways and resonances7–9. Molecular 
complexity has become a feature to demonstrate sophisticated quan-
tum control and explore emergent phenomena10–15. Several ideas for the 
implementation of tunable many-body Hamiltonians with long-range, 
anisotropic interactions through the manipulation of molecules with 
external fields have expanded quantum simulation prospects16–20.  
Molecules with extended coherence times are now setting more  
stringent limits and opening novel grounds for quantum sensing and  
for the exploration of fundamental symmetry and new physics beyond 
the standard model21–23. Moreover, increasingly precise control of  
complex molecules fits right into the emergent theme of quantum 
information, which builds on high-fidelity manipulation of microscopic 
quantum systems24–27.

Given the central role that molecules play in a wide range of physical  
processes, the progress in the field of cold molecules is bringing 
together scientists from many different disciplines. Particle physicists 
are interested in using molecules to search for evasive particles and 
fields. Condensed-matter physicists are building quantum material 

models based on cold molecules. Chemists aim to improve the elemen-
tary understanding of the most fundamental reaction processes to 
enable designer chemistry. Quantum scientists are using molecules 
to build quantum simulation and information processing platforms. 
More complex molecules might also enable powerful technologies 
that are attractive to biomedical researchers28.

Molecules bring us great diversity and a rich energy-level struc-
ture, and their control and use for scientific exploration thus demand a 
wide scope of methods and approaches. Although it is easy to judge the 
success of molecular cooling by the temperatures achieved, scientific 
vision and purpose should always be the foremost guiding principle 
when designing and deciding research directions on cold molecules.

In this Review, we present a selected few approaches that are being 
effectively pursued for the cooling, trapping and manipulation of mole
cules, and a few examples of scientific successes that build upon these 
tools. These efforts underpin our goal of precise control of molecular 
states for achieving a comprehensive understanding of emergent 
complexity in quantum materials, controlled chemical processes, 
and powerful new methods for precision measurement and quantum 
information science. The purpose of this Review is to provide a com-
mon connection between varying approaches to cold molecules and 
their relevant scientific goals.

Preparation of ultracold molecules
In this first section, we discuss recent progress in the cooling and 
trapping of molecules. We focus on two distinct methods, namely, 
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of chemical reactions near absolute zero15,69, long lifetimes of trapped 
molecules70,71, tuning of state-dependent trapping potentials72,73 and 
spin-exchange interactions16,17,19,26,74.

Direct laser cooling
Laser cooling relies on the repeated scattering of photons. Through this 
photon cycling, the collective actions of tens of thousands of photons,  
each with a small individual momentum, lead to sizable forces for  
massive particles such as atoms or molecules. Thus molecules, with 
their complex internal structure, do not, a priori, appear to be very well  
suited for laser cooling, as an excitation created by absorbing a photon 
can easily decay into many vibrational and rotational energy levels 
different from the initial one. As each of the corresponding transi-
tions has a different frequency, photon cycling appears to require an 
unpractically large number of lasers to address all of these transitions.

However, over the past decade, it has been established that this 
challenge can be overcome in a large number of molecular species, by 
exploiting diagonal Franck–Condon factors4 and transition selection 
rules5 to limit vibrational and rotational branching. A study5 further  
proposed practical schemes for constructing a molecular magneto- 
optical trap. While these requirements again limit cooling to a subset 
of molecular species, the required properties are fairly generic and 
provide a large variety of chemically diverse species75–77.

The best understood examples showing favourable vibrational 
properties are alkaline earth monofluorides (SrF (ref. 78), CaF (refs. 79, 
80)) and oxides such as YO (refs. 81,82). The calculated valence electron 
distribution of the CaF ground state is shown in Fig. 2a. While one of the 
calcium atom’s two valence electrons forms the molecular bond with 
the electronegative fluorine atom, the other one is primarily located 

the association of quantum gases of atoms into ultracold molecules 
and direct laser cooling of molecules. These approaches are leading 
the production of molecular samples with high phase-space densities 
and full control over quantum mechanical degrees of freedom.

We note that there exists a further large variety of powerful tech-
niques and strategies to control the external and internal degrees 
of freedom of molecules, which we mention here only briefly. These 
include buffer gas29 and supersonic sources30,31, decelerators32 and their 
combination with conservative traps33,34, merged35 or crossed36 molecu-
lar beams, as well as cryofuges37 and Sisyphus cooling of electrically 
trapped molecules38. We also note that there is a whole vibrant field 
of trapped molecular ions that have been used for studies of chemical 
reaction dynamics, precision measurement and quantum logic gates39.

Association of quantum gases of atoms
The first strategy that we discuss here in detail relies on the ability to 
create and manipulate gases of ultracold atoms40,41. By ramping an 
external magnetic field across a Feshbach resonance, pairs of these 
atoms can be associated into weakly bound, highly excited Feshbach 
molecules42 (Fig. 1a). Transfer of these molecules into their absolute 
ground state can be realized by stimulated Raman adiabatic passage 
(STIRAP). In this process, a pair of Raman lasers coherently transfers 
the molecules into their ground state via a suitable excited state. This 
removes thousands of kelvins worth of binding energy from a gas at 
nanokelvin temperatures. The coherence of the process is essential  
for this, as any spontaneous processes would unavoidably lead to 
undesirable heating.

A key ingredient is the choice of the excited state that must accom-
modate the vastly different vibrational wavefunction extension as well 
as the different—typically singlet and triplet—characters between the 
Feshbach molecule and the ground-state molecule, respectively, to 
provide sufficient transition strengths for both legs of the Raman trans-
fer. Although such a state can in general be found through extensive 
spectroscopy with the help of detailed knowledge on the molecular 
structure, the Rabi frequencies, especially that for the upwards transi-
tion, are often not very high. In this limit, high STIRAP efficiency can 
be achieved with only long-duration Raman pulses, which require 
high relative phase coherence between the Raman lasers. In earlier 
work, this was established by phase locking the Raman lasers to a sta-
bilized frequency comb43,44. Currently, the comb has been replaced 
by high-finesse ultrastable cavities with dual-wavelength coating45. 
With these efforts, a one-way STIRAP transfer efficiency of over 90% 
has been achieved. The high efficiency is also important for detection, 
which relies on the reversed STIRAP process to transfer ground-state 
molecules back to the Feshbach state.

Association of ultracold atoms has so far achieved the highest 
phase-space densities in molecular gases. However, as this strategy 
requires ultracold atomic gases to start with, it produces only molecular  
species formed from atomic species that can be laser cooled. Typical 
experimental examples are heteronuclear43,46–53 and homonuclear54 
mixtures of alkalis, or mixtures of alkali and alkaline earth atoms55.

A related technique to magneto-association is photo-association 
of ultracold atoms, which has also been used to create bialkali  
molecules in the rovibrational ground state45,56,57. Further work has 
also suggested the possibility to form alkali–lanthanide and alkaline 
earth–lanthanide mixtures with large spins58,59.

Notably, recent progress has led to the first generation of  
quantum degenerate molecular Fermi gases of KRb (Fig. 1b) and NaK 
molecules60–64, as well as the first Bose–Einstein condensate (BEC) of 
NaCs molecules65. Moreover, the technique not only works for meso-
scopic gases of many particles but also can be applied even on the 
single-molecule level, where precisely two atoms can be turned into 
one molecule66–68.

The molecular quantum gases created in this approach are readily 
loaded into optical dipole traps or optical lattices, leading to studies 
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around the calcium atom and polarized away from the bond83. Excita-
tions of this latter electron are thus nearly unaffected by changes in the 
molecular vibrational state, leading to diagonal Franck–Condon factors 
and strongly suppressed vibrational branching (Fig. 2b). The molecules 
thus behave—in some ways—similarly to alkali atoms, which are com-
mon in atomic laser-cooling experiments. In YO, the same principle 
holds5 for two independent electron–nuclear spin angular momentum 
ground states, enabling efficient formation of a magneto-optical trap 
(MOT) and grey molasses sub-Doppler cooling84. YO also features a 
narrow transition that can facilitate narrow line cooling similar to that 
in alkaline earth atoms85.

Given the abundance of potential candidates, the list of explored 
molecular species is expected to grow rapidly in the coming years.  
In particular, favourable vibrational properties are not limited to  
diatomic species, but extend naturally to polyatomic ones, where a 
large variety of ligands can be attached to atoms or diatomics acting as 
optical cycling centres86,87 (Fig. 2d). Initially demonstrated with linear 
triatomic molecules such as SrOH, CaOH and YbOH (refs. 88,89), this 
approach has now also been extended experimentally to more complex 
molecules such as CaOCH3 (ref. 12). The limits of this approach are  
currently very actively explored on the theoretical chemistry side,  
with the goal of systematically predicting which ligands are compatible 
with which cycling centres87,90,91.

On the practical side, the additional structure of polyatomics leads 
to additional vibrational bending, stretching and hybrid modes, which 
require additional lasers to address the corresponding states. Although 
this increases the complexity of maintaining a nearly closed optical cycle, 
the overall structure of polyatomics is particularly favourable for preci-
sion measurements92–94 as it leads, for example, to opposite parity, nearly 
degenerate doublets of states. Such molecules can thus generically be 
polarized in electric fields that are much smaller than the fields required 
for diatomic molecules and their structure provides a powerful tool to con-
trol systematic effects in precision measurements. Other applications of 
polyatomic molecules that have been considered include quantum simu
lation, quantum computation, and ultracold chemistry and collisions87.

For both diatomics and polyatomics, once vibrational branch-
ing is suppressed, angular momentum and parity selection rules  
for rotational states can be used in combination with remixing of  
dark states that are not addressed by the laser light, to realize a closed 
optical cycle5,82 (Fig. 2c). Recently, the work on species with more  
complex hyperfine structure, which show many additional dark states, 
has also gained traction95,96.

Turning a closed optical cycle into actual laser cooling requires 
the understanding of the resulting multi-level systems95,97,98. Scatter-
ing rates in such multi-level systems are proportional to Ne/(Ng + Ne), 
where Ne and Ng are the number of exited and ground states that are 
coherently involved in the optical cycle. Typical monofluorides, for 
example, show 4 excited and 12 ground states in each addressed vibra-
tional level. The scattering rates are thus significantly reduced com-
pared with the textbook two-level situation, which also goes hand in 
hand with increased saturation intensities for the transitions. Cooling  
of molecules therefore typically requires not only more lasers than 
cooling of atoms to address all required states but also higher laser 
powers to achieve sufficiently fast scattering.

However, apart from an increased level of complexity, one finds 
cooling forces similar to the ones known from atomic laser cooling, 
such as Doppler and Sisyphus forces. Molasses techniques can be 
used to image molecules down to the level of individual molecules99. 
Interestingly, and in contrast to atoms, closed optical cycles can also 
be realized in ways where absorption and emission occur on different  
wavelengths, which allows near-background-free detection of  
molecules, for example, for precision measurement applications100,101.

Experiments typically start with a slow molecular beam, formed, 
for example, by laser ablation and buffer gas cooling29,102, which is 
laser slowed82,103,104 to the capture velocity of a magneto-optical 
trap78,80,89,105,106. Further molasses cooling79,84,89 then produces molecular 
samples that can be trapped in conservative potentials107–111.

The phase-space densities that have been achieved in this way have 
increased by more than 10 orders of magnitude in recent years, reach-
ing now 10−6 (refs. 110,112), which is close to being suitable for further 
collisional cooling of the molecules to quantum degeneracy. Further 
progress is expected in the near future through more efficient slowing 
methods113–116, more efficient sources117 and sympathetic cooling with 
atoms118,119. The current phase-space densities are also sufficiently high 
to load optical tweezer arrays with single molecules120, enabling studies 
of collisions on the single-molecule level121.

State engineering and coherence of single 
molecules
The rich internal structures of ultracold polar molecules, including 
their vibrational, rotational and hyperfine states, have long been identi-
fied as great assets for many potential applications. A prerequisite for 
exploring such possibilities is the capability of controlling the inter-
nal states of the sample on the single quantum level. Building on the 
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progress in cooling discussed in the previous section, this has been 
fully achieved with the combined power of optical and microwave 
methods. In addition, microwave coupling between rotational levels 
has emerged as a major method for engineering and probing inter-
molecular interactions. To fully explore the potential of this method, 
significant efforts have been devoted to understanding and controlling 
rotational coherence.

Internal state control
In magneto-association, the weakly bound Feshbach molecule is 
produced with a Feshbach resonance between atom pairs in single 
hyperfine Zeeman levels and is thus inherently in a single quantum 
level42. For bialkali molecules, the ground electronic state is 1Σ+, 
which has no electronic orbital and spin angular momenta. Their 
hyperfine structures are thus purely from the atomic nuclear spins 
and rotation122. In magnetic fields, these structures split into (2N + 1)
(2I1 + 1)(2I2 + 1) closely spaced levels, with N the rotational quantum 
number, and Ii the nuclear spin of the two atoms. Take 23Na87Rb as an 
example: with INa = IRb = 3/2, there are 16, 48 and 80 levels for N = 0, 1 
and 2, respectively123. In a magnetic field, the total frequency span 
of the hyperfine levels in each rotational state is on the megahertz 
level, while the intervals between adjacent hyperfine levels are even 
smaller. With the combination of selection rules and polarization, Rabi 
frequencies and the Raman laser pulse lengths, population transfer 
to single selected hyperfine levels has been routinely realized43,46–52. 
However, it is worth mentioning that high spectroscopic resolution 
and high population transfer efficiency have contradictory require-
ments on Rabi frequencies. This highlights again the importance of 
establishing good phase coherence between the Raman lasers, which 
will allow high STIRAP efficiencies at lower Rabi frequencies and longer 

pulses. If possible, using Feshbach resonances at higher magnetic 
fields to make hyperfine splitting larger also helps.

While most experiments start from molecules in the lowest energy 
level with vibrational and rotational quantum numbers v = 0 and N = 0, 
STIRAP can also place the population in N = 2 directly. The N = 1 level, 
which cannot be reached by STIRAP as limited by parity selection rules, 
can be populated with a microwave driving the rotational transition, for 
example, between N = 0 and 1, as illustrated in Fig. 3a,b refs. 123–126. 
In addition, two-photon microwave transitions are also frequently 
used for hyperfine manipulation. As has been demonstrated in RbCs,  
multiple microwave frequencies can also be applied to produce mole
cules in higher rotational levels127. STIRAP can also transfer molecules 
to low-lying excited vibrational states, such as v = 1 (ref. 123). For mole
cules with no two-body chemical reactivity in the v = 0 level, this can 
serve as a knob to turn on the reaction128.

For directly laser-cooled 2Σ+ molecules, after the laser cooling stage 
the population is distributed in N = 1, the state used for the realization of 
the closed laser-cooling cycle (Fig. 2c). This manifold contains multiple 
spin-rotation and hyperfine levels. In recent experiments with CaF and 
SrF molecules, preparing the molecules into a single hyperfine Zeeman 
level has been demonstrated using optical pumping and microwave 
driving107,109. In combination with optical tweezers, such state control 
has facilitated the study of state-dependent collisions121, and entangle-
ment of pairs of molecules via spin-exchange interactions26,27.

Single-molecule coherence
The microwave coupling between rotational levels with opposite  
parities can induce strong dipolar interactions between molecules. This 
leads to a rotational dipolar spin-exchange interaction, which can be 
used for realizing a variety of spin models129,130 and implementing the 
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iSWAP two-qubit quantum gate24,25. However, to make these applica-
tions possible, the single-molecule rotational coherence time must be 
longer than the timescale of the interaction.

For optically trapped molecules, the most important source of 
decoherence is the differential a.c. Stark shift72,73, which causes shifts 
of the rotational transition frequencies across the trap. This problem 
can be mitigated using the anisotropic polarizability of N = 1. By setting 
the polarization of the trapping light to a ‘magic’ angle, as depicted in 
Fig. 3c, the light shifts of N = 0 and N = 1 from the scalar polarizabilities 
can be made exactly the same. However, the polarizability of N = 1 also 
has a tensor term that mixes the different rotational Zeeman levels mN 
and results in a hyperpolarizability and a quadratic shift. This compli-
cation leads to an intensity-dependent magic angle, and more impor-
tantly an incomplete differential light-shift cancellation. The typical 
rotational coherence time, as measured by Ramsey spectroscopy, 
is limited to several milliseconds for bulk samples in optical traps73. 
For single molecules in optical tweezers (Fig. 3d), a coherence time of 
93(7) ms has been observed131.

Several different methods have been developed to make fur-
ther improvements. Together with polarization-angle adjustment, 
a moderate d.c. electric field can be applied to decouple nuclear 
spins from rotation to minimize the hyperpolarizability and thus the 
intensity-dependent differential shift132,133. Similarly, magnetic fields 
can be used to adjust the nuclear spin-rotation mixing to cancel the 
differential light shift at matched light intensities133. For NaRb in the 
ground band of the two-dimensional (2D) optical lattices of a quantum 
microscope set-up, a coherence time of 56(2) ms has recently been 
reported19. A very different scheme is to create a ‘magic’ trapping 
potential for the different rotational states by tuning the trapping 
light to near resonance with an excited molecular state. To minimize 
off-resonance scattering, the nominally forbidden v = 0 ↔ v = 0 tran-
sition between X1Σ+ and b3Π is used134,135. In RbCs, it is estimated that 
rotational coherence times greater than 1 s can be achieved in the 
magic potential136.

Imperfections of the magnetic field, such as fluctuations and gradi-
ents, are another important source of decoherence. For 1Σ+ molecules, 

as the nuclear spins are very insensitive to magnetic fields, this is less  
of a problem. For 2Σ+ molecules with a non-zero electron spin, the 
requirements on the magnetic field are in general more stringent. How-
ever, the sensitivity to magnetic field can be reduced significantly by 
choosing a pair of rotational hyperfine Zeeman levels with small relative 
shifts so that the rotational transition frequency has only a quadratic 
Zeeman shift at low magnetic fields26,27.

To extend the rotational coherence time further, more advanced 
microwave pulse sequences, such as spin echo and dynamical decou-
pling, can be used to remove decoherence from quasi-static sources. 
In several experiments, coherence times of hundred of milliseconds 
were achieved with these methods in both optical lattices16,19 and opti-
cal tweezers26,27,131. This is already much longer than the timescale of 
the dipolar interaction between molecules. Although more complex, 
dynamical decoupling pulse sequences are more powerful than spin 
echo26,27. In the latest KRb experiment18, a coherence time of ~20 ms was 
achieved with an XY8 pulse sequence, despite the presence of large dif-
ferential light shift between rotational states in an optical trap without 
using magic wavelength or magic angle (Fig. 3e,f).

Besides their insensitivity to magnetic fields, the nuclear spin 
hyperfine levels in N = 0 of 1Σ+ molecules also experience very small 
differential light shifts71. They can thus serve as storage qubits for pre-
serving quantum coherence over long periods of time24,25,137. In several 
experiments, nuclear spin coherence times of several seconds have 
been observed in optical traps and lattices with two-photon microwave 
spectroscopy71,138,139. Although it has not been demonstrated, with spin 
echo or dynamical decoupling, the nuclear spin coherence time should 
be readily extended to over 1 minute.

Molecular interactions
The exquisite control of interactions in atoms has enabled collisional 
cooling of laser-cooled atomic gases further into the ultracold regime, 
where collective quantum behaviour plays a leading role. Such a gas of 
indistinguishable particles with finely tunable interactions performs as 
a quantum simulator, providing insights in the behaviour of complex 
many-body systems. However, the class of phenomena that ultracold 
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atoms can explore is restricted by the limited strength, range and iso-
tropic nature of their interactions.

Richer dipolar interactions with anisotropic and long-range char-
acter can be realized in magnetic quantum gases. This has recently led 
to the surprising observation of new states of matter such as droplets 
and supersolids140,141. Nonetheless, the strength of this interaction is 
still inherently set and limited by the atomic structure. An ultracold and 
dense gas of polar molecules, with strong electric long-range interac-
tions and a rich structure of coherent, long-lived states, is expected to 
greatly exceed the possibilities of such weakly dipolar atoms and realize 
new phases of matter, such as topological superfluids2,142.

However, the very same complexity that makes molecules so 
appealing renders the precise control of their interactions highly chal-
lenging. Molecular collisions at short distance are not as favourable 
as atomic ones: their dense spectrum of internal energy levels allows 
two colliding molecules to stick together143,144 and undergo a (photo-)
chemical reaction that hampers collisional cooling and most molecular 
quantum applications (Fig. 4a). Over the past decade, there has been 
tremendous efforts in understanding the collisional complexes that 
molecules form at short range, how they impact chemical reactions 
and how we can suppress their formation with shielding methods145–148. 
Shielding has enabled the achievement of a new regime, a molecular 
gas dominated by elastic interactions, which can then be cooled to 
quantum degeneracy to study complex dipolar systems.

Ultracold chemical reactions and shielding methods
At ultralow temperatures, chemical reactions do not follow an 
Arrhenius-type equation as thermal energy is too low to overcome 
reaction barriers. Instead, wavefunction overlap and quantum tun-
nelling provide a way for molecules to meet at short distance and then 
react. Fermionic KRb ground-state molecules proved to be a valuable 
test bed for such ultracold chemistry. The reaction KRb + KRb → K2 + Rb2 
is energetically allowed and proceeds according to a two-body loss 
rate. By changing the initial state of the molecular gas, it is possible to 
tune the reaction rate in a quantum state-resolved fashion. Owing to 
the centrifugal barrier in the p-wave channel, a gas of identical fermi-
onic molecules reacts less than a gas of distinguishable (or bosonic) 
molecules69, where collisions in the barrier-less s-wave channel are 
allowed. Thus, control over the long-range barrier translates into con-
trol over the reactivity and stability of the molecules. This is the basic 
principle of reaction shielding. As anisotropic dipolar interactions mix 
higher-order partial waves together, they provide a way to change the 
height and shape of the long-range barrier.

Dipolar interactions can be induced by polarizing molecules  
in an external electric field. Initially, collisions of molecules in the 
lowest rotational level were investigated in a static electric field. While 
perpendicularly to the electric field dipolar interactions are repulsive, 
they are attractive along the field direction and facilitate short-range 
collisions. For a three-dimensional (3D) gas, the attractive dipolar 
component dominates and the rate of chemical reactions monotoni-
cally increases with the induced dipole moment149. In 2D traps, it is 
possible to retain only the repulsive side of dipolar interactions when 
the 2D gas is tightly confined along the field direction (Fig. 4b). This 
shielding method combines strong dipolar interactions with optical 
lattice confinement to exploit the stereodynamics of the reaction and 
suppress the reaction rate with respect to the 3D case150.

The technical complication in dealing with the large electric fields 
required for this type of shielding shifted the focus towards the crea-
tion of inherently chemically stable ultracold molecular samples46–49,51. 
Surprisingly, the new species investigated for this purpose still showed 
two-body losses close to the universal limit of chemically reactive mole-
cules128,151,152. In 2019, a theoretical study144 analysed the effect of optical 
dipole traps on molecular collisions, focusing on the role of intermedi-
ate complexes. Complexes are formed when molecules meet at short 
range. For chemically stable molecules, energy conservation should 

allow complexes to dissociate back to the original reactants, while in 
the reactive case, complexes can transform into reaction products. In 
the bialkali case, complexes have a broad optical absorption spectrum 
that peaks in the wavelength range of standard optical dipole traps. As 
a result, bialkali complexes quickly absorb trap photons, heat up and 
are quickly lost from the trap. The detrimental role of optical trapping 
was later confirmed by two separate experiments153,154. However, the 
features of complexes are far from being completely understood, as 
additional experiments with different molecular species observed 
persisting losses even in absence of optical traps155,156.

Methods that shield molecular collisions from losses at short range 
completely are thus expected to become an integral part of molecular 
quantum gases experiments.

On the basis of the the idea originally proposed in ref. 145, the first 
resonant shielding was achieved experimentally using molecules in 
large static electric fields, exploiting the rotational structure of polar 
molecules157,158 (Fig. 4d). In such a situation, resonant dipolar coupling 
results in a huge modulation of the chemical reaction rate in a nar-
row electric-field region around the energy-level crossing of pairs of 
rotational states coupled by the dipolar interactions. The shielding 
resonance enabled the realization of long-lived molecular gas in a 
static electric field.

Similarly, based on other theoretical ideas147,148, ref. 159 exploited 
microwave radiation to engineer an effective repulsion between 
two-body collisions of CaF molecules in optical tweezers. Through 
proper detuning of the circularly polarized microwaves, it was possible 
to suppress reaction rates by a factor of six even in tight tweezer traps.

Dressing with strong microwave fields not only allows for shielding 
of collisions but also shows great promise to independently control 
elastic interactions at short range altogether. By finely tuning the 
ellipticity of the microwave, it is possible to bring the open channel of 
two colliding molecules into resonance with a weakly bound tetramer 
state148,160. Control over the so-called field-linked resonance has ena-
bled strong modulation of chemical reaction rates, but in the future it 
may be possible to coherently populate the tetramer state, similarly 
to the case of Feshbach molecules on a Feshbach resonance161. Full 
control over resonant dipolar scattering and short-range interactions, 
for example, by combining microwave shielding with additional d.c. 
electric fields, will enable the realization of the molecular analogue of 
the BEC–Bardeen–Cooper–Schrieffer (BCS) crossover and the attain-
ment and stabilization of molecular BECs142.

Resonances in molecular collisions can also be controlled with 
external magnetic fields. Similarly to ultracold atoms close to a  
Feshbach resonance, atom–molecule162 and molecule–molecule13 colli
sions can show resonant behaviour, which results in a sharp increase of 
the loss rate of the trapped molecular gas. These resonances emerge 
when a long-range polyatomic (tri- or four-body) bound state can be 
brought to degeneracy with the scattering continuum. Precise control 
over their relative position enables new possibilities for coherent chem-
istry and molecule assembly. For instance, in collisions between sodium 
atoms and sodium–lithium molecules, an atom–molecule Feshbach 
resonance enabled the manipulation of the long-range barrier via 
control of the phase of the scattering wavefunction163. Interference 
between the long-range and the short-range part of the molecular 
potential resulted in a strong modulation of the reaction rate, even 
exceeding the universal limit.

Evaporative cooling and quantum degeneracy
Shielding presents a twofold advantage: while short-range losses are 
quenched from the effective shielding repulsion, elastic collisions 
at long range are increased. Thus, shielding enables the realization 
of stable and strongly dipolar molecular gases, with large ratios of 
elastic-to-inelastic collisions. This condition was first demonstrated 
in 2D gases of fermionic KRb61, improving on the static shielding strat-
egy in ref. 150. Cross-dimensional thermalization as a function of the 
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induced dipole moment revealed an optimum spot around 0.2 D, where 
the separation among elastic and inelastic rate is maximum. This con-
dition represented an ideal starting point for attempting evaporative 
cooling to quantum degeneracy, a necessary condition for any quan-
tum simulation proposal. Controlled electric-field gradients enabled 
realization of the first degenerate Fermi gas from an initial thermal 
distribution of the molecules, relying on only the strength of molecular 

interactions (Fig. 4e). The shielding resonance in ref. 157 was instead 
used to demonstrate evaporative cooling and phase-space-density 
increase in a 3D trap158.

Evaporative cooling to quantum degeneracy was also demon-
strated for a microwave-shielded gas of fermionic sodium–potassium 
(NaK) molecules62 (Fig. 4c). The large effective dipole moment enabled 
by microwave shielding allowed to approach the hydrodynamic regime 
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of collisions and an elastic-to-inelastic collisions ratio of 500. Recently, 
microwave shielding has lead to the stabilization of quantum gases of 
bosonic bialkali molecules, which could then be evaporatively cooled 
close to the onset of Bose degeneracy164,165, and the formation of a 
molecular BEC65.

The newly discovered Feshbach resonances provide an alternative 
path for molecule formation close to quantum degeneracy. In ref. 14, 
a new molecular quantum gas of weakly bound polyatomic molecules 
was demonstrated by adiabatic magneto-association of potassium 
atoms and sodium–potassium molecules in the rovibrational ground  
state, which may lead to the formation of ultracold ground-state  
polyatomics at record-high phase-space densities.

Scientific outlook
The use of cold molecules is now spreading across a variety of platforms 
for many different goals, including precision measurement, cold chem-
istry, quantum simulation and quantum information processing. Some 
of these topics are discussed in companion Reviews in this issue9,20,23,39. It 
is clear that we are still at the very early stage of realizing the full poten-
tial of molecular quantum systems. Molecules are being employed in 
many-body physics experiments of increasing complexity (Fig. 5b), 
but many intriguing quantum phases remain unexplored or out of 
reach with the current capabilities. Quantum simulation employing 
precisely tunable interacting molecules offers fascinating opportuni-
ties to study exotic quantum phases and dynamics. Molecule-based 
precision measurements are setting new limits for violations of fun-
damental symmetries. When probed with state-of-the-art quantum 
control techniques, even molecular systems that have been known 
for decades reveal surprising, emergent phenomena (Fig. 5a). These 
achievements further support the dream of realizing fully quantum 
state-engineered molecules that are designed to have optimized sen-
sitivity for fundamental physics. A first step in this direction is the 
trapping of large-scale samples of suitable molecules, including also 
polyatomics with favourable level structure for precision measure-
ment applications (Fig. 5d). Incorporating modern spectroscopy and 
detection tools with cold molecules is allowing us to follow reaction 
pathways and kinetics, and steer these reaction processes with exter-
nal fields and unprecedented spatial resolution (Fig. 5c). The exciting 
prospect of using quantum information science to explore complex 
molecular structure and uncover hidden interaction dynamics will 
breathe powerful new life into quantum chemistry. Entanglement 
operations are being demonstrated on molecules trapped in optical 
fields, signalling initial steps in molecule-based quantum information 
processing (Fig. 5b), but the key challenges of achieving high fidelity 
and scalability are still open.
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