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The Standard Model of particle physics is one of the most successful models that we have to describe

the universe at a fundamental level. However, the Standard Model is known to be incomplete. For instance,

the Standard Model does not explain the degree of abundance of matter over anti-matter. When theorists

make extensions to the Standard Model through new physics models, their models usually make predictions

on the value of the electric dipole moment of the electron (eEDM). By measuring (or placing improved

limits on) the eEDM, we can place constraints on these new theories. The eEDM experiments at JILA use

molecular ions to measure the eEDM. Molecular ions are good for two main reasons: (i) our molecules give

us enhanced sensitivity to the eEDM, and (ii) trapped ions allow us to take advantage of the long coherence

times of the eEDM-sensitive states. The Generation II JILA eEDM experiment using HfF+ concluded in

November 2022 by setting the world’s best limit. In our Generation III project, we seek to further improve

upon our limit by switching over to ThF+, which promises enhanced sensitivity to the eEDM. Herein, I

present (i) spectroscopy work performed on ThF+ to allow us to control the molecule in both the external

and internal degrees of freedom, (ii) design and characterization of a prototype of a multiplexed ion trap.
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6.3.1 Frequency dependent decoherence rate (näıve decoherence rate) . . . . . . . . . . . . . 123

6.3.2 Suppressed decoherence from collisional narrowing . . . . . . . . . . . . . . . . . . . . 125

6.3.3 Net decoherence rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Collisional narrowing in the ion trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.1 Collisional narrowing in experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Collisional narrowing in simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5 Collision rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.1 Collision rate ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.2 More collision-related rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.3 Comparison of various collision-related rates . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5.4 Heating of ion clouds in Paul traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.5 Relevance to the Bucket Brigade and ThF+ . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143



vii

6.6.1 Collisions that could change mF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.6.2 Spatial sampling by an ion in an anharmonic trap . . . . . . . . . . . . . . . . . . . . 145

6.6.3 Difficulty in measuring ion cloud properties in the experiment . . . . . . . . . . . . . . 146

7 Design of the Bucket Brigade 148

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Rings: Axial confinement & Translation of ions . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.1 “Continuous rings” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2.2 Discrete rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.3 Translation of ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.4 Shielding effect from Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3 Rods: Radial confinement & Rotating electric field . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.1 Radial confinement in a Paul trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.2 Rotating electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.4 The baby Bucket Brigade (b.B.B.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.2 Trap loading & Ion kick out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4.3 Remarks on wisdom acquired . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.5 Electronics design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5.1 Rod driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.5.2 Ring driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.6 Parametric excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6.2 Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.6.3 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186



viii

8 Generating f0 in the Bucket Brigade 189

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Plan A: Co-moving axial magnetic quadrupole . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2.2 In the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.2.3 RF trapping field-induced decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.2.4 Shimming away gradients in Baxgrad . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.2.5 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.3 Plan B: Berry’s phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3.2 In the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3.3 New switches for the experiment: S and T . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.3.4 fDS channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.3.5 Q-factor & Resonant Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.3.6 Spatial homogeneity of the dithering axial electric field . . . . . . . . . . . . . . . . . . 217

8.3.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.4 Plan C: Uniform ambient magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.4.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.4.2 In the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.4.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.5 Plan D: Transverse magnetic quadrupole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.5.1 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.5.2 In the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.5.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.6 Plan E: Rotating magnetic field with time-oscillating currents . . . . . . . . . . . . . . . . . . 227

8.6.1 Working Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.6.2 In the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227



ix

8.6.3 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

8.7 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9 Control System 232

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

9.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.2.1 Legacy system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.2.2 Current system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

9.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

9.3.1 ARTIQ for the uninitiated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.3.2 Important folders and files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3.3 Communication with auxiliary control computers. . . . . . . . . . . . . . . . . . . . . 241

9.3.4 The JILA eEDM suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

9.4 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10 Cryogenics 250

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

10.2 Design in the context of the Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

10.2.1 Heat load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

10.2.2 Spreading the cold with the Cold Jacket . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.2.3 Thermal contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

10.3 Current status in the baby Bucket Brigade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

10.3.1 Household insulation foam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.3.2 Cryocooler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

10.3.3 Effective temperature and lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.4 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.4.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.4.2 Liquid nitrogen, LN2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



x

10.4.3 Raining cryogen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

10.4.4 Cold shield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

11 Conclusion 282

Bibliography 285

Appendix

A Paul Trap and Mathieu Equations 291

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

A.2 Definition of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

A.3 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

A.4 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

B Typical Parameters for the Bucket Brigade 296

B.1 Trap parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

B.2 Internal state and trapping field parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

C Hamiltonian 298

C.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

C.2 Terms in the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

C.2.1 Hyperfine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

C.2.2 Omega-doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

C.2.3 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

C.2.4 Stark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

C.2.5 Zeeman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

C.2.6 Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

C.2.7 eEDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302



xi

C.3 Solving the Schrödinger’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

C.3.1 Time-independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

C.3.2 Time-dependent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

C.4 Two-level effective Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304



Tables

Table

2.1 Comparison of molecular constants of the ground state of ThF in experiment and theory. . . 20

2.2 Comprehensive list of tentative assignments of vibrational progressions. . . . . . . . . . . . . 21

3.1 Relevant parameters of fitted transitions in the REMPD spectroscopy of ThF+. . . . . . . . . 49

4.1 Measured spectroscopic structural constants for X 3∆1. . . . . . . . . . . . . . . . . . . . . . 67

4.2 Prediction of blackbody radiation excitation lifetime (in seconds) out of the v = 0 vibrational

level in X 3∆1, in a radiative environment of the indicated temperature. . . . . . . . . . . . . 72

5.1 Comparison of parameters of ThF+ and HfF+ . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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Chapter 1

Introduction

1.1 Background of the eEDM

An improved or non-zero measurement of the electron’s electric dipole moment (eEDM, de) would

have huge implications for our understanding of the universe [1–4]. Our current understanding is nicely

encapsulated at a fundamental level by the Standard Model of particle physics, but many observations

hint that the Standard Model is incomplete. This problem is being addressed by numerous works on the

theoretical front to introduce new physics through extensions of Standard Model [5, 6]. These new physics

models come in many different classes, and each class makes a different prediction of the value of the eEDM

[7–12]. Hence, a measurement (or a null-measurement) of the eEDM would place constraints on these new

theories, and guide us towards a better understanding of the universe.

There are many ongoing works trying to measure the eEDM [13–20], and in recent years the effort

has been switched from atoms to molecules because of molecular enhancement factors and robust systematic

error rejection [21–27] that are available only to molecules because of their rich internal structures. There

are several proposals that seek to exploit the rich internal structures even further to realize exotic ways to

measure the eEDM [28, 29]. Figure 1.1 is a compilation of published upper bounds of the eEDM.

The richness of the molecular internal structure provides additional tools for diagnostics and eEDM

sensitivity enhancements, but it proves to be a double-edged sword, as non-diagonal Franck-Condon factors

and rotational branching increase the complexity of compressing the Hilbert space into the states that we care

about. This additional complexity complicates state preparation, and also makes standard AMO practices
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Figure 1.1: Upper bounds on the eEDM set by experiments over the years. Adapted from Paul
Hess’s thesis from the Gabrielse Group. Bounds are plotted at 90% confidence level.

like laser cooling and state detection through cycling transitions less applicable to molecules. Incidentally,

there are groups trying to get around this limitation by working with polyatomic molecules [30–32] to marry

favorable photon cycling properties of the heavy metal atom in the molecule to the advantages that come

with the rich internal structures of a molecule. Although these groups are in the very early stages of their

spectroscopy ground work, much related work [33, 34] is showing promising signs for future work.

The eEDM experiment here at JILA uses diatomic molecular ions. The statistical sensitivity to the

eEDM depends on three main factors in the experiment: (i) effective electric field strength that couples

to the eEDM, (ii) interrogation time of the eEDM-sensitive state, and (iii) total number of counts in the

experiment for statistics. The first two generations of the JILA eEDM experiment [14, 35, 36] take advantage

of the long ion trapping times to tap the long coherence times of the eEDM-sensitive state. The following

sections give brief introductions to the JILA eEDM experiment with HfF+ and ThF+.
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1.2 eEDM measurement with molecular ions

1.2.1 JILA eEDM experiment with HfF+

The determination to measure the eEDM with molecular ions was first written in stone in the JILA

2011 paper [25], which addressed many concerns that skeptics in the AMO community had regarding per-

forming a precision metrology experiment with trapped ions with a rotating electric field. Fast forward

to 2017, the first generation measurement (Gen. I) from JILA using trapped HfF+ convinced the last of

the skeptics by placing an upper bound on the eEDM at |de| < 1.3 × 10−28 e cm (90% confidence) [14],

falling just slightly behind the world’s best record set by ACME at that time at |de| < 8.7 × 10−29 e cm

(90% confidence) [37]. Since then, there has been friendly competition between JILA, ACME, and Imperial

College [13] to see who can set the best limits on the eEDM, or even measure the eEDM itself. Soon after,

ACME published an improved limit at |de| < 9.6×10−30 e cm (90% confidence) [15] to spice up the game. In

the meantime, JILA has made improvements to various aspects of the experiment, culminating in a second

generation measurement (Gen. II, unblinded in November 2022) [35, 36], and is now the world’s best limit

at |de| < 4.1× 10−30 e cm.

Some of the major improvements made in the Gen. II experiment include (i) better designed ion

trap for field homogeneity, (ii) trapping more ions for better statistics, and (iii) new state preparation

and detection techniques to reduce measurement noise. The details of upgrades pertaining to the Gen. II

measurement can be found in numerous papers [38, 39] and theses from the JILA eEDM group (e.g. William

Cairncross and Tanya Roussy) and shall be omitted here to save the spotlight for ThF+.

1.2.2 JILA eEDM experiment with ThF+

At the time of this writing, JILA has the world’s best upper bound on the eEDM. The race is still

on, however, so we need ideas on how to improve on this result. Small epsilon upgrades typically take about

five years from conception to fruition; big overhauls can take up to fifteen years, but our competitors are

certainly not patient enough to wait fifteen years for our big overhaul before resuming the competition. To
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get a head start for the third generation experiment, we used1 the time machine called foresight to go back

in time to 2008 to start laying the foundations for a third generation experiment (Gen. III).

During the early days of the HfF+ experiment, the JILA eEDM team learnt about a new molecule

ThF+ that can potentially help them get/stay ahead in the race [40–42]. The level of sensitivity to the

eEDM (δde) depends on three main factors:

δde ∼
1

Eeffτ
√

Nsingle · frep. · Ttot.

, (1.1)

Effective electric field, Eeff . Relativistic effects allow for a non-zero electric field to couple to the EDM of

the electron, despite having net zero time-averaged electric field inside the molecule. The effective

electric field is molecular species dependent, and it turns out that ThF+ has a slightly larger Eeff =

35 GV/cm [22, 41] than HfF+ at Eeff = 23 GV/cm [24, 25]

Coherence time, τ . A longer coherence time is in general a good thing to have. In the context of the eEDM

precision metrology experiment, which is a Ramsey spectroscopy measurement, a long coherence time

allows for long Ramsey fringes to be taken. A longer Ramsey fringe translates to a more precise

determination of the Ramsey frequency. The coherence time can be affected by, say, less than

perfect control over the ions or fields (T ∗
2 type losses), and even if we have full control over the whole

experiment, the coherence time of the eEDM sensitive states is bounded by the natural decay lifetime

of the states (T1 type losses). The eEDM sensitive states in HfF+ have natural decay lifetimes of

about 2 s. However, the eEDM sensitive states in ThF+ are shown to be the ground rovibronic state

[43], so the coherence times in ThF+ can be much longer than 2 s.

Number statistics,
√

Nsingle · frep. · Ttot., where Nsingle, frep., and Ttot. are the total number of ions

counted in a single shot of the experiment, the repetition rate of the experiment, and the total

time for which the graduate students are willing to take data, respectively. In the Gen. II experi-

ment, the dead time of the experiment is short compared to a single Ramsey integration time, which

in turn is limited by the coherence time. Hence the repetition rate is frep. ≈ 1/τ . As we shall see

1 It is not immediately obvious to the author, who does not major in the English language, what tense to use when time
travel is involved.
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in later sections, we have tricks up our sleeves that allow us to work with frep. ≫ 1/τ that we will

implement in our eEDM experiment with ThF+.

Despite the successes we have in measuring the eEDM with HfF+ [14, 35, 36], it is not immediately

obvious if the same experimental techniques (i.e. state preparation and readout) used on HfF+ can be

transferred over to ThF+. For instance, the laser transitions required to address states in ThF+ may be

entirely different from those of HfF+. Are the relevant transitions covered by lasers that are readily available?

Are the internal quantum states easy to understand given that thorium, a heavy metal that is even heavier

than hafnium, may break all the usual rules that we use for state assignments? How do we even create

thorium monofluoride ions? Someone has to turn knobs in the laboratory to answer these questions. That

someone, for the past eight years, happens to be me.

1.2.3 How an eEDM experiment is done at JILA

This thesis is a build up to a precision measurement of the eEDM in ThF+, involving a lot of spec-

troscopy, design, and characterization of both the molecule and the setup. To understand why we do these

in certain ways, mostly guided by our experience with the experiment using HfF+, we need to understand

how the eEDM experiment is done at JILA. This has already been covered in numerous theses before mine

(e.g. Huanqian Loh, Kevin Cossel, Matt Grau, Daniel Gresh, William Cairncross, and Tanya Roussy), but

I will present a brief summary in the context of ThF+ (first time this is done) to make this thesis more

self-contained. The ideas in this section serve only as a “quick start guide”, and will be further developed

throughout this thesis.

The first step to understanding how we perform an eEDM experiment at JILA involves knowing the

energy landscape of the molecule. Figure 1.2 shows the most important features of the energy landscape of

ThF+. A diatomic molecule like ThF+ has a very rich internal structure. Much like atoms, our molecules have

electronic states. Unlike atoms, however, the electronic states are further split into vibrational manifolds,

which are then further split into rotational manifolds, and finally within each rotational manifold, we have

the hyperfine structure and parity doublets. The states that we choose to perform our eEDM measurement

in are the X 3∆1(v = 0, J = 1, F = 3/2,mF = ±3/2) states. Much must be done to compress internal
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population of our molecule into just these four states alone. We do this through optical (and microwave)

pumping.

The second step to understanding how we perform an eEDM experiment at JILA involves knowing

how optical pumping works in our molecule. Figure 1.3 shows the basic idea behind optical pumping. These

are standard techniques used in the AMO community. Further explanation in the captions.

The last piece of information we need to understand how we perform an eEDM experiment at JILA

is what we are measuring that tells us about the eEDM. Figure 1.4 shows the energy level diagrams for

the eEDM-sensitive states, and introduces the frequencies f0 (the frequency offset that we intentionally

introduce), fu (frequency difference of the upper Stark doublet), and f l (frequency difference of the lower

Stark doublet). At the end of the day, all efforts discussed in this thesis are aimed at measuring fu and f l

to the best of our abilities. Further explanation in the captions.

1.3 Thesis Layout

This thesis is a culmination of two main efforts: (i) various spectroscopy work on ThF and ThF+, and

(ii) design work on a prototypical multiplexed ion trap to take full advantage of the long coherence time of

ThF+. It serves as a guide on how to use ThF+ to measure the eEDM, albeit an incomplete one, one that

is a work in progress. Correspondingly, this thesis is split into the two parts:

(1) Part I: controlling the internal states of ThF+

(a) Preparing ThF+ ions (Chapter 2): how do we create ions state selectively;

(b) State readout of ThF+ (Chapter 3): how do we use action spectroscopy to readout the quantum

states of our ions;

(c) Quantum control of ThF+ (Chapter 4): how do we usher the ions into the desired quantum

state through optical and microwave pumping;

(2) Part II: the JILA proposal for how we want to use ThF+

(a) Interlude (Chapter 5): can we do something more with ThF+ than what we are already doing

with HfF+, formally introducing a multiplexed ion trap (the Bucket Brigade);
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(b) Ion cloud & decoherence (Chapter 6): the dynamics of an ion cloud and its consequences on

the design of the multiplex ion trap;

(c) Electric fields in the Bucket Brigade (Chapter 7): the design of the electrodes of a multiplexed

ion trap;

(d) Generating f0 in the Bucket Brigade (Chapter 8): exploration on various ways to turn bugs

(sources of systematic errors) into features (let them work for us);

(e) Control system (Chapter 9): an introduction to our upgraded control system;

(f) Cryogenics (Chapter 10): using cryogenics to take full advantage of the long coherence time in

ThF+.

So turn over to the next chapter, and we shall begin the story of how to perform an eEDM experiment

with ThF+ starting with the first step: how to create ThF+ ions.
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Figure 1.2: Energy landscape of a molecular ion like ThF+. Not drawn to scale. 1 cm−1 ≈ 30 GHz.
The electronic ground state is the X 3∆1. Within each electronic state, there are vibrational manifolds,
labelled by quantum number v. Within each vibrational level, there are rotational manifolds, labelled by
quantum number J (Hund’s case (c)). Within each rotational state, there are hyperfine manifolds (labelled
by quantum number F ), parity doublets (labelled by quantum number Ω; Ω = ±1 are color coded black
and blue, respectively), and Zeeman sublevels (labelled by quantum number mF ). This diagram shows a
compilation of (i) the few lowest lying electronic states (3∆1,

1Σ+, 3∆2, and
3∆3), (ii) higher lying states

used for optical pumping (Ω = 0+ and Ω = 0−), and a high lying state available for photodissociation
(|Ω| = 2). The grey horizontal boxes indicate breaks in the vertical (energy) axis. The two pairs of states
highlighted in pink are those used for the the eEDM measurement.



9

X 3∆1(v = 0) J = 2

J = 3

J = 1

X 3∆1(v = 1) J = 2

J = 3

J = 1

Ω = 0− [14.29] (v = 0)

J = 2

J = 0

J = 1

...

...

...

Other electronic states

Figure 1.3: Basic idea behind optical pumping. Only the relevant states from Figure 1.2 are shown
here. We start with population distributed among several rotational states in the X 3∆1(v = 0) vibronic
manifold (blue shaded circles). A laser incoherently pumps population out of the J = 2 rotational state into
the Ω = 0− [14.29] (v = 0, J = 1) state (solid black arrow).

Population pumped to the excited state then decays into lower lying states (grey dashed arrows). The decay
is subjected to selection rules (∆J = 0,±1). Hence, molecules can fall back to the J = 1, 2 rotational states.
Population that fall back to the X 2∆1(v = 0, J = 2) state can be pumped up again by the laser. Population
that fall back to the X 2∆1(v = 0, J = 1) state will remain dark to the laser, but this also happens to be
where we want the molecules to be for the eEDM measurement. This basic pattern (using the resonance
selectivity of excitations plus the “selection rule” selectivity of spontaneous decay) is used (i) to deplete
population from where we do not want it, or (ii) to accumulate population where we do, or (iii) sometimes
both. The entropy associated with the internal state distribution is transferred to the dissipated photons
from the spontaneous emission.

Population in the X 2∆1(v = 0, J = 3) state do not move in this partial scheme, but as we will see in
Chapter 4, we can use microwaves to couple the J = 2 and 3 to pump population from J = 3. Non-
diagonal Franck-Condon factors (vibrational wavefunction overlap between the electronic states X 3∆1 and
Ω = 0− [14.29] (v = 0)) allow for decay into higher vibrational manifolds in X 3∆1. These molecules will
decay to the v = 0 manifold after about 200 ms. We could also speed up the process by using vibrational
repumps: lasers that connect to the Ω = 0− [14.29] state from the v > 0 vibrational manifolds.

In general, molecules in in excited states can decay to multiple electronic states. In ThF+, however, the
branching ratio from Ω = 0− [14.29] back to X 3∆1 is very close to unity. Therefore, to close the optical
pumping cycle, we only need vibrational repump lasers.



10

− −

++

fu ≈ f0 + 2deEeff

f l ≈ f0 − 2deEeff

Energy

Brot

∆
2

f0 = 3gµBBrot

f =
√

∆2 + f2
0

∼ dmfErot

−∆
2

∆

∆

(a) (b)

(c) (d)

Ω Σ

Ω

Ω

Ω

Σ

Σ
Σ

∣∣mF = 3
2

〉∣∣mF = − 3
2

〉

∣∣mF = 3
2

〉 ∣∣mF = − 3
2

〉

n̂

n̂ n̂

n̂

Figure 1.4: Energy level diagrams of the eEDM-sensitive states. Only the X 3∆1(v = 0, J = 1, F =
3/2) states are shown. Refer to Figure 1.2 for the bigger overview.

(a) In the absence of external fields, the eigenstates are states of good parity. The molecule does not have
a preferred orientation. We assume that the positive parity state has the lower eigenenergy in this
schematic. We did not determine the energy ordering of the parity states in our experiments.

(b) When we apply an external electric field, we get Stark shifts that scale with the molecular dipole moment
dmf and the applied electric field Erot. The parity states mix and produce states of good orientation.
The internuclear axis unit vector n̂ points from the lighter anion to the heavy cation. To polarize our
molecular ions with an external electric field without ejecting them out of the ion trap, we apply a
rotating electric field, with rotation frequency frot that is fast compared to typical ion motion in the
trap, but adiabatic compared to typical energy scales in the molecule. As a result, we work in the
rotating frame of the molecules. In the absence of external magnetic fields, the mF = ±3/2 states mix
from the non-inertial-frame term in the rotating frame. The coupling strength is ∆.

(c) Without the non-inertial-frame term, the energy levels of the mF = ±3/2 states within either the upper
or lower Stark doublet follow the dashed lines. The energy difference f0 is just the Zeeman splitting
between them. In the presence of the non-inertial-frame term, we get an avoided crossing with splitting
∆. The net frequency difference between the mF = ±3/2 states is the quadratic sum of ∆ and f0. Note
that f0 is of a Zeeman nature in this schematic diagram, but as we will see in Chapter 8, it can also
come from Berry’s phase. The only purpose of f0 is to lift the degeneracy of the mF = ±3/2 states.
For our eEDM measurements, we park at an f0 ≫ ∆, where |mF = ±3/2⟩ are good eigenstates of the
system. To perform our π/2 pulse to prepare a superposition of the mF = ±3/2 states for our Ramsey
sequence, we ramp our fields so that f0 ≪ ∆ and allow the new eigenstates (almost equal superposition
of mF = ±3/2) to evolve for a time τ , such that 2π · ∆ · τ = π/2, before restoring our fields to the
f0 ≫ ∆ setting.

(d) We measure the eEDM in both the upper (red) and lower (blue) Stark doublets. The energy level of each
state goes as E ∼ EStark+EZeeman+EEDM. We measure the energy difference within each Stark doublet,

so the Stark term drops out. The eEDM term is EEDM = −deEeff , where de||Σ · n̂ and
−→
Eeff || − n̂. We

take the difference between fu and f l to extract EEDM. Higher order corrections like slight differences
in the g-factors and the ∆ coupling between the upper and lower Stark doublets are ignored here for
simplicity.



Chapter 2

Preparing ThF+ ions

2.1 Introduction

Following the footsteps of the experiments with HfF+, the first step in performing an eEDM exper-

iment with ThF+ involves creating neutral ThF. These neutral ThF will then be ionized state selectively

through resonance-enhanced multi-photon ionization (REMPI) to produce ThF+ in the eEDM-sensitive state

with high preparation efficiency. This process involves exciting ThF to a pre-ionization state, which is higher

in energy than the ground state of ThF+, whereupon it sheds energy by giving up an electron and falls

into a lower energy state in ThF+. To perform this state selective REMPI, we first need to perform survey

spectroscopy of the excited states of ThF to find the appropriate intermediate state for REMPI.

Previous work on ThF [44, 45] were laser-induced fluorescence (LIF) spectroscopy in a very limited

range slightly below 21500 cm−1 above the ground state X 2∆3/2, which is less than half of the ionization

energy (IE = 51585(50) cm−1 [44]). This is not the most optimum state for state selective REMPI because

of the following:

• The second photon of a 1 + 1′ REMPI usually requires more pulse energy than the first, so that the

transition from the intermediate state to the final state can be saturated.

• Since the laser pulse of the second photon is of higher energy, it is more likely to drive a one-color

multi-photon (off-resonant) transition than the first photon, because this process is a strong function

of the peak laser intensity. If the second photon has more energy than IE/2, then it could drive its

own 1′ + 1′ multi-photon ionization, and create ions with undesired internal states.
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• Therefore, it is better to have a first photon that is bluer in wavelength than the second, i.e. the first

photon should be more than IE/2. In ThF, the first photon should have a wavelength of less than

387 nm.

To find a state that fulfils all the above criteria for state-selective ion creation, we perform laser-

induced fluorescence (LIF) spectroscopy on ThF. This chapter is structured as follows. We first begin with

an introduction to the setup of the experiment in Section 2.2. Then we take a look at a sample of the results

of the scan in Section 2.3. A simple explanation of how we extract the spectroscopic constants is shown in

Section 2.4 and 2.5. Finally we conclude with further discussions of the LIF results and their relation to the

eEDM experiment with ThF+ in Section 2.6. The following sections will be paraphrases of our publication

Ref. [46].

2.2 Setup

A schematic of the setup is shown in Figure 2.1. The control system and data acquisition systems we

use are similar to those used in the HfF+ experiment, and shall be omitted here for brevity. The interested

reader can refer to theses of earlier members of the group (e.g. Huanqian Loh and Matt Grau) for more

details.

We use a tunable pulsed dye laser (Sirah Cobra-Stretch, 1800 grooves/mm single grating, 0.06 cm−1

linewidth at 600 nm) to perform the LIF spectroscopy. The wavelength of the laser is monitored continuously

by a wavemeter (Bristol 871B) during the scan. We reference the wavemeter to a stabilized He-Ne laser with

∼50 MHz absolute accuracy. We note that there are vibronic bands that overlap with each other, such that

they cannot be rotationally resolved by the pulsed dye laser, especially in the deep ultraviolet region. To

resolve these lines, we use a narrow-band pulsed laser system, which consists of a tunable cw-ring dye laser

(Sirah, Matisse DR2) and a pulsed dye amplifier (Radiant Dye Amp, 150 MHz linewidth). The wavelength

of the seeding laser is monitored by a high resolution wavemeter (High Finesse, WS7), which is referenced

to an external-cavity diode laser locked to a 87Rb transition at 384.227982 THz. Lastly, to reduce noise due

to laser scattering (e.g. from the ablation laser), a fast switch gates the PMT on 10 ns after the excitation
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Figure 2.1: Schematic diagram of the LIF experimental setup. The LIF spectroscopy consists of the
following steps:

(1) A plume of Th plasma is created through the ablation of a Th metal with a 532 nm laser focused
down to a beam waist of about 150 µm with about 2 mJ per 5 ns pulse from a Q-switched Nd:YAG
laser. The Th metal is mounted on an electronically controlled movable stage to give a fresh surface
for each ablation.

(2) The nozzle lets out a buffer gas of Ne at room temperature seeded with SF6 from a stagnant 100 PSI
reservoir. SF6 reacts with the Th plasma to give ThF, which gets entrained in the supersonic
expansion of Ne to form a molecular beam of ThF and cools ThF down to about 10 K in translational
and rotational degrees of freedom.

(3) A tunable laser intercepts the molecular beam in a cross-beam setup. If the laser frequency is
resonant with a transition in ThF, the molecule is excited to the excited state, and relaxes through
fluorescence, which is collected with optics and a photomultiplier tube (PMT). The signal from the
PMT goes to an oscilloscope, where the amplitudes and decay time of the trace are recorded and
analyzed.

(4) Repeat the experiment with different excitation wavelengths.

laser pulse is fired to extract the long-lived fluorescence signals (> 50 ns).

2.3 Sample of results

We record survey scans over the ranges of 13000 to 16000 cm−1, 18000 to 20000 cm−1, and 26000

to 44000 cm−1 using multiple laser dyes (LDS 698, DCM, Coumarin 540A, Coumarin 503, Coumarin 480

and Coumarin 460), and as necessary, frequency-doubled with a BBO crystal. 345 previously unreported

vibronic bands of ThF are recorded. The tables of quantum numbers of all the 345 vibronic bands span 15

pages in the paper, and shall not be included in this thesis for brevity. I would refer the interested reader to

our publication [46] for the fitted transitions. Specific vibronic bands that are interesting will be reproduced

here for discussion. A compressed plot of all the bands found and fitted in our spectroscopy is shown in
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Figure 2.2.
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Figure 2.2: Compressed spectra of all bands found (blue trace) and fitted (red dots above traces)
in our LIF survey spectroscopy. The grey region in the center indicates the region that we did not scan.
The area of interest lies to the right of the grey region because of the “above IE/2” requirement mentioned
in the introduction of this chapter.

Plotting the LIF amplitudes against the frequencies of the laser gives rotational structures as shown

in Figure 2.3.

(a) Ω′ = 1/2 (b) Ω′ = 3/2 (c) Ω′ = 5/2

Figure 2.3: Samples of rotational bands obtained from the LIF survey spectroscopy. The quantum
number Ω (Section 2.4) is listed for each of the three sample plots shown. The blue inverted traces are data
points from experiment, while the red traces are profiles of the simulated fits.

Interpretation of these bands and assignment of quantum numbers require knowledge of allowed

transitions through selection rules. We shall cover this in the next section.
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2.4 Spectroscopic constants, energy scales, and fitting form

The Hamiltonian governing a diatomic molecule is highly non-trivial. I would refer the interested

reader to textbooks (e.g. Ref. [47]) for a complete treatment of the full Hamiltonian and the selection rules

that come from it. Here, I shall only attempt to describe very specific cases, and lay out the spectroscopic

constants and quantum numbers relevant to selection rules that apply to most of the bands found in this

LIF survey spectroscopy:

Rotational constant, B. Inversely proportional to the moment of inertia of our diatomic molecule mod-

elled as a rigid rotor. Usually reported in units of cm−1.

Origin of vibronic band, ν0. Usually reported in units of cm−1.

Rotational quantum number, J . The quantum number J comes from the total angular momentum op-

erator J = L+S+R = Ja+R, where L, S, Ja and R are the electronic orbital angular momentum,

electronic spin angular momentum, total electronic angular momentum, and rotational angular mo-

mentum of the nuclei, respectively. Selection rules for E1 (electric dipole; single photon) transitions

only allow for transitions between states with ∆J = −1, 0,+1, which, in spectroscopy literature,

correspond to P, Q, and R transitions, respectively. The P, Q, and R transitions give rise to dis-

tinctive P, Q, and R branches, which can be seen from the marked ticks in Figure 2.3. The relative

intensities of the P, Q, and R branches are determined by Hönl-London factors, which are detailed

below.

Projection of total angular momentum onto internuclear axis, Ω. The quantum number Ω takes

values from −Ja to Ja (in integral steps). It is formally defined as Ja · n, where n is the inter-

nuclear axis vector pointing towards the cation. The quantum number Ω reported for the LIF

spectroscopy are the absolute values |Ω| since our setup is not sensitive to the sign of Ω. Selection

rules for E1 transitions only allow for transitions between states with ∆Ω = 0,±1.

For completeness, the projections of L and S onto the internuclear axis are denoted as L·n =: Λ and S·n =: Σ.

Some combination of all the above quantum numbers are used in the molecular term symbol: 2S+1ΛΩ to
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label the molecular quantum states, much like the Russel-Saunders term symbol for atomic states. These

term symbols are strictly only valid for states that fall under Hund’s case (a), because quantum numbers

like Λ may no longer be good quantum numbers for states belonging to other Hund’s cases. While more

information on Hund’s cases can be found in many textbooks (e.g. Brown et al. [47]), Figure 2.4 provides a

quick summary of three Hund’s cases relevant to this thesis.
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Figure 2.4: Quick summary of Hund’s cases (a), (b), and (c). Adapted from Ref. [47]. Hund’s cases
(d) and (e) are not relevant to this thesis. Solid filled arrows indicate angular momenta or their projections
onto the internuclear axis. Unfilled arrows indicate couplings between angular momenta or the internuclear
axis; solid unfilled arrows imply a stronger coupling than dashed unfilled arrows. Quantum numbers with
“?” indicate not-a-good quantum number. Selection rules are also indicated at the bottom of each box.
Examples of the relevant rotational energy level structure are also shown in each box.

The transitions between the ground state in ThF and excited states have energies of the following

form:

ν = ν0 + E′(J ′)− E′′(J ′′), (2.1)

where E(J) can take on several forms depending on which Hund’s case the relevant states fall under. We

managed to fit our transitions to three main classes, and these are the forms of E(J) relevant to our LIF
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spectroscopy:

Hund’s case (c). L and S couple strongly together, and their resultant angular momentum then couples to

the internuclear axis to give Ω. This situation arises in heavy molecules. We expect most electronic

states in ThF to fall under this category because of the heavy thorium atom. This is especially true

when J is small. This will give:

E(J) = BJ(J + 1). (2.2a)

The ground electronic state of ThF (X 2∆3/2) is well described by Hund’s case (c). Good quantum

numbers are J and Ω. The observed Ω-doubling is much smaller than the linewidth of our laser, and

shall be neglected in our fitting model. Hönl-London factor is given by:

HLΩ′,J′,Ω′′,J′′ = (1 + δΩ′,0 + δΩ′′,0 − 2δΩ′,0δΩ′′,0) (2J
′ + 1) (2J ′′ + 1)×

(
J′ 1 J′′

−Ω′ (Ω′−Ω′′) Ω′′

)2

, (2.2b)

where δi,j is the Kronecker delta function, and the last term is the Wigner 3j symbol. Single-

(double-) primed quantum numbers correspond to those of the excited (ground) state. Samples of

bands in Hund’s case (c) are shown in Figure 2.3.

Hund’s case (b). This is the case where Λ = 0, e.g. when L precesses around the internuclear axis,

but is fully orthogonal to it. In this case, spin-orbit coupling vanishes, and S decouples from the

internuclear axis. One consequence of this is that Ω is now ill-defined; the good quantum number

to use now is N , where N is the quantum number for the total angular momentum excluding spin

N = J− S. Another consequence is that there will multiple sets of PQR branches corresponding to

the multiplicity of the spin. For the case of S = 1/2, we have two sets of PQR branches with:

Ea/b(N) = BN(N + 1)− γ

2

(
N +

1± s

2

)
, (2.3a)

where {a, b} denote the doublets, γ is the spin-rotation constant, and s = ±1 corresponds to the a
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and b doublets, respectively. The PQR branches are determined by the following selection rules:

Pa/b :

(
N ′ ∓ 1

2

)
− J ′′ = −1,

Qa/b :

(
N ′ ∓ 1

2

)
− J ′′ = 0,

Ra/b :

(
N ′ ∓ 1

2

)
− J ′′ = 1,

where the upper (lower) sign corresponds to the a (b) state, and once again single- and double-

primed variables denote the excited and ground states involved in the transitions, respectively. The

Hönl-London factors for a Hund’s case (c) (the ground state) to a Hund’s case (b) transition is:

HLΛ′J′N ′,Ω′′J′′ =

∣∣∣∣∣∣
∑
Σ′,Ω′

√
2N ′ + 1 (−1)J

′+Ω′√
HLΩ′,J′,Ω′′,J′′

(
S N ′ J′

Σ′ Λ′ −Ω′

)∣∣∣∣∣∣
2

, (2.3b)

where HLΩ′,J′,Ω′′,J′′ is the Hönl-London factor for a Hund’s case (c) to case (c) transition, as shown

in equation 2.2b. A sample of a rotational band under Hund’s case (b) in the LIF spectroscopy is

shown in Figure 2.5.

Figure 2.5: Sample of a Hund’s case (b) rotational band obtained from the LIF survey spec-
troscopy. The blue inverted traces are data points from experiment, while the red traces are profiles of the
simulated fits.

2Π states The last class of transitions involve excited 2Π states. These states have significant Λ-doubling.

Since we do not have enough spectroscopic resolution to resolve the e/f symmetry components of

the lower state of the transition, we cannot determine the absolute parities of the upper states.

Following the convention used in Loh et al. [48], we label related Λ-doubling pairs as a/b instead of
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e/f . The upper state can be modeled by:

Ea/b(J) = B′J(J + 1)∓ 1

2
(p+ 2q)

(
J +

1

2

)
, (2.4)

where (p + 2q)/2 is the Λ-doubling constant. The upper (lower) sign corresponds to the a (b)

symmetry component. An example of a band with resolvable Λ doubling is shown in Figure 2.6.

Figure 2.6: Sample of a band with resolvable Λ-doubling. Red arrows indicate strong thorium atomic
transitions (from NIST Atomic Spectra Database [49]). The blue inverted traces are data points from
experiment, while the red traces are profiles of the simulated fits.

2.5 Vibrational progression

All of the ThF transitions that we have assigned seem to have the X 2∆3/2 ground electronic state as

the lower level. The first excited state of ThF is 2∆5/2, which is 2500 cm−1 higher in energy and has not been

observed in our experiments [44]. However, there are finer structures within the ground electronic states,

e.g. vibrational. During the molecule production, some of the molecules are created in excited vibrational

states within the ground electronic manifold. The vibrational spacing of the ground state is about 600 cm−1

(1 cm−1 ≈ 30 GHz). Given favorable Franck-Condon factors, different vibrational states from the ground

electronic manifold can couple to the same excited vibronic state, giving rise to a vibrational progression of

transitions separated by the vibrational spacing of the ground electronic manifold. Likewise, the same lower

vibronic state can couple to vibrational progressions of the excited electronic state.

Using a combination difference analysis, we tentatively group vibronic bands that share the same

upper and lower electronic states, but different vibrational levels, into sets of vibrational progressions. The
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combination differences of the lower states are known from previous work [44, 45]. The criteria for extracting

combination differences for the upper states are: (i) vibronic bands that belong to the same electronic state

should have similar rotational constants; and (ii) vibrational constants should agree with ab initio calculations

within a reasonable range (500 < ωe < 700 cm−1, 0 < ωeχe < 10 cm−1, similar radiative lifetime).

For transitions that we associate with a vibrational progression, we redo the fit to the vibronic band

using the rotational constant (Bv′′) for the relevant vibrational quantum number (v′′) of the lower state in

the transition. From these fits, we extract the molecular constants νe, Be, αe, ωe, and ωeχe. These constants

are related to the fitting constants (ν0, Bv, and v, which are defined in previous sections) as such:

ν0 = νe + ω′
e

(
v′ +

1

2

)
− ω′

eχe

(
v′ +

1

2

)2

− ω′′
e

(
v′′ +

1

2

)
+ ω′′

eχe

(
v′′ +

1

2

)2

, (2.5a)

Bv = Be − αe

(
v +

1

2

)
. (2.5b)

We extract the molecular constants of the ground state with global fit to all the transitions involved

in vibrational progressions, and the result is summarized in Table 2.1.

This work (exp.) Barker et al. [44] Theory

ωe (cm−1) 601.00(2) 605(15) 598.8
ωeχe (cm−1) 2.07(3) - 2.1
Be (cm−1) 0.2339(2) 0.237(5) 0.2325
αe (cm−1) 0.0014(3) - -
re (Å) 2.026(3) 2.01(3) 2.032

Table 2.1: Comparison of molecular constants of the X 2∆3/2 ground state of ThF in experiment and theory.
90% confidence intervals are quoted in parentheses. The parameter re is the equilibrium internuclear distance,
and the other molecular constants are defined in equation 2.5. We collaborated with Prof. Lan Cheng from
Johns Hopkins University for the theoretical calculations [46].

A comprehensive list of the upper state vibrational progressions that we have tentatively assigned is

shown in Table 2.2.

For progressions with only two different v′, e.g. v′ = 0 and v′ = 1, we conventionally set ωeχe to

zero so that ωe is just the splitting between the relevant rotational band origins of the upper state. 90%

confidence intervals, which come from a convolution of fitting uncertainties and vibrational progression fitting

uncertainties, are quoted in parentheses in Table 2.2.

Since the bands in our data set have relatively low resolution and high state density, there is a risk that
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νe Be αe ωe ωeχe
p+2q

2

Ω = 3/2 [14.09] 14093.80(3) 0.2276(5) - 557.25(2) - -
Ω = 3/2 [15.18] 15180.19(1) 0.2221(9) - 584.00(4) - -
Ω = 3/2 [18.62] 18616.19(2) 0.2179(5) 0.0013(2) 517.54(3) 2.00(1) -
Ω = 3/2 [19.98] 19978.19(3) 0.2172(4) 0.0007(3) 533.05(3) - -
Ω = 3/2 [20.40] 20397.40(2) 0.2126(3) - 569.47(2) - -
2Π1/2 [27.98] 27977.94(4) 0.2173(8) - 563.13(4) - 0.009(6)

Ω = 3/2 [28.37] 28370.52(3) 0.2138(5) - 577.59(3) - -
2Π1/2 [29.22] 29223.19(6) 0.2175(3) - 580.5(1) 3.80(8) 0.022(3)

Table 2.2: Comprehensive list of tentative assignments of vibrational progressions. Vibrational
progressions are groups of transitions which share the same upper and lower electronic states, but different
vibrational levels. Units for all the above constants are quoted in cm−1. 90% confidence intervals, which come
from a convolution of spectroscopic fitting uncertainties and vibrational progression fitting uncertainties, are
quoted in parentheses. Large fitting uncertainties for the rest of the vibrational progressions prevent us from
extracting their corresponding αe, so αe is set to zero for our fitting purposes.

transitions are incorrectly grouped, and that apparent progressions occur only due to coincidence. Hence,

more experiments are required to confirm these preliminary assignments, and we leave this as a challenge to

our fellow spectroscopists.

The aforementioned analysis allows us to group most of the vibronic bands found in the visible region

into vibrational progressions. In the ultraviolet region, however, we are unable to identify any definite

vibrational progressions. Missing transitions in vibrational progressions could be explained by perturbations

of these high energy levels, which will be discussed in Section 2.6.2.

2.6 Further discussion

2.6.1 Search for the s2l state in ThF

The ground electronic state of ThF has an s2d structure for its valence electrons. A one-photon

transition can bring the configuration to spd, s2p, or s2f . We started the LIF experiment hoping to find an

s2f Rydberg state, where we can excite it with more photons to bring it to a pre-ionization state with s2l

configuration, where l ≥ 4. States with s2l configurations are known as core-nonpenetrating Rydberg states,

where the orbital angular momentum of the Rydberg electron prevents the electron from having significant

spatial overlap with the rest of the molecule. This molecule can then autoionize by shedding energy from

the s2 ion core to the Rydberg electron and preserve its s2 nature.
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An ionization process like this would prepare all the ions in the J = 0 state. In principle, this

can give a much higher state preparation efficiency as compared to the one we settled on (Section 2.6.3),

where the molecule autoionizes into a distribution of J states within the ground vibronic manifold of ThF+

X 3∆1(v = 0, J = 1 to 5).

Working with our theorist collaborator Prof. Lan Cheng, we know that s2l states are high-lying

states and have B constants that are close to that of ThF+ (0.243 cm−1 [43]) because of their similarities in

electronic structures. However, all the B constants of the transitions that we find are smaller than the ground

state (0.233 cm−1), which is consistent with the fact that excited states usually have longer internuclear

separation of the nuclei, resulting in smaller B = ℏ2

2µr2e
(where µ is the reduced mass). Disappointingly, these

states with B smaller than that of the ground state are probably spd states.

Moreover, the spectra obtained at high energy levels (deep ultraviolet region) in our LIF spectroscopy

exhibit characteristics of strong perturbations (lack of regular rotational band structure), which make identi-

fying the states very hard with the resolution that we have. Hence, we ended up with an extensive database

of transitions but not the one we started out to search for. Nevertheless, we managed to find a suitable state

to use as our intermediate state for REMPI (Section 2.6.3), but before we move on to that we shall address

the problem with perturbations in the deep ultraviolet region in the next section for completeness.

2.6.2 Perturbations in the deep ultraviolet region

One explanation for the lack of regular rotational band structures in the deep ultraviolet region is

the result of perturbations between the s2f states and spd states. In contrast to the region where only spd

states exist, i.e. low lying states, the diabatic potential curves of both types of states cross very frequently at

high energy levels (Figure 2.7), because of the significant difference in their internuclear distances (different

rotational constants of spd and s2f). In this region, interactions could give rise to many avoided crossings,

and profoundly distort the molecular potentials for both the s2f and spd states. The crossings of these

potential curves would redistribute the oscillator strength of a vibrational level in a potential curve to many

other vibrational levels of other potentials, hence making the transitions very weak and come with irregular

vibrational patterns.
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Figure 2.7: Crossings of diabatic potential curves of spd and s2l states distort the potential
curves. The horizontal lines represent the vibrational levels. Left: low lying spd and s2f states have similar
internuclear distances, so their potential curves do not cross each other. Right: high lying spd and s2f states
have different internuclear distances, so their potential curves (dashed) cross each other and mix, giving rise
to very different adiabatic potential curves (solid).

2.6.3 Auto-ionization into the ground vibronic state of ThF+

We choose the Ω = 3/2 [32.85] state as the intermediate state for the creation of ThF+ in the

X 3∆1(v = 0) state through REMPI. This choice is motivated by several considerations:

(1) This chosen intermediate state lies above IE/2, and so non-resonant ionization from ground state of

ThF by the more intense second photon is greatly suppressed.

(2) The transition from the ground state to the Ω = 3/2 [32.85] state is a relatively strong transition in

a wavelength region that is easily accessible.

(3) A convenient 532 nm photon (from the second harmonic of Nd:YAG laser) can be used as the

second photon, which excites the neutral molecule into a broad autoionizing resonance that lies only

62 cm−1 above the ionization potential for decay into theX 3∆1(v = 0) state in ThF+. Since the next

vibronic state a 1Σ+(v = 0) lies 314 cm−1 above the ground state, energy considerations restrict all

ions formed to be in the ground vibronic state, which coincidentally is the preferred eEDM-sensitive

state.

We verify the formation of ions in the ThF+ ground vibronic state by state-selective resonance-



24

enhanced multi-photon dissociation (REMPD). The details of the dissociation technique will be described in

Chapter 3. Using the dissociation readout technique, we also show that the distribution of the ion population

across the different J+ levels depends on the J ′ quantum number of the intermediate state used in the REMPI

process (the + superscript indicates quantum numbers of the ThF+ to distinguish it from those of ThF).

The J+-distributions of the ions created with different J ′ intermediate states are shown in Figure 2.8.

Figure 2.8: J+-distributions of ThF+ ions created from different intermediate J ′ states of ThF.
The rotational distribution of the ThF+ ions shifts toward higher J+ states as the J ′ value of the intermediate
state is increased. For easy comparison purposes, the red and blue traces are offset upward from zero by 30
and 60, respectively. These traces are scans of the R branch of the dissociated intermediate state used in
the resonance-enhanced multi-photon dissociation spectrum.

Figure 2.8 shows that the rotational distribution of the ions shifts toward higher J+ states when a

higher J ′ intermediate state is used. Since the electron that is lost during the ionization process carries

a fixed range of angular momenta, we expect to see a higher final angular momentum distribution for the

ions when an intermediate state of higher angular momentum is used, and vice versa [50]. Since the eEDM

sensitive state is the lowest rotational state (J+ = 1), we use the J ′ = 3/2 state as our intermediate state

for the REMPI process, which results in 30% of the ions being produced in the desired J+ = 1 state.

Before we move on to talk about spectroscopy experiments performed on ThF+ created with this

new-found intermediate state, we shall have some closing remarks on the LIF experiment.
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2.6.4 Closing remarks

2.6.4.1 Contamination from other species and REMPI TOF-MS

The LIF experiment on ThF has been plagued by contamination from other species created during

the molecule creation stage. Performing a REMPI time-of-flight mass spectrometry (TOF-MS) on our

molecular beam shows contamination by species like ThO and ThF2. The TOF-MS is performed by kicking

the molecular beam with electric fields towards a microchannel plate (MCP) after they are ionized by the

REMPI lasers. The kick imparts the same momentum to all the ions (of the same charge), resulting in spatial

separation of species with different masses as they fly towards the MCP, giving rise to different arrival times

at the MCP. A sample of the trace from the REMPI TOF-MS is shown in Figure 2.9

Figure 2.9: Typical traces of the REMPI TOF-MS experiments. The separation of species by mass
in the REMPI TOF-MS trace allows us to distinguish the ion species to separate the ThF signals from the
rest. Our mass resolution is sufficiently high to separate ThO+ from ThF+.

One possible reason for seeing ThO signals in our LIF is that ThO is created during the ablation stage

where residual oxygen from air that is mixed into our buffer gas reservoir reacts with the thorium plasma to

create ThO.
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2.6.4.2 Current status of ion creation

In Section 2.6.3, we saw that we can create ions with 30% of them in the J+ = 1 rotational manifold

by addressing the Ω = 3/2 [32.85] (v′ = 0, J ′ = 3/2) intermediate state. Having a lot of ions created in the

J+ = 1 rotational manifold is desirable because that is the eEDM-sensitive manifold in our experiment, and

ions in the rest of the rotational manifolds only contribute to decoherence through ion-ion collisions in our

ion trap.

We can go through the Ω = 3/2 [32.85] (v′ = 0, J ′ = 3/2) intermediate state by addressing the ground

state of our neutral ThF molecule with a laser tuned to the P(5/2) or a Q(3/2) line as the first photon of our

REMPI process. However, as we shall see in Chapter 4, we have the ability to move ion population in the

J+ > 1 rotational manifolds into the J+ = 1 manifold with optical and microwave pumping. Hence, there

is no pressing need for us to stick to the J ′ = 3/2 intermediate state to maximize our yield of useful ThF+

ions. In fact, we now illuminate our ions with our dye laser parked at the Q branch, addressing the Q(3/2),

Q(5/2), and Q(7/2) lines simultaneously (incoherently) with the broad linewidth of our pulsed dye laser.

The ions created no longer have a population peak at J+ = 1, but we now have many more ions because the

Q lines address the molecules in the X 2∆3/2(v
′′ = 0, J ′′ = 3/2 to 7/2) vibronic manifold instead of only the

J ′′ = 3/2 with the Q(3/2) line only. Ions spread out across the rotational manifolds can then be ushered

into the J+ = 1 rotational manifold with techniques to be introduced in Chapter 4.

Understanding how we usher ions to our desired quantum states involve knowing how to perform state

readout of our ions first. So we shall be patient and first look at how we read out the quantum states of our

ions using photodissociation in the next chapter. Note that from here on, we will only be talking about the

ThF+ ion, so we shall drop the + superscript from the quantum numbers.



Chapter 3

State readout of ThF+

3.1 Introduction

The previous chapter taught us how to prepare ThF+ ions. Using techniques to be discussed in this

chapter, we managed to verify that the ions are prepared in the ground vibronic state of ThF+. Similar

to its ionization counterpart, REMPI, we use resonance-enhanced multi-photon dissociation (REMPD) to

dissociate our molecule state selectively to perform our quantum state readout. Our pulsed dye laser (Sirah

Cobra-Stretch) has a linewidth that is narrow enough (∼ 6 GHz after doubling with BBO) to distinguish

between rotational lines (∼ 10 GHz), but not structures like hyperfine, Stark, parity doublets, and Zeeman

sublevels within each rotational manifold. To discern ion population within the finer structures, we use cw

lasers to shelf ions in higher rotational or vibrational states (see Chapter 4) before dissociating everything

that is left in that rotational manifold. Upon dissociation, the molecules in the targeted rotational state

will turn into Th+ ions and neutral F atoms, and the ions (both the dissociated Th+ and the undissociated

ThF+) are ejected towards our microchannel plate (MCP) assembly for detection (see Figure 3.1). The time

of flight is long enough for the ions of different species to separate by their masses. This has been the basis

of state readout in the Gen. I experiment. With this technique, we can read out the ion population in a

single selected rotational manifold with each shot of our experiment.

In the Gen. II experiment, in collaboration with Prof. Tanya Zelevinsky from Columbia University, we

managed to squeeze more out of our dissociation technique to give us two-state detection, instead of just one

state, with each destructive measurement with our action spectroscopy [38]. In short, this upgrade makes
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Figure 3.1: Schematic diagram showing state readout using state-selective REMPD. On the left
we have the ions right after dissociation; molecules in the targeted state are dissociated (indicated with
dashed lines connecting the blue fluorine atom and the red thorium ion), and those in the wrong state
remain intact as molecules (indicated with solid lines). Right after dissociation, the ions are ejected out of
the trap (rightwards in the diagram) towards the ion detector. The Th+ ions are separated from the ThF+

ions by their difference in masses, and they reach the detector first. By counting the number of Th+ ions,
we can deduce how many ions are in the targeted state right before dissociation.

use of the fact that the photofragments can be ejected out of the molecule with an angular dependence on

the state of the molecule before dissociation. By choosing the intermediate state used for REMPD carefully,

we can have the photofragments ejected in largely opposite directions for the two different states that we

wish to detect. This also relies on the fact that our molecules have well defined orientations in our trap

along the direction of the electric field (Erot) that we use to polarize our molecules. The physics behind this

angle-resolved photofragments technique is quite involved, but it is mentioned in many sources (see Ref.

[38, 51–53], and William Cairncross’s thesis) so I shall only state the expression of the angular distribution

here:

I(θ, ϕ) ∝
∑
Ωf

∣∣∣∣∣ ∑
Jf ,(mJ )f

√
2Jf + 1

(
DJf

(mJ )f ,Ωf
(ϕ, θ, 0)

)∗
⟨ϕcont.

Jf ,(mJ )f ,Ωf ,E
|µµµ · ϵϵϵ|ϕ′⟩

∣∣∣∣∣
2

=
∑
Ωf

∣∣∣∣∣ ∑
Jf ,(mJ )f

√
2Jf + 1

(
DJf

(mJ )f ,Ωf
(ϕ, θ, 0)

)∗

×
∑
p,q

(−1)p+(mJ )f−Ωf

√
(2Jf + 1)(2J ′ + 1)

×
(

Jf 1 J′

−(mJ )f −p m′
J

)(
Jf 1 J′

−Ωf q Ω′

)
µµµq,{Jf ,(mJ )f ,Ωf ,E}ϵϵϵp

∣∣∣∣∣
2

, (3.1)

where D is the Wigner D-matrix; µµµq is the qth (spherical tensor) component of the transition dipole moment;
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ϵϵϵp is the pth (spherical tensor) component of the (second REMPD) photon polarization; primed variables

belong to the state that we are dissociating from (the intermediate state in our 1 + 1′ scheme); variables

with the subscript f indicate those for the predissociation state. By E1 selection rules (or properties of the

Wigner 3-j symbol), we demand that (mJ)f = m′
J −p and Ωf = Ω′+ q. The sum is coherent in {Jf , (mJ)f}

but incoherent in Ωf . Caveat: this necessarily assumes that predissociation states of different Ωf are well

separated in energies.

The question now is whether we can also implement this upgraded detection scheme on ThF+. The

rest of this chapter will proceed as follows. We will begin with the rule of thumb (Section 3.2) for choosing

the intermediate state that will give us the best angle-resolved photofragment resolution. We will then look

at results from our spectroscopy (Section 3.3). Finally we will discuss how we can further optimize this

technique on ThF+ (Section 3.4).
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3.2 Rule of thumb for two-state detection using angle-resolved photofrag-

ments

There are two main things1 that we care about in performing two-state detection using angle-resolved

photofragments: (i) angular distribution of photofragments, and (ii) energy of ejected photofragments.

3.2.1 Angular distribution of photofragments

We want the angular distribution to be asymmetric about the equator, and as polar as possible. It

turns out that the angular distribution depends on both the intermediate and the predissociation states that

we address. There is no hard and fast rule on what dissociation pathway we should take to get the most

directed angular distribution, a polar one in an ideal case, but here is a rule of thumb on how to choose the

intermediate state.

Dissociate from states with Ω′ ̸= 0. States with Ω′ = 0 are not polarized, i.e. the molecule does not have

a preferred orientation w.r.t. our polarizing Erot = 60 V/cm at the current field strength applied.

Our Erot is not strong to couple states of opposite parity for states with Ω′ = 0; the closest state

of opposite parity in an Ω′ = 0 state is the next rotational state, but the Stark coupling is small

compared to the rotational splitting (dmfErot ∼ 100 MHz vs rotational splitting ∼ 30 GHz)2 . Since

states with Ω′ = 0 are not polarized, the photofragments will be ejected equally likely in both

hemispheres, thus rendering the two-state detection through angular resolution of photofragments

ineffective.

Dissociate from states with m′
J ̸= 0. Molecules in them′

J = 0 state have the J ′ vectors precessing on the

plane perpendicular to the quantization axis. We do not expect highly polar angular distributions

when dissociating from such states.

The first REMPD photon: J ′ = 2. Our first REMPD photon takes us from our eEDM-sensitive state

X 3∆1(v = 0, J = 1,mJ = 1, |Ω| = 1) to an intermediate state (J ′,m′
J , |Ω′|).3 We choose to work

1 There is a third. We want to have high dissociation efficiency. We will talk about this more in Section 3.4.2.
2 For the |Ω′| > 0 states, states of opposite parities are separated only by the Ω-doubling splitting ∼ 10 MHz
3 Our eEDM-sensitive states are in the mF = ±3/2 stretched Zeeman states, so they correspond to the mJ = ±1 states.

We will be switching between these two languages for the bulk of this section.
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with J ′ = 2 because the linewidth of our pulsed dye lasers are not narrow enough to resolve the Q

lines to dissociate only the X 3∆1(v = 0, J = 1) rotational manifold, so we park on the R(1) line

instead. The quantum number m′
J depends on the polarization of the photon used, e.g. m′

J = 2 if

we use a σ+ photon, and m′
J = 1 if we use a π photon. Our molecule decides what |Ω′| is at the

wavelength of the first photon used, but we get to decide which wavelength to use.

One could simulate the angular distributions of all possible dissociation pathways from our eEDM-

sensitive state, assuming that the transitions exist. One can then see what intermediate states are available

to us from our spectroscopy, and decide on a REMPD scheme that gives the most polar angular distribution.

All the constraints above limit us to only ten possible outcomes: four for |Ωf | = 1, and six for |Ωf | = 2.

There is no reason not to look at all of them, shown in Figures 3.3 and 3.4.

The first thing we noticed from Figure 3.3 is that the directedness of the photofragments do not look

impressively polar for the cases of |Ωf | = 1. One reason is that when Ω′ < J ′ for a fixed m′
J , the internuclear

axis of the molecule is not as aligned with the polarization axis (see Figure 3.2).

Ω′
m′

J

√
J ′(J ′ + 1)

Erot

√
J ′(J ′ + 1)

m′
J

(a) (b) (c)

Ω′

√
J ′(J ′ + 1)

m′
J Ω′

Figure 3.2: Semiclassical picture of molecule alignment with polarizing field. The dashed line
indicates the direction of our polarizing axis defined by our applied electric field Erot. (a) The quantum
numbers m′

J and Ω′ are the projections of J ′ onto the quantization axis and internuclear axis, respectively.
The internuclear axis precesses and nutates around the polarizing axis to preserve the quantum numbers.
The configuration in (a) shows the situation where |m′

J | ≠ |Ω′|: the internuclear axis is not well aligned with
the quantization axis. (b) Situation where J ′ = |m′

J | = |Ω′|; the internuclear axis is better aligned with the
polarizing axis, giving more directed photofragments towards the pole. (c) Having a large J ′ = |m′

J | = |Ω′|
makes the J ′ vector precess even closer to the internuclear axis as compared to (b), giving even more directed
photofragments towards the pole.

Furthermore, we only have access to |Ωf | = 0, 1, 2 if we start from the |Ω′| = 1 intermediate state by

the E1 selection rules. Throwing Ωf = 0 out of our list of choices for aforementioned reasons, we are limited

to only four choices. Only the σ+ plot in Figure 3.3b looks promising, but there is no promise that we will
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end up with an |Ωf | = 2 predissociation state. Fortunately, the directedness of the photofragments do look

much more polar if |Ω′| = 2. We shall take a look at this next.
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(a) From J ′ = 2,m′
J = 1,Ω′ = 1 to Ωf = 1. Transition strength: (0.102, 0.158, 0.188)
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(b) From J ′ = 2,m′
J = 1,Ω′ = 1 to Ωf = 2. Transition strength: (0.102, 0.145, 0.249)
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(c) From J ′ = 2,m′
J = 2,Ω′ = 1 to Ωf = 1. Transition strength: (0.200, 0.116, 0.381)
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(d) From J ′ = 2,m′
J = 2,Ω′ = 1 to Ωf = 2. Transition strength: (0.0392, 0.201, 0.476)

Figure 3.3: Simulated angular distribution of photofragments I(θ, ϕ) for Ω′ = 1. Left column:
Newton sphere plots. The Newton sphere plots should be interpreted this way: (i) imagine the molecule
to be at the center of the sphere, oriented with the Th side pointing upwards; (ii) upon dissociation, the
Th+ ion is ejected from the molecule, and it hits the inside surface of the sphere, painting it blue. To
effect a two-state detection with the anisotropic angular distribution of photofragments, we demand the
blue (photofragments) to be as concentrated at the poles as possible, so that the overlap of photofragments
from molecules with the opposite orientation is minimized for maximum distinguishability. In each subfigure,
there are three Newton spheres, corresponding to the result of using different polarizations of the dissociating
photon (second REMPD photon in our case). Right column: number density along the polar angle (θ)
direction. In other words, the total number of photofragments within a solid angle spanned by dθ dϕ sin θ
at (θ, ϕ) is I(θ, ϕ) sin θ dθ dϕ, and I have plotted out

∫
I(θ, ϕ) dϕ. The dissociation efficiencies are shown in

order of the cases (σ−, π, σ+). The strengths shown are evaluated from 1
4π

∫
I(θ, ϕ) dΩs.a. with µµµ in Equation

3.1 given only by the relevant Clebsch-Gordan coefficients, and Ωs.a. the solid angle, not to be confused with
quantum number Ω. More discussion of the plots in main text.
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(a) From J ′ = 2,m′
J = 1,Ω′ = 2 to Ωf = 1. Transition strength: (0.175, 0.113, 0.0582)
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(b) From J ′ = 2,m′
J = 1,Ω′ = 2 to Ωf = 2. Transition strength: (0.176, 0.0862, 0.180)
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(c) From J ′ = 2,m′
J = 1,Ω′ = 2 to Ωf = 3. Transition strength: (0.0286, 0.203, 0.317)
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(d) From J ′ = 2,m′
J = 2,Ω′ = 2 to Ωf = 1. Transition strength: (0.397, 0.153, 0.0476)
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(e) From J ′ = 2,m′
J = 2,Ω′ = 2 to Ωf = 2. Transition strength: (0.0751, 0.322, 0.238)
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(f) From J ′ = 2,m′
J = 2,Ω′ = 2 to Ωf = 3. Transition strength: (0.00317, 0.0794, 0.713)

Figure 3.4: Simulated angular distribution of photofragments I(θ, ϕ) for Ω′ = 2. Left column: New-
ton sphere plots. See caption of Figure 3.3 on the interpretation of the Newton sphere plots. Right column:
number density along the polar angle (θ) direction. In other words, the total number of photofragments
within a solid angle spanned by dθ dϕ sin θ at (θ, ϕ) is I(θ, ϕ) sin θ dθ dϕ, and I have plotted out

∫
I(θ, ϕ) dϕ.

The transition strengths are shown in order of the cases (σ−, π, σ+). The strengths shown are evaluated
from 1

4π

∫
I(θ, ϕ) dΩs.a. with µµµ in Equation 3.1 given only by the relevant Clebsch-Gordan coefficients, and

Ωs.a. the solid angle, not to be confused with quantum number Ω. More discussion of the plots in main text.
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We shall use the results in Figure 3.4 to make a few comments:

Choice of second REMPD photon polarization. Let me draw your attention to the last three rows of

Figure 3.4. These correspond to angular distributions of photofragments with the same intermediate

state (with a σ+-polarized first REMPD photon), but different |Ωf |. The thing to note is that

depending on what |Ωf | is, one has to choose the appropriate polarization of the second REMPD

photon to maximize the directedness of the angular distribution of photofragments, i.e. σ−-, π-, and

σ+-polarized second REMPD photon for |Ωf | = 1, 2, and 3, respectively.

How can we know what |Ωf | is? We could just scan the whole photon polarization parameter space to

find out, but let me suggest an approach that is more guided from an experimental standpoint.

We still focus on the last three rows of Figure 3.4. We can compare the contrast of the angular

distribution of the case where the second REMPD photon is σ+ against that of σ−. If they look

very similar, chances are the predissociation state has a very strong |Ωf | = 2 character (see Figure

3.4e).

To verify the |Ωf | = 2 character, one would have the switch either the first photon (Figure 3.4b) or

the second photon (Figure 3.4e) to π-polarization, and see an improvement in contrast.

If the contrasts look very different with the handedness of the circular polarization for the second

photon, one can switch both REMPD photon polarizations to π, and see if we end up with Figures

3.4a or 3.4c.

What should we do for the different cases of |Ωf |? If |Ωf | = 3, we just need to use a σ+-polarized

first photon, and a σ+-polarized second photon. This is as good as it gets for |Ωf | = 3.

If |Ωf | = 2, we have a choice. Comparing Figures 3.4b and 3.4f, one may think that the σ+ plot in

former gives a more polar angular distribution than the π plot in the latter, because the part above

the equator is more concentrated at the pole in the former. However, the former has some structure

on the other side of the equator from the pole, while the latter decreases monotonically from the

pole. The differences are small, but the latter is cleaner in principle. Nevertheless, the best doublet

angle-resolved scheme for an |Ωf | = 2 predissociation state will involve one σ+ photon and one π
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photon. This has to be a cross-beam setup, where the two photons will have to come in through

different windows at the trap.

For the |Ωf | = 1 case, a similar comparison to the |Ωf | = 2 case holds for the π plot in Figure 3.4a

and the σ− plot in Figure 3.4d. We either do a π first photon and π second photon (for the former),

or a σ+ first photon and a σ− second photon (for the latter). In either case, both photons can come

in through the same window at the trap.

What should we make of the transition strengths reported in the figures? The net dissociation ef-

ficiency depends on a few factors: (i) the strength of the transitions, (ii) the intensities of the

dissociation lasers, and (iii) the potential energy landscape past the dissociation threshold.

For a weak transition, e.g. the σ− transition from Figure 3.4e, one can increase the overall dissociation

efficiency by overwhelming the transition with a very intense laser. Jumping ahead to data shown in

Figure 3.12, which we believe to be a case of Figure 3.4e, it is then interesting to see that the σ− and

σ+ transitions result in similar dissociated Th+ numbers. This suggests that the second dissociation

photon is saturating the transitions for both transitions. This could result in the two transitions

having the same overall dissociation efficiencies, despite having vastly different predicted transition

strengths. The puzzle now, then, is why would the overall dissociation efficiency be so low (around

10%) for those transitions. Our guess right now is that the second photon could be connecting to a

predissociation curve that has non-trivial crossings with other predissociation curves much like those

shown in Figure 2.7. It could also be that the first photon is not saturating the bound-to-bound

transition. However, we are seeing signs of power broadening of the first photon at the current laser

intensity that we are using, so this is likely not the case.

These rules are by no means rigorous, and it depends on the structure of the predissociation poten-

tial landscape. The plots in Figures 3.3 and 3.4 are generated assuming that (i) we connect to only one

predissociation state and that it comes with a definite Ωf , (ii) there are no potential crossings with other

predissociation potential curves, and (iii) we can sum contributions from all allowed Jf coherently with

amplitudes given by the Clebsch-Gordan coefficients. We have no reason a priori to believe that all these
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assumptions hold. We make these assumptions only to simplify the model for understanding. In fact, we see

in the Gen. II eEDM experiment with HfF+ that the REMPD protocol used resulted in two radial bands of

photofragments, corresponding to the dissociated ions going through two different pathways ending up with

different KEdissoc. (see William Cairncross’s and Tanya Roussy’s theses, and also the section below). Inter-

pret the results of Figures 3.3 and 3.4 qualitatively and with a teaspoon of soy sauce; they only serve to guide

the general direction of the experiment design, not to claim full understanding of the angular distributions

seen in the experiments like those in Section 3.3.
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3.2.2 Energy of ejected photofragments

Right before dissociation, the ThF+ molecules have a spatial extent in our ion trap. The molecules

also have a thermal velocity distribution. Upon dissociation, the Th+ ions inherit the positions and velocities

of their parent molecules. In addition to the kinetic energy (KEtherm.) that the Th+ ions inherit from their

ThF+ parents, they can also gain additional kinetic energy (KEdissoc.) from the dissociation (see Figure 3.5).

Th+ + F

D+
0

Th+∗ + F
KE>

dissoc.

KE<
dissoc.

X 3∆1

Figure 3.5: Schematic diagram of molecular potential curves. Not drawn to scale. The horizontal
axis indicates the internuclear distance of our molecule, and the vertical axis indicates potential energy. The
horizontal lines indicate various vibrational manifolds for each potential curve. D+

0 indicates the minimum
energy required to dissociate our molecule from the ground state. In our 1+1′ REMPD scheme, the first
photon is a bound-to-bound transition bringing our molecules from X 3∆1 (in black) to an intermediate
state (in green), and the second photon brings our molecules into the predissociation state (indicated by the
dashed lines). Upon dissociation, the photofragments can acquire an additional kinetic energy by moving
down the potential curves of the predissociation molecular potentials. One would näıvely think that we can
impart more kinetic energy to our photofragments through using REMPD photons of shorter wavelength so
that we end up with more energy above the dissociation threshold. This is wishful thinking, because KEdissoc.

depends on which predissociation potential the second photon connects to: the purple second photon is more
energetic than the blue second photon in the figure, but connects to a predissociation potential curve that
relaxes to an excited state of Th+, imparting an overall lower kinetic energy to the photofragment.

In the limit of KEdissoc. ≪ KEtherm. and in the velocity mapping regime (because we have a very long

time of flight compared to the ratio of our ion cloud size and thermal velocities of our ions), the angular
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distribution of ejected photofragments on our ion detector will be smeared out by the initial distribution of

ThF+ thermal velocities. This is unfavorable for two-state detection.

We want the other limit of KEdissoc. ≫ KEtherm. for us to see the effect of angular distribution of

the photofragments on our ion detector. Working with typical ion cloud temperatures of 10 to 200 K,

corresponding to ion speeds of 20 to 80 m/s, we need to find a REMPD process that will give our Th+ ions

additional kinetic energy corresponding to more than 80 m/s in speeds. Figure 3.6 gives a visual comparison

of the two limits.

In the trap At the ion detector

KEdissoc. � KEtherm.

KEdissoc. � KEtherm.

Figure 3.6: Schematic diagram comparing the effects of KEdissoc. w.r.t. KEtherm.. The left column
corresponds to the molecule positions right after dissociation, while the right column corresponds to those
at the ion detector after the ions are kicked out of the trap. The orange arrows indicate thermal velocity.
The red and green arrows indicate additional kinetic energy gained from dissociation; they are color coded
red and green to guide the eye to the dissociation ejection direction. The top row shows the case where
KEdissoc. ≪ KEtherm.: one can see that the Th+ moving upwards are not well separated in position from
those going downwards; the ion positions are dominated by the thermal velocities. The bottom row shows
the other limit of KEdissoc. ≫ KEtherm.: one can see that all the Th+ ions moving upwards are on the top
half of the detector, while those moving downwards are on the bottom half; the ion positions correlate very
strongly to the dissociation ejection directions, allowing us to effect a two-state detection with each shot of
the experiment.
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Unfortunately, unlike choosing an intermediate state with the right quantum numbers, there is no

knob for us to turn to control KEdissoc. directly. We can only scan the wavelength of our lasers to look for

strong transitions with the right quantum numbers, and hope that they have enough KEdissoc.. Fortunately,

at least one such transition exists, as we shall see in the next section.
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3.3 Angle-resolved photofragments in ThF+

The setup used to look for good REMPD intermediate states is similar to that used in the LIF

experiment, and a schematic diagram is shown in Figure 3.7.

Source chamber

Diff. pumping chamber

Trap

IMG MCP

TOF MCP

Ablation laser

Th coin
Pulsed valve

Gas reservoir (Ne, 0.1% SF6)

ThF+

Ion. & Dissoc. lasers

Figure 3.7: Schematic diagram of the REMPD experimental setup. The REMPD spectroscopy
consists of the following steps:

(1) A molecular beam of ThF is created in a similar manner as the LIF experiment.

(2) The molecules are ionized into the ground vibronic state of ThF+ with REMPI lasers at the center
of ion trap, and the ions are loaded into the trap.

(3) We have an option of populating the X 3∆1(v = 1) or the a 1Σ+(v = 0) vibronic states by depleting
the X 3∆1(v = 0) states with a laser into an excited state found in previous work [43], and allowing
the states to decay back down to one of the aforementioned states through selection rules. As such,
we will see excited states of ThF+ that couple to the aforementioned states, allowing for state readout
of those states, which will prove to be very useful in later chapters.

(4) Another set of lasers consisting of (i) a tunable laser, and (ii) a second UV laser excites the ions
in the trap. The sum of the energies of the two photons is greater than the dissociation energy of
ThF+. If the first photon is resonant with a transition between the ground vibronic state and an
excited state, the ions will be excited to the intermediate state where it gets further excited to a
pre-dissociation state by the second photon. The ion then dissociates into Th+ and F. To ensure
that the signal is real, we take four scans: (i) with no REMPD laser, (ii) with only the first photon,
(iii) with only the second photon, and (iv) with both REMPD photons.

(5) The resulting mix of ThF+ and Th+ ions are kicked out towards one of the two MCPs, where we
can read out ion numbers of both species through TOF-MS (Section 2.6.4.1).

(6) Repeat the experiment with different excitation wavelengths.

The ion trap used in the setup is the 6-fin Paul trap from the setup used in the Gen. I experiment [14].

At some point, we switched the 6-fin Paul trap to the baby Bucket Brigade (which is also a Paul trap, see

Section 7.4), but the general workings of both traps are the same. The workings of the 6-fin Paul trap and

trap electronics are detailed in theses of previous group members (e.g. Huanqian Loh and Matt Grau) and
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shall be omitted here for brevity. A simple description of how a Paul trap works is summarized in Appendix

A.

We began on the spectroscopy to search for the intermediate state for REMPD before we knew about

angle-resolved photofragments, so we did not pay attention to the polarization of the REMPD lasers during

the early days of the spectroscopy. Still feeling hurt from the disappointment in the results of our LIF

spectroscopy, we decided to start the REMPD spectroscopy using a convenient dye with the widest tuning

range: DCM in ethanol. This dye allows us access to 602 nm to 660 nm with a peak wavelength at 627 nm.

We doubled the output from our dye laser with a BBO and found a few transitions. The transition with the

strongest strength is the [32.09]+266 nm combination.

3.3.1 The [32.09]+266 nm transition

After we learnt about angle-resolved photofragments from Prof. Tanya Zelevinsky, and saw that it can

be used for two-state detection in HfF+, we decided to implement it in ThF+. We chased our tails for some

time in the optimization of our REMPD process,4 but to cut the chase short, Figures 3.8 and 3.9 show the

experimental proof of principle results of angle-resolved photofragments with ThF+.

Figure 3.10 shows a typical two-state detection characterization plot on the Gen. II JILA eEDM

experiment setup using HfF+. Comparing Figures 3.9 and 3.10 shows that the quality of our two-state

detection scheme for ThF+ is on par with that for HfF+.

In Figures 3.8 and 3.9, we present the positions of the ions on the ion detector for two combinations

of the experimental parameters: keeping the polarizations of the REMPD photons fixed, we prepared our

ions in the mF = 3/2 or −3/2 Zeeman states. The “relative sign” of the Zeeman state chosen during state

preparation and the helicities of the REMPD photons matter for the separation of the doublets on the ion

detector as we shall see in the next section.

4 For example, we first started to look for angle-resolved photofragments along the time-of-flight axis instead of the transverse
imaging plane [38] because we were limited by the relative orientations of our laser beams and ion detectors.
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Figure 3.8: Scatter plot of the Th+ ion positions at the ion detector (same data as that used
in Figure 3.9). Each plot shows the ions from a sum of five shots of the experiments. The two rows
correspond to two slightly different experiment conditions: the polarizations of the REMPD photons were
kept the same across the two rows, but we prepare the molecules in the (J = 1,mJ = −1) state for the
top row, and (J = 1,mJ = 1) for the bottom row. The first REMPD photon increases the mJ quantum
number by 1, and brings the molecules in the top (bottom) row to m′

J = 0 (m′
J = 1). The horizontal lines

in each plot corresponds to the mean position of the ions (of the corresponding color), while the shaded area
corresponds to the 1σ spread of the ion locations in the Y direction. The middle column is an overlay of the
left and right columns. There is clear evidence of angle-resolved photofragments in the bottom row, where
the ions in the upper doublet end up on the upper side of the detector, while those in the lower doublet end
up on the lower side.
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Figure 3.9: Histograms of the Th+ ion positions, integrated over the X direction, at the ion
detector (same data as that used in Figure 3.8). The two columns correspond to two slightly different
experiment conditions: the polarizations of the REMPD photons were kept the same across the two columns,
but we prepare the molecules in the (J = 1,mJ = −1) state for the left column, and (J = 1,mJ = 1) for the
right column. The first REMPD photon increases the mJ quantum number by 1, and brings the molecules in
the left (right) column to m′

J = 0 (m′
J = 1). The top row shows the overlay of the ion distribution in the Y

direction from both doublets. The grey dashed line indicates the mean of the mean positions of ions in both
doublets. The bottom row takes the difference between the two doublets. The grey dashed lines indicate the
region of the “swatch” — the region where we do not count ions to either doublet for our two-state detection
protocol, and we associate ions to the left (right) of the swatch with the upper (lower) doublet.
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Figure 3.10: Histograms of the Hf+ ion positions, integrated over the X direction, at the ion
detector. Courtesy of the group members who worked Gen. II experiment. Comparing this with the top-
right plot in Figure 3.9 indicates that the quality of our two-state detection for ThF+ is on par with that
for HfF+.
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3.3.2 Photon polarization combination

Depending on the “relative sign” of the Zeeman state chosen during state preparation and the helicities

of the REMPD photons, the molecules could take a different pathway to dissociation. Figure 3.11 shows the

various pathways the molecules can take.

Goes through m′J = 0, bad

Goes through m′J = 0, bad

Good if |Ωf | = 1

Good if |Ωf | = 3

PBS(1,1′) : (0, 0)◦ PBS(1,1′) : (0, 90)◦

G

G*

Figure 3.11: Pathway taken by molecules to during dissociation with various combinations of
photon polarizations. The three lower (five upper) horizontal lines correspond to the mJ sublevels in the
J = 1 from the eEDM-sensitive state (J ′ = 2 in the intermediate state). The arrows indicate the REMPD
photons. The REMPD photons nominally go through a PBS each, exiting horizontally polarized, and they
go through the same QWP (after being combined through a dichroic mirror) to have the same circularity
handedness. This configuration is represented by the “PBS(1,1′):(0,0)◦” notation, and it corresponds to the
first column. We change the handedness of the first photon by rotating the PBS of the first photon by 90◦

to make it go through the QWP vertically polarized; this configuration corresponds to the second column.
The first row, denoted by “G” is where we prepare the ions in the mF = 3/2 Zeeman state, while “G*”
corresponds to preparing the ions in the mF = −3/2 Zeeman state. Molecules that take pathways that go
through m′

J = 0 lose their directedness, so they should be avoided. Only the top left and bottom right
pathways can be good, but the quality of each depends on the |Ωf | that we connect to with the second
photon in REMPD.

We went through the combinations and obtained results shown in Figure 3.12 for the [32.09] interme-

diate state, and Figure 3.13 for the [32.50] intermediate state. Common to both intermediate states, we see

that the combinations on the off-diagonal axis show poor doublet separation, agreeing with the model we

have in Figure 3.11. Using combinations along the diagonal axis, we also saw that the [32.50] intermediate

state exhibits inferior doublet separation than the [32.09] one. This could be because the [32.50]+266 nm

combination imparts the dissociated Th+ ions with less energy than the [32.09]+266 nm combination.
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(a) mF = 3/2, σ+
1 , σ+

1′ . (b) mF = 3/2, σ−
1 , σ+

1′ .

(c) mF = −3/2, σ+
1 , σ+

1′ . (d) mF = −3/2, σ−
1 , σ+

1′ .

Figure 3.12: Distribution of ions along the Y axis on the ion detector with various combinations
of photon polarizations for the [32.09] intermediate state. Top (bottom) row: we prepare the ions
in the mF = 3/2 (mF = −3/2) state. Left (right) column: the first REMPD photon has the same (opposite)
circular polarization as the second photon. Note that the combination used in the top left plot gives the
best separation of doublets. Having similar quality of doublet separation in (a) and (d) suggests that the
second photon connects to a predissociation state that has a predominant |Ωf | = 2 nature (compare with
Figure 3.4e). Assuming that the predissociation state is predominantly |Ωf | = 2, the fact that we get similar
dissociated Th+ numbers in (a) and (d) suggests that our second REMPD photon is saturating (c.f. Figure
3.4e). See the discussion on dissociation efficiencies on Page 35.



47

(a) mF = 3/2, σ+
1 , σ+

1′ . (b) mF = 3/2, σ−
1 , σ+

1′ .

(c) mF = −3/2, σ+
1 , σ+

1′ . (d) mF = −3/2, σ−
1 , σ+

1′ .

Figure 3.13: Distribution of ions along the Y axis on the ion detector with various combinations
of photon polarizations for the [32.50] intermediate state. Top (bottom) row: we prepare the ions
in the mF = 3/2 (mF = −3/2) state. Left (right) column: the first REMPD photon has the same (opposite)
circular polarization as the second photon. Even though there is some separation of doublets in some of the
plots shown here, they are not as good as those using [32.09] as the intermediate state (see Figure 3.12a),
indicating that perhaps the [32.50]+266 nm combination imparts a lower dissociation kinetic energy to the
Th+ ions than the [32.09]+266 nm combination.
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3.4 Further discussion

In the previous sections, we have seen that we can perform two-state detection with each destructive

shot of our action spectroscopy on ThF+. Before we close this chapter, we shall address a few points:

(i) other important REMPD intermediate states, and (ii) possible future directions to make the two-state

detection scheme better.

3.4.1 Other important transitions

Table 3.1 shows a list of transitions that we found in our REMPD spectroscopy with doubled frequency

using the DCM dye. We performed the scan once with 266 nm as the second photon, and once with 355 nm

as the second photon. Given the same first photon, we noticed that the choice of the wavelength of the

second photon can affect the degree of doublet separation. This is probably because the combination of the

first and second photon energies address a different dissociation potential depending on which second photon

is used, resulting in different dissociation kinetic energies (see Section 3.2.2). Switching between 266 nm and

355 nm is not an easy task — we have to change the optics within the Nd:YAG laser, and all the downstream

optics between the laser and the trap — this is not an easy knob to turn.

As of this writing, we typically perform dissocation from the following lines:

32097. Our main dissociation line for theX 3∆1(v = 0) manifold. We characterized angle-resolved photofrag-

ments on this line. With 266 nm as our second photon, this puts us about 16500 cm−1 above the

dissociation threshold.

31973. Our main dissociation line for the X 3∆1(v = 1) manifold for diagnostics.

31201. Our main dissociation line for the X 3∆1(v = 2) manifold for diagnostics.
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X 3∆1(v = 0) X 3∆1(v = 1) a 1Σ+(v = 0) Ω

30799 - - 2 (?)
30857 - - 1 (?)
30934 - - 0 (?)
31030 (*) - - 1
31073 - 30759 -
31144 - 30830 0 (?)
31210 - 30896 0 (?)
31230 - 30916 1
31242 - - 2 (?)
31312 - 30998 1 (?)
31355 - - -
31392 - - 2 (?)
31450 30796 - 0
31461 30808 - 0 (?)
31572 30919 - 1 (?)
31619 30966 31305 1 (?)
31662 31009 - 0 (?)
31723 31070 31409 -
31751 31097 31436 1 (?)
31780 31126 - -
31825 31171 31511 -
31922 31269 - 2 (?)
31957 31304 31643 1 (?)
31984 31331 31670 1 (?)
32097 (*) - - 2
32171 31518 31857 -
32179 31526 - -
32269 31616 - -
32449 31796 32135 -
32504 (*) 31851 - 2
- 31973 (*) - 2

Table 3.1: Relevant parameters of fitted transitions in the REMPD spectroscopy of ThF+.
The first three columns indicate the transition frequencies in cm−1 connecting the same upper state to the
corresponding lower state stated for each column; dashed entries indicate transitions not found. The column
for Ω indicate the fitted values of the quantum number Ω for the transitions; entries marked with (?) indicate
a crude fit due to the low signal to noise ratio of the scans, while those without the mark have very good
fits; dashed entries indicate that Ω was not fit for that transition. The transitions marked with (*) are ones
that we frequently use. The scanning range of the DCM dye was not enough for us to classify bands into
vibrational progressions like that in Section 2.5. We associate certain bands together in this table through (i)
similar B′ for the upper state, and (ii) reasonable energy difference between the transitions, corresponding
to the vibrational spacing of the X 3∆1 electronic state.
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3.4.2 Possible future directions

We note that 266 nm is more energetic than our first photon at around 311 nm. This means that

266 nm can induce a one-color two-photon dissociation by itself. For a resonant two-photon process, one

would rather have a more energetic first photon than the second photon, and in the ideal situation the first

photon should exceed half of the dissociation energy. This allows the first photon to be much weaker than

the second photon, so that the first photon would not induce its own one-color two-photon process, while

the stronger but less energetic second photon will not be able to induce a one-color two-photon dissociation

by energy considerations. A possible future direction will be to use a first photon that exceeds half of our

dissociation threshold (D+
0 = 53230 cm−1 from Ref. [44]). This would require survey spectroscopy on the

Pyrromethene 597 or Coumarin 153 dyes; these dyes are chosen such that we can use the convenient 532 nm

laser as the second photon.

Things to look out for in the survey spectroscopy include:

Kinetic energy of photofragments upon dissociation. We want this to be as high as possible to over-

whelm the original ion cloud temperature for good angle-resolved photofragments. We just need to

make sure that the photofragments do not have so much energy that they miss the ion detector, but

this can be easily solved by transverse focusing using some ion optics.

|Ω′| of the intermediate state. We want |Ω′| = 2 (see Section 3.2). The absence of a P(2) line in the

band would indicate such a state.

B′ of the intermediate state. The rotational constant of the intermediate state determines the spacing

between the R lines. We want this spacing to be large compared to our laser linewidth so that we

dissociate only one J manifold. We want a large B′.

|Ωf | of the predissociation state. This would determine what photon polarizations we want to use for

each of the two photons in the REMPD scheme (see Figure 3.4).

Unwanted one-color multi-photon dissociation in a 1 + 1′ scheme. We want the first photon to ad-

dress only the bound-to-bound transition, and the second photon to saturate the bound-to-continuum
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transition. We do not want the first photon to excite a bound-to-continuum transition; we also do

not want the second photon to address off-resonant bound-to-bound transitions. We can always

achieve this by reducing the energies of the laser pulses, but we also want to have as high a dis-

sociation efficiency as possible, which requires laser pulses with high energies. Hence we want to

find an intermediate state such that there are no accidental resonances that could enhance one-color

multi-photon transitions.

One-color two-photon dissociation with good angle-resolved photofragments. If it turns out that

the first photon can also act as a second photon, hitting a pre-dissociation state that gives us very

high KEdissoc., there would be no reason not to use this 1+1 REMPD transition.

Dissociation efficiency. We have conveniently left out dissociation efficiency in all our previous discussions,

but dissociation efficiency is also a very important factor. Only the dissociated Th+ ions contribute

to our statistics, and the rest of the ions only contribute to decoherence in our ion trap. The

[32.09]+266 nm scheme currently gives us 10% dissociation efficiency. We determined the efficiency

in two ways, both giving consistent results:

(1) All our ions are in the ground vibronic state, spread across a few rotational states. With our

usual experiment parameters (i.e. laser powers and ion numbers), we scanned the R branch for

the intermediate state [32.09] to count the number of dissociated Th+ ions. We then compare

the total number (accounting for the Hönl-London factors for the R lines) to the total ThF+

number. The latter is inferred through a calibrated area under the curve on the capacitively

coupled output from our microchannel plate assembly.

(2) Alternatively, we could compare the areas under the curve for both Th+ and ThF+ from the

capacitively coupled output from our microchannel plate assembly. We would need to increase

our total ThF+ ion numbers for the Th+ ions to have an appreciable signal on the capacitively

coupled output.

In the Gen. II experiment, the dissociation efficiency is at least 20%. The lower bound comes from

not having full control/knowledge of the Hilbert space spanned by all the HfF+ ions in the trap. It
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would be great if we can find a new intermediate state (with the relevant second photon) that can

give us higher dissociation efficiency.

The above can be very tedious work with no promised returns, and the quality of our angle-resolved

photofragments is already good enough for most practical purposes. Let me suggest possible optimization

routes and consequences, arranged in increasing order of tediousness.

Current configuration. We are currently using the [32.09]+266 nm scheme, both circularly polarized with

the same handedness. These photons go through the same windows on our vacuum chamber, and

lies perpendicular to the axis of the molecular beam source. The vacuum chamber has eight flanges

arranged in an octagon. The molecular beam comes in through one of the flanges horizontally. The

REMPD beams go up windows vertically. The rest of the windows are used for other lasers and

microwaves. See part (a) of Figure 3.14.

ErotM.B.

σ+ σ+

ErotM.B.

σ+

π ErotM.B.

σ+ π

(a) (b) (c)

Figure 3.14: Various configurations of REMPD beams. M.B. stands for molecular beam. The grey
octagon represents our vacuum chamber with eight flanges (2.75′′ CF). The into-page and out-of-page di-
rections are 10′′ CF flanges that are not meant for optics, see Figure 7.9. (a) Current configuration. (b)
Näıve implementation of Route 1. This does not work because the π photon will be hitting the skimmers
and molecular beam source. (c) One will have to move the beams around like this to implement Route 1.

Route 1: switching to π-polarized photon when |Ωf | = 2. We saw in Section 3.2 that we can increase

the directedness of the angular distribution of photofragments if |Ωf | = 2 by switching either of the

REMPD photons to π-polarization. This can be done in a cross-beam setup, where the REMPD

photons go into the trap perpendicularly. The polarization axis will be aligned with the k-vector of

the circularly polarized photon. We will have to move the beams around from the current configu-

ration to avoid hitting the molecular beam source with our lasers (see parts (b) and (c) in Figure
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3.14). Using four windows instead of two for the high pulse energy lasers also means fewer windows

for the cw lasers for state preparation and detection. This may be a little tricky given the number

of cw lasers we need.

Furthermore, it turns out that in our current trap setup (see Figure 7.9 and Section 7.4), the

positions of our ions at our ion detector is velocity (position) dominated in the vertical (horizontal)

direction. This means that we may lose some contrast if the molecules are dissociated at 45◦ w.r.t.

the vertical (part (c) of Figure 3.14). We will need to understand the ion lensing effects during

the flight between the trap and the detector, and turn both vertical and horizontal directions to be

velocity map imaging.

Route 2: changing the second photon in the [32.09]+266 nm scheme. We can change the second

photon to 355 nm, or any arbitrary wavelength with a tunable dye laser. Doing so can change the

|Ωf | of the predissociation state, and also the dissociation kinetic energy imparted to Th+. We can

keep the current laser beam configuration if we find address an |Ωf | = 1, 3 predissociation state. We

would have to ensure that the dissociation efficiency and kinetic energy are still high enough. This

would involve (i) changing the downstream optics from those of 266 nm to 355 nm, or (ii) introducing

an additional dye laser and doubling optics.

Route 3: changing both photons to get a [?]+532 nm scheme. In this scheme, the second photon is

below half of the dissociation energy. This means that it will be much harder for the second photon

to induce one-color multi-photon dissociation. One will need to switch the dye used to generate the

first photon, and perform survey spectroscopy. The group will have to look out for intermediate

states with all the properties mentioned at the start of this section.

Route 4: changing both photons to get a [?]+(≈532 nm) scheme. If the above is too easy, or if the

[?]+532 nm scheme results in (i) lower dissociation efficiency, (ii) lower dissociation kinetic energy, or

(iii) an undesirable |Ωf |, then one might want to tune the 532 nm photon. Route 4 is a combination

of Routes 2 and 3.

I shall leave the decision of whether to perform this survey spectroscopy in the good hands of the
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group members that stay on after me. In the meantime, we have answered the question of how to detect the

internal states of our ions, so we shall now move on to discuss how we can perform quantum control of the

states inside ThF+.



Chapter 4

Quantum control of ThF+

Now that we know how to create ThF+ ions (Chapter 2), and how we can perform state readout

(Chapter 3), we are now ready to look at how we can perform quantum control of ThF+. We intend to use

lasers and microwaves to do this, so we need to know the frequencies of these transitions required for state

preparation and detection. Fortunately, some of the laser part of the spectroscopy has already been done

before I joined the group (see Daniel Gresh’s thesis and Ref. [43]), but the microwaves part still needs to be

done, and we also need to decide on which of the transitions that Gresh et al. found is suitable for our needs.

Furthermore, we have been emphasizing how ThF+ can give us better statistical sensitivity than HfF+, but

we also need to understand systematic effects in using ThF+ to measure the eEDM. This requires knowing

how the X 3∆1 electronic state responds to external electric and magnetic fields. We thus need to determine

certain spectroscopic constants in the effective Hamiltonian governing our system. Much of this chapter is

directly lifted from our publication [54].

The layout of this chapter is as follows. We first show results of our spectroscopy on the eEDM-

sensitive states of ThF+ in Section 4.1. We then go on to discuss in Section 4.2 a possible mechanism

limiting coherence time in ThF+ despite having a ground state for the eEDM-sensitive state, and how we

intend to overcome it. Finally, we discuss an experiment sequence that we can use to obtain Ramsey fringes

in the eEDM-sensitive state in ThF+ in Section 4.3.
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4.1 Spectroscopic constants of ThF+

The following sections detail the spectroscopy process to extract the spectroscopic constants crucial

to the eEDM experiment. We begin with an overview of the state preparation process in Section 4.1.1, then

we touch on the details of the measurement of the hyperfine coupling constant (Section 4.1.2), molecular

frame electric dipole moment (Section 4.1.2), and the magnetic g-factor (Section 4.1.3). Finally we present

a summary of the results in Section 4.1.4.

4.1.1 State preparation and readout for eEDM-sensitive state spectroscopy

The energy level of a diatomic molecule like ThF+ has nested progressively finer structure (see Figure

1.2). The eEDM-sensitive states are labeled by the quantum numbers X 3∆1(v = 0, J = 1, F = 3/2,mF =

±3/2), which correspond to the electronic, vibrational, rotational, hyperfine, and Zeeman manifolds, respec-

tively, with increasing fineness in their structures. We first prepare ThF+ in the X 3∆1(v = 0) vibrational

manifold through REMPI of neutral ThF [46] (Chapter 2), and usher them into the finer energy struc-

tures with optical pumping via an excited electronic state Ω = 0− [14.59] (Figure 4.1). The Ω = 0−

electronic state lies approximately 14600 cm−1 above X 3∆1 [43]. The full process to prepare our ions in

the X 3∆1(v = 0, J = 1, F = 3/2,mF = −3/2,Ω = 1) is illustrated in Figure 4.1, where Ω is the quantum

number for the Ω-doublets.

State preparation involves two pulsed lasers at 304 nm and 532 nm for REMPI, multiple cw lasers at

685 nm for optical pumping [Figures 4.1(a-c)], a cw repump laser at 717 nm [Figure 4.1(a)], and microwave

channels at 29.1 GHz and 43.6 GHz [Figure 4.1(b,d)].

We perform our state readout by dissociating our molecular ions state-selectively with methods used

in our previous work [38, 46, 55] and detailed in Chapter 3.
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Figure 4.1: State preparation sequence (not to scale). The state preparation process is shown as a
sequence of steps for clarity, but all the steps involved occur at the same time in our experiment.

(a) All our optical pumping lasers connect from the X 3∆1(v = 0) vibronic manifold to the Ω = 0−(v = 0)
vibrational manifold [43]. We have vibrational repump lasers from the higher vibrational manifolds. For
some of the spectroscopy shown in the following sections, we only have the vibrational repump laser
from the (v = 1) manifold. We added more vibrational repump lasers as time progressed.

(b) Within the X 3∆1(v = 0) vibronic manifold, we perform rotational cooling by optically pumping the
J = 2 state through the Ω = 0− state. We use microwaves to couple the J = 2 and J = 3 states together
to transfer J = 3 population eventually into J = 1.

(c) Within the J = 1 manifold, we pump all the ions into a single Zeeman mF state using circularly polarized
light on the Q(1) line. We also introduce a magnetic field to prevent the Zeeman levels from mixing
through rotation coupling (refer to Section 4.1.3). We show only one lower state for each mF value (in
the grey box), but there are in fact two or four levels at each mF value; compare with (d).

(d) Ω-doubling gives rise to two closely spaced states with the same mF number. We can deplete one of
these states by coupling it with microwaves to J = 2.
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4.1.2 Microwave spectroscopy on the J = 1 to J = 2 transition; Hyperfine coupling constant

and molecular electric dipole moment

A schematic diagram of the energy levels of the J = 1 and J = 2 rotational states in X 3∆1(v = 0) is

shown in Figure 4.2. We use state preparation steps shown up to panel (b) in Figure 4.1 to prepare our ions

into X 3∆1(v = 0, J = 1). We then perform microwave spectroscopy on the detailed structure of the J = 1

to J = 2 rotational transition. Our observable is the appearance of population in the J = 2 state, detected

by state-selective photodissociation. No external magnetic fields are applied for the microwave spectroscopy

experiments in this section.

At near-zero external electric field, selection rules and energy degeneracies result in just six distinct

resonant frequencies (refer to Figures 4.2 and 4.3), from which we perform a fit to the spectroscopic constants

A|| (hyperfine coupling constant) and ωef (Ω-doubling splitting constant). We are able to extract 4B =

29.09733(4) GHz (see Equation 2.2a), which is roughly the J = 1 to J = 2 separation. This number is

consistent with 29.093(9) GHz obtained in our previous work [43]. Figure 4.2 illustrates how the spectroscopic

constants fit into the energy level structure.

By repeating the above experiment with a non-zero external electric field strength, we can see the

Stark shifts in the spectral lines (illustrated in Figure 4.2), shifts which depend on mF and dmf (molecular

frame electric dipole moment). To enhance signal-to-noise ratio for the extraction of dmf , we prepare all

the ions into X 3∆1(v = 0, J = 1, F = 3/2,mF = −3/2) with state preparation sequence up to panel (c)

in Figure 4.1. This allows us to suppress all lines coming from the mF = ±1/2 states to obtain a much

cleaner spectrum to extract dmf . We search for the lines corresponding to the (L) and (U) transitions shown

in Figure 4.2. The spectroscopy of these two lines are shown in Figure 4.4. These two lines were used for

the measurement of dmf because of their strong intensities. The (L) and (U) lines will be used to perform

doublet depletion [preparation step (d) of Figure 4.1] in subsequent sections.

Before we end off this section we shall look at some diagrams to give us a better understanding of

the energy level structure of ThF+. Figure 4.5 shows transitions that are allowed between J = 1 and 2 in

v = 0, intensity-coded for the relative strengths. Figures 4.6 and 4.7 show the corresponding eigenstates and
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Figure 4.2: Energy landscape (not to scale) of the neighborhood of the eEDM-sensitive state
X 3∆1(v = 0), showing only the first two rotational levels. See Figure 1.2 for the bigger picture
involving the other states.

In the absence of external electric field, the eigenstates are states of good parity. The energy levels with e
(f ) parity are denoted by black (grey) lines in the energy level diagram on the left.

Selection rules for E1 transitions only allow for transitions connecting states of opposite parities, ∆F = 0,±1,
and ∆mF = 0,±1, thus resulting in only six distinct frequencies for resonant transitions connecting the J = 1
to J = 2 rotational manifold in the absence of an external magnetic field. For example, the transitions with
the highest and lowest frequencies are labelled (a) and (b), respectively, here and also in Figure 4.3.

In the presence of an external electric field, states of opposite parities mix. The parity selection rule is now
replaced by the ∆Ω = 0,±1 selection rule. The red arrows in the middle panel labeled (L) and (U) correspond
to the stretched-to-stretched transitions used to determine the Stark shift in our microwave spectroscopy.
The Stark shift depends on mF and dmf . The eEDM-sensitive states used for the eEDM measurement are
the upper (red) and lower (blue) doublets.

To reduce clutter in the left and middle diagrams, the states drawn do not reflect the true nature of the
states in three aspects: (i) the states are drawn with an artificially large A|| in comparison to ωef for well
separated hyperfine levels in the diagram; (ii) the Stark shifts in the diagram are portrayed proportionally
smaller than those in the actual experiment, where Stark shifts are large enough to allow some states in the
lower hyperfine level to be more energetic than the upper; and (iii) F is no longer a good quantum number in
the presence of a strong external electric field, except for the most stretched Zeeman states in each rotational
manifold. Hence, in the presence of an external electric field, the only selection rule remaining on the J = 1
to J = 2 transition is ∆mF = 0,±1. The panel on the right shows a more realistic ordering of the energy
levels.

energy level diagram to scale. In the figures, we make use of the result of the g-factor from the next section.
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correspond to the actual measurement and simulated position of the peaks, respectively. The unexpected
peak at 29.11 GHz is most likely due to a spike in the experimental noise. Error bars from the simulation are
propagated from the values shown in Table 4.1. The uncertainty of the Th+ numbers in our data is typically
around 5 ions. The lines labelled (a) and (b) are the corresponding transitions labelled in Figure 4.2.
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Figure 4.4: Microwave transitions between the X 3∆1(v = 0, J = 1,mF = −3/2) and J = 2 states at
an applied electric field strength of 24 V/cm. The top two plots show the transition lines corresponding
to (U) and (L) of Figure 4.2. Error bars show the estimated 1σ error in the signal. The bottom plot
shows a simulation of the microwave spectrum across a wider frequency range. The left and right peaks
highlighted in yellow correspond to (U) and (L), respectively. The intensities are evaluated from Clebsch-
Gordan coefficients. In the limit of dmfE ≫ ωef , where E is the applied electric field, the splitting between
(U) and (L) is given by dmfE/3. At E = 24 V/cm, dmfE is roughly 8 times larger than ωef .
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Figure 4.5: Allowed transitions between J = 1 and J = 2 in X 3∆1(v = 0). The (L) and (U) transitions
(stretched to stretched) are colored red. We want to operate at an Erot such that these red lines are not
crossing any other line. There is another pair of stretched to stretched transition (also colored red) that is
weakly allowed by Ω-doubling in the J = 2 manifold. Transitions connecting the stretched states, i.e. the
doublets, in the v = 0 manifold are colored yellow.
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Figure 4.6: Heat map of the coefficients of the eigenstates expanded out in our chosen basis
set. This heat map is obtained by diagonalizing the 32-level Hamiltonian (see Appendix C.3.1) of the
X 3∆1(v = 0, J = 1, 2) manifold in our chosen basis set. The Hamiltonian is diagonalized at our usual
experiment parameters Erot = 60 V/cm, frot = 147.5 kHz, and Brot = 800 µG corresponding to an f ≈ 50 Hz.
For an eigenstate expanded of the form |·⟩ =

∑
i ci|i⟩, where |i⟩ is the ith basis state, the heat map shows

sgn ci|ci|2 (information of the complex phase is lost in this representation; the sgn operator has a “branch
cut” along the negative real axis). The eigenstates are ordered from least to most energetic.
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Figure 4.7: Energy level diagram of the 32-level system in X 3∆1(v = 0, J = 1, 2) expressed in our
chosen the basis set. Drawn to scale (c.f. Figure 4.2). The presence of an electric field, F is no longer
a good quantum number except for the most stretched Zeeman states, but we still label our states with F
to track how the states shift from zero electric field. Each line corresponds to a basis state. The indices
prefixed to each basis state corresponds to the eigenstate that aligns most with that basis state (numbers on
the horizontal axis of Figure 4.6). For example, [0] is predominantly |J = 1, F = 3/2,mF = −3/2,Ω = −1⟩,
as one can check with Figure 4.6. Basis states with multiple indices indicate an equal superposition state. For
example, [4, 5] means that states [4] and [5] are equal superpositions of |J = 1, F = 3/2,mF = −1/2,Ω = 1⟩
and |J = 1, F = 3/2,mF = 1/2,Ω = −1⟩.
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4.1.3 Ramsey spectroscopy within the J = 1 eEDM-sensitive state; Magnetic g-factor

The last spectroscopic constant that we determine is the magnetic g-factor for X 3∆1. We use a

rotating electric field to polarize our molecular ions without ejecting them from our ion trap. The rotation

micromotion traced out by the ions couples to the applied quadrupole magnetic field gradient to give an

averaged net non-zero magnetic field along the instantaneous quantization axis in the frame of the ions, thus

resulting in Zeeman shifts of the molecular states. Details of the underlying mechanism can be found in

Section 4.11 of Ref. [25].

The rotation frequency is fast compared to trap secular frequencies, but slow compared to typical

energy differences between quantum states within the molecular ions. As the ions follow the rotation of the

field adiabatically, there is a non-inertial-frame term in the Hamiltonian in the frame of the rotating ions.

This non-inertial-frame term introduces rotational coupling between states of ∆mF = ±1, and couples the

mF = ±3/2 states through a third order process. Restricting ourselves to the Hilbert space involving only

the mF = ±3/2 states, the good eigenstates of the system are |mF = +3/2⟩± |mF = −3/2⟩ at zero external

magnetic field, and approach |mF = ±3/2⟩ asymptotically as the external magnetic field strength increases

(see part (c) of Figure 1.4). Thus, as the strength of the applied magnetic field is swept, the energy difference

between the mF = ±3/2 states traces out a hyperbola like that shown in Figure 4.8, where the vertical offset

is due to the avoided crossing introduced by the rotational coupling.

Following the procedure reported in Ref. [56], we map out the the energy differences between the

mF = ±3/2 states for both the upper and lower doublets by performing Ramsey spectroscopy on X 3∆1,

which is prepared with sequence up to panel (d) in Figure 4.1. We repeat the experiment at various applied

magnetic field strengths. The data and fits are shown in Figure 4.8.

Since we operate at dmfE ∼ A||, the lower doublet is energetically closer to more mF = ±1/2 states

than the upper doublet. Thus, the lower doublet has a stronger rotational coupling than the upper doublet,

resulting in a much larger avoided crossing seen in the plot for the lower doublet than the upper doublet in

Figure 4.8.

By measuring the frequencies at long Ramsey times for each doublet individually, we can also measure
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Figure 4.8: Energy differences between the mF = ±3/2 states; measurement of the magnetic
g-factors. The fits are performed with our model which takes into account the avoided crossing introduced
by going into the rotating frame of the molecules. The energy difference at the avoided crossing is fixed by
our ab initio calculations through diagonalizing the 12-level Hamiltonian (see Appendix C.3.1). The only fit
parameters are the asymptotic gradients (corresponding to 3gF=3/2µB/h) and the horizontal offset due to
ambient fields. The error bars are 1σ error estimates extracted from a non-linear fit to each Ramsey fringe.

the difference in the g-factor between the two doublets. The ratio δg/g is measured to be −0.00255(6) (see

Figure 4.9a) at Erot = 60 V/cm. Diagonalizing the 32-level Hamiltonian1 involving the X 3∆1(v = 0, J =

1, 2) manifold gives a theoretical value of about −0.00223. The 15% discrepancy may come from coupling

between the X 3∆1 and the 3∆2 states that is not accounted for in the 32-level Hamiltonian; we saw a similar

correction in HfF+.

1 Although we are looking at the g-factors of the J = 1 manifold, coupling with the J = 2 states through the Stark
Hamiltonian modifies the g-factor significantly, so we need to use the 32-level Hamiltonian instead of the 12-level one.
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(a) Ramsey fringes for the lower (left) and upper doublets (right). The top row indicates the dissociated Th+ numbers
from the mF = 3/2 (blue) and mF = −3/2 (yellow) states, while the middle row is the contrast obtained through
the difference between the two chops. The left column corresponds to the lower doublet, while the right column
corresponds to the upper. The last row is the total ThF+ numbers, and it is used for normalization. An exponential
decay is fit to the results in the top row, giving us some hints on T1 decoherence. An exponentially decaying sine
is fit to the results in the middle row, with insets showing the zoomed in view comparing the fit to the raw data.
Through the fits, we obtain the Ramsey frequencies for the lower (f l) and upper (fu) doublets used in the plot in
part (b) below.
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(b) Global fit to repeated instances of Figure 4.9a at various f0 := (fu + f l)/2. The vertical axis corresponds
to fD := (fu − f l)/2. The quantities fu and f l are defined above in part (a). The fit is to the functional form
fD = Af0 + B/f0, where A = δg/g, and B = ∆∆D (see Equations 8.24a and 8.24c). The fit value of B = −0.5(1)
is consistent with our model predicting a value of −0.45.

Figure 4.9: Measuring δg/g in ThF+ at Erot = 60 V/cm. By performing the experiment at several Ramsey
frequencies, we can perform a global fit to extract the difference in g-factor between the two doublets.
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4.1.4 Summary of Results & Remarks

Table 4.1 shows the measured and calculated spectroscopic structural constants for X 3∆1.

Parameters Exp. Theory Previous work Notes

A||/2π (MHz) −20.1(1) −21.5 - -
ωef/2π (MHz) 5.29(5) - 5.21(4) [43] -
dmf (D) 3.37(9) 3.46 4.03 [41], 3.46 [22] -
|gF=3/2| 0.0149(3) See main text. - -
δgF=3/2/gF=3/2 -0.00255(6) - - At Erot = 60 V/cm.

Table 4.1: Measured spectroscopic structural constants for X 3∆1. A||, ωef , dmf , gF=3/2, and δgF=3/2

are the 19F magnetic hyperfine coupling constant, Ω-doubling splitting constant, molecular frame electric
dipole moment of ThF+, the average value of the magnetic g-factors of the F = 3/2 hyperfine level in X 3∆1

for the upper and lower doublets, and the difference in magnetic g-factors between the upper and lower
doublets, respectively. Theoretical calculations by our collaborator Prof. Lan Cheng from Johns Hopkins
University and previous work are also shown here for comparison. A|| and ωef have units of rad/s and for
convenience we divide by 2π and present our results in millions of cycles per second.

Our spectroscopy is not sensitive to the sign of the magnetic g-factor shown in Table 4.1. Neglecting

the rotational contribution to the g-factor, and converting |gF=3/2| into G||, we get −0.042(2) if gF=3/2 > 0

and 0.048(2) otherwise. The latter is not far away from the theoretical predictions of G|| = 0.034 [22] and

0.035 calculated by our collaborator Prof. Lan Cheng from Johns Hopkins University. We do not have a

systematic estimate for the error in the theoretical value of G||, therefore there remains some ambiguity in

sign of the g-factor.

The spectroscopic constants measured in ThF+ are similar to those in HfF+ [56]. This means that we

will be operating in a familiar experimental parameter space. Therefore, the eEDM experimental complexity

will not increase with the planned molecule upgrade from HfF+ to ThF+.
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4.2 Blackbody Radiation Excitation and T1 Relaxation Time

4.2.1 Background

X 3∆1 has been shown to be the ground electronic state of ThF+ [43]. Hence the coherence time of

X 3∆1 is not subject to spontaneous decay. However, stray photons, e.g. blackbody radiation, can excite

ThF+ from X 3∆1, and they subsequently either decay into other long-lived states where they no longer

contribute to the measurement statistics, or back into X 3∆1 with corresponding delayed decay in coherent

spectroscopy contrast.

The transition rate between two states 1→ 2 for incoherent excitation is given by:2

Γ(f, T, µ12) =
|µ12|2

6ϵ0ℏ2
ρ(f, T ), (4.1)

where µ12 is the transition dipole moment, and ρ(f, T ) is the spectral energy density from Planck’s law:3

ρ(f, T ) =
8πhf3

c3
1

e
hf

kBT − 1
, (4.2)

where the first term is the density of states, while the second term is the mean photon number. We can

calculate the 1/e lifetime by taking the inverse of the transition rate:

τ(f, T, µ12) = 1/Γ(f, T, µ12).

A simple relation exists between frequency and wavenumbers (ν̃):

f [Hz] = 100 · c[m/s] · ν̃[cm−1].

All that remains is to determine µ12. There are three types of possible pathways for blackbody radiation

excitation from X 3∆1(v = 0, J = 1):

Electronic transitions. Electronic transitions are typically on the order of 1000 cm−1. This sits on the

tail of the exponentially decaying mean photon number at 300 K. Hence, we are not concerned with

electronic transitions.4

2 See, for instance, Equation 9.47 of Ref. [57] or Equation 2 of Ref. [58].
3 See, for instance, Equation 5.113 of Ref. [57] or Equation 1 of Ref. [58].
4 The only exception is transition to the a 1Σ+ state at just 314 cm−1 above the ground state. However, the transition is

highly forbidden by selection rules, so the excitation rate to a 1Σ+ is also highly suppressed.
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Rotational transitions. Rotational transitions sit on the other side of the spectrum, where the transition

frequencies are so small (∼ 30 GHz) that the density of states (∼ f3) is so small that the transition

rates are also highly suppressed.

Vibrational transitions. These transition frequencies are at the anti-Goldilocks range where they are

neither so large as to sit on the exponentially decaying tail of the mean photon number, nor so small

as to have negligible density of states. The excitation to v = 1 accounts for the main source of

blackbody radiation excitation from X 3∆1(v = 0). The expression for µ12 for vibration excitation

is:5

µv,v+1 =

√
v + 1

2

√
ℏ

2πmωe · 100c
ddmf

dR
, (4.3)

where ωe = 656.96(1) cm−1 from our previous spectroscopy work [43], m is the reduced mass of

ThF+, and ddmf

dR is something that we will determine in this section.

An energy level diagram of the lowest few vibronic states in ThF+ is shown in Figure 4.10.

X 3∆1(v = 0)

X 3∆1(v = 1)

a 1Σ+(v = 0)

J = 1

2

3

4

29.1 GHz

43.6 GHz

65
3

cm
−
1

31
4

cm
−
1

58.2 GHzE
n

er
gy

Figure 4.10: Energy level diagram of the lowest few vibronic states in ThF+. The transition
between X 3∆1 and a 1Σ+ is forbidden by selection rules. A zoomed-in view of the rotational states within
the ground vibronic state is shown in the dashed box. 1 cm−1 ≈ 30 GHz.

The blackbody radiation excitation rate from X 3∆1(v = 0) through X 3∆1(v = 1) is related to the

spontaneous decay lifetime of the v = 1 states. This relation comes through the transition dipole moment

between the v = 0 and v = 1 states. One should also note that the spontaneous decay rate (Einstein’s A

5 See, for instance, Equation 7 in Ref. [58].
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coefficient) is: 6

A =
16π3f3|µ12|2

3ϵ0hc3
.

Using the above, we get the relationship between Γ (blackbody radiation excitation rate) and A (spontaneous

decay rate) to be:

Γ =
A

e
hf

kBT − 1
.

Hence, a measurement of the lifetime of the v = 1 state will allow us to predict the blackbody radiation

excitation rate from X 3∆1.

4.2.2 Measuring the v = 1 spontaneous decay lifetime

To measure the spontaneous decay lifetime of the v = 1 state, we first prepare all our ions in the

ground vibronic state X 3∆1(v = 0) selectively with REMPI, and optically excite all our ions to the Ω = 0−

excited state, allowing for the ions to decay back into the X 3∆1(v > 0) states, as illustrated in Figure

4.11(a). We note that the branching ratio from the Ω = 0− state to the X 3∆1 manifold is very close
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0.74
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(a) (b)

Figure 4.11: State preparation for measurement of excited state lifetime. (a) For measurement of
X 3∆1(v = 1) state lifetime. (b) For measurement of a 1Σ+(v = 0) state lifetime. Solid line indicates laser
used for optical pumping. Dotted lines indicate spontaneous emission. Numbers attached to dotted lines
indicate Franck-Condon factors determined from our previous spectroscopy work [43].

to unity. Off-diagonal Franck-Condon factors allow the v ≥ 1 manifolds to be populated through optical

pumping. The whole optical pumping process takes about 100 ms. We then allow the ions to decay from

the excited vibrational states to lower ones, and read out the population in each vibrational state with

6 See, for instance, Equation 9.56 from Ref. [57]
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resonance-enhanced–multi-photon dissociation [46, 55] much like how we have described in Section 4.1.1.

We dissociate through the R(1) line for both the v = 0 and v = 1 manifolds. Our result is shown in Figure

4.12.
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Figure 4.12: Vibrational population decay from v = 1 to v = 0 of the ground electronic state
in ThF+. All the population was pumped from the ground vibrational manifold into the excited vibra-
tional manifold through the Ω = 0− state [43]. Population in each vibrational manifold is read out with
photodissociation. The observed vibrational decay lifetime agrees with our model, which is used to predict
the blackbody radiation excitation lifetime from X 3∆1. The total dissociated Th+ numbers do not appear
to be conserved in these two plots because the dissociation efficiencies for these two vibrational manifolds
are not the same.

To extract the spontaneous decay lifetime of the v = 1 state from Figure 4.12, we employ the following

model:

(1) We allow for non-zero initial population in the v = 1 and v = 2 states. The v = 1 and v = 2 states

are populated by decay from the Ω = 0−(v′ = 0) state, and the Franck-Condon factors are such that

we may approximate the initial populations of v ≥ 3 as zero.

(2) The decay rates from each vibrational manifold are governed by their respective Einstein’s A coeffi-

cients. We also assume that only ∆v = ±1 transitions are allowed.

(3) Fit parameters include (i) absolute scaling to account for different detection efficiencies for the v = 0

and v = 1 manifolds; (ii) number of background ions; (iii) ratio of initial populations in the v = 1

and v = 2 manifolds; and (iv) d(dmf)/dr, with this being held the same across the fits for v = 0 and

v = 1.
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Note that we can group (i) the effect of imperfect optical pumping from the v = 0 manifold, which results

in an initial non-zero population in the v = 0 manifold, and (ii) background ions detected for the v = 0

manifold together into a single v = 0 “background ion” fit parameter in the fitting model. With the above

model, we obtain d(dmf)/dr = 7(2) D/Å, in good agreement with Prof. Lan Cheng’s calculations. This value

corresponds to spontaneous decay lifetimes of 0.16(11) s and 0.08(6) s for v = 1→ v = 0 and v = 2→ v = 1,

respectively.

Using the value of the molecular dipole, we predict the effective lifetime (T1 relaxation time) of

X 3∆1(v = 0, J = 1) to be about 3 s at room temperature (300 K), which is limited by blackbody radiation

excitation from X 3∆1 to the first excited vibronic state X 3∆1(v = 1).

4.2.3 Suppression of blackbody radiation excitation

We can suppress blackbody radiation excitation from X 3∆1(v = 0) by introducing cryogenics to lower

the temperature of the setup. The effective lifetime of X 3∆1(v = 0) increases drastically with a decrease in

temperature (Table 4.2), and we anticipate establishing a blackbody environment at 180 K, which will be a

workable balance between technical convenience and sufficiently long interrogation times.

77 K 120 K 150 K 180 K 200 K 300 K

To X 3∆1(v = 1) 32000 400 84 29 17 3.5
To a 1Σ+ 2200 270 130 80 64 33

Combined 2100 160 51 21 13 3.2

Table 4.2: Prediction of blackbody radiation excitation lifetime (in seconds) out of the v = 0
vibrational level in X 3∆1, in a radiative environment of the indicated temperature.

We calculate blackbody radiation excitation across rotational levels to occur at a time scale of 103

seconds and above, even at 300 K. Since we plan to measure the eEDM with an interrogation time of about

20 s, which is only about 10 times longer than our current experiment using HfF+, the effects of rotational

blackbody radiation excitation are small and shall be neglected for the rest of the discussion.

Usual selection rules forbid transition between X 3∆1 and a 1Σ+, but our molecular ion falls under

Hund’s case (c), so these states contain slight admixtures of states of other character. Hence, a transition

between X 3∆1 and a 1Σ+ is not entirely forbidden. By using an Ω = 0+ state [43] that couples both to
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X 3∆1 and a 1Σ+ for optical pumping, we populate the a 1Σ+(v = 0) manifold through a process similar to

the experiment for measuring the X 3∆1(v = 1) spontaneous decay lifetime [refer to Figure 4.11(b)]. We

observe the spontaneous decay lifetime from a 1Σ+(v = 0) back to X 3∆1(v = 0) to be about 6 s, which is

about 40 times longer than from X 3∆1(v = 1). We calculate blackbody radiation excitation from X 3∆1 to

a 1Σ+ to be in excess of 30 seconds (Table 4.2).

The net effect of blackbody radiation excitations to a 1Σ+ and X 3∆1(v = 1) at 180 K gives an

expected lifetime of X 3∆1 to be about 20 s.

We tested the effects of the cryogenic suppression of blackbody radiation excitation in our new setup

(see Figure 7.9) by comparing the rate of population loss from the X 3∆1(v = 0, J = 1) manifold at 170 K

and 300 K. The results are summarized in Figure 4.13.
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Figure 4.13: Effect of suppressing blackbody radiation excitations at room temperature. The top
plot shows the detected ion population in the X 3∆1(v = 0, J = 1) manifold vs time held in the trap. The
blue (yellow) points correspond to holding the ions at 300 K (170 K). The bottom plot shows the total ThF+

ions detected, and serves as shot-to-shot normalization of the counted Th+ ions. The experiment sequence
is as follows.

(1) We create ions in the X 3∆1(v = 0, J = 1, F = 3/2,mF = −3/2) manifold with state preparation
steps up to (c) in Figure 4.1.

(2) We move our ions into the cryogenic part of the trap, with an ambient temperature of 170 K. At
that location, the ions can see about 0.5% of the full 4π steradians of the 300 K environment. See
Figure 7.9 for more details of this new setup. The ions are translated into the cold region in 200 ms.

(3) For the yellow points, we hold the ions here for a variable amount of time (horizontal axis in the
plot, unit in seconds).

(4) We then move our ions back out into the warm in 200 ms.

(5) For the blue points, we hold the ions here for the same amount of time that the yellow points are
held in the cold.

(6) We then dissociate ions in the J = 1 rotational manifold.

The results show that we lose ions slower from the X 3∆1(v = 0, J = 1) manifold when they are held in the
170 K environment than in the 300 K environment.
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4.3 Experiment sequence

Now that we understand all that we need to of the quantum states of ThF+, we can now design an

experiment sequence for performing an eEDM experiment.

4.3.1 State preparation and detection

4.3.1.1 Lasers and microwaves

Figure 4.14 summarizes the lasers (and recommended wavelengths) used for state preparation and

detection. We first prepare our ions in the ground vibronic manifold using REMPI (Chapter 2) through

the [32.85] intermediate state. We address the bound-to-bound transition with Lion (LiopTec LiopStar-

N, linewidth < 0.04 cm−1 before doubling, 180 µJ of UV pulse energy at trap) that is pumped with a

532 nm pump beam from Horse (Spectra-Physics INDI) which also acts as the second photon (1.1 mJ of

532 nm pulse energy at trap). We then usher our ions within the ground electronic manifold using our cw

lasers and microwaves. Here are detailed descriptions of the cw lasers and microwaves used (each of the

lasers/microwaves is prefixed with a code name in parenthesis; to be elaborated in Section 4.3.1.2):

(S) Sheep P(2) (Precilaser, 76 mW at trap, 2σ diameter of 10 mm, retroreflected). Sheep is a P(2)

transition connecting the X 3∆1(v = 0, J = 2) to the Ω = 0− [14.59] (v = 0, J = 1) state (part (b) of

Figure 4.1). Upon exciting the ions in the X 3∆1(v = 0, J = 2) manifold to the Ω = 0− [14.59] (v =

0, J = 1) manifold, they can decay back into the X 3∆1(v, J = 1, 2) manifolds, with Sheep turned on,

all the ions will ultimately end up in the X 3∆1(v = 0, J = 1) dark manifold. Transitions between

X 3∆1 and Ω = 0− [14.59] turn out to have unity branching ratio, so we only need to close the

vibrational decay channels. Relevant Franck-Condon factors are shown in Figure 4.16a.

(U) 43 GHz microwave. We use the 43 GHz7 microwave to couple the X 3∆1(v = 0, J = 2) and

X 3∆1(v = 0, J = 3) states together so that we can also pump the X 3∆1(v = 0, J = 3) states

into the X 3∆1(v = 0, J = 1) manifold.

7 The author notes that we are treating microwaves differently from the optical wavelengths. At the point of this writing,
the author is not aware if microwaves have feelings, but if they are proven to have emotions in the not so distant future, the
author wishes to apologize in advance for not considering the feelings of microwaves. Deep down the author’s heart, “43 GHz”
is affectionally called “Lamb”.
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Figure 4.14: Summary of the lasers (and recommended wavelengths in vacuum) used for state
preparation and detection. We have decided to name our lasers after animals. Lasers with functions
related to each other are named after animals related to the corresponding animal of the first laser with that
function named.
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(M) Monkey P(1) (Home-built ECDL, 15 mW at trap, 2σ diameter of 14 mm, retroreflected).

Monkey is a vibrational repump connecting the X 3∆1(v = 1, J = 1) manifold to Ω = 0− [14.59] (v =

0, J = 0).

(D) Dog P(1) (Toptica DL-Pro, 31 mW at trap, 2σ diameter of 7.4 mm). Like Monkey, Dog is a

vibrational repump, but connecting the X 3∆1(v = 2, J = 1) manifold.

(u) v = 1, 2, J = 1↔ 2 microwave. We chirp a 29 GHz microwave across a range of about 60 MHz to

couple the J = 2 to the J = 1 in both the v = 1 and v = 2 vibrational manifolds of X 3∆1 so

that they can also be repumped with Monkey and Dog. We are able to address the J = 1 ↔ 2

transitions in the v = 1, 2 manifolds but not the v = 0 because of vibrational dependence of the

rotation constant (Equation 2.5b). Figure 4.15 plots the transitions for the v = 0, 1, 2 manifolds.

The transition with the lowest frequency that couples to a doublet in the v = 0 manifold corresponds

to a transition between the (v = 0, J = 1, F = 3/2,mF = ±3/2,Ω = ∓1) to the (v = 0, J = 2, F =

5/2,mF = ±5/2,Ω = ±1). This transition seems to be forbidden from ∆Ω = 0,±1 selection rule, but

is weakly allowed because of a slight admixture of the (v = 0, J = 2, F = 5/2,mF = ±5/2,Ω = ∓1)

states through Ω-doubling, i.e. the molecules in the J = 2 manifold are not fully polarized yet at

Erot = 60 V/cm. This transition happens at the frequency 29.013247 GHz (third blue blob to the

right of the 29.0 GHz tick mark in Figure 4.15) at Erot = 60 V/cm. For the frequency chirp to couple

the J = 1 and J = 2 states in v = 1, 2, we ensured that the chirped frequency stays below this

frequency.

(G or G*) Goat Q(1) (Precilaser, 0.48 mW with 0.5% duty cycle at trap, 2σ diameter of 9 mm).

Goat is a circularly polarized light that is strobed at frot at 0.5% duty cycle by using the (−1)st order

diffracted beam of a gated AOM at 110 MHz. Goat moves the population withinX 3∆1(v = 0, J = 1)

to the stretched Zeeman states X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) (part (c) of Figure 4.1

during state preparation). Goat also acts as our depletion laser to remove ions from one of the

stretched mF states before we perform REMPD for our state detection. Goat is non-cycling enough

that we still manage to deplete most of the ions in the unwanted stretched mF states for our state
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Figure 4.15: Overlapping transitions of the J = 1 to J = 2 transition in the X 3∆1(v = 0, 1, 2)
manifolds. The transition frequencies are obtained by solving the 32-level Hamiltonian of the X 3∆1(v =
0, J = 1, 2) manifold, and looking for E1-allowed transitions between the eigenstates. We then scale the
frequencies by Bv/B0 to obtain the transition frequencies for the v = 1, 2 manifolds. The transition strengths
are determined from the Clebsch-Gordan coefficients. The two lines highlighted in yellow are the stretched-
to-streched transitions (L) and (U) mentioned in Section 4.1.2 at Erot = 60 V/cm. Note that the strong
transitions (corresponding to the (L) and (U) transitions of the v = 0, 1, 2 manifolds) happen to stay clear
of transitions belonging to the other vibration manifolds. This will not be true if we use Erot much larger
than 60 V/cm.

detection sequence; about 8% of the ions in the unwanted stretched mF states end up in the wanted

stretched mF states (see Section 4.3.1.3). In the ideal situation, we may want Goat to sit on the

P(1) transition for state preparation for higher cycling efficiency (no chance of falling down to the

X 3∆1(v = 0, J = 2) manifold), and use another laser (maybe Chicken) on the Q(1) transition to the

Ω = 0+ [10.47] electronic state that also couples to the a 1Σ+ state for cleaner and faster depletion.

A 0.5% duty cycle was chosen for Goat for two reasons. First, the strobe was required so that when

Goat is strobed on, Erot is quite precisely parallel or anti-parallel with the Goat laser beam to enforce

a good circular polarization on Goat. Second, our Doppler shift from rotation micromotion at about

4 GHz could become large enough to redshift Goat to a Q(2) transition (about 1 GHz away from

the Q(1) transition) for longer duty cycle; this Doppler shift would not be a problem if we change

Goat from Q(1) to P(1) instead.

(L) Llama R(2) (Home-built ECDL + TA, 23 mW at trap, 2σ diameter of 9.7 mm). During our

experiment, ions get bumped to higher rotational states through ion-ion collisions, or get excited to

higher rotational states through blackbody radiation that takes ions out of the X 3∆1(v = 0) into

the X 3∆1(v = 1), whereupon they can decay back to the X 3∆1(v = 0) manifold. Llama is turned

on during our state detection sequence to shelf ions from the X 3∆1(v = 0, J = 2) so that our power

broadened REMPD lasers parked on the J = 1 dissociation line do not accidentally dissociate J = 2
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ions.

For completeness, I shall also briefly mention the history/status of the other lasers and microwave

mentioned in Figure 4.14:

Hamster (Continuum Minilite, 3 mJ per pulse focused down to a diameter of 150 µm). Laser used

for ablation of the thorium metal. Hamster replaced Mouse (Litron Nano-S-130) after the latter de-

cided to retire.

Chicken (Home-built ECDL), not currently in use. We used this laser during the early ThF spec-

troscopy days to populate the a 1Σ+ through the Ω = 0+ [10.47] state for diagnostics after creating

our ions in the ground vibronic state.

Snake (Coherent MBR-110). A Ti:Sapph laser used in the spectroscopy work in Ref [43]. Snake can

perform the same function as Chicken, and with even higher frequency tunability!

Rabbit (Sirah Matisse), not currently in use. A cw ring dye laser that we used to seed Dragon with.

The output is then doubled into UV for a very narrow linewidth laser pulse to address individual Q

lines for the first photon in our REMPI protocol. Mainly used for a proof of principle work. The ring

dye laser (and the pulsed dye amplifier downstream) is much more complicated to maintain than a

normal pulsed dye laser, and we do not need to resolve the Q lines for REPMI (we could just pump

the whole Q branch), so we swapped Rabbit+Dragon for Lion.

Dragon (Radiant Dye Lasers Narrowamp), not currently in use. A pulsed dye amplifier. Seeded

by Rabbit. Used for the first photon for the REMPI process. Currently decommissioned and

enjoying its rightful vacation.

(ˆ or v) v = 0, J = 1↔ 2 microwave. We use this to deplete one of the two doublets in the (v = 0, J = 1)

manifold for diagnostics, e.g. to characterize the state-selectivity of our two-state detection anisotropy

measure. We checked that the intensity of the microwaves is low enough that we do not accidentally

deplete the other doublet from power broadening; we also ensured that the frequencies used do not
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happen to drive other transitions through accidental degeneracy. When operating in a two-state

detection mode, we do not use this microwave frequency.

4.3.1.2 Code names

On a day to day basis, we run our experiments with various combinations of lasers and microwaves

that are turned on. It will be very cumbersome to label an experiment with names like “(J = 2 rotational

cooling) + (J = 2↔ 3 microwave) + (v = 1 vibrational repump) + (v = 2 vibrational repump) + (v = 1, 2

microwaves coupling J = 1↔ 2) + (mF strobe pumping)”. Naming our lasers and microwaves after animals

allows us to shorten the above into “Sheep + 43 GHz + Monkey + (v = 1, 2, J = 1↔ 2) + Dog + Goat”.

This is still too long for our liking. We go one step further and abbreviate them with their one-character

code names introduced with each laser/microwave in Section 4.3.1.1, so the above will look like “SUMuDG”.

Short and sweet. Cute and concise. The order of the code names does not matter, for instance “SUMuDG”

means the same thing as “SMDGUu”.

Most of the abbreviated code names are just the first letter of the name of the laser (e.g. “S” for

Sheep).8 Goat has two code names: “G” and “G*”. The former refers to Goat with σ+ polarization, and

the latter refers to σ−. The v = 0 J = 1↔ 2 microwave also has two code names: “ˆ” and “v”, referring to

the microwave frequencies for depleting the upper and lower doublets, respectively.

Using this convention presents two additional advantages. First, having this convention also allows

us to turn lasers and microwaves on or off very easily when we run our experiments simply by including or

excluding the code names from our experiment user interface (see Section 9.3.4.2). Second, these abbreviated

code names appear on all the plots of our automatically processed data, allowing for easy forensics on which

lasers/microwaves were turned on during the experiment just by looking at the abbreviated code names.9

In some of the figures that follow, one may see code names in the legends for the plots. The author

has also taken the extra effort to annotate the legends with descriptions for readers who are uninitiated with

the code names for clarity.

8 The Latin alphabet only has 2×26 = 52 letters. The author is trying to advocate for expanding the set of usable characters
to include Chinese, Japanese, and Korean characters. The possibilities are (practically) endless!

9 The full names are too long and clutter the plots.
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4.3.1.3 Optical pumping model

Our state preparation stage is usually 300 ms long, and our state detection stage is about 40 ms long.

The choices for these timings are informed by our optical pumping model, and are fine-tuned by scanning

how long it takes for the lasers and microwaves to do their job, and are limited by the laser intensities that

we currently operate at.

The optical pumping model involves solving differential equations of the form:

d

dt
ni(t) =

∑
j

Γj→inj(t)

−
∑

j

Γi→j

ni(t), (4.4)

where Γi→j are rates at which population move from the i state to the j state. We assume that (i) the

lifetime of the Ω = 0− [14.59] excited state is short as compared to the laser/microwave excitation rates, and

(ii) the branching ratio to X 3∆1 from Ω = 0− [14.59] is unity. Hence, the i and j states are states from

the X 3∆1 electronic manifold. We also make use of the fact that rotational transitions are slow compared

to the typical rates that we are looking at, so we do not include rates connecting different rotational states

within the same vibronic manifold.

The first term on the R.H.S. of Equation 4.4 corresponds to population going into the i state, while the

second term corresponds to population going out of the i state. One can then easily vectorize the equation,

assume that the evolution is time independent (i.e. Γ rates are not functions of time), and solve it as a simple

linear algebra differential equation:

d

dt
n(t) = Γn(t) =⇒ n(t) = eΓtn(0), (4.5)

where n(t) is a vector with the population of all the states that we are interested in, and Γ is a matrix with

dimensions dim(n) × dim(n) governing all the rate constants, and it includes (i) laser pumping rates, (ii)

microwave pumping rates, (iii) blackbody radiation excitation rates, and (iv) spontaneous decay rates. It

does not include rotational heating through ion-ion collisions, and it assumes that the Ω = 0− [14.59] state

is short-lived as compared to the fastest pumping rates. Expansions to this model for time dependent Γ(t)

or to include the two aforementioned effects are straightforward.

The optical pumping model takes in as input (i) the measured depletion rates of individual lasers

from relevant states, and (ii) the calculated Franck-Condon and Hönl-London factors (see Figure 4.16). We
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(a) Franck-Condon factors for transitions between X 3∆1 and Ω = 0−[14.59].

(b) Hönl-London factors for Ω = 0−[14.59]→ X 3∆1. (c) Hönl-London factors for Ω = 0−[14.59]← X 3∆1.

Figure 4.16: Relevant Franck-Condon and Hönl-London factors for transitions between X 3∆1

and Ω = 0− [14.59]. Franck-Condon factors are calculated from the measured spectroscopic constants
(Be, ωe) using equations from Ref [59]. Hönl-London factors are calculated with equations from Ref [60],
being careful with the state multiplicities. Here is an example of how to get the element in Γ that represents
the rate at which population moves from (v = 0, J = 2) to (v = 0, J = 1) from the effect of Sheep P(2). For
convenience, we call the rate at which Sheep moves population out of (v = 0, J = 2) to the Ω = 0− state
to be ASheep. The rate at which population falls back to (v = 0, J = 2) is ASheepFC0′0′′HL1′2′′ , where the
single- (double-) primed numbers indicate the upper (lower) state. Hence the net rate at which population is
moving out of (v = 0, J = 2) is ASheep(1−FC0′0′′HL1′2′′) =: ASheep,meas., which is the rate that we measured
with our setup. The rate at which Sheep moves population into (v = 0, J = 1) is the product of the rate at
which population is moving out of (v = 0, J = 2) and the probability that it falls down to (v = 0, J = 1).
This is given by ASheep,meas.FC0′0′′HL1′1′′ = ASheep,meas. × 0.576 × 0.5. The relevant Hönl-London factors
are the ones associated with decay (part (b)), but the factors for excitation are also included for convenience
to compare rates across Sheep P(2), Monkey P(1), and Goat Q(1).
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neglect the Zeeman mF sublevels in all our states in the optical pumping model except for the (v = 0, J = 1)

rotational state, which is split into the “D” and “B” states. The “D” (“B”) state represents the states that

are dark (bright) to the circularly polarized Goat Q(1) laser. For instance, a σ+-polarized Goat Q(1) laser

can only address the mF = {−3/2,−1/2, 1/2} states but not that mF = 3/2 states. The former forms the

“B” state, and the latter forms the “D” state. One can tell from Figure 4.7 that there are actually two (ten)

states in the “D” (“B”) state. Spontaneous decay into the (v = 0, J = 1) manifold are split into a 1:5 ratio

between the “D”:“B” states. Of note, we also neglect the effect of polarization of all lasers except for Goat

Q(1).10

We verified the model by comparing its predictions to experiments, and we saw very good agreement.

Here we present an example of matching predictions from the model with results from experiment.

After our Ramsey sequence, we map the phase difference acquired during the Ramsey evolution into

population difference in the two mF = ±3/2 states. Since our state detection protocol using REMPD does

not discern between the two states, we have to deplete one of the mF states before we dissociate to read

out population in the other state. We use circularly polarized Goat Q(1) to perform this depletion. It is

important to understand what Goat does to the ion population. Ideally we want Goat to deplete all the

population in one of the mF states and leave the other mF states untouched. Figure 4.17 looks at the effect

of Goat Q(1) on moving population within our molecule. The time dependence shown in the figure only

cares about the pumping rates of the lasers, which can be changed by changing the beam intensity and mode

overlap of the laser beam and the ion cloud.

Without the effect of spontaneous decay and BBR excitation (or equivalently if Goat’s pumping rate

is much faster than the rates of spontaneous decay and BBR excitation), we see that we end up pumping

8% of “B” (states bright to Goat) into “D” (states dark to Goat). This means that in using Goat Q(1) to

deplete the unwanted mF state at the end of our Ramsey sequence, we end up with 8% pollution in our

signal. At this point in time, this is still within acceptable range, but if one wishes to improve upon it, one

would use Chicken or Snake for depletion instead of Goat.

With the effect of spontaneous decay and BBR excitation, one can imagine that if we turn Goat

10 The rotation of the rotating electric field mixes the polarization of the lasers that are not strobed.
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on past some amount of time, we do not win in terms of contrast, i.e. we will end up with unwanted ion

migration into the dark mF states through vibrational decay. In fact, Figure 4.18 shows the total population

in the (v = 0, J = 1) manifold (= “D” + “B”) as a function of time at which Goat is turned on, and we can

see that past a certain pumping time, we start to see growth in the ion numbers in “D” (+“B”) through

vibrational decay. This means that with our current laser intensities and mode overlap, we do not win by

having our depletion Goat Q(1) on for more than 50 ms, i.e. there is no point in having a state detection

stage longer than 50 ms. In fact, we are parking ourselves at 40 ms.

Figure 4.19 shows a comparison of model prediction and experiment result. We expect a population

growth in “D” (corresponding to chop “Prep. + det. (same pol.)” in the figure) after a certain time, and

we indeed see it in the experiment. The optical pumping model is not perfect because it makes several

simplifications (e.g. state lifetime of the Ω = 0− [14.59] is infinitely short compared to typical pumping rates;

treats the rotational manifolds as one state without sub-structure, except for (v = 0, J = 1) with the “D”

and “B” sub-structure), and it certainly does not include all the effects seen by our ions (e.g. “D”-“B” mixing

effects through mF changing collision; ion-ion collisions causing rotational heating), but it is good enough

for us to design our state preparation and detection scheme.
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(a) The effect of having only Goat Q(1) on.
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(b) Spontaneous decay and BBR excitation are turned on.

Figure 4.17: From the optical pumping model: distilling out the effects of spontaneous decay
and BBR excitation from the effect of Goat Q(1). Here we consider all states with v ≤ 3 and J ≤ 5.
The (v = 0, J = 1) manifold is split into “D” and “B” representing the states that are Dark and Bright to the
circularly polarized Goat Q(1) laser, respectively. We start with population all in the “B” state, and we turn
Goat Q(1) on. Note that the early time behavior is the same with and without the effects of spontaneous
decay and BBR excitation because the pumping rate of Goat is much faster than the rates of decay from
ions shelved in the higher vibrational states by Goat and the BBR excitation rate out of the v = 0 manifold.
The effects of spontaneous decay become apparent at later times when ions shelved in higher vibrational
manifolds start to decay down, and if they fall back into the “B” state, they in turn can be addressed by
Goat again. More discussion in the main text.
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Figure 4.18: From the optical pumping model: population in the (v = 0, J = 1) state, which is a
sum of population in “D” and “B”, plotted as a function of time at which Goat is turned on.
Without the effect of spontaneous decay and BBR excitation, the population in the (v = 0, J = 1) manifold
saturates at 6%, but with the aforementioned effects, we reach a lowest population fraction of about 8% at
around 50 ms of Goat on time. Thereafter we see significant unwanted population growth.
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(b) Checking predictions with experiment.

Figure 4.19: Comparing predictions from the optical pumping model with experiment. The top
plot on the right corresponds to the number of dissociated Th+ detected, while the bottom plot is a check
on the total ThF+ numbers in the trap; the lines in the bottom plot should look flat. We see that the
population in “B” (corresponding to the chop “Prep. + det. (diff. pol.)”, red line) decays at early time and
increases slightly after about 20 ms, both in the simulation on the left plot and in the experiment on the
top right plot. The population in “D” (corresponding to the chop “Prep. + det. (same pol.)”, green line)
decays with time in the experiment, but not in the simulation. We believe this is because the model does
not include the effect of “D”-“B” mixing through mechanisms like mF -changing collisions. We can model
this mixing by including an ad hoc decay rate of about 3 s−1 to make the two plots agree more.
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4.3.1.4 Current scheme and possible future upgrades

With our current scheme using 300 ms of state preparation (with Goat Q(1), Sheep P(2), 43 GHz

microwave, Monkey P(1), Dog P(1), and the v = 1, 2 microwaves), we expect about 55% of all our ions to

be in the X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) states and another 2% in the X 3∆1(v = 0, J = 1, F =

3/2,mF ̸= 3/2) states after state preparation. 25% of our ions are hiding in the X 3∆1(v = 0, J = 4), with

another 10% in the X 3∆1(v = 1, J > 1), and the rest (8%) spread out across the higher vibrational states.

We could leave our state preparation lasers and microwaves turned on for longer, but leaving them on for

much longer than 100 ms starts to give diminishing returns. Figure 4.20 shows two plots for visualizing the

diminishing returns after 100 ms.
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(a) “Impurity” of the J = 1 manifold.
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Figure 4.20: Plots of “impurity” and population migration in and out of the J = 1 manifold as a
function of state preparation time. “Impurity” is defined as the fraction of the population within the
J = 1 manifold in the “B” state; we want “impurity” to be as close to zero by the end of our state preparation
sequence. The initial population numbers (shown on the title of each plot) used for the simulation come from
counting dissociated Th+ ions by scanning the R branch of the first photon in the REMPD transition used,
and taking into account the Hönl-London factors. (a) With our current pumping rates (limited by the current
laser and microwave intensities), we expect to go below an “impurity” of 10% at 100 ms. Beyond 100 ms,
BBR excitation kicks in to excite population in the “D” state into the higher vibrational states, so the lasers
have to fight harder to get the ions back. (b) The sharp rise in the population in J = 1 (=“B”+“D”) at the
start comes from Sheep and the 43 GHz microwave moving population from the J = 2&3 into J = 1. The
decrease after that comes from Goat moving population into the mF = 3/2 states through the Ω = 0− [14.59]
state; this is an inefficient process because only about 6% end up in the mF = 3/2 states after the first pass.

We can make several upgrades to our system to make the state preparation sequence more efficient.

Firstly, we can recover the population in X 3∆1(v = 0, J = 4) by including a repump through microwaves

connecting the J = 3 and J = 4. This will give us an additional 25% ions. Secondly, we can recover the
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population in X 3∆1(v = 1, J > 1) by using stronger microwaves coupling the X 3∆1(v = 1, J = 1) and

X 3∆1(v = 1, J = 2), and also microwaves coupling to higher rotational states. Lastly, we can also make

Goat’s mF pumping a more efficient process by switching Goat from Q(1) to P(1); using P(1) would also

alleviate the problem of Doppler shifting Q(1) into Q(2) because the P lines are much more separated than

the Q lines. A quick study on the pumping rates of the lasers indicate that we are still not in the saturation

regime yet, so we can still win more with more laser power (which will allow us to expand the beam more

for the same/higher intensity with a better overlap with the entire ion cloud). We did not do a full study

on the saturation curve for the microwaves because it turns out that the setup made it much harder to turn

the knob on microwave power, but it seems like we are still in the linear regime so there is still more to be

gained with higher microwave power.

For state detection, we turn the lasers (Goat Q(1) and Llama R(2) only) on for 40 ms. We have

already discussed limitations in the state detection scheme in the previous section. Goat Q(1) and Llama

R(2) couple to the Ω = 0− [14.59] excited state, with unity branching ratio back to X 3∆1. Fortunately Goat

Q(1) only brings 6% of our population back into the dark state, i.e. Goat is ∼ 94% efficient in depletion.

Llama R(2) does not move population into the dark state through the R(2) transition, but in principle ions

could take the pathway (v = 0, J = 2)
R(2)−→ (v = 2, J = 3)

spon. decay−→ (v = 1, J = 2)
spon. decay−→ (v = 0, J = 1)

to go back to the dark state. To make this process less cycling, we can change their wavelength to address

the Ω = 0+ [10.47] excited state instead with a less than unity branching ratio back into the X 3∆1 manifold,

shelving ions in the a 1Σ+ manifold.
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4.3.2 Ramsey sequence

Upon preparing the ions in the X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) states, we wish to perform a

Ramsey experiment by performing a π/2 pulse to prepare a superposition of the mF = 3/2 and mF = −3/2

states (see part (c) of Figure 1.4). The previous eEDM experiments with HfF+ use a π/2 pulse sequence as

follows:

(1) Ramp Erot down from 58 V/cm to 7 V/cm in 16 µs;

(2) Hold for 1 ms;

(3) Ramp Erot back up to 58 V/cm in 16 µs.

Since Brot ∝ Erot and the rotational coupling11 (∆) between the mF = ±3/2 states increases with decreasing

Erot to about ∆ ∼ 500 Hz in HfF+ with an frot = 375 kHz, the above π/2 sequence effects a “simultaneous

π/2 pulse” for both the upper and lower doublets; the “simultaneous” is in quotes because the upper and

lower doublets actually have a differential ∆ of about 50 Hz at 7 V/cm, but it is small enough compared to

500 Hz so that while they are actually π/2± ϵ pulses, the ϵ is small. Figure 4.21a shows a plot of the ∆s in

HfF+.

We borrowed wisdom from the HfF+ experiment and tried to perform the same π/2 pulse on ThF+,

but we have not been very successful. We notice that we lose a lot of ions from our desired quantum

states after each π/2 pulse. It turns out that the spectroscopic constants of ThF+ are sufficiently different

from HfF+ to make the HfF+ protocol hard to implement in ThF+. However, the seemingly unfriendly

spectroscopic constants of ThF+ also opened a window of opportunity to realize a true simultaneous π/2

pulse in ThF+, which we shall see in the next few sections.

11 See Figure 1.4 for an illustrated explanation of the rotational coupling in the context of the eEDM-sensitive states. See
Figure 4.21 for the plot of ∆ vs Erot. See Section C.3.1 for the Hamiltonian that we diagonalize to extract ∆.
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4.3.2.1 Working principle behind the old protocol

The energy splitting between the mF = ±3/2 states goes as12 (also see Figure 1.4):

fu,l =

√
[∆u,l(Erot, frot)]2 + [f0(Erot, frot)]2, (4.6)

where {u, l} correspond to the upper and lower doublets, respectively, and it is made explicit that ∆ and

f0(Erot, frot) = 3gµBBrot(Erot, frot) both depend on Erot and frot. The dependence of Brot on those variables

are Brot = Baxgrad · eErot

m(2πfrot)2
, while those of ∆ are more complicated, but it suffices to say that ∆ increases

very quickly with decreasing Erot and increasing frot. Representing the mF = ±3/2 states as the poles on

a Bloch sphere, the Bloch vectors on the sphere precess about a precession vector pointing in the (∆, 0, f0)

direction with frequency f as given in Equation 4.6. For perfect Rabi flopping, we want the Bloch vectors to

precess around (1, 0, 0). We can realize this in our system by ramping down Erot to reduce f0 and increase

∆ so that f0 ≪ ∆ for our π/2 pulse. Except during the π/2 pulses, Erot is large enough that f0 ≫ ∆ so that

the Bloch vectors precess around the poles. This is the working principle behind the π/2 pulses in the first

two generations of the JILA eEDM experiment using HfF+.

The above picture is painted as a two-level system, but there are many more energy levels in our

molecule. It turns out that the width of the hyperfine crossing “resonance” in ThF+ is so much broader

than HfF+ (see Figure 4.21b) that we can get population leakage from our two-level system into other states

when we sweep across the hyperfine crossing, e.g. unstretched Zeeman states through rotational coupling of

neighboring mF states and, worse still, into the other doublet through Ω-doubling coupling. Furthermore,

the two doublets have such different ∆s that it is not possible for us to perform a “simultaneous π/2 pulse”

for both doublets in ThF+ (∆u ≈ 100 Hz and ∆l ≈ 300 Hz at 7 V/cm with frot = 147.5 kHz). We could

perform a π/2 pulse for the upper doublet and a 3π/2 pulse for the lower doublet simultaneously, but this

still does not solve the problem of population leakage when we cross the hyperfine crossing. Instead, we

implement a true simultaneous π/2 pulse protocol by always staying on the same side of the hyperfine

crossing and parking ourselves at a special Erot during the π/2 pulse.

12 The difference in g-factor for the upper and lower doublets are small for our discussion here, and are intentionally left out.
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Figure 4.21: Plot of |∆|. The plots are obtained by diagonalizing the 12-level Hamiltonian of the X 3∆1(v =
0, J = 1) manifold in the molecular frame (with zero magnetic field, and at various electric field Erot), and
extracting the energy difference within the doublet for each of the upper and lower doublets. The Hamiltonian
that we diagonalized is shown in Section C.2. After diagonalizing the Hamiltonian, we obtain eigenenergies
like those shown in Figure 5.4. ∆u would correspond to the energy difference between the states labeled [8]
and [9] after the hyperfine crossing (or [6] and [7] before the hyperfine crossing). ∆l corresponds to the energy
difference between the states labeled [0] and [1]. The part where ∆ blows up corresponds to the hyperfine
crossing, where the upper doublet crosses over the lower unstretched Zeeman states of the F = 1/2 manifold.
Note that the hyperfine crossing occurs at a much higher Erot in HfF+ than in ThF+ because of the much
larger hyperfine coupling constant in the former (3 times). The differential ∆ between the doublets is much
larger in ThF+ than in HfF+ because of the much larger Ω-doubling constant in the former (7 times). Hard
to see from this diagram is an interesting Erot ≈ 30 V/cm for ThF+ where ∆u = 0 Hz.
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4.3.2.2 New protocol with the special Erot

It turns out that the values of ∆s for both doublets cross at a special Erot of about 13.35 V/cm in

ThF+ with frot = 147.5 kHz (see Figure 4.21b). It also turns out that 13.35 V/cm brings a few other

benefits:

(1) It is sufficiently large for the molecules to retain their polarized orientations (dmfErot ≈ 23 MHz ≫

ωef = 5.3 MHz).

(2) It is sufficiently small as compared to 60 V/cm. We intend to have an f0 = 50 Hz when we

nominally operate at 60 V/cm, and since a magnetic field quadrupole-typed Zeeman induced f0

scales linearly with Erot, f0 will be reduced to about 10 Hz at 13.35 V/cm. This is small compared

to ∆u(Erot = 13.35 V/cm) = ∆l(Erot = 13.35 V/cm) ≈ 65 Hz, allowing us to perform Rabi flopping

that goes almost from pole to pole on the Bloch sphere, retaining good contrast.

Hence, without needing to go through the hyperfine crossing, and with a π/2 pulse that is truly simultaneous

for both the upper and lower doublets, the π/2 pulse protocol for ThF+ is:

(1) Ramp Erot down from 60 V/cm to 13.35 V/cm in 1.2 ms;

(2) Hold for 4.1 ms;

(3) Ramp Erot back up to 60 V/cm in 1.2 ms.

We note that while we ramp Erot down to 13.35 V/cm, ∆l is always higher than ∆u, and one might

näıvely think that there would be an additional phase accumulated by the lower doublet than the upper

doublet after the procedure. We propose two reasons not to worry. Firstly, it turns out that the ramp is

fast enough that the extra phase accumulation is much less than 1% of a radian. Secondly, We could always

compensate for the difference by parking at an Erot that is slightly smaller than 13.35 V/cm. Regardless, the

value for the special Erot is something that can be scanned experimentally. In fact, as we shall see in Figure

4.23, we scanned for the special Erot, and found it to be about 13.7 V/cm. We believe the discrepancy with

13.35 V/cm comes from a combination of COMSOL simulation precision (to convert applied voltage on the
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electrodes to electric field strength along the trap axis) and imperfections in the experiment setup. This

discrepancy is also consistent with our estimated error of dmf (see Table 4.1).

It is also interesting to note that the value of the special Erot varies very slowly with frot within our

usual operating range between 147.5 kHz and 400 kHz. Figure 4.22 shows a plot of the special Erot vs frot.
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Figure 4.22: Plot of the special Erot vs frot. As frot increases, ∆u,l increase as ∼ f3
rot. Hence the value

of the special Erot changes very little, until frot is starting to be comparable to the hyperfine splitting (≈
15 MHz).
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(a) Erot = 12.6 V/cm.
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(b) Erot = 13.35 V/cm.
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(c) Erot = 13.7 V/cm.
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(d) Erot = 14.0 V/cm.

Figure 4.23: Rabi flopping of both doublets at various Erot. The top row in each subfigure corresponds
to the measured Th+ ion numbers. The second row corresponds to the contrast, which is the difference of
the measured numbers of the two chops, divided by the sum. The last row corresponds to the total ThF+

numbers detected, for normalization. The numbers in each doublet are extracted by using angular resolved
photofragments as demonstrated in Figures 3.8 and 3.9. In this set of runs, Doublet A (B) corresponds to
the ions in the lower (upper) doublet. From our model, and assuming that Erot in the trap is what we believe
it is, we expect both doublets to have the same Rabi frequency at Erot = 13.35 V/cm (see Figure 4.21b).
However, (b) shows that the upper doublet is decohering very quickly, and is at a slightly higher frequency
than the lower doublet. This is probably because Erot is slightly closer to the hyperfine crossing than the
special Erot point, causing us to loss ions from the upper doublet into the unstretched Zeeman states at
the hyperfine crossing. Going to a lower Erot = 12.6 V/cm gives a higher lower doublet Rabi frequency (as
expected, see Figure 4.21b), and a totally decohered Rabi flopping for the upper doublet as it gets even
closer to the hyperfine crossing. Going to a higher Erot = 14.0 V/cm makes the Rabi frequency for both
doublets go down as expected. The sweet spot happens to be around Erot = 13.7 V/cm.
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4.3.3 Summary

The experiment sequence in the baby Bucket Brigade (see Figure 7.9) is summarized in Figure 4.24.

1

2

3
4

5

6

7 8

9

10

11

12

Figure 4.24: Summary of experiment sequence. The channels 1 (yellow) and 2 (cyan) correspond to
pickup voltages on Rod 8 (radial electrode) and the Southeast Quadrant Ring (“end cap”) (see Figure 7.9).
(0, not shown on the scope trace) We pulse the nozzle and fire the ablation laser to create neutral ThF
entrained in supersonic expansion beam of neon buffer gas at room temperature (ultimate flow speed of
about 800 m/s). The steps are detailed in the main text. Also compare with Figure 7.9.

(1) We turn on the radial trap, fire the REMPI lasers to ionize the neutral ThF into the ThF+ X 3∆1(v =

0) manifold, and apply a stopping voltage to stop the ions into a trap with secular frequencies of

about 2 kHz in all directions.

(2) We move the ions to the center of the trap, while turning the radial trapping frequency up to about

4 kHz from 2 kHz.

(3) We ramp up Erot from zero to 60 V/cm.

(4) State preparation for 300 ms, where we send in all the state preparation lasers and microwaves to

prepare the ions in the X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) states.

(5) We translate our ions into the Science region by modulating the potentials on the Rings (see Figure

7.9).
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(6) We apply our π/2 pulse to prepare our ions in a superposition of the X 3∆1(v = 0, J = 1, F =

3/2,mF = 3/2) and X 3∆1(v = 0, J = 1, F = 3/2,mF = −3/2) states by ramping down our Erot to

13.7 V/cm with the protocol mentioned in Section 4.3.2.2.

(7) Ramsey free evolution time, followed by another π/2 pulse labelled by (6) to map the phase difference

between the states into a population difference.

(8) We translate our ions out from the Science region back into the Octagon (see Figure 7.9).

(9) State detection at 40 ms, where we send in the lasers (and microwaves) to transfer population from

either the mF = 3/2 of mF = −3/2 states to states outside the J = 1 manifold.

(10) We ramp Erot down to 20 V/cm to retain the polarization of our molecule, but to ensure that Erot is

small enough that the ions to do not miss the ion detector because of their huge transverse rotation

micromotion speeds.

(11) We ramp the radial trapping frequency back to about 2 kHz, and move the ions to overlap with the

REMPD lasers.

(12) We fire our REMPD lasers and kick our ions out of the trap towards our ion detector.



Chapter 5

Interlude

5.1 Revisiting wisdom lost in time

Before we get too excited with our newfound tools using ThF+, it serves to revisit some JILA eEDM

wisdom that have been either (i) lost in time, or (ii) taken for granted. We shall see if the wisdom (mostly

built upon HfF+) still holds for ThF+. This section does not aim to shed any new insight on top of the

ancient wisdom, and mainly serves as a quantum repeater or a buffer op-amp for wisdom from previous

generations to remind the younger students in the group why we chose to use ThF+ the way it is being used

now. As an exercise, we shall also explore the feasibility of a new proposal on how to measure the eEDM

with ThF+ from the Hutzler group [29].

5.1.1 Wisdom up till now

The whole state preparation and detection scheme in ThF+ has been built around performing the

eEDM experiment on the 3∆1(v = 0, J = 1, F = 3/2,mF = ±3/2) states. We shall now revisit the wisdom

behind the choice for each of the quantum numbers.

5.1.1.1 Using the 3∆1 state

The 3∆1 electronic state is wonderful for an eEDM measurement for a few reasons. Summarizing the

points in Ref. [25], we have:

Ω-doubling. The 3∆1 electronic state has an Ω doublet structure with a very relatively small energy gap

between the parity doublets. This allows the molecule to be polarized very easily with very modest
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electric fields as compared to atoms. A high degree of polarization allows the ensemble of molecules

in our ion cloud to sing in unison like in a choir, instead of cancelling each other’s effects like in a

canteen. We borrowed this idea liberally from Prof. David DeMille’s PbO experiment [61].

|Ω| = 1: small g factor. With an |Ω| = 1 structure and a |Λ| = 2 in a 3∆1 state, the projections of the spin

and angular momentum of the electron onto the internuclear axis are anti-parallel, i.e. L·n̂ =: Λ = ±2

when S · n̂ =: Σ = ∓1. Given that the g-factor for the spin of the electron is quite nearly two times

that of its orbital angular momentum, the net g-factor of the 3∆1 state can be highly reduced. The

reduced g-factor makes us less susceptible to drifts in external magnetic fields, reducing systematic

effects in our system.

Co-magnetometry. Having two doublets (from the Ω doublet structure) with very similar sensitivities

to external fields, but sensitivities of opposite sign to the physics that we are probing allows us to

perform co-magnetometry to have excellent rejection of many systematic effects.

5.1.1.2 Using the (v = 0, J = 1) state

Within the 3∆1 electronic state, we use the v = 0 vibrational manifold because it is the ground

vibronic state, where the state lifetime is not limited to any form of spontaneous decay to lower energy

levels. Within the v = 0 vibrational manifold, we use the J = 1 rotational manifold because this is the

manifold which has the lowest multiplicities, making quantum control much easier.

Furthermore, much in the spirit of Figure 3.2, since we are in the 3∆1 electronic state with |Ω| = 1,

we want to be in the J = |Ω| = 1 rotational manifold for the electron spin to be most aligned with the

internuclear axis to have the best sensitivity to the eEDM.

5.1.1.3 Using the stretched Zeeman state (mF = ±3/2)

Within the 3∆1(v = 0, J = 1) rovibronic manifold, we choose to use the stretched Zeeman states

because the eEDM is sensitive to the electron spin. The electron spin is fully aligned with the projection

of the net angular momentum onto the internuclear axis in the stretched Zeeman states (|F = 3/2,mF =
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±3/2⟩ = |F = 3/2;mJ = ±1(Σ = ∓1,Λ = ±2),mI = ±1/2⟩), whereas the unstretched Zeeman states come

with a superposition of electron spin projections onto the internuclear axis (e.g. |F = 3/2,mF = 1/2⟩ =

1√
3
|F = 3/2;mJ = 1,mI = −1/2⟩ +

√
2
3 |F = 3/2;mJ = 0,mI = 1/2⟩). Therefore, using the stretched

Zeeman states gives us the best sensitivity to the eEDM.

5.1.2 Other exotic ways

In light of proposals to perform eEDM measurements in unconventional ways (but still using diatomic

molecules) [28, 29, 34], one wonders if we could win by breaking ourselves free from tradition.1 In fact,

Ref. [29] proposes to perform an eEDM measurement in ThF+ by using a first-order electric field-insensitive

transition at a magic2 electric field strength. The physics behind this protocol is that as we increase the

electric field strength, we go from the “quadratic Stark regime” where F is a relatively good quantum number

to the linear Stark regime where F is no longer a good quantum number, but mF still is. This results in non-

trivial shifts in energy levels within the molecule, which can result in transition energies between states to have

a zero first-order gradient w.r.t. the field strength. This is much like the magic trapping wavelength concept

for trapping neutral atoms [62] or magic magnetic fields for first-order field-insensitive qubit transitions [63].

The proposal from Ref. [29] involves a transition between a (J = 1,mF = 1/2) and a (J = 2,mF =

1/2) state at an electric field strength of 18.6 V/cm. Figure 5.1 shows a plot of transition frequencies as a

function of applied electric field. We shall attempt to analyze the proposal from Ref. [29], and see how it

can or cannot apply to our experiment.

1 Also known as peer pressure from people who are no longer around.
2 Although not yet officially defined in textbooks, the author notes that “magic” is now a technical term in AMO physics

with a specific meaning: (adj.) used in AMO physics to refer to a specific value of an experiment parameter that allows the
system to be insensitive to changes in that experiment parameter; e.g. “magic wavelength” [62].
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(b) Zoomed in for better view of the curvature.

Figure 5.1: Transition frequencies of all transitions connecting the (J = 1,mF = ±1/2) states to
the (J = 2,mF = ±1/2) states. CP-FIT stands for CPV-sensitive field-insensitive transitions, as defined
in Ref. [29]. These plots are obtained in a similar way as Figure 4.5, but only showing the mF = ±1/2
transitions, and plotting the lines with the same intensities instead of being weighted by transition strength.
The CP-FIT are transitions that are insensitive to the applied electric field to first order, and they show up as
transition energies with zero gradients on the plots. The rotating frequency frot is set to zero in these plots.
The vertical lines indicate 18.6 V/cm and 21.3 V/cm, where the CP-FITs are. The lines for the CP-FITs
look flat on this scale (2 MHz per small division in the zoomed in plot), but if there is a 1% deviation in E ,
it would correspond to a 200 Hz deviation on the CP-FIT frequencies.
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5.1.2.1 Co-magnetometry

In our eEDM experiment, there are four states involved (see Figure 5.2). We tend to measure the

mF Ω = −3/2

mF Ω = 3/2

mF = −3/2 3/2 mF = −1/2 1/2

J = 1

J = 2

Traditional JILA method New proposal

Figure 5.2: The four states used in a typical eEDM experiment with co-magnetometry. In
our traditional JILA method, we measure the frequencies of the upper and lower Stark doublets. Ramsey
spectroscopy is performed “horizontally” across the doublets. The energy difference of the upper (lower)
Stark doublet is EZeeman+EEDM (EZeeman−EEDM). Taking the difference in energies between the doublets
reveals EEDM. In the new proposal from Ref. [29], Ramsey spectroscopy will be performed “vertically” across
the rotational states. The energy difference of the mF = 1/2 (mF = −1/2) pair is Emol. rot.EStark + EEDM

(Emol. rot.EStark − EEDM). Taking the difference in energies between the two mF pairs reveals EEDM.

frequency within each Stark doublet, and perform co-magnetometry across the Stark doublets. The new

proposal changes it to measuring the frequency within each mF manifold, and performing checks on system-

atics by comparing the frequencies measured for the different mF . This is a paradigm shift, but it certainly

sounds like we could do this with our current setup.

5.1.2.2 Ramsey frequency

Our Ramsey frequencies have been on the order of f ∼ 100 Hz. In the third generation experiment,

we are also aiming for 50 Hz. In contrast, the new proposal is looking at a Ramsey frequency of about

29 GHz. This is huge. To perform a Ramsey experiment on this transition, and aiming for a precision on the

order of 1 mHz, we would need to have a stable microwave source down to a part in 3× 1013. This sounds

challenging, but not entirely impossible.

5.1.2.3 State preparation

Our current state preparation protocol involves (i) creating our ions in the ground vibronic state of

ThF+, (ii) using lasers and microwaves to move our ion population to X 3∆1(v = 0, J = 1, F = 3/2,mF =
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3/2), and (iii) performing a π/2 pulse by ramping Erot down to prepare a superposition of the mF = 3/2

and mF = −3/2 states for Ramsey spectroscopy.

The new proposal involves preparing ions in the mF = 1/2 states. In our setup, this would probably

mean that we will need to prepare our ions in the X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) states first

like what we have been doing, and then performing a coherent transfer to the X 3∆1(v = 0, J = 1, F =

3/2,mF = 1/2) state, probably through stimulated Raman adiabatic passage (STIRAP). One would need

to find a good intermediate state to use for STIRAP, or some form of adiabatic rapid passage scheme that

would allow for such a population transfer. Unfortunately, our current setup (and our future Bucket Brigade

setup, see Section 5.3) only allows lasers and microwaves to come in along the plane of the rotating polarizing

electric field. This means that our lasers and microwaves can only be σ± or x polarized, not π. This would

certainly limit schemes available to us, for example, a näıve two-photon process to move population from

mF = 3/2 to mF = 1/2 would involve a σ− and a π photon, but this cannot be done with our current setup.

Furthermore, the new proposal does not take into account that we need to work in a rotating frame

to polarize our molecular ions with a rotating electric field without ejecting them out of the trap. There will

be strong rotational coupling between the mF = ±1/2 states on the order of a few 100 kHz. We can apply

a magnetic field to offset the states through Zeeman shifts. This requires an axial magnetic field gradient of

about 100 G/cm (about 30000 times of what we are applying now). This is getting tricky.

The new proposal also requires a different type of π/2 pulse. We would probably need to address the

(J = 1,mF = 1/2)→ (J = 2,mF = 1/2) transition directly with π-polarized microwaves. These microwaves

will have to come in along the trap axis (perpendicular to the plane of the rotating polarizing electric field

Erot, and they either have to be pulsed, or they can be circularly polarized, but we would need an frot of

29 GHz3 . This sounds hard.

An alternative to the π-polarized microwaves is to use a two-photon Raman process, using photons

of opposite helicities4 . We would need to do some spectroscopy to make this happen.

3 This would introduce additional complications because frot is now much larger than typical energy scales within the J = 1
manifold.

4 We could use two photons with π-polarization, but as mentioned earlier on, our current setup (and the Bucket Brigade)
does not allow us to address our ions with π-polarized lasers or microwaves.



103

5.1.2.4 What about the mF = ±3/2 manifold?

Ref [29] calculated the case for mF = 1/2, but what about mF = 3/2? It would save us one step in

the state preparation of moving our ions coherently into the mF = 1/2 state, and it would also relieve us

of the rotational coupling problem between mF = ±1/2 states. It turns out that such a CP-FIT for the

mF = ±3/2 manifold does not exist for ThF+ because of the relative sizes of the hyperfine splitting constant

and the Ω doubling coupling constant.

The proposed scheme relies on the fact that the Stark shifts move in the direction determined by the

sign of mFΩ, and that the hyperfine splitting is large compared to the Ω-doublet splitting. In this regime

(hyperfine splitting more than Ω-doublet splitting, the lower Ω doublet of the more energetic hyperfine

manifold will be Stark shifted down in energy, while the upper Ω doublet of the less energetic hyperfine

manifold will be Stark shifted up, and if they have the same mF , they will try to repel each other through

an avoided crossing, resulting in non-trivial energy shifts (see Figure 5.3).

J = 1 Näıve J = 2 Actual J = 2

Figure 5.3: States bumping into each other through Stark shifts. The horizontal lines indicate
Zeeman levels. Energy levels colored blue belong to one hyperfine manifold, and those colored black belong
to another. The arrows indicate the Stark shifts (EStark ∼ mFΩ) when an electric field is applied. In the
J = 1 manifold, the mF = ±1/2 states from one hyperfine manifold will come close to those from the
other manifold, and there will be a strong interaction between the states, resulting in non-trivial energy
shifts for these states. The same is the case for the näıve J = 2 manifold. It is called “näıve” because we
näıvely assume that the energy levels are ordered like the J = 1 manifold, i.e. the hyperfine splitting is large
compared to the Ω-doubling constant. This is true for HfF+, but it is not true for ThF+. For ThF+, the
hyperfine splitting is comparable to the Ω-doubling splitting in J = 2, resulting in an energy ordering of the
states as shown in the right panel. In this ordering of states, Stark shifts do not cause states to bump into
each other, giving rise to more trivial energy shifts of the states. A combination of the physics behind the
left and the right panels allow for first-order field-insensitive transitions between the J = 1 and J = 2 in the
mF = ±1/2 states but not the mF = ±3/2 states in ThF+.
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In ThF+, the states in the J = 1 manifold are arranged such that the Ω-doubling is still a finer

structure than the hyperfine splitting, but Ω-doubling and hyperfine splitting are of the same sizes for the

states in the J = 2. There are no states to repel the mF = 3/2 states in the J = 1 because there is only one

pair of mF = 3/2 states. There are two pairs of mF = 3/2 states in the J = 2 (each pair corresponding to

the F = 3/2, 5/2 hyperfine manifolds), but they do not repel each other head on through Stark shifts.

In contrast, the mF = 1/2 scheme works for ThF+ because the mF = 1/2 states in the J = 1 bump

into each other through Stark shifts. In general, it seems like for the scheme proposed in Ref. [29], we would

require the hyperfine splitting to be large compared to the parity doublet splitting (e.g. Ω- or Λ-doubling for

diatomic molecules, Coriolis interactions for polyatomic molecules).

5.1.2.5 Sensitivity to the eEDM

At 18.6 V/cm, the molecule is neither fully polarized in the J = 1 nor the J = 2 manifold. Hence the

eigenstates will not be expected to have |⟨Ω⟩| = 1, but it would be some number less than that. In fact, the

states involved for the 18.6 V/cm CP-FIT are:

√
0.67

∣∣∣∣J = 1,Ω = 1, F =
1

2
,mF =

1

2

〉
−
√
0.23

∣∣∣∣1, 1, 32 , 12
〉
+
√
0.1

∣∣∣∣1,−1, 32 , 12
〉

⇕

√
0.61

∣∣∣∣2, 1, 32 , 12
〉
+
√
0.01

∣∣∣∣2, 1, 52 , 12
〉
−
√
0.31

∣∣∣∣2,−1, 32 , 12
〉
+
√
0.07

∣∣∣∣2,−1, 52 , 12
〉
.

This means that the transition is between a state of ⟨Ω⟩ = 0.8 and ⟨Ω⟩ = 0.24, in contrast to the traditional

JILA method that probes the transition between a state of ⟨Ω⟩ = 1 and ⟨Ω⟩ = −1. Therefore, our statistical

sensitivity to the eEDM will be reduced to 28% if we wish to use the CP-FIT to give us first-order field-

insensitive transitions.

Alas, it is not immediately clear if there is a sure win with the new proposal, given the various

complications that come with it. It also seems like it would require a lot of work to realize this new proposal

given where we currently are at. We can now go back humbled to performing an eEDM experiment with

ThF+ the JILA style.
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5.2 Feasibility of using ThF+ in an eEDM measurement

Things look promising for using ThF+ in an eEDM experiment. We know how to create ions (Chapter

2). We learnt how to perform quantum control, and we have also have a good protocol for performing a

Ramsey experiment (Chapter 4). We know how to perform state readout (Chapter 3). Now we can ask the

question of whether we actually win by using ThF+.

Since the first two generations of the JILA EDM experiment showed that HfF+ is a good molecule

to use, we shall discuss the feasibility of using ThF+ by comparing it to HfF+. Table 5.1 shows a simple

comparison of the spectroscopic constants and other relevant parameters of ThF+ and HfF+.

Parameters ThF+ HfF+

Mass (u) 251 199
A|| (MHz) −2π × 20.1 −2π × 62.2
ωef (MHz) 2π × 5.29 2π × 0.740
dmf (MHz/(V/cm)) 2π × 1.70 2π × 1.80
|gF | 0.0149 0.003
Eeff (GV/cm) 35 [22, 41] 23 [24, 25]

Table 5.1: Comparison of parameters of ThF+ and HfF+. Uncertainties are not included in this table
for brevity.

From Table 5.1, we can draw a few inferences:

(1) The combination of the smaller hyperfine splitting constant (A||) and bigger Ω-doubling constant

(ωef) in ThF+ than HfF+ has a few consequences (refer to Figure 5.4):

(a) Since the Ω-doubling splitting constant is bigger in ThF+, we expect ∆u/l to be bigger in ThF+

than HfF+ at similar strengths of Erot.

(b) The hyperfine states cross each other at a much smaller Erot in ThF+ (11.4 V/cm) than HfF+

(34.6 V/cm).

(2) Since the masses and molecular electric dipole moment are similar across the two species, we expect to

be applying electric field strengths to ThF+ that are similar to those used in the first two generations

of the experiment. Hence, we do not expect significant changes to the technology surrounding the

circuitry involved in generating electric fields.
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(3) ThF+ is much more susceptible to magnetic field noise than HfF+ because of the much larger g-

factor. This could mean that we may need some sort of magnetic shielding in the third generation

experiment, e.g. the use of µ-metal.

(4) The effective electric field (Eeff) in ThF+ is only about 1.5 times that of HfF+. Given conservative

experimental parameters shown in Table 5.2, we see that swapping out HfF+ for ThF+ in the setup

of the Gen. II experiment does not let us win in terms of the eEDM sensitivity.

Parameters ThF+ HfF+ (Gen. II)

τ (s) 20 2
Nsingle 50† 500
frep. (Hz) 0.05 0.5
Ttot. (hours) 100 100

δde (e cm) 4.4× 10−30 6.7× 10−30

Table 5.2: Näıve expected statistical sensitivity for ThF+. The value of δde for ThF+ is extrapolated
from that of HfF+ using Equation 1.1. The actual sensitivity achieved in the Gen. II experiment [35, 36]
is slightly better than the numbers shown here, but the numbers chosen here are easier numbers for easy
comparison. †We have demonstrated having 5 dissociated Th+ ions on the side of our Ramsey fringe (see, for
instance, Figure 4.9a). This corresponds to a dissociation efficiency of only 2%, as compared to at least 20%
in the Gen. II experiment. The dissociation efficiency is currently limited by the choice of the intermediate
state in our REMPD scheme (see Section 3.4.2). We remain optimistic that a more suitable choice of the
intermediate state for the REMPD scheme can bring our dissociation efficiency of ThF+ to be on par with
HfF+ in Gen. II.

At this point, it may seem that ThF+ is not that much more advantageous than HfF+ in terms of

eEDM statistical sensitivity despite the much longer coherence time in ThF+. In fact, the long coherence

times limits the repetition rate of the experiment, since the experiment can only be repeated once every

20 s. To get around this, we can multiplex the experiment such that the repetition rate is not limited by the

coherence time that we are trying to probe. With this, we shall introduce the Bucket Brigade.
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Figure 5.4: Comparisons of energy levels between ThF+ and HfF+. The left (right) column
corresponds to plots for ThF+ (HfF+). The first row consists of plots of the energy levels in the
X 3∆1(v = 0, J = 1) manifold at low Erot to show the differences in the energy structure across both
species. Like in Figure 4.7, the basis states are labelled by their most dominant eigenstate in ascending order
of eigenenergies. For the unstretched Zeeman states, rotational coupling breaks the degeneracy between the
mF = 1/2 and mF = −1/2 states, and the energy levels are indicated by the black and green lines for the
two superposition states. The second row shows the energy levels at hyperfine crossing. The third row shows
the energy levels at at the nominal electric field strength where we perform our Ramsey evolution. The
states are labeled with numbers from the least to the most energetic.
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5.3 Bucket Brigade

The main idea behind the Bucket Brigade is multiplexing. The Bucket Brigade is a first-in-first-out

conveyor belt of ion traps, each containing its own ion cloud. The conveyor belt is continuously loaded from

the left, all the traps move together from left to right, and the ion clouds are removed from the Bucket

Brigade on the right. A schematic diagram of the Bucket Brigade is shown in Figure 5.5.

Direction of travel

Neon, 0.1% SF6

A
b
la
ti
on

Turbo

Turbo

Turbo Turbo

MCP

JILA eEDM Gen. III

Insulation

Conveyor belt of Paul traps (Bucket Brigade)

S
ta
te

P
re
p
ar
a
ti
on

State Detection

Direction of travel

S
ta
te

D
et
ec
ti
o
n

Bucket Brigade

S
ta
te

P
re
p
a
ra
ti
o
n

1

3 5

4

2

Figure 5.5: Schematic diagram of the Bucket Brigade. Our molecules go through five main vacuum
chambers for an eEDM measurement. (1) We create a plume of neutral ThF by ablating a piece of metallic
thorium, and reacting it with SF6. The neutral plume of ThF is entrained in a supersonic expansion beam of
neon. (2) The molecular beam goes through a differential pumping chamber. (3) The neutral ThF molecules
are ionized with REMPI lasers and loaded into the first bucket in the Bucket Brigade. We would then
perform state preparation and the first π/2 pulse of the Ramsey sequence on the ThF+ ions. (4) Once the
state preparation is completed, the ions will be ushered along the Bucket Brigade into the cryogenic area,
where the ions perform Ramsey free evolution in a field-free region. While this is happening, steps (1-3)
are cycled uninterrupted, i.e. new batches of ions are being prepared in the first bucket and ushered into
the Bucket Brigade. (5) Once the ions exit the cryogenic area, we perform our state detection on the ions.
The inset on the top right shows how the ushering is done: time-varying potentials will be applied to the
ring electrodes (colors indicate magnitude of the potentials applied) to provide trapping forces along the
axial direction (potential wells) that move from left to right. Not shown in the inset are the rods that run
axially to provide radial confinement through RF-potentials. In the first two generations of the JILA eEDM
experiment, steps (3-5) happen at the same place, i.e. that of step (3). Note that the Ramsey evolution
happens concurrently for all the buckets, but they do not all begin and end at the same time.
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With the multiplexing capabilities of the Bucket Brigade at a conservative repetition rate of about

2 Hz (limited by our state preparation sequence), the value of the eEDM sensitivity in Table 5.2 is then

updated to that of Table 5.3.

Parameters ThF+ HfF+ (Gen. II)

Eeff (GV/cm) 35 [22, 41] 23 [24, 25]
τ (s) 20 2
Nsingle 50 500
frep. (Hz) 2 0.5
Ttot. (hours) 100 100

δde (e cm) 7.0× 10−31 6.7× 10−30

Table 5.3: Expected statistical sensitivity for ThF+ in the Bucket Brigade. The value for δde is
extrapolated from that of HfF+ using Equation 1.1.

At a repetition rate of 2 Hz and interrogation time of 20 s, the total number of buckets required to

run the multiplexed experiment concurrently is 2 Hz× 20 s = 40. For a nominal bucket length of 8 cm (with

hindsight from Chapter 7), this means a total length for the Bucket Brigade at slightly more than 3 m, which

is still a reasonably sized table top experiment.

The value shown in Table 5.3 promises an order of magnitude improvement over Gen. II. As Prof.

Holger Müller often says, and I paraphrase, “sometimes when you measure something an order of magnitude

further, you can make an important discovery.” This order of magnitude improvement that the Bucket

Brigade and ThF+ promises us is precious. The next few chapters will be dedicated to the design of the

Bucket Brigade. To understand what levels of field homogeneity are involved in the design, we first begin

by studying the ion cloud dynamics to understand (i) the ion cloud sizes, and (ii) collision rates that could

lead to heating, decoherence from ion-ion collisions, or even suppressing decoherence due to spatial field

inhomogeneity.



Chapter 6

Ion Cloud & Decoherence

6.1 Introduction

We introduced the Bucket Brigade, a multiplexed ion trap, in the previous chapter. The Bucket

Brigade allows us to perform multiple experiments concurrently to take full advantage of the long coherence

time of ThF+. However, our critics are not convinced. They ask, “this setup is huge, how are you going

to control the fields within such a huge volume?” This chapter is our reply to them, “you are rightfully

concerned, and so are we, but allow us to show you some equations and plots to convince you that the Bucket

Brigade is not as crazy as it sounds.”

Many of our critics come from the quantum information sector. They need to ensure that their

qubits, each with a highly localized position, do not decohere with each other. Such decoherence could come

from spatial inhomogeneity of fields, such that each qubit precesses at a slightly different frequency. People

employ tricks like spin echo [64] or dynamic decoupling [65] to deal with the aforementioned decoherence

mechanism. However, there are also temporal variations of fields that could come from inadequate control

of the generators of the field, or imperfect shielding of fields from time-varying ambient sources. It is not

immediately obvious how one would deal with such temporal sources of decoherence. Our fellow ion trappers

in the quantum information sector are working with ion traps on a chip, and they find themselves working

very hard to make the fields well behaved in a microscopic volume. They are rightfully concerned that we

intend to perform precision metrology with ions sampling fields in a volume with a size of two small adults.

To tackle the concerns, we need to understand fast how our ions decohere w.r.t. each other in an
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environment with inhomogeneous fields. This will allow us to place limits on design constraints of the

Bucket Brigade. Hence, we need to understand a few things: (i) what is a typical spatial extent of our ion

cloud, (ii) how does the decoherence manifest in an ensemble of ions, (iii) what role does ion-ion collisions

play in the context of decoherence, and (iv) what other relevant mechanisms could affect us in the greater

context of an eEDM experiment using molecular ions? We shall start with simplified models, and tackle

these questions with increasing order of complexity in our models with each proceeding section.

Despite the high level of detail and complexity of the content in this chapter, we will not be arriving

at grand conclusions pointing us to definite directions for the design of the Bucket Brigade. Instead, we

will be confirming many small pieces of intuition. The work in this chapter was mainly done at the start of

the pandemic, which incidentally coincided with the transition from spectroscopy to Bucket Brigade design.

Notwithstanding the lack of a grand conclusion, we still include work done on ion cloud dynamics and its

consequence to decoherence here in this thesis, in a hope that future generations of students and post-docs

can build on this work to push our understanding/control of decoherence in our ion cloud even further. This

chapter proceeds as follows.

We first investigate what an ion cloud at dynamic equilibrium looks like when we put it in a trap,

and also allow for there to be ion-ion Coulomb repulsion. We shall look at the mean field effects of ion-

ion repulsion, and when they turn on to understand the regime that we will be in with our typical trap

parameters (Section 6.2.1). We then proceed to simulate the dynamics of an ion cloud to understand the

spatial extent of our ion cloud at dynamic equilibrium (Section 6.2.2).

At this point, we switch gears a little to look at how decoherence is introduced into our ensemble of

ions. We first formally introduce the näıve decoherence rate, which is the decoherence rate in our ensemble of

ions that is näıvely based only on the spatial inhomogeneity of our fields (Section 6.3.1). We then introduce

a possible mechanism built into our trap that could suppress the näıve decoherence (collisional narrowing

in Section 6.3.2). Subsequently we combine the two effects together to come up with a model for the net

decoherence rate (Section 6.3.2).

We then proceed to combine experiment results (Section 6.4.1) with the aforementioned tools (Section

6.4.2) to help us build confidence in our model. Subsequently, we attempt to arrive at a closed analytic form
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for the ion-ion collision rate (Section 6.5.1) and relate it to the collisional narrowing rate (Sections 6.5.2 and

6.5.3). We then briefly discuss heating of ion clouds in Paul traps (Section 6.5.4) before discussing all the

above results in the context of the Bucket Brigade.

Finally, we close off this chapter with a brief discussion of other possible mechanisms of decoherence

not included in the above model (Section 6.6.1), and a quick disclaimer on how understanding decoherence

mechanisms in the experiment is highly non-trivial (Section 6.6.3).
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6.2 Ion cloud dynamics

We use a Paul trap to confine our ions. Axial confinement is provided by DC voltages on end caps,

while radial confinement is provided by RF voltages on radial electrodes. Our ions exhibit harmonic secular

motion in the trap from the harmonic axial trapping potential, and the harmonic radial ponderomotive

trapping potential. In addition, our ions also exhibit fast RF micromotion driven by the RF potential that

increases in amplitude with radial distance from the trap axis. We shall simplify the analysis of our ion

dynamics by averaging over the fast RF micromotion of the ions in our Paul trap, and model the trap as a

3D harmonic trap with angular trap frequencies {ωx, ωy, ωz}. The two equations that govern the size of the

ion cloud at thermal equilibrium across all three spatial axes are given by Gauss’s law and the Boltzmann

distribution:

∇2Φ0(r) = −
e

ε0
n(r), (6.1a)

n(r) =
N

V
exp

[
−β

(
eΦ0(r) +

1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

)]
, (6.1b)

where V =
∫∫∫

exp
[
−β

(
eΦ0(r) +

1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)
)]

dV is a normalization constant. The quantity

n(r) is the ion number density of the cloud. The kinetic energies of the ions are taken care of by the

β := 1/(kBT ) term.

It turns out that solving the above equations for arbitrary N , ωx, ωy, and ωz is not easy. It also turns

out that simulating the motion of all the ions in the trap can be computationally expensive. In the following

sections, we shall employ the following strategy. First, we shall study Equations 6.1 with a spherical ion

cloud to simplify the equations through the symmetry of the problem (Section 6.2.1). This will give us some

intuitive understanding of the effects of mean field (i.e. when ion-ion repulsion becomes significant) and when

it comes into play. We will then dive into simulations of ion motion in the ion cloud with scaled parameters

to make it computationally less expensive, but nonetheless still giving us the physics that we want (Section

6.2.2).
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6.2.1 Studying mean field effects with spherical ion clouds

6.2.1.1 Method

For a trap with spherical symmetry, Equations 6.1 reduce to a non-linear second order ODE:

∂rr
2∂rΦ0(r) = −

er2

ε0
exp

[
−β

(
eΦ0(r) +

1

2
mω2r2

)]
,

which can be solved numerically with the shooting method (a method to solve a boundary value problem by

reducing it into an initial value problem). We massage the second order ODE into a first order ODE of the

following form1 :

∂r

 Ψ0

Φ0

 =

 − er2

ε0
exp

[
−β

(
eΦ0 +

1
2mω2r2

)]
Ψ0/r

2

 ,

where Ψ0 = r2∂rΦ0(r) is a variable defined for convenience. The shooting method involves solving the ODE

by starting with initial values on the R.H.S. (i.e. values of p0 := βeΦ0 when r = 0) and “shooting” the

ODE to non-zero r. We impose ∂rΦ0(r = 0) = 0, which is equivalent to saying that we are coarse graining

individual ions away in the ion density.

Of note, depending on the choice of the initial condition p0, the solution could correspond to very

different total ion numbers N . As the total number of ions N increases, mean field effects start to play a huge

role, where the inter-ion Coulomb repulsion suppresses the increase in the ion number density at the center

of the ion cloud. Hence, the total ion number of a solution can be very sensitive to the initial conditions

given to the numerical solver, as can be seen from Figure 6.1. To solve for Φ0(r) for a specific N , one would

guess a p0, solve for Φ0(r), deduce N , make a better guess for p0, and repeat until N is close enough to the

desired value.

6.2.1.2 Results

From Figure 6.2, we can see that the mean field is strong enough to modify the harmonic potential

near the center to give a “flat-top” ion density sliced profile in ion clouds.

Figure 6.3 show the sizes of the ion clouds at various trap frequencies, from which we can draw a few

conclusions:
1 1D numerical solvers typically work with the form y′(x) = f(y, x).
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Figure 6.1: Dependence of total ion number N on initial value p0 = βeΦ0 used in the shooting
method. The plot shows that N is very sensitive to p0 at high N in the strong mean field regime (low T ).
The plots showed here are for ThF+ in a spherical trap of 1.6 kHz trap frequency.
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Figure 6.2: Mean field energy eΦ0(r) and mean potential energy as calculated, converted to
kelvins. We used ω = 2π × 1 kHz. The legend indicates total ion numbers. Note the for the plot on the
right, having high ion numbers makes the potential energy curve flat at small r, before reverting back to a
quadratic curve at larger r.

(1) The stronger the mean field effects, the more the ion density profile deviates from a Gaussian.

(2) The effect of ion-ion interaction decreases with increasing trap frequencies.

(3) The ion number density at r = 0 approaches a maximum density asymptotically as we ramp up

mean field effects.

The maximum ion number density for a given trap can be evaluated at zero temperature, by demanding
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(a) Trap frequency of ω = 2π × 1 kHz
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(b) Trap frequency of ω = 2π × 2 kHz
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(c) Same data as trap frequency of ω = 2π × 1 kHz, rearranged to show thermal effects.

Figure 6.3: Ion number radial density vs Total ion number. The odd columns in (a) and (b) are the
actual values for the ion number radial density n(r), and the even columns are normalized to n(r = 0) = 1
to tease out the effects of the ion-ion interactions. The last two rows are just a rearrangement of the 1 kHz
plots to show thermal evolution.
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that the inter-ion Coulomb repulsion forces balance the trapping force:

FCoulomb + Ftrap = 0 =⇒ ∇ · [FCoulomb(r) + Ftrap(r)] = 0

−e∇2Φ(r) = ∇2

[
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

]
eρmax(r)/ϵ0 = m(ω2

x + ω2
y + ω2

z)

nmax(r) =
mϵ0
e2

(ω2
x + ω2

y + ω2
z). (6.2)

The above expression evaluates to 17 mm−3 (68 mm−3) for a trap frequency of 1 kHz (2 kHz). We can

see from Figure 6.3 that the number density at r = 0 approaches 17 mm−3 asymptotically as the total ion

number increases for the {3 K, 1 kHz trap frequency} case.

Figure 6.4 shows how the ion number density at the center of the ion cloud varies with temperature

for a fixed total ion number. Note that the number density at the center of the trap changes as a weak

function of temperature at low temperatures.
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Figure 6.4: Number density at ion cloud center vs temperature. Variation of n(r = 0) with T for N
= 15000 at f = 1.6 kHz. The expression for the maximum total ion number permissible by an ion trap nmax

is given in Equation 6.2. Jumping ahead to Section 6.5.1, a plot of the density-weighted density is shown
here for comparison. Unlike the density at the center of the ion trap, the density-weighted density is a much
stronger function of temperature at low temperatures.
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6.2.1.3 Summary

To summarize, we simplified the geometry of the ion cloud to cast the governing equations into a form

that we can solve numerically. With this numerical method, we explored mean field effects coming from

ion-ion repulsion by varying the total ion number and temperature of the ion cloud. We saw that mean field

effects manifest at low ion cloud temperatures and high ion numbers. We also saw that as mean field effects

becoming more and more dominant, two things happen: (i) the net trapping potential curve becomes flatter

at the center of the ion cloud, and (ii) the ion number density at the center of the ion cloud saturates to a

value that depends on the trapping frequencies.

The results in this sections are not surprising. This simple exercise with a spherical ion cloud serves

as a warm up to build some intuition. We are now ready to study the dynamics of the more general case of

an aspherical ion cloud.
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6.2.2 Simulating ion dynamics with aspherical ion clouds

6.2.2.1 Statement of problem

We can combine the Equations 6.1 to obtain defining PDE for a non-spherical cloud. The PDE can

be written in two equivalent forms, expressed either as an equation for electric potential Φ0(r) or ion number

density n(r):

∇2Φ0(r) = −
e

ε0

N

V
exp

[
−β

(
eΦ0(r) +

1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

)]
, (6.3a)

∇2 [log n(r)] +mβ
(
ω2
x + ω2

y + ω2
z

)
= 4πκβ · n(r), (6.3b)

where κ := e2

4πε0
. Note that N seems to be missing from Equation 6.3b, but it is hidden in the normalization

criterion:
∫
n(r) dr = N . The above equations are hard to solve in either form with simple methods because

the equations are:

(1) Non-linear partial differential equations (PDEs). The usual trick to tackle PDEs would be to use

separation of variables (i.e. Φ0(r), n(r) = X(x)Y (y)Z(z), but the Φ0(r) term in the exponent for the

first equation, and the log n(r) term in the second equation make the equation non-linear and void

this trick.

(2) Not in the small variable expansion regime. Both Φ0(r) and n(r) are not small and cannot be

expanded out with a series expansion to linearize the PDEs to solve it with the usual iterative tricks.

As a reminder, we wish to study the ion dynamics and use the results to estimate (i) the ion cloud

sizes, (ii) collision rates between ions, and (iii) the resulting effects on decoherence. To this end, we should

simulate the motion of ions in a trap, and come up with a model based on the simulation results to explain

the dynamics of the ion cloud. We can then compare the model predictions with the ions in the Gen. II

setup.2 However, the typical ion number in the Gen. II setup is N = 15000, which is expensive to simulate

because the number of ion-ion interaction terms scales as N2; it took about 75 mins to simulate the dynamics

of N = 1000 ions for 50 ms evolution time with trapping frequencies ∼ 1 kHz, so simulating 15000 ions is

simply not practical. Hence, we need to do some scaling of parameters to mimic the effect of having large

ion numbers with only a small number of ions.

2 At the time of this work, the only fully functioning ion trap in the JILA eEDM group is the Gen. II setup.
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6.2.2.2 Scaling of parameters for realistic computation time

We want to study the ion cloud dynamics in the context of decoherence through, say, ion-ion collision.

As alluded to in the previous section, we need to do some scaling of parameters. Firstly, we wish to maintain

the ion density distribution, so that we can use the results to evaluate the effects of field inhomogeneity

within the spatial extent of the ion cloud in the trap. Secondly, we want to keep the same the collision

rate as the unscaled case so that we can study collision-induced decoherence effects. Therefore, we need to

combine the equations governing the two pieces of physics, and scale them in a consistent way to keep the

physics that we want to study invariant.

The equation governing collision rate is:

Γcol.(T ) ∼ n(T ) · [κβ(T )]
2√

mβ(T )
ln

[
1

n(T ) [κβ(T )]
3

]
, (6.4)

We also made explicit that β(T ) is a function of temperature T . The above form for collision rate is informed

by work in Section 6.5.1. In the above, κ := e2

4πε0
is a measure of the Coulomb interaction strength. We see

that mβ and κβ have been grouped together suggestively to show that there are only two free parameters

available for us to tweak.

We wish to reduce the number of ions in the simulation, but we want to keep the ion cloud size the

same. We can scale n→ n/λ and boost the Coulomb interaction strength up with κβ → λ · κβ to keep the

R.H.S. of Equation 6.3b invariant. The newly introduced λ term on the L.H.S. drops out under the laplacian.

This scaling is equivalent to using λ times less ions for the simulation, but with
√
λ times the original charge

on each ion. However the aforementioned transformation will change Equation 6.4. One possible workaround

would be to promote mβ into a field, but it is not obvious that a solution for such a field exists that can keep

both the above equations invariant. Therefore, we employ a slightly modified battle strategy as follows:

(1) Simulate the effect of N singly charged ions with N/λ ions to reduce cost of computation. Each ion

comes with a scaled up charge
√
λ e to mimic the ion cloud size of the former (Section 6.2.2.3);

(2) Determine the field inhomogeneity sampled by the ions with the cloud sizes obtained (Section 6.3.1);

(3) Verify that there is good agreement between the simulated ion dynamics of the N/λ ions with the



121

scaled version of Equation 6.4 (Sections 6.5.1 and 6.5.2);

(4) Scale the collision model back down to that of N singly charged ions through Equation 6.4 and

compare the predictions with experiment results from the Gen. II setup (Sections 6.4.1, 6.5.1, and

6.5.2).

(5) If the collision model works both in the unscaled version (matched with experiment data) and scaled

version (matched with simulations), use it for the design of the Bucket Brigade (Section 6.5.5).

6.2.2.3 Simulation package & sample of simulation results

We used the LAMMPS simulation package from Sandia National Laboratory [66] to simulate the

dynamics of 1000 ions. The cut-off range for pair-wise Coulomb interaction is set to 10 cm, which is larger

than any anticipated size of clouds, to simulate the full effects of mean field. A sample of the simulation

results is shown in Figure 6.5.

The final temperature of the ion cloud can be extracted from a Maxwell-Boltzmann distribution fit to

the kinetic energies of the ions. Deviation from a Maxwell-Boltzmann distribution hints to us that the ion

cloud may not have reached thermal equilibrium, and the dynamics will need to be simulated for longer.

In most of the discussions that follow, we will be looking at the simulation results of N = 1000 ions

with charge
√
15e in a trap with frequencies {2.0, 2.3, 1.5} kHz and cloud temperature 4.3 K. This simulation

mimics the ion cloud size of N = 15000 ions, so we can use the results to infer the amount of sampled spatial

field inhomogeneity as a typical ion cloud in the Gen. II experiment (the Gen. II trap typically has about

15000 ions3 ).

Before we dive into the results of the simulations, we shall now take a look at how spatial Ramsey

frequency inhomogeneity can affect decoherence of the fringes to understand what we need to look out for

in the simulations.

3 When this joint project started, the Gen. II trap had about 15000 ions, but we managed to push it up to an impressive
40000 ions as the experiment went on.

http://lammps.sandia.gov
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Figure 6.5: Sample of results from a LAMMPS simulation. This is a simulation of N = 1000
ions, each with charge

√
15e to simulate the effects of 15000 ions in a harmonic trap with trap frequencies

{1.3, 1.7, 1.0} kHz, with a starting temperature of 0.5 K. A few points to note:

(1) The initial ringing of the RMS sizes in the top most plot shows breathing of the ion cloud as the
ions were not initialized with positions and velocities that match the steady state solution. Ion cloud
breathing damped out by 20 ms in this simulation instance. The final aspect ratio of the ion cloud
at {1.51 : 1 : 2.21} is bigger than what we would expect if there were no mean field effects, i.e.
aspect ratio given by only the trap frequencies at {1.31 : 1 : 1.7}.

(2) The second row plots the ratio of the potential energy U and the kinetic energy K. The components
of the energies are defined as such: Ui := 1

2mω2
i x

2
i and Ki := 1

2mv2i , where m, ωi, xi, and vi are
the ion mass, angular trap frequency along the i-axis, position along the i-axis, and velocity along
the i-axis, respectively. For a harmonic trap, virial theorem says that U/K = 1 (grey dashed line),
but the ratios we have are clearly greater than 1, indicating that significant mean field effects are
making our ion cloud bigger than what its temperature allows for.

(3) The third plot is a sanity check to show that total energy is conserved, and this shows that the
size of the time step chosen is appropriate. The pair-wise Coulomb energy is much higher than the
ions’ kinetic and trap potential energies, which shows, once again, that mean field effects are not
negligible.

(4) The last plot showed that the ion cloud is in thermal equilibrium across all three spatial dimensions,
because all the kinetic energies along the three spatial axes converge together. Depending on the
simulation parameters chosen, e.g. small number of ions or high ion cloud temperature, the ion cloud
may not reach thermal equilibrium even after 50 ms of evolution time, so the simulation has to be
extended until thermal equilibrium is reached as inferred from the convergence of kinetic energies
along the three spatial axes.

In all the simulations, we allowed for the ion cloud to settle down before extracting (i) the sizes of the cloud,
(ii) the ion number density profiles, and (iii) ion trajectories.
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6.3 Decoherence from spatial inhomogeneity

In the previous sections, we introduced the tools that we will use to simulate the ion dynamics. We

shall now switch gears a little to introduce the other set of tools required to understand decoherence in our

ion cloud: a model for decoherence. We shall begin this section with a theoretical treatment of decoherence

of Ramsey fringes of ions in an ion trap. We will add more realism with each proceeding section. We will

finish off by comparing experiment results with our simulation model mentioned in the previous sections.

6.3.1 Frequency dependent decoherence rate (näıve decoherence rate), γlinf

Suppose the ions evolve with Ramsey frequencies that do not depend on time, but fall under a

normalized distribution P(ω). The spread in frequencies could come from the spatial inhomogeneity of, say,

the magnetic fields that each ion samples at its location. In the simplest scenario, this could happen if our

ions are very cold, and well localized, but we allow the ion cloud to have some spatial extent, like in a string

of ions [67], or in a Coulomb crystal [68]. Our setup does not allow us to probe each individual ions for

their Ramsey phases; we are only able to read out the ensemble-averaged Ramsey phases. The resulting

ensemble-averaged Ramsey fringe is given by:

∫
cos(ωt)P(ω) dω = Re

{∫
eiωt P(ω) dω

}
= Re {F [P(ω)]} , (6.5)

where F indicates Fourier transform.

We can represent the complex function F [P(ω)] (t) as an Argand vector rotating on the Argand plane

(complex plane) with time. Its projection onto the real axis at various times represents the ensemble-averaged

Ramsey phase at the corresponding time. The envelope of the ensemble-averaged Ramsey fringe is given by

the amplitude of the Argand vector:

∣∣∣∣∫ eiωt P(ω)dω
∣∣∣∣ = |F [P(ω)] (t)| . (6.6)

As an example, for a Gaussian frequency distribution where P(ω) = 1√
2πσω

e−
1
2 (

ω−ω0
σω

)
2

, the expressions
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in Equations 6.5 and 6.6 evaluate to

Re {F [P(ω)]} = e−
1
2 (σωt)2 cosω0t, (6.7a)

|F [P(ω)]| = e−
1
2 (σωt)2 , (6.7b)

where ω0 is the mean angular frequency and σω is the standard deviation of the angular frequency distribu-

tion. Figure 6.6 shows a plot of the above two equations.
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Figure 6.6: Decoherence of an ensemble-averaged Ramsey fringe for a Gaussian frequency dis-
tribution. The blue solid line and the green dashed lines are plots of Equations 6.7a and 6.7b, respectively,
for ω0 = 2π × 50 Hz and σω = 2π × 1 Hz. The beige dotted line shows what the fringe would look like if
σω = 0, i.e. no decoherence.

For any arbitrary P(ω), its Fourier transform will be a function of σωt. Often times the spread in

Ramsey frequencies seen by the ions comes from spatial field inhomogeneity in the trap, e.g. imperfect

current-carrying coils that give inhomogeneous magnetic fields gradients for Zeeman splitting, or imperfect

electrodes that give inhomogeneous electric fields that define the quantization axis. Such field inhomogeneity

gives rise to a spread in Ramsey frequencies that depends on the mean frequency. Hence, we express σω in

a more illuminating form:

σω = 2πσf = 2πfσf/f ,

where f is the mean Ramsey frequency of the ensemble, and σf/f is the spread of the fractional frequency

distribution P(f/f) with a mean at f/f = 1.

We define a half-time t1/2 that is the time at which the decoherence envelope drops to half, i.e.
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F [P(ω)] (σωt1/2) = 1/2, such that:

F [P(ω)]−1
(1/2) = 2πfσf/f t1/2

1/t1/2 =
2πσf/f

F [P(ω)]−1
(1/2)

f

= γlin f, (6.8)

where γlin captures all the details of the spatial field inhomogeneity. For decoherence effects due to spatial

field inhomogeneity, we expect the rate of decoherence to be proportional to the mean Ramsey frequency.

Note that the above only captures decoherence from spatial field inhomogeneity from fields generated by

coils and electrodes. Equation 6.8 does not capture decoherence effects due to spatial field inhomogeneity

of stray fields from, say, magnetic patches of the optical table around the setup. Decoherence from such

sources are grouped under a background decoherence rate to be introduced in Section 6.3.3.

We note that γlinf is the näıve decoherence rate, which would be the actual decoherence rate (assuming

spatial field inhomogeneity to be the only source of decoherence) if the ions are held in place, i.e. stationary.

If this were the only decoherence related mechanism in our trap, we would expect the Ramsey phases of

our ions to spread out ballistically, i.e. ∼ t, because the spread of the phase goes as σϕ = 2πfσf/f t ∝ t.

However, we shall see in the next section that there can be a suppression of the ballistic expansion of σϕ in

our ion trap.

6.3.2 Suppressed decoherence from collisional narrowing, Γc.n.

Our thermal ions move around the trap, and they collide with each other to send each other into

different trajectories around the trap. Associated with this is a rate at which the ions “reset” their trajecto-

ries, resulting in a corresponding “reset” of their Ramsey frequencies to another random frequency in P(ω).

Correspondingly, the spread in the ensemble of Ramsey phases is sub-ballistic, and is more of a classical

random walk.

Using the ion simulation tools from Section 6.2.2 in combination with known field inhomogeneity in

the Gen. II trap, we see from the simulation results that the spread of the Ramsey phases of ions in the ion

cloud ensemble evolves diffusively, i.e. σϕ ∼
√
t. This result is shown in Figure 6.7.
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Figure 6.7: Simulated result of the spread of Ramsey phases in an ensemble of ions. The ion
cloud has N = 1000 ions, each with a charge of

√
15e. The trap has frequencies {2.0, 2.3, 1.5} kHz, The

ion cloud temperature is T = 4.3 K. The ions have a mean Ramsey frequency of 3 kHz. We introduced a
realistic spatial dependence of the local Ramsey frequency based on known field inhomogeneity in the Gen. II
trap. For book keeping, the Ramsey frequency is dominated by Berry’s phase (instead of the usual Zeeman
offset). The Berry’s phase is an axial electric field effect. The electric field inhomogeneity is derived from a
COMSOL model of the fields generated by the electrodes within the trap. The fit parameter b = 0.558(9) is
much closer to 0.5 (diffusive) than to 1 (ballistic) and show that the phases indeed spread out diffusively.

To quantify the suppressed decoherence, we introduce the following model. The total phase accumu-

lated by any ion is given by:

ϕ(t) =

∫ t

0

ω(t′) dt′ =: ω(t) t,

where we define the net Ramsey (angular) frequency ω(t) given by the expression above. If we demand that

the spread in ϕ(t) goes as ∼
√
t, then the spread in ω(t) must go as ∼ 1/

√
t. We shall guess it to be of the

form:

σω(t) :=
σω√

1 + 2Γc.n.t
, (6.9)

where Γc.n. is a fitting parameter that we introduce for “collisional narrowing” (narrowing of decoherence

because of momentum-changing ion-ion collisions), and σω is the näıve spread in frequencies without colli-

sional narrowing. Γc.n. has units of inverse-time in this ansatz, and it is related to the ion-ion collision rate

in the trap.4

At this point, it is important to address what kind of decoherence can be suppressed by ion-ion

collisions. The ions are sloshing around within the ion trap. There are a few key points:

4 Ions have collision cross section area of infinity because of the 1/r2 scaling of the field strengths, but here we only refer to
collisions that change the ions’ trajectories significantly.
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(1) In the absence of ion-ion collision, each ion has a well defined total energy along each principal axes

of the ion trap.

(2) The ion spends equal amounts of time on either side of the center of the trap along each of the

principal axes of the ion trap.

(3) Any spatial inhomogeneity of the fields can be expanded out about the trap center as a sum of even

and odd functions; see Figure 6.8.

= +

Figure 6.8: Decomposing spatial inhomogeneity into odd and even functions about trap center.
The horizontal axis indicates position in the ion trap along a principal axis. The red line indicates the local
Ramsey frequency sampled by the ions at that location. The red line on the left is decomposed into a sum
of odd and even functions about the trap center. The blue line shows the harmonic potential of the ion trap.
The dashed vertical line indicates the extrema of the sloshing motion of an ion of a given total energy. The
effect of the odd component averages out to zero in one slosh cycle. The effect of the even component does
not average out to zero, and the net value depends on the total energy of the ion.

(4) Spatial inhomogeneity of the fields that goes as an odd function about the trap center is averaged

out by the ion as it sloshes around the ion trap. This is true regardless of the total energy of the

ion.

(5) Spatial inhomogeneity of the fields that goes as an even function about the trap center is not averaged

out by the ion as it sloshes around the ion trap. The net accumulated effect as seen by the ion also

depends on its total energy along the relevant axes.

(6) In the absence of ion-ion collisions, then, ions with higher total energies along a particular axis will

sample net frequencies that will be different from those with lower total energies.

(7) In the presence of ion-ion collisions, there can be energy and momentum exchange between the ions,

sending the ions into a different trajectory with each collision, allowing the ions to sample the entire
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spatial extent of the ion cloud “ergodically”. This reduces the net spread of net frequencies seen by

the ensemble of ions.

In the next section, we shall attempt to put γlin and Γc.n. together to come up with a model to describe

the net decoherence rate in our ion cloud.

6.3.3 Net decoherence rate, Γ1/2

Here we attempt to derive an expression for the net decoherence rate as a result of the spatial field

inhomogeneity (γlinf) and suppression of the effects of such spatial inhomogeneity from ion-ion collisions

(Γc.n.). Some of the parts may seem ad hoc, but we shall see in Section 6.4.1 that this model describes what

we see in the Gen. II trap very well.

Suppose we have a Gaussian distribution5 of frequencies, we can combine Equations 6.7b and 6.9 to

show that the contrast of the ensemble-averaged of Ramsey fringe has the form:

CG(t) = exp

[
−1

2

(σ t)2

1 + 2Γc.n.t

]
.

Here we make a few observations:

(1) At short times, t≪ 1/(2Γc.n.), the function behaves like a Gaussian, hence we expect it to start off

with zero gradient, instead of an exponential decay.

(2) At long times, t≫ 1/(2Γc.n.), the function behaves like an exponentially decaying function.

(3) The time it takes to get to half contrast is:

t1/2 =
Γc.n. +

√
Γ2
c.n. + σ2/(2 log 2)

σ2/(2 log 2)

Together with Equation 6.8, we get:

t1/2 =
Γc.n. +

√
Γ2
c.n. + (γlinf)2

(γlinf)2
.

5 Invoking the central limit theorem on the field inhomogeneity sampled by our ions, barring any exotic forms of spatial
inhomogeneity that break this limit.
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From the above, we can define the net decoherence rate6 as the inverse of t1/2, which gives:

Γ1/2 :=
1

t1/2
=

(γlinf)
2

Γc.n. +
√
Γ2
c.n. + (γlinf)2

+ Γbg, (6.10a)

where we added a background decoherence rate Γbg by hand to account for decoherence that come from

other sources of spatial inhomogeneity such as those discussed in Section 6.6.1. In the limit of f ≫ Γc.n./γlin,

which is equivalent to saying that collisional narrowing is weak compared to the näıve decoherence, the above

evaluates to:

Γ1/2 ≈
[

1

γlinf
+

Γc.n.

(γlinf)2

]−1

+ Γbg. (6.10b)

Although the above expressions are evaluated for ions with Gaussian frequency distributions, we shall use

see in the following section that the above form fits to our data surprisingly well.

6.4 Collisional narrowing in the ion trap

Now that we have a model for various rates that go into decoherence, we would like to test it against

experiments and simulations. The näıve decoherence and background decoherence rates are easy to un-

derstand, these are just decoherence rates that either depend or do not depend on the Ramsey frequency.

The collisional narrowing mechanism is a little unexpected, so we shall first check for its existence with

experiments (Section 6.4.1) and simulations (Section 6.4.2).

6.4.1 Collisional narrowing in experiments

We worked with the Gen. II team7 to measure the effects of spatial field inhomogeneity and collisional

narrowing. The Gen. II trap is optimized to have very good spatial magnetic field homogeneity for their

eEDM measurement. However, the axial electric fields are not optimized for spatial homogeneity, which

means that there will be a spatially inhomogeneous Berry’s phase (Chapter 8.3). The net frequency is a

sum of very spatially homogeneous Zeeman frequency and very spatially inhomogenous Berry’s frequency.

Figure 6.9 shows the Berry’s frequency part of the results of the experiment. We performed the following

for the experiment:

6 Rates are usually defined by the inverse of the time required to get to 1/e instead of 1/2, but we are defining it this way
for easy comparison with data from Gen. II.

7 Many thanks to Dr. Yuval Shagam and Tanya Roussy for the experiment data.
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Figure 6.9: Decoherence rates, Γ1/2 = 1/t1/2, seen in the Gen. II setup through spatial inhomo-
geneity of Berry’s phase. The experiments were performed with two trap configurations (trap frequencies
annotated on top of the plots). The fits are of the form in Equation 6.10b. The fit parameters for the tight
trap (left plot) are γlin = 0.050(5) (s · Hz)−1, Γc.n. = 1.4(5) s−1, and Γbg = 0.64(2) s−1; while that for the
loose trap (right plot) are γlin = 0.094(6) (s · Hz)−1, Γc.n. = 2.2(5) s−1, and Γbg = 0.34(1) s−1. Here is a
qualitative understanding of how each of the fit parameters affect the shape of the fit: Γbg determines where
the decoherence rate saturates at low frequency; γlin determines the horizontal displacement of the slope at
high frequency away from the vertical axis; Γc.n. determines sharpness of the ankle. Also shown on the plots
are the green dashed lines, which are just plots of γlinfBerry. Regions where the yellow fit line lies below the
green dashed lines are regions where collisional narrowing is working.

(1) Introduce Berry’s phase into the Ramsey fringes of ions in the Gen. II setup (method similar to that

in Chapter 8.3).

(2) Extract the ensemble-averaged Ramsey fringes at various values of Berry’s frequency.

(3) Determine the half-time t1/2 and hence the decoherence rate Γ1/2 = 1/t1/2.

The fit uncertainties on Γc.n. are small, indicating that Γc.n. is required in the fitting form of Equation 6.10b

to make a good fit. One can also intentionally vary Γc.n. or set it to zero, and see that the curve does not

make a good fit with the data regardless of the choice for the other two fit parameters.

6.4.2 Collisional narrowing in simulations

We can also see the effects of collisional narrowing in simulations. Here we show the results of

simulations of N = 1000 ions with charge
√
15e in a trap with frequencies {2.0, 2.3, 1.5} kHz and cloud

temperature 4.3 K at various Berry’s frequency (Figure 6.10). In the simulations, we model the spatial

dependence of frequency due to the spatial inhomogeneity of electric fields in the Gen. II setup with the
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Figure 6.10: Collisional narrowing seen in a simulation. The simulation uses N = 1000 ions with
charge

√
15e in a trap with frequencies {2.0, 2.3, 1.5} kHz and cloud temperature 4.3 K. We did not simulate

the effects of background decoherence, so Γbg = 0 in the above fit. The rest of the fit parameters are
γlin = 0.0490(4) (s ·Hz)−1 and Γc.n. = 450(10) s−1.

following expansion in powers of the cylindrical coordinates:

f ≈
∑
i,j

ai,jz
iρj ,

where z and ρ are the axial and radial coordinates. We only keep expansion terms up to sixth order in

position coordinates:

ai,j ρ0 ρ2 ρ4 ρ6

z0 1.4636(2) −0.08360(7) 1.75(1)×10−3 −2.27(4)×10−5

z2 0.1714(1) −0.01551(1) 5.112(6)×10−4 -

z4 4.62(3)×10−3 −4.32(1)×10−4 - -

z6 2.1(2)×10−5 - - -

Table 6.1: Coefficients of inhomogeneity expansion of f in the Gen. II setup. Coordinates ρ and

z are expressed in centimeters. Uncertainties are the standard deviations of the fits of the parameters over

a 3 cm× 3 cm× 3 cm region centered at the trap center.
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6.4.3 Summary

Through Equation 6.10b, we have a model for decoherence in our ion cloud. Our model splits the

decoherence rate into a component that is fringe frequency dependent (γlinf) and one that is frequency

independent (Γbg). We also introduced a decoherence suppressing mechanism (Γc.n.) for the frequency

dependent component. Using all the simulation tools that we have developed in the previous sections and

also the Gen. II setup, we saw a good agreement between our model and results from experiment and

simulations.

Our model has implications for the design of the Bucket Brigade. Our model is saying that we can

get away with a little bit of imperfection in the field homogeneity, because collisional narrowing will make

our ions decohere less than what we would näıvely expect from the overlap of the spatial extent of the ion

cloud and the spatial inhomogeneity of the fields.

As scientists, we are entitled to be greedy (at the expense of working even harder). In the next section,

we shall try to understand the collisional narrowing rate even more, and see if we can make it work even

harder for us.
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6.5 Collision rate

In the previous sections, we saw good agreement between our model through Equation 6.10b, and

results from experiment and simulations. Our model relies heavily on the fact that ion-ion collisions can

change the ions’ trajectories and “reset” their Ramsey frequencies, resulting in a diffusive spread in Ramsey

phases instead of a ballistic one. This rate of collisional narrowing has to be related to the rate of trajectory-

changing ion-ion collisions. In the following sections, we shall try to understand the relationship between

the rates of collisional narrowing and ion-ion collisions more rigorously.

6.5.1 Collision rate ansatz

Since the Coulomb force has infinite collision cross sectional area, it takes some art to define whether

a collision has happened between two ions. We start this section off with a simple derivation of the generic

form of collision rates involved between ions in an ion cloud to motivate an expression for the collision rate.

We shall borrow wisdom from the plasma physics literature. Figure 6.11 shows a schematic diagram of the

approach of two ions.

b

v

x

y

Lab frame

F = e2

4πε0
1
r2 .

r b = b/2

v = v/2

x

y

Center of mass frame

F = (e/2)2

4πε0
1
r2 , r = r/2.

r

Figure 6.11: Schematic of a collision between two singly positively charged ions. In the lab frame,
one ion starts off at rest, while the other comes in with an impact parameter b and an incoming speed v.
The stationary “background ion” will receive a recoil from the incoming “test ion”, which will make the
scattering cross section harder to analyze. One neat trick is to switch over to the center of mass frame, and
introduce an infinitely heavy “effective ion” at the origin of the center of mass., with an effective charge of
e/4 with the incoming ion still having a charge e. The center of mass frame is moving to the right at speed
v/2.

Working in the center of mass frame of the collision, we can use the results from Rutherford scattering

(light incoming ion and heavy stationary ion) of relating the deflection angle Θ to the incoming speed v and
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impact parameter b:

tan
Θ

2
=

Z1Z2e
2

4πε0mv2b
=

2e2

4πε0mv2b
=

2κ

mv2b
, κ :=

e2

4πε0
.

In the center of mass frame, the velocity of the incoming ion far away after the collision would be:

(vx, vy) = (v, 0)→ (v cosΘ, v sinΘ) =
v

2

(
(mv2b)2 − 4κ2

(mv2b)2 + 4κ2
,

4κmv2b

(mv2b)2 + 4κ2

)
.

Back in the lab frame, the change in the longitudinal velocity ∆v|| and transverse velocity ∆v⊥ are

then given by:

∆v|| = −
4(κβ)2

4(κβ)2 + (3b)2
· v,

∆v⊥ =
6κβb

4(κβ)2 + (3b)2
· v,

where we used the equipartition theorem 1
2mv2 = 3

2kBT = 3
2β . From the above, we can obtain the (kinetic)

energy transfer coefficient, i.e. the fractional change in energy per collision:

∆KE

KE
= − 4(κβ)2

4(κβ)2 + (3b)2
. (6.11)

Now that we know how much the kinetic energy of an ion changes per collision, we need to know the

rate of collision. The number of ions that each ion zips past per unit time is given by8 :

n ·
∫
dV

∆t
= nv

∫
dA = 2πnv

∫
db b. (6.12)

Putting Equations 6.11 and 6.12 together, the (fractional) rate of decay of (kinetic) energy is given by:

ΓKE = 2πnv

∫ λc.o.

0

db b · 4(κβ)2

4(κβ)2 + (3b)2
=

4π
√
3

9
· n · (κβ)

2

√
mβ

log

[
9λ2

c.o. + 4(κβ)2

4(κβ)2

]
, (6.13)

where λc.o. is the cut off length for the integration limit; the logarithmic term blows up if we do not use a

finite cut off. In the two-component plasma literature, the cut off length used is the Debye screen length

(λD =
√

ε0kBT
ne2 = 1√

4πnκβ
). The Debye screening length is the distance between two ions such that the

Coulomb repulsion between these ions are screened by the other component in the plasma of opposite

charge. The net result is that the ions do not accelerate away from each other as much as they would have

without the second component.

8 This is an operator, because b is different for collisions with different ions.
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We have something similar in our ion trap. In addition to Coulomb repulsion between ions, our ions

also feel a confining force from the trap. This means that beyond a certain ion-ion separation (for instance,

when the ions are on opposite sides of the trap), their Coulomb repulsion no longer results in acceleration

away from each other. It is as though the trap “screens” the Coulomb repulsion between ions beyond a

certain ion-ion separation distance. This happens at a cut off length where the trapping force balances the

Coulomb repulsion:

mω2λc.o. =
κ

λ2
c.o.

.

For a thermal cloud, we know that:

1

2
mω2λ2

therm. =
1

2β
,

where λtherm. is the 1σ radius of the thermal cloud. We also know that the λtherm. is related to the ion

number density (n) through:

nλ3
therm. ∼ N,

where N is the total ion number. Combining the above three relations, we have

λ2
c.o. ∼

(
κβn−2/3

)2/3

.

Substituting the above into Equation 6.13 gives

ΓKE ∼ A · n · (κβ)
2

√
mβ

log

[
B

n · (κβ)3

]
, (6.14)

where A and B are constants. A simple dimensional analysis check gives [β] = [1/(N ·m)], [κ] =
[
N ·m2

]
,

[n] =
[
1/(m3)

]
, so that [κβ] = [m], and [mβ] =

[
1/(m · s−1)2

]
.

The above form, together with many others in plasma literature [69, 70] and studies of ion cloud

dynamics [71] suggest the following ansatz for the ion-ion collision rate (this is such an important ansatz

that I shall name it the “AB ansatz”):

Γcol.(T ) = A · ñ(T ) · [κβ(T )]
2√

mβ(T )
· log

[
B

ñ(T )[κβ(T )]3

]
, (6.15)

where A and B are dimensionless parameters to be fit, and ñ = 1
N

∫
n(r) · n(r) dV is the density-weighted

density of the ion cloud. The density-weighted density depends on temperature through the temperature-

dependence of the ion number density. Deriving Equation 6.15 from first principles will give different values
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on A and B depending on the assumptions used. As an experimental physicist, I shall simulate the dynamics

of our ion cloud, perform a fit to A and B, verify the results with the experiments done on the Gen. II setup,

and challenge interested theorists out there to derive the analytical form for A and B.

6.5.2 More collision-related rates

The next question is: what quantity should we compare Equation 6.15 to in our ion dynamics sim-

ulation? Ultimately, we wish to find an expression for Γc.n., which is the rate at which the ions reset their

perceived Ramsey frequencies. In the context of our trapped ion experiment, frequency resets correspond

to position resets, which corresponds to trajectory resets. By monitoring the rate at which the ion changes

its trajectory, we would be able to relate that to Γc.n.. A good quantity, then, is to measure the decay rate

of the self correlation of the kinetic energy of the ions along, say, the x-direction, because this is the rate at

which the ions forget about their trajectories along the x-direction, i.e. changed their trajectories. We define

the self correlation function of the kinetic energy in the x-direction to be:

g
(1)
KEx

(τ) :=
[KEx,i(t)−KEx(t)] · [KEx,i(t+ τ)−KEx(t+ τ)]

KEx(t)
2 , KEx :=

1

2
mv2x, (6.16)

where the overline represents averaging over all ions and all time. We fit the above expression to an expo-

nential decaying function:

g
(1)
KEx

(τ) = a exp (−ΓKEx
τ) ,

where we extract the decay rate ΓKEx
, and a is just a normalization constant. Figure 6.12 shows the fits to

the self correlation function of the kinetic energy in the x-direction for the simulation involving N = 1000

ions with charge
√
15e in a trap with frequencies {2.0, 2.3, 1.5} kHz and cloud temperature 4.3 K.

We repeat the above process with simulations of the same ion cloud at various ion cloud temperatures.

We then fit all the simulation results to the form in Equation 6.15 to obtain the fit parameters:

A = 0.41(1), (6.17a)

B = 19(5). (6.17b)

The fit is shown in Figure 6.13. For completeness, the density-weighted density used in the fits shown in
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Figure 6.12: Fits to the self correlation function of the kinetic energies. Right: the self correlation
function of the kinetic energy in the x-direction as given by Equation 6.16. Left: the same thing as the right
plot, but evaluated for the total kinetic energy.

Figure 6.13 is shown in Figure 6.14.

We now have a few collision-related rates, and this was a long section, so here is a summary:

Collisional narrowing, Γc.n.. This is the rate at which the näıve decoherence is suppressed. We wish to

get an expression for this as a function of ion number density and temperature of the ion cloud. This

can be extracted by fitting Equation 6.10b to our ensemble-averaged Ramsey phases.

Decay rate of self correlation function of kinetic energy in x-direction, ΓKEx
. This is the rate at

which the ions forget about their trajectories along the x-direction, corresponding to the rate at

which they change their trajectories.

Collision rate with the AB ansatz, Γcol.. This is given by Equation 6.15. The fit parameters A and B

are obtained by fitting ΓKEx to a series of simulations (using scaled parameters to save on com-

putational resources), and performing a global fit using Equation 6.15 to the obtained values of

ΓKEx
.

The three collision-related rates above are extracted through different means, and what remains now is to

see if they are equivalent measures of each other. We shall extract these three rates from various instances

of simulations, and perform a comparison across them.
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Figure 6.13: Fit of Equation 6.15 to the decay rate of Equation 6.16 for the total kinetic energy
(top left) and the kinetic energy in the x-direction (top right). We simulated an ion cloud of
N = 1000 ions with charge

√
15e in a trap with frequencies {2.0, 2.3, 1.5} kHz at various temperatures. The

shaded region indicates the region spanned by the standard error of the fit parameters. The bottom plots
are predictions of the decay rates of N = 15000 singly charged ions using the A and B parameters from the
fit. There are a few points to note regarding the fit and scaling:

(1) The expression for κ used in the fits are (Ze)2

4πε0
= 15e2

4πε0
. When scaling back to singly charged ions, κ

should go back to its original definition of e2

4πε0
.

(2) The parameters A and B are dimensionless numbers independent of the ion cloud parameters ñ, m,
and β, hence the values obtained for A and B from this fit should apply to all ion clouds of similar
aspect ratio regardless of their cloud parameters.

(3) All information on the trap frequencies are already embedded in ñ, so as long as ñ is correctly
evaluated, A and B should be good parameters to use regardless of trap frequencies.
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Figure 6.14: Density-weighted density for an ion cloud. The ion cloud has N = 1000 ions with charge√
15e in a trap with frequencies {2.0, 2.3, 1.5} at various temperatures.
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6.5.3 Comparison of various collision-related rates

Table 6.2 compares the predictions of Equations 6.15 and 6.17 against simulations of ion clouds with

various cloud parameters. Since these are simulations of just N = 1000 ions, the collision rates are low, so

they take a long time to reach thermal equilibrium. Simulating just one case took about half a day of work.

Case RMS sizes (mm) ΓKEx (s−1) Γcol. (s
−1) Γc.n. (s

−1) γlin (s·Hz)−1

Loose A (1.3, 0.94, 1.8) 60 50 43 0.016
Tight A (0.96, 0.87, 1.3) 40 55 82 0.011
Tight B (1.2, 1.0, 1.7) 21 10 10 0.016

Table 6.2: Comparison of simulation results of different ion cloud parameters against prediction
from Equations 6.15 and 6.17. The “loose” and “tight” cases corresponds to trap frequencies of {1.3,
1.7, 1.0} kHz and {2.0, 2.3, 1.5} kHz, respectively. The “A” cases correspond to a cloud temperature of
about 2 K, while the “B” case correspond to a cloud temperature of about 5 K. All the above cases are
simulations of N = 1000 singly charged ions. ΓKEx is obtained from a fit to Equation 6.16. Γcol. is obtained
from the prediction of Equations 6.15 and 6.17. Γc.n. and γlin are obtained from fitting the corresponding
versions of Figure 6.10.

Note that all three rates ΓKEx
, Γcol., and Γc.n. agree with each other very well to within a factor of

two. This is very settling, and not surprising. The former two should agree with each other since Γcol. was

obtained through Equations 6.15 and 6.17, the latter of which was obtained through a fit to ΓKEx in Figure

6.13. Their stark agreement further shows that Equation 6.15 has captured all the physics related to the ion

cloud parameters. The first and the last rates should also agree because of the discussion above that led to

Equation 6.16. At last, we now have a way to connect measurable quantities from simulations (ΓKEx
) to a

prediction model in closed analytical form (Γcol.) to the real physical effect that we care about (Γc.n.).

Towards the end of this study, the Gen. II experiment had more important things to do (e.g. measure

the eEDM) so we did not pursue this further with experiments. It is unfortunate that we could not do a

clean 1-to-1 comparison of our model with experiments. Nevertheless, we are still equipped a self-consistent

model that we can use in the design of the Bucket Brigade.

Before we move on to talk about the design of the Bucket Brigade, there remains one loose end. We

see how the temperature of the ion cloud goes into Equation 6.15, but it has been known for a long time

that ion clouds in Paul traps heat up [71–76]. The next section is devoted to understand the heating of ion
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clouds in Paul traps.

6.5.4 Heating of ion clouds in Paul traps

When ion clouds heat up, they expand and can feel more of the spatial field inhomogeneity in the

trap, leading to faster decoherence for the ensemble of Ramsey fringes. The short explanation for heating in

Paul traps is that ion-ion collisions in Paul traps interrupt the RF micromotion of the ions, and redistribute

some micromotion energy into the secular motion degree of freedom. The ions then launch into new Mathieu

trajectories after the collision. Since micromotion is a driven motion, Paul traps can do work on the ions

through ion-ion collisions and heat the ion cloud up. We shall attempt to model heating of ion cloud in our

Paul trap. Borrowing wisdom from Chen et al. [71] the heating rate is given as:

Ṫ = Γcol.ϵ(T + ηTex), (6.18)

where

• Γcol. is the ion-ion collision rate;

• ϵ ≈ 2
3

(
1 + q2.240

)
, for q0 ≤ 0.4, is the average fractional increase in the energy of an ion per collision;

• q0 is the Mathieu q0 parameter (refer to Appendix A);

• η ≈ 3/5, for small q0, from equipartition theorem with 5 partitions in total: 3 in secular motion and

2 in RF micromotion;

• Tex is the temperature of the excess micromotion [77], which we take to be zero in our ion cloud (no

DC field displacing ions from RF null; no excess micromotion).

A big caveat in using Equation 6.18 is that it was obtained from experiments performed on ion crystals.

This is a region where the ions are cold enough that they condense into a crystalline structure. We operate

at much higher ion cloud temperatures, so our ions are closer to being a “gas” than a crystalline “solid”.

Nevertheless, we shall use Equation 6.18 and see how far we can go. Figure 6.15 compares the prediction of

Equation 6.18 with temperature measurements taken in the Gen. II setup, and shows a decent agreement

between model and experiments.
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Figure 6.15: Ion cloud heating rates predicted by Equation 6.18 and comparison to experiment.
The yellow plots use the original equation in Chen et al. [71] with the Chandrasekhar-Spitzer collision rate,
while the blue plots correspond to using Γcol. (given by Equations 6.15 and 6.17) for the collision rate. Chen
et al. used a slightly unconventional definition of ρmax in their paper that is a factor of 4 smaller than the
usual definition of the maximum ion number density in a Paul trap. The yellow plots here are without the
correction. Comparison with temperature measurements from the Gen. II experiment shows good support for
using Equation 6.15 for Γcol. in Equation 6.18. The total ion number in the experiment is about N = 40000.
The temperature measurements are performed with Doppler broadening measurements with a laser shining
along one axis of the ion cloud.

One way to reduce the heating rate would be to reduce ϵ in Equation 6.18. This can be done by

reducing the Mathieu q0 parameter subjected to the same secular frequencies. We can show with Equation

A.4 that

q0 =
2

Ω

√
2ω2

i + ω2
z , i ∈ {x, y} (6.19)

where Ω is the trap RF angular frequency, and ω are the secular trap angular frequencies. This means

that we can keep the secular frequencies the same, but have a smaller q0 by increasing Ω. Unfortunately,

substituting Equation 6.19 into the expression for ϵ shows that we do not win with increasing Ω as quickly

as we would like (Figure 6.16); it looks like we are stuck with the heating rate in our trap.

Now that we have all the ingredients required (from the discussion at the end of Section 6.2.2.2), we

can proceed to use the model for decoherence on the design of the Bucket Brigade.

6.5.5 Relevance to the Bucket Brigade and ThF+

The current plan for an eEDM experiment with ThF+ in the Bucket Brigade involves about 1500 ions

per bucket. We assume that we can recreate the same conditions as the Gen. II experiment and load 1500

ions into the Bucket Brigade at 5 K. Simulation results show that such an ion cloud has only weak mean
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Figure 6.16: Plot of ϵ ≈ 2
3

(
1 + q2.240

)
against Trap RF frequencies. We plan to operate at Ω =

2π × 50 kHz. The plot shows that it does not help us much by going to higher RF frequencies. The grey
dashed line shows the lower bound of ϵ = 2/3.

field effects, and can be modelled as an ion cloud with a 3D Gaussian number density distribution:

nthermal(x, y, z) =
N

(2π)3/2σxσyσz
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

+
z2

σ2
z

)]
, (6.20)

where N is the total ion number, and σi, i ∈ {x, y, z} are the widths of the cloud, which are related to the

temperature of the cloud through:

1

2
kBT =

1

2
mω2

i σ
2
i =⇒ σi =

1

2πfi
√
mβ

= 3 mm× 2 kHz

fi
×

√
T

50 K
. (6.21)

Using Equations 6.20 and 6.21, we can show that the density-weighted density for such a thermal cloud is

given by:

ñthermal = N fxfyfz (πmβ)3/2. (6.22)

Using Equation 6.22 in 6.18, we obtain the plots shown in Figure 6.17.

Now that we know how the ion cloud sizes change with time with the initial ion cloud and trap

parameters that we plan to use in the Bucket Brigade, we can use this information in Equation 6.15 to

estimate the rate of collision, and hence collisional narrowing, of our ions in the trap. The results are shown

in Figure 6.18.
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Figure 6.17: Ion cloud heating rates predicted by Equation 6.18 for ThF+ in the Bucket Brigade
at various secular trap frequencies. For simplicity, the plots assume spherical clouds, i.e. fx = fy =
fz = f .
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Figure 6.18: Γcol. predicted by Equation 6.15. The plot on the left is a direct application of Equation 6.22

on 6.15, while the plot on the right (solid lines) accounts for the time-dependence of the temperature of the ion

cloud given in Figure 6.17. The dashed lines are the “time-averaged” Γcol. given by Γcol.(t) :=
1
t

∫ t

0
Γcol.(t

′) dt′

to give a rough sense of the effective collision rate.

6.6 Further discussion

We now have decent confidence in our decoherence model, having checked our model predictions with

simulations and experiment results on several fronts. We are already applying our model in preliminary

investigations of decoherence in the Bucket Brigade.

We understand how our ion cloud dynamics can suppress some form of decoherence through ion-ion

collisions. Ironically, ion-ion collisions can also turn out to be a source of decoherence through Berry’s phase

[25]. Before we move on to discuss the design of the Bucket Brigade, it serves to cover some other points
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related to decoherence.

6.6.1 Collisions that could change mF

In the above sections, we assumed that our molecules remain in the mF = ±3/2 subspace, even with

collisions. This is not strictly true. Handwavingly, when two ions come together, there is a characteristic

time scale of the collision given by the ratio of the characteristic collision distance and the characteristic

speed of the collision. The physics is as follows.

(1) The molecular ions are polarized by an electric field. The quantization axis is also determined by

the direction of the electric field.

(2) When another ion approaches, the net electric field direction as seen by the first ion will be modified

by the electric field of the second ion.

(3) If the approach is adiabatic compared to typical energy scales in the molecule, then the molecule can

track its quantum state adiabatically throughout the approach. After the ions separate, the first ion

will still stay in its initial quantum state.

(4) However if the approach is not adiabatic compared to typical energy scales in the molecule, then the

quantum state of the first ion will be projected diabatically onto the new polarization axis during

the approach. After the ions separate, the first ion will then be left in a state that can be very

different from its initial one.

(5) Here comes the handwaving part. Suppose the incoming ion has comparable velocity components in

the transverse and longitudinal directions w.r.t. the approach, such that far away from the first ion,

we have 1
2kBT = 1

2m(v2⊥+v2||) with v⊥ ∼ v||. At closest approach, all the longitudinal kinetic energy

is converted into Coulomb repulsion potential energy 1
2mv2|| =

e2

4πϵ0rmin
. We can define a transit time

to be the time it takes for the incoming ion to move by 2rmin in the transverse direction, i.e. rmin in
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the transverse direction on both sides of the closest longitudinal approach:

ttrans. ∼
2rmin

v⊥
,

1

2
mv2⊥ ∼

1

2
× 1

2
kBT ,

e2

4πϵ0rmin
∼ 1

2
mv2⊥

=
2
√
2

π

e2
√
m

ϵ0

1

(kBT )3/2

≈ 3× 10−5 · T−3/2,

where T is the ion cloud temperature in kelvins, and tchar. in seconds.

In our experiment, our molecules are in the mF = ±3/2 subspace. The energy scale of interest is the Stark

splitting between the mF = ±3/2 states and the mF = ±1/2 states. From Figure 5.4, this energy scale in

ThF+ (HfF+) is 10 MHz at Erot = 60 V/cm (20 MHz at Erot = 58 V/cm). Demanding 1/ttrans. to be smaller

than the aforementioned energy scales, we demand the ion cloud temperature to be less than 50 K for ThF+

(80 K for HfF+). These are not crazy high temperatures. For ion clouds with temperatures higher than

this, there is a significant chance that ion-ion collisions could drive our molecules out of the eEDM-sensitive

subspace, leading to T1 type losses. The ions could also come back to the mF = ±3/2 subspace after a few

collisions, mimicking a T2 loss signal.

6.6.2 Spatial sampling by an ion in an anharmonic trap

In all the above analysis, we assumed that our ion motions are highly non-ergodic in the absence of

ion-ion collisions, where the ion only samples a very limited volume of the ion cloud. We had to invoke

ion-ion collision to throw the ions into different trajectories, whereupon we introduce collisional narrowing,

a mechanism that reduces the spread of the mean Ramsey frequencies of the ion ensemble. However, ion

motion in an anharmonic trap can sample more of the ion cloud than a harmonic one. We compare the

trajectories of an ion in two traps in Figure 6.19.

With an anharmonic trap, the ion naturally “resets” its trajectory and samples a larger space within

the ion cloud. This would give rise to a decoherence narrowing effect similar to that of collisional narrowing.

The total energy of the ion is still unchanged throughout the secular motion, though.

In our ion trap, sources of anharmonicities could come from (i) mean field effects from the ions, (ii)

small size of the trap as compared to the size of our ion cloud, such that ions at the edge of the ion cloud
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Figure 6.19: Simulated trajectories of an ion in two different traps. The ion has the same initial
conditions in both the left and right plots: v(t = 0) = 10 ŷ m/s, and r(t = 0) = 1 x̂ cm.

Right: the confining field has the form Ei = −mω2
i

e ri, where ωi = 2π× 1 kHz and 2π× 1.1 kHz for the x and
y directions, respectively. The area traced out by the Lissajous figure is rather small; the ion only samples
a very limited volume of the entire space.

Left: the confining field has the form Ei(r > R0) =
mω2

i

e

(
−ri + R3

0

r3 · ri
)
, where R0 = 5 mm, and EEE(r ≤

R0) = 0. This is a very simplified model of the field seen by a hot ion in a very cold ion cloud such that
mean field effects dominate (like those shown in Figure 6.2). The region where mean field effects null out
fields is indicated by the grey circle r ≤ R0. The ion samples more of the volume of the entire space, and its
direction of motion also “precesses” around.

can sample the deviation of the trapping potentials from a true quadrupole, and (iii) other imperfections

within our trap.

6.6.3 Difficulty in measuring ion cloud properties in the experiment

To match experiment results to the model we developed in this chapter, we would like to be able to

measure a few properties of the ion cloud: (i) temperature of the ion cloud along all three principal axes9 ,

and (ii) ion cloud density. However, the tools at our disposal are rather limited:

Thermal Doppler broadening of laser transition. In the Gen. II experiment, a laser beam with a

linewidth narrower than the thermal Doppler width goes down the axial direction of the trap to

serve as a depletion laser for the doublets. We can infer the temperature of the ion cloud by mea-

9 In addition to serving as an input parameter into our model, measuring in all three axes tells us if the ion cloud is in
thermal equilibrium in all three dimensions.
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suring the width of the transition. However, we can only do this for the axial direction. We could

have a laser going in from the radial direction, but RF and rotation micromotion also broadens the

transition.

Velocity map imaging of ions on ion detector. With our long time-of-flight in the prototypical Bucket

Brigade (Section 7.9), we can perform velocity map imaging of ions, where the ion positions on our

ion detector corresponds to their velocity right before ejection from the trap. However, stray charges

along the flight path contribute to lensing effects that only give us velocity mapping along one

transverse axis (y) and not the other (x). Spatial variation of field strengths of the voltages seen by

the ions during the ejection also contribute to axial focusing effects. Furthermore, there could also

be ion-ion repulsion during the flight after the trap is turned off. All these effects complicate the

interpretation of our measurements on the actual temperature and ion number density of our ion

cloud.

We need to sharpen our detection tools to push our understanding of our ion cloud up a notch. This

would involve serious planning and significant changes to the current design of the setup. While we work on

this at the back of our minds, let us proceed to look at the electrode design of the Bucket Brigade.



Chapter 7

Design of the Bucket Brigade

7.1 Introduction

The Bucket Brigade is the second of the two main upgrades from Gen. II to III. In contrast to the Paul

traps that we have been using in the Gens. I, II, and ThF/ThF+ spectroscopy setup, the Bucket Brigade

(i) is much larger in scale, (ii) has the capability to translate ions across meter-scale distances along the

trap axis, and (iii) allows for near-continuous multiplexed operation. Furthermore, all the above has to be

done in an environment that is highly controlled and devoid of noise for precision measurements that aim to

surpass our current Gen. II record. We are requiring a lot out of the Bucket Brigade.

Translating ions within a multi-sectioned trap is not new. Multiplexing operations on ions at different

parts of the multi-sectioned trap is also not new. These were already envisioned in the quantum CCD

architecture [78] two decades ago. Midway through the pandemic, the first trapped ion quantum CCD

computer architecture was also demonstrated [79]. Not long after, news also came from the industry side

(Quantinuum) with their version of the quantum CCD ion chip design [80]. Needless to say, we are neither

the first nor the only ones working on a multiplexed ion trap based on the quantum CCD architecture. But,

ours is the biggest.1

We do not aim to design the perfect Bucket Brigade from the get go. We do not claim to have foresight

at such a level. We understand the weight of this big undertaking. We also take seriously all the helpful

comments from our critics. We shall take the design one step at a time. We will start to scratch the surface

1 One can argue that large scale experiments with storage rings count as multiplexed ion traps. However, the author wishes
to point out that ion confinement in storage rings is implemented rather differently (not of quantum CCD-type) from all the
aforementioned traps, so storage rings should be treated as a separate class.
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of the design with this chapter.

This chapter is structured as follows. First we will look at performing axial confinement and ion

translation with Rings (Section 7.2). Next, we will look at radial confinement and introducing the rotating

electric field with Rods (Section 7.3). We then introduce the baby Bucket Brigade, a prototype of the Bucket

Brigade (Section 7.4). Thereafter we have an overview of the electrode drivers to see how we control voltages

on all our electrodes (Section 7.5). Finally, we introduce a new tool in our JILA eEDM kit, parametric

excitation of ions (Section 7.6).

7.2 Rings: Axial confinement & Translation of ions

Axial confinement in linear Paul traps are typically introduced with end caps: electrodes on both

ends of the trap in the axial direction. These end caps are placed at a positive DC voltage w.r.t. the DC

ground on the radial electrodes to confine positively charged ions. On ion chips based on the quantum CCD

architecture, the “end caps” are displaced away from the trap axis, but the potentials added onto them still

allows for axial confinement of the ions. There are also many more such “end caps”, each at a different

potential. These potentials can be spatially modulated to create the various ion trap wells required of a

multiplexed ion trap.

We employ a similar strategy. We shall have Rings to serve as our “end caps”. To understand our

design constraints, we will first study the fields in our cylindrically symmetric setup. We start with static

axial confinement first. We begin with the case where the Rings are “continuous” in the axial direction

(Section 7.2.1) to understand how the axial trap secular frequency depends on the basic design parameters.

We will then work with the more realistic Rings that are discretized (Section 7.2.2) to see how discretizing

the Rings change the analysis. Subsequently, we explain how we translate ions by modulating the potentials

on the discretized Rings (Section 7.2.3). Finally, we end off with a brief discussion on the shielding effects

of the radial electrodes on the fields generated by the Rings (Section 7.2.4). Without spoiling too much,

Figure 7.1 shows a CAD drawing of the Bucket Brigade for a quick visualization of the critical components

involved and definitions of some of the coordinates to be used in this section.
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Figure 7.1: Spoiler: perspective view of a CAD drawing of the Bucket Brigade to visualize the
relevant relationship between various electrodes. The inner diameter of the Rings is 2ρ0. Some of
the structural support is hidden for a better view of the Rings. The radial distance from the trap axis is
defined to be ρ, and the axial coordinate towards the right along the trap axis is z. The Rings colored red
are the Special Rings; yellow Rings are the Quadrant Rings; green rings are the Translation Rings; all to be
discussed in more detail in Section 7.4.

7.2.1 “Continuous rings”

7.2.1.1 Analytic solution

We begin with a simple model, where we solve for the potential inside the volume of a long cylindrical

electrode, where we impose an arbitrary boundary condition on the inner surface of the long cylinder. This

is equivalent to the limit of having infinitely many Rings that are infinitely thin and infinitely close to each

other. The potential applied on the electrode holds the form:

V (ρ0, z) = V0 sin kz. (7.1)

Using separation of variables on Laplace’s equation in cylindrical coordinates gives:

(
∂2
ρ +

1

ρ
∂ρ +

1

ρ2
∂2
ϕ + ∂2

z

)
P (ρ)Φ(ϕ)Z(z) = 0. (7.2)

Now we need to solve the above with the boundary condition given by Equation 7.1.

Cylindrical symmetry dictates that Φ(ϕ) = 1. Assuming that the trap is infinitely long, the sinusoidal

modulation of potential at the boundary implies that Z(z) = sin kz, where k = 2π
λ , with λ the periodicity of
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the potential modulation in the axial direction. The solution now looks like:

V (ρ, z) = P (ρ) sin kz.

Now the partial differential equation for P (ρ) is:

(
∂2
ρ +

1

ρ
∂ρ

)
P = k2P.

The solutions to the above are the modified Bessel functions.2 Further demanding that the potential at

ρ→ 0 to be finite, the solution then holds the form:

V (ρ, z) = αJ0(ikρ) sin kz,

where α is a constant of proportionality, and J0(x) is the zeroth order Bessel function of the first kind.

Matching the above to the boundary condition at the electrode with Equation 7.1 gives:

V (ρ, z) = V0
J0(ikρ)

J0(ikρ0)
sin kz. (7.3)

To aid us in the later sections, we note a few approximate forms of the Bessel function in the two extreme

limits:

J0(ikρ) =


1 + (kρ)2

4 + (kρ)4

64 +O(ρ6) kρ≪ 1,

ekρ
√
2πkρ

[
1 +O

(
1
kρ

)]
kρ≫ 1.

(7.4)

The small kρ expression will be useful in evaluating the potential in the vicinity of the ion cloud, while the

large kρ expression will be useful in simplifying the expression for the potential on the boundary.

It is useful to note that voltage waveforms on the Rings with larger k (smaller λ) will decay much

faster in amplitude as we approach ρ → 0. Figure 7.2 shows a quick comparison of the waveforms with

various k and the relevant coordinate parameters.

7.2.1.2 Dependence of axial frequency on design parameters

We intend to work with an ion cloud that is small compared to the periodicity of the spatial modulation

of the axial potential, i.e. ∆z ≪ λ = 2π
k (see Figure 7.2). Expanding the potential along the axis in z about

2 The interested reader can refer to Jackson’s Classical Electrodynamics 3rd edition, equations 3.100 and 3.101.
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V
(ρ
, z

)

z

V0 sin kz

V0 sin kz J0(ikρ)
J0(ikρ0)

At the Rings, ρ = ρ0

∆z

λ

Along trap axis, ρ = 0

Large k Small k

Figure 7.2: Schematic comparison of waveform amplitude decay from the Rings with various
k. Red (blue) wiggles show potential waveforms with large (small) k. The upper trace shows V (z) as
applied onto the “continuous rings” electrode, and the lower trace shows how this potential would look like
along the trap axis, ρ = 0. The orange disk indicates the size of our ion cloud, which is small compared to
λ = 2π/k ≫ ∆z. Within the vicinity of the ion cloud center, the potential can be approximated as harmonic.

a potential minimum gives:

V (ρ, z) ≈ constant + V0
J0(ikρ)

J0(ikρ0)

(k ·∆z)2

2
.

Plugging the above into the equation of motion:

m∂2
t (∆z) = −e ∂∆zV = −eV0k

2 J0(ikρ)

J0(ikρ0)
·∆z,

implies that the oscillation frequency at ρ = 0 is:

ω =

√
eV0k2

m

1

J0(ikρ0)
=

√
V0

√
4π2e

mλ2

1

J0(ikρ0)
∼

√
V0 ·

√
e

m
·
(ρ0
λ5

)1/4

· e−
πρ0
λ , (7.5)

where in the last step, we expanded the Bessel’s function out (kρ0 ≫ 1) for a more intuitive feel of how the

overall expression scales with the relevant parameters. Using the exact expression, we show values of axial

frequencies for some combination of the design parameters in Table 7.1.

If we wish to operate in a experiment parameter space familiar to us in the Gens. I and II experiment,

we want to aim for between 1 and 10 kHz. Fortunately, the numbers show that we can get these frequencies

with very modest voltages applied if we pick the right geometry design parameters.

7.2.1.3 Peak-to-peak voltage along trap axis

One important aspect of the Bucket Brigade is that ions need to stay within their bucket. We do not

want ions to spill over to the neighboring bucket. We want to know the “axial energy” of an ion at which it
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ρ0 \ λ 2 cm 4 cm 6 cm 8 cm 10 cm 12 cm

1 cm 13200 11800 9080 7190 5910 4990
2 cm 3320 6620 6620 5910 5170 4540
3 cm 767 3370 4410 4510 4270 3940
4 cm 172 1660 2830 3310 3400 3310
5 cm 37.8 802 1780 2380 2650 2720
6 cm 8.22 383 1110 1690 2030 2210
7 cm 1.78 182 682 1190 1550 1770
8 cm 0.382 85.8 419 830 1170 1420
9 cm 0.0818 40.3 256 578 884 1120
10 cm 0.0175 18.9 156 401 664 890

Table 7.1: Axial frequencies at various geometries. The numbers shown here are ω
2π

√
V0

in units

of Hz. For example, for an electrode modulation peak-to-peak voltage at Vpp = 2V0 = 2 V, distance to
electrode from trap axis ρ0 = 7 cm, modulating wavelength λ = 8 cm, the axial angular frequency is
2π ×

√
1× 1190 = 2π × 1.19 kHz. Mass is assumed to be that of ThF+.

spills over classically from one potential well to the next. We have, in the convenient unit of kelvins:

Tmax =
1

kB

eVpp

J0(ikρ0)
.

The maximum energy of the ions that can be trapped within this potential well for typical values of ρ0 and

λ is shown in Table 7.2.

Even though we want to work with design parameters such that our ions of a certain temperature do

not spill over to the neighboring buckets, the ions will be sampling the anharmonic part of the axial trap

well before they start spilling over. We do not want the ions to sample anharmonic parts of the trap for fear

of systematic effects on our eEDM measurement (Section 7.2.2.2). The numbers above serve only as a hard

limit (instead of the recommended values), beyond which we have no hope of using the Bucket Brigade for

a multiplexed ion trap experiment.

If the ions in the Bucket Brigade have similar thermal energies as compared to the Gens. I and II

experiments, we expect ion cloud temperatures between a few kelvins to a few hundred kelvins. Fortunately,

the numbers show that our ions will not be spilling over to neighboring buckets with very modest voltages

applied if we pick the right geometry design parameters.
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ρ0 \ λ 2 cm 4 cm 6 cm 8 cm 10 cm 12 cm

1 cm 4230 13500 17900 20000 21100 21700
2 cm 266 4230 9520 13500 16200 17900
3 cm 14.2 1100 4230 7860 11000 13500
4 cm 0.711 266 1740 4230 6980 9520
5 cm 0.0344 62.2 689 2190 4230 6440
6 cm 0.00163 14.2 266 1100 2500 4230
7 cm 0.0000763 3.19 101 544 1450 2730
8 cm 3.53× 10−6 0.711 38.1 266 831 1740
9 cm 1.62× 10−7 0.157 14.2 129 472 1100
10 cm 7.37× 10−9 0.0344 5.26 62.2 266 689

Table 7.2: Potential barrier of the wells along the trap axis. The numbers are expressed in temperature
for an electrode peak-to-peak voltage of Vpp = 2 V. For example, if the distance to the electrode from trap
axis is ρ0 = 7 cm, and the modulating wavelength is λ = 8 cm, the ions start spilling over classically once
their “axial energy” exceeds 544 K.

7.2.2 Discrete rings

Having infinitely many Rings would allow us to set voltages on all those Rings such that the ions

along the trap axis will see a perfectly sinusoidal modulation of the potential along the axial direction. If we

desire, we could even change the sinusoidal potential to something that looks more like a piece-wise series

of harmonic traps, allowing the ions to feel a much bigger volume of trap harmonicity.

However, both the former and the latter have problems. The problem with the former is that we

cannot control an arbitrarily large number of Rings in the experiment, it is simply impractical. We have to

settle for a finite number of Rings, countable with about ten pairs of hands. This means that our “boundary

condition”3 will no longer be a single sinusoid with only one periodicity; it will be a sum of the various

harmonics. This may complicate the analysis.

The problem with the latter is that Laplace’s equation in cylindrical coordinates attenuates higher

harmonics of spatial variations very quickly, as we will see in this section. To realize arbitrary modulation,

like the piece-wise stitched harmonic traps, we will have to apply very high potentials on the Rings to fight

against the attenuation. It looks like we have to settle for a simple sinusoidal modulation. However, it turns

out that we can use this to our advantage to tackle the problem of the previous paragraph.

3 The boundary conditions are strictly only introduced by the surfaces of the discrete Rings, and not the space between
Rings. Nevertheless, if we look at the potential at ρ < ρ0, the spatial modulation of the potential along the axial direction can
be decomposed into the various harmonics of the fundamental periodicity.



155

7.2.2.1 Suppression of the higher harmonics

If we have an arbitrary cylindrically symmetric potential at ρ = ρ0, we can decompose it into the

various harmonics:

V (k, z, ρ0) = V0 +
∑
n=1

(
V (s)
n sinnkz + V (c)

n cosnkz
)
.

Equations 7.3 and 7.4 then say that the potential at ρ≪ {ρ0, λ} is given by:

V (k, z, ρ) ≈ V0 +
∑
n=1

(
V (s)
n sinnkz + V (c)

n cosnkz
)
·
[
1 +

(nkρ)2

4
+

(nkρ)4

64

] / enkρ0

√
2πnkρ0

. (7.6)

We see that the attenuation factor increases exponentially with the order of harmonicity n. Hence, the

waveform of the potential along the trap axis is predominantly that of the first harmonic unless we amplify

the higher harmonics components at the source. The attenuation factors for various λ = 2π/k are shown in

Table 7.3.

λ \ n 1 2 3 4 5 6 7

8 cm 60.8 1.54× 104 4.52× 106 1.41× 109 − − −
16 cm 4.67 60.8 937 1.54× 104 2.61× 105 4.52× 106 7.95× 107

50 cm 1.23 2.11 4.25 9.28 21.1 49.1 116

Table 7.3: Attenuation factors of various harmonics. The values shown are J0(inkρ0). They are
evaluated at ρ0 = 7.5 cm. The dashes are numbers that are too big and meaningless to include. For a
reasonable bucket length of about λ = 8 cm, we see that any higher harmonics will be so quickly suppressed
that the trapping potential along the trap axis is essentially a pure sinusoid.

A consequence of the above is that we do not need to have too many Rings per bucket. As alluded

to earlier, having more Rings allows for more parameters for us to tweak to adjust the waveform of the

potential, but since the attenuation of higher harmonics is so strong, we would have to apply unrealistic

magnitudes for the higher harmonics to be able to take advantage of having more rings. Therefore, we have

chosen to use a lucky4 number of four Rings per bucket.

4 Four is an unlucky number in Chinese numerology. It is homophonous with “death” in various Chinese languages like
Cantonese, Teochew, and Mandarin. However, we shall associate the “death” with “uncertainties” in the Bucket Brigade design.
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7.2.2.2 Anharmonicity

Lastly, we shall take a look at the harmonicity of the axial trapping potential. Since the potential

takes the form of a sinusoid, expanding the potential about the potential minimum at zmin is:

V (k, z, ρ) ≈ V0

[
−1 + [k(z − zmin)]

2

2
− [k(z − zmin)]

4

24

]
·
[
1 +

(kρ)2

4
+

(kρ)4

64

] / ekρ0

√
2πkρ0

.

Evidently the first anharmonic term comes in as the fourth power of z − zmin. Demanding the ratio of the

fourth power term to the harmonic term to be less than 10% (1%) at 1 cm away gives λ > 6 cm (18 cm).

The anharmonicity does not hurt the trapping of the ions. However, it could hurt our precision

metrology through systematic effects. Suppose in addition to a potential of the above form, we have an

unwanted axial electric field from, say, imperfectly shimmed axial trapping voltages for the rings. The result

of this additional axial electric field is that the minimum of the quadratic component of the trapping field will

be displaced from that of the quartic component (see Figure 7.3 for a graphical explanation). For the ions

+ =

+ =+ +

=

(a)

(b)

Figure 7.3: Graphical representation of summing a linear potential to quadratic and quartic
potentials. (a) Adding a linear potential (uniform axial electric field) to a quadratic potential (harmonic
axial trapping potential) results in a displaced quadratic potential. The dashed line indicates the the position
of the original axis of symmetry, and the dotted line indicates mean position of ions sloshing around in the
said potential. (b) Adding a displaced quadratic to a quartic potential (anharmonic part of the axial trap)
results in a trap that is asymmetrical about the mean ion position (indicated by the dotted line).

to remain trapped axially, the time averaged axial electric field seen by the moving ions has to be zero, i.e.∫
z>0
Ez dt+

∫
z<0
Ez dt = 0. However, since the potential is no longer symmetric, it has to spend more time on

one side of the equilibrium position than the other, and we may end up with a non-zero time-averaged higher

moment of the axial electric field
∫
z>0
E3z dt+

∫
z<0
E3z dt ̸= 0. The result of having a non-zero time-averaged

higher moment of Ez is that it can manifest as a systematic effect on our precision metrology (see Equation
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8.15 and Section 8.3).

We shall leave this problem for another day; systematic effects are not of our immediate concern now.

Future graduate students and post-docs may want to bookmark this section for when the time comes to

study systematic effects (with ions) in the (prototypical) Bucket Brigade.

7.2.3 Translation of ions

Translating the ions is trivially simple, we modulate the potentials on the Rings in space and time:

V (zn, t) = V0 sin(kzn − 2πfrept) , (7.7)

where zn corresponds to the axial position of the nth ring, and frep is the repetition rate of the Bucket

Brigade experiment from Equation 1.1.

7.2.4 Shielding effect from Rods

In our analyses of the Rings, we have been neglecting the radial electrodes, the Rods. Our Rods

will have RF voltages on them for the radial confinement of ions. They will also have the voltages for the

rotating electric field that polarizes our molecular ions. We require the rotating electric field to be spatially

homogeneous, so we have chosen to have the Rings to sit outside the Rods. This is so that the fields

from the Rods at the center of the trap will experience a much less severe shielding effect from the Rings.

Consequentially, the fields from the Rings will be shielded by the Rods.

To investigate the level of shielding, we shall first look at realistic dimensions of Rings and Rods. The

Bucket Brigade should fit inside a vacuum chamber of 8′′ outer diameter (0.120′′ thick wall), so a reasonable

dimension for the Rings will be 1 mm thick Rings with inner and outer diameters of 15 cm and 17 cm,

leaving about 1.4 cm worth of space between the outer circumference of the rings and the inner wall of the

vacuum chamber. There will be eight Rods at 1 cm in diameter, sitting at 6.5 cm away from the trap center.

The geometry is summarized in Figure 7.4.

Using the above dimensions, we run simulations in COMSOL to look at the shielding effect of the

Rods on the Rings. A comparison of the results with and without Rods are shown in Figure 7.5.



158

1 cm

15 cm

17 cm

13 cm

8′′

0.12′′ thick

1 mm thickx

y

1

23

6 7

4

5 8

Figure 7.4: Cross sectional view of the Bucket Brigade involving the Rods, Rings, and the
vacuum chamber. The rods are color coded to indicate the pairing of the rods for the RF-potentials. The
rods are numbered here for future reference.

The simulation results from Figure 7.5 show that the Rods attenuate the potentials from the Rings

by about a factor of two. To compensate for this attenuation, we only need to amplify the potentials that we

wish to apply on the Rings by the same factor. Hence, for an axial trapping frequency of 1 kHz at λ = 8 cm,

we just need V0 = 2 V (refer to Table 7.1).
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Figure 7.5: Attenuation of potentials of Rings by Rods. Top row: the left (right) column shows
simulation results without (with) Rods; the vertical lines on the right plot represents the edges of the Rods.
Potentials applied on the Rings are V (z) = −

√
2 V× cos

(
2π

8 cmz
)
, where z ∈ {−3,−1, 1, 3} cm. We imposed

periodic boundary conditions on the top and bottom faces of the simulated domain. The top row shows
see-through color maps of electric potentials; the trap axis is the vertical direction. Bottom row: the profile
of the electric potential along the trap axis. The amplitude for the case without Rods is about 16 mV,
which agrees with the attenuation factor from Table 7.3. On the bottom-right plot, the amplitude is further
attenuated by a factor of about 2.7 to about 6 mV.
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7.3 Rods: Radial confinement & Erot

We will be using Rods to supply radial potentials. These potentials include the RF radial confinement,

and the potentials to create a rotating electric field to polarize our molecular ions Vrot. The geometries of

the Rods have already been alluded to earlier on in Figure 7.4. We will be analyzing the radial confinement

properties of our trap with the established machinery of the Mathieu parameters (see Appendix A for more

details). We shall now briefly investigate the RF trapping properties (Section 7.3.1) for us to understand

what kind of RF voltages we need to apply for the radial secular frequencies we want. We then look at

simulation results of the homogeneity of the rotating field at various sections along the Bucket Brigade

(Section 7.3.2) to justify the dimensions chosen for the Bucket Brigade.

7.3.1 Radial confinement in a Paul trap

The physics behind confinement of ions with time-oscillating fields can be found in many literature

(see, for example, Ref. [81]). The basic idea goes as follows:

(1) Maxwell’s equations forbid us from having an electric potential minimum in free space, so we cannot

trap ions (electric monopoles) with static electric fields only (one can however engineer static electric

fields to trap electric dipoles, see, for example, Ref. [82]).

(2) We apply a time-oscillating quadrupolar field in the x-y plane, which has a field strength that is zero

at all times along what we call the trap axis (the z-axis).

(3) The time-oscillating quadrupolar field moves the ion along with it. We call this motion the micro-

motion of the ion. Since the frequency of the oscillation of the field is typically in the RF range, we

call the micromotion the RF micromotion.

(4) The phase of the motion of the ion is matched with the phase of the oscillation of the field in

such a way that the ion sees a time-averaged net restoring force towards the trap axis. This is the

ponderomotive force. An ion would feel a ponderomotive force in the presence of a time-oscillating
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spatially inhomogeneous electric field. For a field that oscillates as:

E⃗(r, t) = E⃗(r) cosωrft,

the ponderomotive force that the ion of charge q and mass m feels is given by:

F = − q2

4mω2
rf

∇
∣∣E⃗(r)∣∣2. (7.8)

(5) For a quadrupolar field, the expression for E⃗(r) is proportional to x − y. This means the pondero-

motive force that an ion sees in a time-oscillating quadrupolar electric field is given by:

Fquad. ∝ −∇(x2 + y2),

which is just a harmonic trap in the x and y directions, i.e. the radial directions. The motion

associated with the time-averaged restoring force is called the secular motion of the ion in the trap.

The secular frequency is usually much lower than the RF frequency.

The summary above shows how an ion in a time-oscillating quadrupolar electric field can feel a restoring

force back to the trap center. However, we did not mention how the amplitude of the secular motion of

the ion could change with time. Depending on the trap parameters chosen (e.g. RF frequency, RF voltage

amplitudes, and charge-mass ratio of the ion), the amplitude of the secular motion could increase with time

like in a resonance. These trapping conditions are deemed unstable. The ponderomotive picture only holds

if (i) the micromotion is small compared to the secular motion (hence the term “micro”motion), and (ii)

the spatial variation in the fields are slow compared to the amplitude of the micromotion. We want to work

in this parameter space. Fortunately, some machinery has already been built to allow us to analyze the

parameter space, and, say, the stability of the trap more quantitatively, as we shall see below.

For a more quantitative approach, the potentials involved in Paul traps are usually parameterized in

the form of Equations A.1 and A.2. The relevant variables are defined in Section A.2. Using these forms, we

can calculate the Mathieu parameters, and use Equation A.4 to determine the secular frequencies. Hence

the first step to understand our radial confinement is to extract the relevant parameters (equivalent radius

of radial electrodes R0 and equivalent axial distance of the end caps Z0) from our Bucket Brigade with the
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help of COMSOL. The relevant dimensions, definitions of our axes, and Rod numbering are shown in Figure

7.4. Applying positive (negative) RF voltage Vrf,0 to the red (blue) rods in Figure 7.4 and evaluating the

electric potential along the x- and y-axes gives Figure 7.6.
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Figure 7.6: RF electric potentials in the Bucket Brigade, evaluated along the x- and y-axes. For
the purpose of the plots, we used Vrf,0 = 1 V. The fits are done within the region of [−3, 3] cm. The residuals
from the fit are shown in the plot on the right. The profiles look identical when the 1D slices are taken at
the axial positions (i) between two Rings and also (ii) on the plane of the rings within this plotting region.
This says that the Rings are not significantly modifying the fields from the Rods within the region shown in
the plot.

From Figure 7.6, we find that R0 = 6.838 cm, which is not that far away from the actual 6.5 cm radial

distance of the rods from the trap axis. A similar analysis on the axial confining potential using the results

of Section 7.2.4 gives Z0 = 25.5 cm. Voltages required for secular frequencies of 1 kHz in all three directions,

are Uec,0 = 3.35 V, and Vrf,0 = 20.8 V. The resulting Mathieu stability plot is shown in Figure 7.7.5

So far, all the voltages required look reasonable. The final values that we settled on for the prototypical

Bucket Brigade are shown in Appendix B.1. The values shown there are slightly different from those shown

above because we scaled the transverse dimension down a little to make space for structural support.

7.3.2 Rotating electric field, Erot

To produce a rotating electric field Erot, the potentials we apply on the nth rod (compare with Figure

7.4) is given by:

Vn = Vrot cos

(
ωrott+

(2n− 1)π

8

)
,

5 It is interesting to note that operating in the stability region does not guarantee stability in the presence of higher order
multipole time-oscillating potentials in the trap [83]. Our trap certainly has higher order multipoles because our electrodes are
not shaped like hyperboloids. It seems, though, that the instabilities in Alheit et al. [83] only come in at q > 0.45. We typically
operate at q ≈ 0.14, so this should not be a problem for us.
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Figure 7.7: Mathieu stability plot for the Bucket Brigade. The colored dots represent the positions of
the three species (ThF+, Th+, ThF+

2 ) that we care about in our trap. The grey area bound by the dashed
lines indicate stable trapping region. The solid colored lines indicate contours of radial trapping frequency
for ThF+. Please refer to Appendix A for more information regarding the Mathieu parameters a and q0.

where ωrot is the rotational angular frequency of the rotating electric field, and the phases are chosen such

that Erot points in the negative x direction at t = 0 and rotates clockwise with time. Using COMSOL to

evaluate the fields resulting from potentials applied to the Rods gives results shown in Figure 7.8.

From the results in Figure 7.8, we see that the deviation crosses the 0.1% and 0.01% marks at 1.6 cm

and 1.1 cm, respectively. We want all the ions in the ion cloud to see the same Erot, so we want the deviation

to be as small as possible within the extent of the ion cloud. Expecting a typical ion cloud size of 4σ ∼ 1 cm,

and requiring a 0.01% homogeneity level6 , we cannot afford to shrink the dimensions of the Bucket Brigade

down by much. One can say that we were lucky to have chosen to work with the current set of design

parameters; any smaller and we would have to calculate everything again with a bigger dimension.

Ponderomotive potentials go as |E⃗ |2 (see Equation 7.8), and the ponderomotive energy associated

with Erot is about 93500 K at the trap axis. For an ion cloud temperature of about 30 K, we see that the

deviation of the ponderomotive potential exceeds that of the ion cloud temperature beyond 1.3 cm from the

trap axis. We certainly do not wish to lose ions to the Erot ponderomotive potential (but in fact we do, see

Figure 7.20), so we would want to have small cold ion clouds given the current electrode configuration.

From COMSOL, we further see that for every 1 V of Vrot, we get 10.655 V/m of Erot. This means

6 The 0.01% value comes from demanding the ions to decohere less than 10% of a cycle after 50 Hz× 20 s = 1000 cycles.
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Figure 7.8: Plots of Erot spatial homogeneity. Top row: color maps of electric potential, with planes
chosen to be between the rings, or on the plane of the rings. Second row: plots of the magnitude of the
resultant electric field; range of color map is chosen such that the colors saturate beyond 1% from the value
at the center (10.655 V/m). Last row: 1D slice of the magnitude of the resultant electric field along the
x-axis. For the first two rows, the odd columns correspond to Erot pointing along the negative x-axis (0◦),
while the even columns correspond to Erot making 22.5◦ with the negative x-axis. Color legends are also
removed for clarity; warmer (cooler) colors indicate more positive (negative) values. The grey dotted line in
the bottom right plot indicates 0.1%.

that for a nominal Erot = 60 V/cm, we need to apply Vrot = 563 V. This is still a reasonable voltage that

we can deal with.

Once again, the final values that we settled on for the prototypical Bucket Brigade are shown in

Appendix B.1. The values shown there are slightly different from those shown above because we scaled the

transverse dimension down a little to make space for structural support.
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7.3.3 Summary

With the current geometry, we saw that we can introduce the fields that we want, both radially and

axially, with reasonable voltages. The field homogeneity requirements for the Rods and the harmonic axial

region for the Rings are also at a comfortable level for the ion cloud size that we expect to work with. In

principle, this could work. In practice, we have to find out. There could be many things that could affect the

experiment in ways that are easier found out by the method of doing it, instead of trying to search through

the whole parameter space exhaustively. There remains a lot to be said for building a prototype.

The next section will introduce a prototype of the Bucket Brigade. We will be using the prototype to

test out our design ideas, and to have a feel of the construction and assembling tolerances.
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7.4 The baby Bucket Brigade (b.B.B.)

Having a trap design that works in principle is a good start, but we still need to test this out

experimentally. To do so, we have constructed a prototype of the Bucket Brigade with realistic diameter

and operating voltages, but only 1/3 as long as what we anticipate for the full design. We affectionally call

this prototype the baby Bucket Brigade (b.B.B.). In addition to testing out the trap design on the b.B.B.,

we also aim to test out many other new ideas that we wish to implement in the Gen. III experiment (to be

discussed in the later chapters).

7.4.1 Setup

A CAD drawing of the setup is shown in Figure 7.9, and critical components are elaborated on in the

caption. The drawing is a bird’s eye view from the top, but we made some minor changes in the final design.

For example, the turbomolecular pump attached to the Six-way Cross was drawn to be lying on the horizontal

plane, but it is now on the top flange of the Six-way Cross to make access to other flanges friendlier to the

lab users. All the electrical feedthroughs for the electrodes inside the Cold Tube are mounted on various

blanks on the unused ports of the Six-way Cross. Electrical feedthroughs for the microchannel plate and the

Accelerating Rings are mounted on the zero length reducer that the microchannel plate assembly is mounted

on. A picture of the setup is shown in Figure 7.10.

An 80 L/s turbomolecular pump (Varian V81) maintains the vacuum in the differential pumping

chamber, while the Six-way Cross has a 500 L/s turbomolecular pump (Varian V551) and a 1000 L/s (for

hydrogen) nonevaporable getter (SAES CapaciTorr Z1000). The source chamber also has a Varian V551

attached to it. The molecular pumps are backed up by scroll pumps (Agilent IDP-15). Typical vacuum

pressures read by the ion gauges are 10−9 Torr in the differential pumping chamber and in the Six-way

Cross.

The distance from the molecular beam source to the trap is about 21′′. The length of the whole

b.B.B. is about 1 m long. The distance between the Octagon to the microchannel plate assembly is about

70 cm. The microchannel plate assembly consists of two 4 cm diameter microchannel plates in the chevron
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Figure 7.9: CAD drawing of the b.B.B. setup. A typical experimental sequence proceeds as follows
(also compare with Figure 4.24):

(1) We ablate a piece of thorium metal in the source chamber to create a plume of thorium plasma that
is reacted with sulfur hexafluoride to create neutral thorium monofluoride.

(2) The neutral molecules are entrained in a supersonic expansion buffer gas of neon at room temper-
ature, which then passes through a gate valve and a differential pumping chamber (separated from
the neighboring vacuum chambers with a 3 mm diameter copper skimmer on each side) before it
reaches the Octagon. The first skimmer is charged to 30 V to reject charged particles.

(3) As the ions arrive at the center of the 10′′ diameter Octagon, we fire REMPI lasers through the 2.75′′

windows to ionize the neutral molecules state-selectively into the X 3∆1(v = 0) vibronic manifold.

(4) More lasers go through other windows on the Octagon for state preparation into the eEDM-sensitive
X 3∆1(v = 0, J = 1, F = 3/2,mF = ±3/2) states.

(5) The ions are then ushered down into the Cold Tube, where we perform our π/2 pulses to do Ramsey
spectroscopy.

(6) At the end of the Ramsey sequence, the ions are ushered back into the Octagon where they are
addressed with lasers for state detection (e.g. state clean up, state-selective REMPD).

(7) The ions are then ejected through the Six-way Cross towards the microchannel plate assembly for
detection. The Accelerating Rings can be turned on to accelerate the ions even further, or to be
used as some crude form of ion optics.

Rings with special functions are highlighted with thick colored lines: yellow indicates Special Rings, while
orange indicate Quadrant Rings. See Figure 7.1 for a closer view on the Rings. More on these rings in
Section 7.4.2.

configuration, followed by a phosphor screen. The potential difference across the front and back sides of the

plates are kept at slightly less than −2 kV, with the front plate floated to −2.6 kV for a higher ion impact

velocity. The phosphor screen is at 3 kV. We read out signals from the microchannel plates capacitively (see
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Ref [39] and Noah Schlossberger’s thesis), and we also use a camera to capture the phosphorescence from

the phosphor screen.

Figure 7.11 shows the constructed b.B.B.. One can argue against using kapton tape close to the ions

in an ion trap experiment (and this comes back to bite us again and again when we observe patch charge

effects when we try to translate the ions along the b.B.B.), but that was the quickest solution to tidy the

loose ends while keeping the electrodes insulated from one another. We find solace in the fact that the kapton

tapes are only used on the side of the b.B.B. that sits in the warm region of the setup, while the part that

sits inside the Cold Tube does not have the tapes.
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Figure 7.10: Pictures of the b.B.B. setup. Top row: (1) The Octagon. The 2.75′′ windows mounted on
the Octagon are the ones we use to send in laser beams. The windows on the vertical axis are uncoated, and
are used for the higher energy pulsed lasers. The rest of the windows are AR coated for the cw lasers. (2)
The Cold Tube. A 8′′ diameter 316LN stainless steel tube that houses the b.B.B.. (3) The Cold Sleeve. An
aluminum cold jacket the hugs the Cold Tube, conducting the cold from the cryocooler. Made in-house at
JILA. (4) The “Science” location where the ions sit for BBR suppressed Ramsey evolution. The “Science”
region is deep enough inside the cold to suppress BBR related T1 type losses, and far enough from the
magnetic cryocooler. (5) The cryocooler. (6) A graduate student for scale. (7) The Cradle. The Cold Tube
is suspended from the Cradle for structural support. (8) The Six-way Cross. One can see the turbomolecular
pump attached on to the top flange. Some of the electrical feedthroughs for the electrodes can also be seen
on the blank facing the camera. The full b.B.B. is way more congested than the picture shown here. This
picture was taken after we took out several components to bake the system. Not shown in this picture include
(i) the vertical breadboard that sits between the Octagon and the Cradle for the optics into the Octagon, (ii)
the household insulating foam and panels that hold the foam, and (iii) all the disconnected cables from the
trap drivers. Bottom row: views of the b.B.B. setup from the other side. One can also see the back side of
the (black) vertical breadboard in these pictures. The gas canister on the right contains the neon buffer gas,
seeded with sulfur hexafluoride. The vacuum chamber on the right is part of the Source Chamber. Bottom
left: without the foam. Bottom right: with the foam and panels that hold the foam.
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Figure 7.11: Picture of the b.B.B., with yours truly and an approving-looking advisor for scale.
The outer most square rods are mechanical supports (affectionally called Spines). The Spine are terminated
on both ends with “End Plates”. The Spines have a square cross section with side lengths of 0.75′′. Midway
through the b.B.B., where screwholes on the Spines can be seen, there is a thicker Ring that also acts as
a structural support. The horizontally orientated rings are the Rings, and the Rods are lined up along
the Spines inside the Rings. Some kapton tape is used to keep the wiring tidy. Vacuum-compatible d-sub
connectors can be seen at the top of the picture. These connectors allow for error-free connection of the
wires with the electronic feedthroughs at the vacuum flange, because we only need to verify the connection
once on the bench in a comfortable configuration, and just connect the d-sub connectors when we slide the
b.B.B. into the confined space of the vacuum chamber on the busy optical tables. The whole assembly was
assembled (by graduate students Sun Yool Park and Anzhou Wang, with the help of JILA instrument maker
Calvin Schwadron) inside a makeshift clean room with a HEPA filter for good vacuum practice. The top
end of the b.B.B. in this picture corresponds to the side facing the ion detector.



171

7.4.2 Trap loading & Ion kick out

We split two Rings right at the center of the Octagon into four quadrants each. The quadrants are

oriented such that each Quadrant Ring (denoted as thick orange lines in Figure 7.9) has one quadrant in the

up, down, away-from-Source-Chamber and towards-Source-Chamber directions. Using a voltage difference

across the away-towards pair, we can apply a stop pulse to stop the newly created ions that are moving at

800 m/s. We can use a combination of voltage differences across the up-down pair and the overall voltage

difference across the two Quadrant Rings to steer the ions during the stop pulse in the case of imperfect

alignment of the electrodes w.r.t. molecular beam.

For the ion kick out, we apply a potential gradient along the axial direction with the Special Rings

(denoted as thick yellow lines in Figure 7.9) and the Quadrant Rings. At the end of the kick out acceleration,

the ions travel at about 4 km/s towards the ion detector.

The rest of the Rings only serve to translate the ions in and out of the Cold Tube, and are connected

with every fourth neighbor to reduce the number of independently controlled electrodes. Hence, we have a

total of 4× 2 (Quadrant Rings) + 1× 10 (Special Rings) + 1× 4 (Translating Rings)7 = 22 independently

controlled Ring voltages.

7.4.3 Remarks on wisdom acquired

We started designing the b.B.B. at the start of the pandemic (circa April 2020). We cleared out some

lab space and knocked down some walls to make space for the new setup a year later (circa April 2021). We

celebrated the “effective end of the pandemic” by painting the walls of our new lab space in July 2021, and

started populating the new lab space with equipment in August 2021. We saw our first ions in the b.B.B. in

June 2022, one week after DAMOP. We have our first dissociation of ThF+ in the b.B.B. in October 2022.

Finally, we have our first Ramsey fringe in the b.B.B. in February 2023.

The b.B.B. design, construction, and fine tuning turned out to be a much bigger problem than

anticipated. I shall briefly mention some wisdom that we acquired along the way to inform/inspire future

generations of students and post-docs working on the design of the full Bucket Brigade.

7 Although we have only four independently controlled voltages for the Translating Rings, we have 41 such Rings in total.
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7.4.3.1 Tolerance

The position tolerance on the Rings are very forgiving because of Laplace’s equation; any effect from

unintentional displacements of the Rings with spatially sinusoidal modulated voltages applied to them will

manifest as a higher spatial harmonic of the potential that is exponentially suppressed by the radial distance

from the electrodes (see Section 7.2.2).

In comparison, the Rods have a much more stringent position tolerance. A simple COMSOL simulation

suggests that at if we demand a 0.1% Erot spatial homogeneity requirement along the trap center at the size

of our ion cloud, we can only tolerate a 200 µm radial or 1 mm azimuthal displacement of the Rods.

7.4.3.2 Shielding effect of insulator spacers

The b.B.B. has a lot of macroscopically sized electrodes in close proximity. They need to be held

together for structural integrity, but insulated from one another for independent voltage control. One would

näıvely assume that using thin insulating spacers to, say, insulate Rods from the Spines would do little to

fields seen by ions along the trap axis some centimeters away. However, fellow graduate student Anzhou

Wang quickly found out through COMSOL simulations that the dielectric insulators modify the field lines

sufficiently enough to change the field strength along the trap axis. We can compensate for this effect by

introducing a metallic spacer along with the insulating spacer. The dimensions chosen for the insulating and

metallic spacers were guided by COMSOL simulation.

7.4.3.3 Patch charges and baking

During the early days of moving ions up and down the b.B.B., we noticed that there was a bad patch

around 30 cm into the Cold Tube (see Figure 7.12). We could not move ions past that location without

ramping up the radial confinement of the trap. Initially we guessed that perhaps some of the electrodes at

that region were not connected correctly, but it turned out in the end that a light bake of the Cold Tube at

about 100 ◦C over the weekend solved the problem. We do not claim to understand what happened fully,

but the story is that there were some patch charges in that region that got baked away.
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Figure 7.12: Losing ions past 30 cm into the b.B.B.. Data from 7 September 2022, RID 20202. The
blue trace corresponds to moving the ions into various locations of the b.B.B. (in units of Ncycles, where
each Ncycle corresponds to translating the ions in by one bucket, or 8 cm) in 300 ms, holding them there for
10 ms, before moving them back out into the Octagon again in 300 ms. The vertical axis is the area under
the time-of-flight curve, corresponding to the number of ions we retain after the operation. The yellow trace
corresponds to holding the ions at the Octagon for the same amount of time as the blue trace to act as a
control. Note that we lose ions completely by the time we move to Ncycle = 3.8, corresponding to 30 cm
into the b.B.B.. This problem was fixed by baking the setup.

7.4.3.4 Long time of flight

With a distance of about 70 cm between the trap and the ion detector, and a kick-out velocity of

about 4 km/s (20 eV of kinetic energy for Th+), any stray fields during the 180 µs of time of flight could

steer our ions in unexpected ways. For reasons not fully understood, we require a slight steering of the ions

along the x direction (Eastward direction in the lab, towards the Source Chamber w.r.t. the setup) to let the

ions hit the detector. We also see that the positions of the ions on our detector are mapped from positions

(velocities) of the ions in the trap along the x (y, vertical) directions. The kick out angle that the steering

makes w.r.t. the trap axis is about 1◦, which could be explained by (i) slight misalignment of the b.B.B.

w.r.t. the ion detector, or (ii) small patch charges on the side of the chamber (e.g. window on the Octagon

on the other side of the molecular beam) that break azimuthal symmetry.

7.4.3.5 Recessed ion detector

Towards the end of the spectroscopy of ThF+ before we started work on the b.B.B., we obtained a

new microchannel plate assembly to replace the one that was broken. We wanted a bigger microchannel
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plate (4 cm) than our broken one (2 cm), but to make the entire setup fit into a 4.5′′ flange (limited by our

setup back then), the assembly was about 1′′ recessed from the end of the flange to make wiring easier (see

Figure 7.13). This turned out to introduce a lot of focusing effects on our ion cloud. At the time of this

3′′

44 mm

0.
75

′′

1.
14

7′
′

Cylindrical shield
Mesh (35 mesh points)

Top MCP
Bottom MCP

Figure 7.13: Picture of the microchannel plate assembly. The assembly (Beam Imaging Solutions
BOS-40) is housed inside a 4.5′′ flange, with the microchannel plates about 1′′ below the surface of the flange
to give access to electrical connections in this tight space. There is a mesh in front of the microchannel
plate. A cylindrical shield that is electrically connected to the mesh shields the incoming ions from the
fields from the electrical feedthroughs. Top: Going clockwise from the left most feedthrough, the electrical
connections are made to (i) phosphor screen, (ii) back side of the back microchannel plate, (iii) where the
two microchannel plates meet, (iv) front side of the front microchannel plate. The unused feedthrough is
connected to the mesh (and grid) after taking this photograph. Bottom: a cross section view from the side
with the relevant dimensions. MCP stands for microchannel plate.

writing, there is a plan to redesign the microchannel plate assembly to reduce the aforementioned effect.
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7.5 Electronics design

Now that we have seen how the b.B.B. setup looks like, it is time to discuss how we drive the voltages

on our electrodes. First we shall look at the Rods (Section 7.5.1), then the Rings (Section 7.5.2).

7.5.1 Rod driver

Studies on systematics on the Gen. II setup shed light on the importance of stomping on the higher

harmonic of Vrot [36]. Furthermore, our Rods have substantial capacitance, and op-amps do not have infinite

slew rates. Hence, we decide to design a tank circuit to drive the voltages on the Rods. As will be elaborated

on in the following sections, this tank circuit involves a transformer with weak coupling between the primary

and secondary coils. There will be four such tank circuits to drive four pairs of Rods. Each tank circuit

drives a pair of Rods that are on opposite sides of the setup, e.g. Rods 1 and 5 in Figure 7.4 form a pair. A

typical tank circuit will look like that shown in Figure 7.14.

Lp Ls

VRF

M

Vo Monitoring readout

Rp

Rs

CRod

CRod

Figure 7.14: Tank circuit used to drive voltages on the Rods. Voltage Vo will be sent into the primary
circuit with op-amps, with a current-limiting resistor Rp. The inductances of the primary and secondary coils
are Lp and Ls, respectively. The inductors are coupled through a mutual inductance M . A common-mode
RF voltage VRF will be sent to the rods via a center-tap on the secondary inductor. A series of potential
dividing resistors with total resistance Rs will be used to readout the voltage for monitoring purposes. The
Rods are modelled as capacitors with capacitance CRod.

We will first begin with a foreword on some of the design considerations that we have learned from

an early prototype. We then discuss transformers with perfect coupling to borrow intuition from textbook

examples. This is followed by a discussion of transformers with imperfect coupling. Finally, we will briefly
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discuss the final design.

7.5.1.1 Foreword on transformer design

Before we launch into detailed discussion of the transformer, we shall look at a piece of wisdom (or a

shortcut) that we acquired from an early prototype of the transformer. We will also introduce a neat trick

to help with analyzing circuit diagrams with transformers.

Air core We used a ferrite core to link the fluxes between the primary and secondary coils in an

early prototype of the transformer. However, there are two problems with it. First, saturation effects in the

ferrite core by the flux from the primary coil could result in distorted waveforms with higher harmonics on

the secondary. The saturation effects do not have to be severe for this to be a problem for our systematic

studies; a slightly saturated ferrite core could already give us measurable systematic effects that have got

to do with second harmonics in Erot (see Section 8.4). Second, the ferrite core heated up during operation,

and it turned out that the permeability of the ferrite core has a substantial temperature dependence. This

prompted a need for a non-trivial temperature control system. We decided to avoid the problem totally by

using two concentric solenoids as our primary and secondary coils, with an air core coupling the two.

For a system like this, we have governing equations (in the Fourier domain):

Vp = jωLpip + jωMis (7.9a)

Vs = jωMip + jωLsis, (7.9b)

where j =
√
−1, M is the mutual inductance, V is the voltage across each inductor, ω is the angular

frequency of the voltage signal, L is the inductance, i is the current going through the inductor, and the

subscripts ‘p’ and ‘s’ stand for the primary and secondary inductors, respectively.

T-model equivalent circuit Equations 7.9 can be massaged into a T-model equivalent circuit

form, enabling easier analysis of the circuit:

Vp = jω(Lp −M)ip + jωM(ip + is) (7.10a)

Vs = jωM(ip + is) + jω(Ls −M)is. (7.10b)

The equivalent circuit is shown in Figure 7.15.
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Figure 7.15: T-model equivalent circuit. A transformer (L.H.S.) can be modelled as a T-model equivalent
circuit (R.H.S.).

7.5.1.2 Transformer with perfect coupling

The physics behind a transformer with perfect coupling, i.e., M =
√

LpLs, is well understood and is

included in standard undergraduate courses on introduction to circuits. Defining the turns ratio n = Ns/Np,

we know that Vs = nVp from Faraday’s law of induction, and is = ip/n from conservation of energy. In fact,

we can show this with the T-model equivalent circuit. For a loaded transformer with load impedance ZL,

the total impedance seen by the source on the primary side is given by:

Ztot = jω(Lp −M) +
1

1
jωM + 1

jω(Ls−M)+ZL

=
ω2M2 − ω2LpLs + jZLωLp

ZL + jωLs
. (7.11)

The voltage across the load on the secondary side is related to that on the primary by (through Ohm’s law):

Vs

Vp
=

ZL

jω(Ls −M) + ZL

1
1

jωM + 1
jω(Ls−M)+ZL

Ztot
=

MZL

LpZL + jω(LpLs −M2)
(7.12)

and we can see that Equation 7.12 reduces to Vs/Vp →
√
Ls/Lp = n in the case of perfect coupling, and

where we use the relation8 Ls/Lp = n2.

Equation 7.11 deserves some special attention before we move on to talk about transformers with

imperfect coupling. At perfect coupling, and in the limit where |ωLs| ≫ |ZL|, we see that the expression

reduces to Ztot → ZL/n
2, where we make use of Ls/Lp = n2. We can interpret the limit of |ωLs| ≫ |ZL| to

be the case where the load does not change the voltage/current of the circuit on the secondary side too much.

This means that for small loads on the secondary side, the circuit is equivalent to replacing the inductor on

the primary side with a load with impedance ZL/n
2, and ignoring the secondary side altogether. This may

8 This assumes that the inductors of both coils have geometries similar to each other, or if the coils share a ferrite core, such
that the only difference between the two only come from the winding numbers.
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be useful for estimating requirements on current flowing in the primary circuit. Also as a sanity check, in

the opposite limit |ωLs| ≪ |ZL|, where the secondary side is like an open circuit, we have Ztot → jωLp, as

expected.

7.5.1.3 Transformer with imperfect coupling

Going back to Equation 7.12, and introducing the general expression M = K
√
LpLs, where K ∈ [0, 1]

is the coupling constant, we have:

Vs

Vp
=

√
Ls

Lp

KZL

ZL + jωLs(1−K2)
(7.13)

We see that the denominator on the right hand side can be made small, which would make Vs large compared

to Vp, if the load is capacitive. Note that this can happen even if |ZL| is not small. In other words, for a

carefully designed circuit, we can “step up” the voltage across a capacitive load on the secondary side with

imperfectly coupled primary and secondary coils. Furthermore, this “stepping up” is frequency dependent

because of how ω goes into the denominator. This is essentially a tank circuit, which is just what we need

to stomp on the second harmonic of Vrot that is plaguing the Gen. II systematics studies.

The optimum coupling that gives the maximum |Vs/Vp| for a fixed ω occurs at:9

K =

√√
|ZL|2 + ωLs [ωLs + 2Im(ZL)]

ωLs
≈ 0.25, (7.14)

where typical parameters in our setup are Ls = 10 mH, ω = 2π × 150 kHz, ZL = 1/ (1/Rs + jωC), with

Rs = 500 kΩ and C = CRod/2 = 120 pF. Hence, we see that we need to design bad coupling into the

transformer.

Designing imperfectness into a system is easy. We decide to have the following: a 400-turn secondary

coil in the form of a solenoid with diameter 4.5′′ and length about 14 cm using AWG 28 magnet wire, and a

400-turn primary coil in the form of a circular wire loop with average diameter 1.7′′ using AWG 30 magnet

wire. The primary coil sits within the secondary, and shares the same axis with the secondary. Estimates

of the inductances of the coils are about 10 mH each, and the mutual inductance near 2.5 mH. Pictures of

a prototype are shown in Figure 7.9.

9 As we will see in Equation 7.15, the resonant frequency has a K dependence. The fact that there is an optimal K for that
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Figure 7.16: Pictures of a prototype transformer. Left: overview of the transformer, showing the
secondary coil, with keyboard and mouse for scale. Right: view of the primary coil inside the secondary coil.
The primary coil is mounted on a rod that can move along the axis of the transformer. This allows us to
shim away the RF pickup on the primary coil from the center tap on the secondary. The primary coil has an
inner diameter of 1.5′′ and outer diameter of 1.9′′. Measured primary, secondary, and mutual inductances
are 10 mH, 9.9 mH, and 2.0 mH, respectively.

Tests of the prototype indicate very good agreement with our model, and a second harmonic suppres-

sion of at least 34 dB. Of note, we have a few design guidelines:

(1) There are two resonances: parallel and series. The parallel resonance happens at frequency ωparallel =

1/
√
LsC, and it is where the impedance seen by the source at the primary side is the largest, i.e.,

smallest magnitude of driving current on the primary side. The series resonance happens at

ωseries =

√
1− Ls

2R2
sC

(1−K2)

LsC(1−K2)
, (7.15)

and it is where the ratio |Vs/Vp| is the largest; we want to be operating here. This can be inferred

from substituting M = K
√
LpLs into Equation 7.11 to get:

Ztot = jωLp
ZL + jωLs(1−K2)

ZL + jωLs
,

and recognizing that ZL = 1/(1/Rs + jωC); parallel (series) resonance occurs when the denomina-

tor (numerator) is minimum. Evidently, for fixed Ls and K, we can fine-tune the series resonant

gives a maximum |Vs/Vp| comes from the resonance curve moving to higher frequencies with increasing K, and the optimal K
is where the resonance peak overlaps with the desired ω.
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frequency by adjusting C.

(2) At Rs ≫
√
Ls/C ≈ 9 kΩ, we have ωseries ≈ 1/

√
LsC(1−K2), so changing the value of Rs only

changes the Q-factor10 (Q ∼ ωseriesRsC), and not the series resonant frequency. Hence, we can

fine-tune the Q-factor by adjusting Rs.

(3) All the design guidelines are based on analyses without the current-limiting resistor Rp, because the

expressions are much cleaner this way. The presence of Rp moves the resonant frequencies a little,

for instance, it moves the series resonance to a slightly lower frequency, and also reduces the Q-factor

by a bit. Vo = Vp + Rpip (see Figures 7.14 and 7.15) will also have to be higher than Vp to drive

current through Rp. Since op-amps do not work with arbitrarily high voltage rails, and that they

can only draw finite current, there are some design constraints for Rp.

(4) To drive all eight Rods, we have four transformers to drive four pairs of Rods. In the testing of

the transformers, we discovered that there are capacitive couplings between neighboring Rods. This

results in capacitive couplings between transformers on the order of ∼ 7 pF. It is straightforward

to expand the above analyses to include the effects of coupled transformers using the principle of

superposition11 . However, the expressions are so complicated looking that they do no shed more light

than the expressions for uncoupled transformers above, so we do not show them here. The general

features of how the resonance depends on various parameters remain largely the same. In the design

of the final system, we iterate between analytical simulations using our model (cross-checked with

LTspice) and testing the transformers in the actual setup.

10 There is a correction factor on the order of unity at the parameters that we are using. The Q-factor is defined as (Cir-

culated power)/(Dissipated power), i.e., Q =
V 2
s /[1/(ωseriesC)]

V 2
s /Rs+i2pRp

= ωseriesRsC × LpLsRsK
2ω2

series

LpLsRsK2ω2
series+Rp[R2

s (1−LsCω2
series)

2+ω2
s L

2
s ]

≈
ωseriesRsC × 0.4. One can see that in the absence of the current limiting resistor Rp on the primary side, the correction factor
goes to 1.

11 Treating the voltage sources of “undriven” transformers as shorts.
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7.5.1.4 Final design

It takes more than one person to construct and fine tune the transformers. Fellow graduate student

Noah Schlossberger and undergraduate Antonio Vigil also played huge roles. Here, I will just broadly lay out

the steps we took to get to the final product, and I would recommend interested readers to refer to Noah’s

thesis for the details.

We tested out the transformers individually and their performances matched very well with the model

that we mentioned in the previous sections. However, as alluded on earlier, when the transformers are put

together the transformers talk to each other through capacitive coupling, resulting in output waveforms with

modified amplitudes and phases. As Noah details in his thesis, we overcome this problem by calibrating

a “transfer matrix” that takes in desired output voltage amplitudes and phases on the Rods, and spit

out recommended input voltage amplitudes and phases from the op-amps. This is done by measuring the

difference voltage across each transformer though a precision monitor circuit box that sits right outside the

vacuum flange with the electrical feedthroughs to the Rods. With this, we manage to shim the amplitudes

down to less than 0.1% and the phases down to less than 0.5◦.

The transformers certainly do not know when to start driving the Rods, so they are only one set of

components in a bigger ecosystem of what constitutes the Rod driver. Figure 7.17 shows an overview of the

whole Rod driver ecosystem.
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Figure 7.17: Schematic of an overview of the Rod driver. A control computer programs (i) the DDS
box on the relevant (low voltage) waveforms to output for the RF frequencies (VRF) and the rotating electric
field (Vrot), (ii) the Sinara Zotino DAC for any DC shims we wish to apply to the Rods (VDC), and (iii)
the Sinara timing system (more details in Chapter 9) to synchronize the timing of the DDS and DAC. The
output from the DDS and DAC go into the transformer box, where VRF and Vrot are amplified with HV op-
amps PA94. VRF is summed onto Vrot on the secondary coil, whereupon VDC is added on through resistors.
The HV outputs are sent to the monitor box, where we have a voltage divider for us to readout the voltages
safely at low voltages on an oscilloscope; these can then be fed back into the system through our control
computer. The HV outputs then go from the monitor box to the Rods through the feedthroughs on the
vacuum chamber. The flow of all communication signals and low voltages are indicated by unfilled arrows,
and high voltages are indicated with filled arrows. The schematic is drawn for one Rod-pair for brevity, but
there are four Rod-pairs for a total of eight Rods; we use four separate channels in the DDS and DAC boxes
to feed into four sets of transformer boxes, one for each Rod-pair. The DDSes are of the same design used in
the Gen. II JILA eEDM experiment. They are designed in-house by electronics shop staff Felix Vietmeyer,
and put together with the help of electronics shop staff James Fung-A-Fat. The PA94 HV op-amps in the
transformer box are cooled with processed chilled water.
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7.5.2 Ring driver

As alluded to earlier on in Section 7.4.2, we use 22 independently controlled Ring voltages to (i) stop

our ions into our trap, (ii) move our ions within the trap transversely to overlap with the laser beams, (iii)

move our ions within the b.B.B. axially in and out of the cold region, and (iv) kick our ions towards our ion

detector. All the voltage control is governed by our Ring driver. A schematic overview of our Ring driver is

shown in Figure 7.18.

Consolidator box

DAC

ARTIQ (Sinara) timing system

Control computer

Vacuum chamber

Special + Quadrant Rings Translating Rings

· · ·HV op-amp box

Buffer op-amp

Figure 7.18: Schematic of an overview of the Ring driver. Control signal and low voltages are
represented by unfilled arrows, while the high voltages are indicated by filled arrows. A control computer
programs the FPGA based Sinara timing system, which then sets the voltages on the 64-channel DAC (Sinara
Zotino). Two sets of voltages are sent to a “consolidator box” through SCSI cables. The “consolidator box”
was designed in-house by electronics shop staff Terry Brown. It consolidates the voltages, sends them through
buffer op-amps, and performs a simultaneous switch between the two sets of voltages. This allows for fast
switching between two sets of voltages for, say, ion stopping voltages and trapping voltages; the DACs are
not fast enough to do the switch on a ∼ 10 ns time scale. The Sinara timing system controls the timing of
the switch. The output from the “consolidator box” is amplified with PA94 HV op-amps before being sent
to individual Special and Quadrant Rings (see Figure 7.9), each Ring having its own electrical feedthrough
on the vacuum flange. A third set of voltages are sent from the DACs into a set of buffer op-amps, before
going to the Translating Rings. In our current setup, the buffer op-amps live inside the “consolidator box”.
For the Translating Rings, there are only four electrical feedthroughs on the vacuum flange. We connect
every fourth Translation Ring to the same electrical bus for a total of four distinct buses. In our current
setup, we use the Spines as the buses, being careful to electrically insulate the Translating Rings from the
Spines with the irrelevant voltages. The PA94 HV op-amps are cooled with processed chilled water.
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7.6 Parametric excitation

Before we close off this chapter on the electric fields inside the b.B.B., let us look at a feature newly

introduced into the JILA eEDM toolkit: parametric excitation of the ion motion inside our trap. This idea

has been inspired by our fellow ion trappers, see for example Refs. [84, 85].

7.6.1 Motivation

Diagnosing the trap is a key part in ensuring success in our eEDM measurement. We have been able

to diagnose our ion trap very well in the first two generations of the JILA eEDM experiment. Here is a quick

summary of how we have been diagnosing our trap. We give our ions an intentional kick in the direction

that we are interested in. This will make the ions slosh around the trap at the respective secular frequency.

We then eject our ions out of the trap, and the position that they fall onto the ion detector will move around

at the secular frequency of interest. We can then extract the frequencies of the trap by repeating this for all

three principle axes of the trap.

However, the above protocol may not work in Gen. III. We may want to diagnose parts deep inside our

b.B.B., where we do not have access to electrodes that can kick our ions onto the ion detector. Fortunately

we have an extra channel on our DDS that we can feed onto our Rods, giving us access to parametric

excitation at all locations of the b.B.B.. To diagnose any part of the b.B.B., we just need to (i) create ions in

the Octagon like we always do, (ii) move the ions to that desired location, (iii) apply parametric excitation,

(iv) move the remaining ions back to the Octagon, (v) eject them towards the ion detector like we always do,

and (vi) repeat by scanning the frequency of the parametric excitation, and look for dips in the remaining

ion numbers. We shall now see how parametric excitation works.

7.6.2 Mechanism

We introduce a time-varying quadrupole potential in the radial direction to trap our ions radially.

The frequency of this quadrupole potential is at 50 kHz. As a result of the ponderomotive potential, the

ions have a radial secular trap frequency of about 2 kHz. Suppose we add on top of the 50 kHz quadrupole

potential a 4 kHz quadrupole potential (twice the secular frequency), we can excite the radial mode of
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motion resonantly, and amplify the secular motion of the ions. For generality, let us suppose that the

exciting quadrupole potential is at an angle θ w.r.t. the principle axes of the secular motion, the equation of

motion is (limiting ourselves to the 2D x-y plane):

F

m
=− ω2

xx− ω2
yy

+ α cosΩt [(x cos θ + y sin θ)x̂+ (x sin θ − y cos θ)ŷ] , (7.16)

where ωx,y are the angular secular frequencies along the principle axes x and y, α is a measure of coupling

strength of the excitation to the ions, and Ω is the exciting angular frequency. The first line is just a particle

in a harmonic trap, and the second line is the additional quadrupole potential. We can rewrite the above as:ẍ(t)

ẍ(t)

 =

−
ω2

x 0

0 ω2
y

+ α cosΩt

cos θ sin θ

sin θ − cos θ



x(t)

y(t)

 . (7.17)

We can solve the above perturbatively for small α using the method of series expansion in powers of α (we

are solving for x(t) here, but the same applies for y(t) by symmetry):

x(t) = x(0)(t) + αx(t) +O(α2), (7.18)

where the subscript (n) indicates the nth order term in the expansion series.

The zeroth order term is:

x(0)(t) = X0 cos (ωxt+ ϕx) ,

where X0 and ϕx are the amplitude and initial phase. This is just the solution to the ion motion along the

x direction in a harmonic trap.

The equation governing the first order term is:

ẍ(1)(t) = −ω2
xx(1)(t) + cosΩt

[
x(0)(t) cos θ + y(0)(t) sin θ

]
= −ω2

xx(1)(t) +
1

2

{
X0 cos θ

[
cos (∆xt+ ϕx) + cos (Σxt+ ϕx)

]
+ Y0 sin θ

[
cos (∆yt+ ϕy) + cos (Σyt+ ϕy)

]}
,

where ∆i := Ω − ωi and Σi := Ω + ωi. The equation is just an oscillator with a forced motion, and the
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inhomogeneous solution to the above is:

x(1),inhomo.(t) =
1

2

{
X0 cos θ

[
cos (∆xt+ ϕx)

Ω(Ω− 2ωx)
+

cos (Σxt+ ϕx)

Ω(Ω + 2ωx)

]

+ Y0 sin θ

[
cos (∆yt+ ϕy)

[Ω− (ωx + ωy)][Ω + (ωx − ωy)]
+

cos (Σyt+ ϕy)

[Ω + (ωx + ωy)][Ω− (ωx − ωy)]

]}
.

(7.19)

The homogeneous solution is grouped together with x(0)(t). Let us take a moment to analyze the above

solution.

The first term in the square brackets with the X0 term has a Ω − 2ωx term in the denominator.

This means that our ions will have huge amplitudes in the x direction when Ω = 2ωx, i.e. when the driving

frequency is twice the trap secular frequency. This is the resonant excitation.

The first term in the square brackets with the Y0 term has a Ω− (ωx + ωy) term in the denominator.

This means that if Ω happens to be the sum of the two secular frequencies, our ions will also have motion

with a huge amplitude. This is the crossover term.

The picture above assumes that our trap is harmonic to an infinite range. In practice, our trap starts

to become anharmonic as we move a few centimeters away from the trap axis, and the ions will start to spill

out of the trap because our trap depth is finite.

In summary, if we sweep the driving frequency Ω, we expect to see ion loss when Ω is either 2ωi or

ωx + ωy. If the secular frequency is different in x than in y (as is usually the case), we expect to see three

dips in ion numbers, two corresponding to the secular frequencies, and one corresponding to the crossover.

Figure 7.19 shows an example of data from such a scan.

7.6.3 Further discussion

As alluded to earlier on in this section, parametric excitation was developed as a diagnostic tool for

us to understand our trap at various locations inside the b.B.B. where we do not have access to electrodes

that can kick our ions. An example of how we can use parametric excitation to diagnose our b.B.B. is shown

in Figure 7.20.

The dosage ( voltage on the Rods × time applied ) can be adjusted to pick out certain details. For
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Figure 7.19: Number of ions remaining in the trap after parametric excitation. Data was taken
at the Octagon on 25 October 2022, RID 25916. The horizontal axis is the excitation frequency Ω/(2π),
and the vertical axis is the area under the curve from our ion detector, corresponding to number of ions
detected. The ions are exposed to the parametric excitation for 50 ms, with a peak voltage of 150 mV on the
Rods (compared to 25.6 V for the radial confinement). The dips at 3.2 kHz and 3.8 kHz correspond to the
secular frequencies for the x and y directions. We confirmed this by kicking our ions intentionally (without
the parametric excitation) in the x and y directions within the Octagon, and ejecting them onto our ion
detector to observe their sloshing frequencies. The dip at 3.5 kHz is the crossover dip. We can employ either
the kicked ion method or parametric excitation to learn about our trap at the Octagon, but we can only use
parametric excitation at other locations inside the b.B.B..

example, one can choose to reduce the voltage if the parametric excitation is too saturated (dip is too broad

and goes all the way down to zero), or to reduce the voltage but increase total excitation time to make the

width of the dip narrower.

We now have a multiplexed ion trap, the b.B.B., and we have all the electronics and electrodes to

perform the multiplexing. We are now in a good position to move on to the next chapter to investigate

various methods of using the b.B.B. to offset our Ramsey frequency away from zero. We shall also see why

we want to do this in the next chapter.
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Figure 7.20: Using parametric excitation to diagnose the trap. Here we wanted to understand if
turning on Erot in the b.B.B. would introduce ponderomotive potentials that could change the trap secular
frequencies. We wanted to understand this both at the Octagon (chop named “Octagon”), and in the Cold
Tube where we intend to perform our long Ramsey interrogation (chop named “Science”). The first row
corresponds to a background experiment where we do not turn Erot and the parametric excitation on. The
last row is a control experiment where turn on parametric excitation but not Erot. There is only one broad
dip at around 8.2 kHz because we ramped our trap up to about 4 kHz. The second (third) row corresponds
to having parametric excitation on, and Erot rotating in the anti-clockwise (clockwise) direction as seen from
the Cold Tube towards the ion detector. Note that the single broad dip from the last row has split into
three different dips with Erot turned on. This suggests that Erot is doing something to our trap frequencies
by modifying it through ponderomotive potentials. Also note that the second and third rows look different,
implying that having Erot rotating in one direction changes our trap differently than having Erot rotating
in the other direction. This set of data was taken during the early days (18 April 2023) of understanding
our trap. The system is much more well behaved now; this plot is just to show a possible application of
parametric excitation in our new setup.



Chapter 8

Generating f0 in the Bucket Brigade

8.1 Introduction

To measure the eEDM, we need to measure the energy difference between the stretched Zeeman states

of the “upper Stark doublet” and the “lower Stark doublet” (see Figure 1.4). We apply a deliberate frequency

offset (f0) to the states within the doublets and subtract away this known additional energy difference from

the measured quantity to obtain the contribution from the eEDM. We do this for two reasons.

First, we expect the eEDM to be very small, we expect a very small energy difference, corresponding

to a very small Ramsey frequency, which is hard to measure because of the 1/f noise (the power spectrum

density of noise in our setup typically scales with frequency as 1/f). Hence, we bias the energy difference

between the stretched states deliberately to a non-zero value f0.

Second, the polarization axis of our molecules rotates, so there is a non-inertial-frame coupling (∆)

in the molecules’ rotating frame that couples the Zeeman states within the doublets (see Figure 1.4). We

apply a frequency offset f0 ≫ ∆ so that each Zeeman state within the doublets remains a good eigenstate.

In the first two generations of the JILA eEDM experiment, we introduce the frequency offset between

the stretched Zeeman states within the doublets through Zeeman shifts with applied magnetic fields. This

is certainly not the only way to introduce frequency offsets in our experiment. We will be investigating

various plans of introducing frequency offsets in the Bucket Brigade in this chapter. Many of these plans

were inspired by systematic effects that we saw in the first two generations of the JILA eEDM experiment;

we intend to turn these bugs into features. The feasibility of each of these plans will be judged based on the
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following criteria:

Criterion 8.1 (Spatial homogeneity across Bucket Brigade) The Ramsey frequency, f0, seen by an

ion packet should not change too much1 across the whole Bucket Brigade from shot to shot.

Criterion 8.2 (Spatial homogeneity within ion cloud) Our ion cloud has a non-zero spatial extent

(Equation 6.21). Whatever mechanism we use to generate f0, we care about its spatial variation within a

±1 cm radius region (looking out to 2σ radius to include 95% of all ions) around the cloud center. For an f0

of 50 Hz and a free evolution time of 20 s, we have 1000 such Ramsey oscillations. For a spread in frequencies

corresponding to 10% of an oscillation at the end of 20 s, we would need < 0.01% difference in f0 as seen by

(i) the ensemble of ions in each ion cloud, and (ii) different ion packets from shot to shot.

We did not get creative with names this time for the various plans. The following is a quick summary

of the various plans for easy comparison.

Plan A Zeeman shift with an axial magnetic quadrupole, B = Baxgrad(x, y,−2z), and rotational micromo-

tion; used in the first two generations of the JILA eEDM experiment.

Plan B Berry’s phase; an adaptation of a systematic effect seen in the first two generations of the JILA

eEDM experiment.

Plan C Zeeman shift with uniform ambient magnetic field and an oscillating uniform electric field that

is going as a second harmonic of Erot; an adaptation of a systematic effect seen in the first two

generations of the JILA eEDM experiment.

Plan D Zeeman shift with transverse magnetic quadrupole field, B = Btransgrad(x−y), and an elliptical Erot.

Plan E Zeeman shift with rotating magnetic field introduced by currents flowing along the electrodes.

We will be focusing more effort in analyzing Plans A and B in the context of the Bucket Brigade, using

them as classic examples of how we can introduce a frequency offset with the Zeeman shift and Berry’s phase,

1 f0 can be allowed to change a little throughout the whole Bucket Brigade; if all the ion packets see the same variation
as they go through the same stretch of Bucket Brigade, the variations in f0 will not result in additional uncertainties in the
measured Ramsey frequencies.
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respectively. We will then introduce Plans C to E conceptually, which are ingenious ways of introducing

Zeeman frequency offsets differently from Plan A.

8.2 Plan A: Co-moving axial magnetic quadrupole

8.2.1 Working principle

In the first two generations of the JILA eEDM experiment, we used a Zeeman effect to give us a

frequency offset between the two stretched Zeeman states in a doublet. The physics behind this effect has

been described in detail in the theses of previous members of the group who worked on the Gens. I and II

experiments. A brief summary is as follows.

Current-carrying coils in the anti-Helmholtz configuration generate a magnetic field of the form B =

Baxgrad(x + y − 2z) (see Figure 8.1). An electric field rotating in the x-y plane polarizes our ions in the
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Figure 8.1: Illustration of the coils and magnetic field configurations used to generate a Zeeman
offset frequency. In the side view, the blue arrows indicate the directions of the current flowing inside the
two respective coils (for example, the current in the top coil is going clockwise looking from the top). The
dashed lines indicate the fields generated by the coils. The spacing between the two coils is d, and the radius
of each coil is R. For an anti-Helmholtz configuration, d =

√
3R. In the top view, the arrows indicate the

radial magnetic field along the x-y plane. The length of each arrow represents the strength of the field at
that position. In the right panel, r is the radial position vector of an ion from the trap center. This radial
position vector can ve decomposed into a constant vector ρρρ0 and a rotating vector rrot. The rotating vector
rrot is anti-parallel with the direction of the rotating polarizing electric field Erot. As Erot rotates in the x-y
plane, r traces out a circle indicated by the dotted line. In the rotating frame of our molecules (defined by
Erot), rrot is non-rotating, and ρρρ0 rotates.

rotating frame, and induces a rotational micromotion with radius rrot =
eErot

mω2
rot

. In the rotating frame of the

ions performing rotational micromotion, they see a time-varying magnetic field of the form:

B(t) = −Baxgrad rrot n̂+Baxgrad ρ0 (cosωrott x̂+ sinωrott ŷ),
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where n̂ indicates the polarization axis, and ρ0 is the radial position of the ion within the trap.2 The

contribution of the time-varying part of the magnetic field averages out to zero in one cycle of the rotational

micromotion. Only the first term contributes to the net Zeeman offset. Therefore, there is a net Zeeman

offset between the stretched states of the form:

hf0 = 3gµBBaxgrad rrot =: 3gµBBrot. (8.1)

We call this method of introducing a Zeeman frequency offset between the two Zeeman stretched

states within each doublet: Plan A.

8.2.2 In the Bucket Brigade

As alluded to in Section 5.3, the Bucket Brigade consists of a conveyor belt of ion traps, where the

radial confinement of ions is provided by Rods with RF-fields, and the axial confinement is provided by

the Rings, acting as “end caps” of the usual Paul traps. The ions are moved down the Bucket Brigade by

modulating the potentials on the Rings periodically with a fixed and well chosen phase difference between

neighboring Rings. We now try to implement a näıve version of Plan A in the Bucket Brigade, where each

bucket of ions has its own “anti-Helmholtz” coils translating along with it.3 We do not intend to do this

with anti-Helmholtz coils that move physically with the ions. Instead, we plan to have arrays of current

carrying coils, with currents that are modulated periodically in time and space with a well chosen phase

difference between neighboring coils.

There are many length related parameters in this analysis. Before we proceed further, we shall

summarize the definitions of some variables here:

Distance along the translation direction/trap axis, z. We define the z axis to be the direction along

which ions translate, with z = 0 at the center of the Bucket Brigade.

2 The ion could be performing secular motion within the trap, so ρ0 is actually a time-varying variable, but the time scale
at which this is happening (1 kHz) is slow compared to the rotational micromotion (150 kHz), so ρ0 can be treated to be
time-independent by separation of time scales.

3 Here we draw the distinction between anti-Helmholtz and “anti-Helmholtz” in quotes. The former refers to the classic
anti-Helmholtz coil pair (e.g. left panel of Figure 8.1) with a fixed ratio between the coil separation distance (d) and coil radius
(R) at d =

√
3R. This fixed ratio gives ∂k

zBz(z = 0) = 0 for k ∈ {0, 2, 3, 4} for a pair of coils centered at z = 0 with their
symmetry axis pointing along the z direction. The latter one in quotes refers to the combined geometry and current amplitude
configuration of a set of coils that gives the condition ∂k

zBz(z = 0) = 0 for k ∈ {0, 2, 3, 4}.
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Axial position of the nth translating ion packet, Zn(t). For an ion packet that is translating at speed

vtrans, then we have Zn(t) = vtranst. The n index is just a placeholder, but for concreteness, we cay

that the first packet that we send in corresponds to n = 1.

Radius of the coils, R. We work with the simple case where all the coils have the same radius R.

Distance between the two coils in the classic anti-Helmholtz setup, d. In the classic anti-Helmholtz

setup, there are only two coils. These coils have counter-propagating currents, and they are separated

by the distance d (see Figure 8.1 for the configuration). In an anti-Helmholtz configuration, there is

a special relation between the distance between the coils and the radius of the coils, d =
√
3R, where

the axial gradients (and higher order) of the axial magnetic field is zero up to and including the

fourth order except for the first order gradient, i.e. ∂k
zBz(z) = 0 for k ∈ {0, 2, 3, 4}. Symmetry of the

setup makes all the even order derivatives zero. The d =
√
3R condition allows for the coils centered

around z = 0 to give a zero third order gradient of the axial field ∂3
zBz(z = 0) = 0. This means that

there is a substantial volume of region where there is a very homogeneous first order axial magnetic

field gradient; B = Baxgrad(x,y,−2z) is a good approximation within a large volume.4

Distance between two coils in the Plan A setup, l. In contrast to the classic anti-Helmholtz setup,

we will need an array of coils in the Bucket Brigade setup to generate field gradients throughout the

whole Bucket Brigade. The coils will have separation distance of l from each other. Note that l and

d are not related to each other, they describe entirely different systems.

Bucket length or distance between neighboring sets of coils in the coil array, Λ. As alluded to ear-

lier on, we plan to have an array of current-carrying coils, each with a time-modulated current to

effect an “anti-Helmholtz” magnetic field gradient that moves with the ion buckets. There will be

four coils per bucket of ions. The separation between each set of four coils is Λ = 4l (see Figure 8.2).

We also note that the spacing between two neighboring buckets of ions is the bucket length: Zn(t)−

Zn+1(t) = Λ.

4 ∂zB(z) = −2Baxgrad
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· · · · · ·

B̃ = +1 B̃ = −1

Ion cloud translation direction

Λ

Four coils per one bucket

R

l = Λ/4

Figure 8.2: Plan A: using current-carrying coils to introduce an axial magnetic field gradient.
This is a cross-section view of a section of the Bucket Brigade. The ions move from left to right. The light
blue disks indicate the ion clouds in the Bucket Brigade. The dashed lines are visual aids to indicate the
boundary of each bucket. The arrow head/tail symbols indicate the magnitudes and directions of the current
in the coils; the red dots indicate presence of coils with no current flowing in this snapshot in time. The
coils will sit outside the vacuum chamber, and are fixed in position. For better visualization, I have included
additional blue arrows to indicate the direction of the current in some of the coils coming out of the page.
The dashed arrows indicate the direction of the local magnetic fields generated by the current-carrying coils.
There are four coils per bucket, with each set of coils separated by Λ. The radius of the coils is R. To
introduce a non-zero Baxgrad, the currents in the coils have to flow in opposite directions on either side of

the ions. This gives rise to the configuration where the sign of Baxgrad alternates with each bucket. B̃ = +1
(−1) indicates the bucket with the radial magnetic field going outwards (inwards) radially.

One accidental feature of Plan A is that neighboring buckets have Baxgrad of opposite signs, as can be

seen from Figure 8.2. This alternating sign of Baxgrad corresponds to switching the sign of the Zeeman offset

(the B̃-switch). Being able to switch B̃ frequently (once every other ion packet) allows us to understand and

suppress systematic effects associated with magnetic fields. This is not necessary for an eEDM experiment,

but is certainly very desirable to have. Plan A provides a very elegant solution to fast B̃-switching.

We shall now go into the details. First, we will determine the modulation on the currents required to

give us as homogeneous a Baxgrad as possible at the ion locations (Section 8.2.2.1). Second, we will determine

how long each bucket needs to be so that Baxgrad is homogeneous enough throughout the spatial extent of

a typical ion cloud (Section 8.2.2.2). Finally, we discuss a slight variation of Plan A, which we call Plan A′

(Section 8.2.2.3).
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8.2.2.1 Determining constraints on currents in coils

For Plan A to work, we need a non-zero ∂zBz. We also want many of the higher order derivatives

to be zero. Unlike the case of a single pair of anti-Helmholtz coils with a single ion trap (Section 8.2.1), we

cannot do this by setting the ratio of the coil separation d and the coil radius R to be some magical number;

this might work at a specific ion location w.r.t. the coil positions, but it will not work for the entire length

of the Bucket Brigade where we will be translating the ions. We can mimic the anti-Helmholtz condition of

having zero higher order derivatives to the third order5 by modulating the currents in the coils in a specific

way. To understand how we want to modulate the currents, we need to sum the contributions of the fields

from all the coils, and impose some constraints on them.

We first see that the analytical solution to Bz(x, 0, z) with a coil placed at z = 0 on the x-y plane and

a current flowing counter-clockwise is (by Biot-Savart law, also see Figure 8.3):

x

y

z

(x, 0, z)

I
R

Figure 8.3: Schematic of a coil with radius R in the x-y plane with current going clockwise. We
are interested in the axial magnetic field Bz at an arbitrary location (x′, y′, z′). By the symmetry of the
setup, one can always rotate the coordinate system about the z axis such that the point of interest lies above
the x axis such that the coordinates in the new system is (x =

√
x′2 + y′2, 0, z = z′). Hence, to evaluate

the field at an arbitrary point, we just evaluate it for the case of (x, 0, z), and perform the relevant rotation
back to (x′, y′, z′).

Bz(I, x, 0, z) =
µ0IR

4π

∫ 2π

0

dϕ
R− x cosϕ

(R2 + x2 + z2 − 2Rx cosϕ)3/2

=
µ0IR

4π

(
R · I(α, β)− x · C(α, β)

)
(8.2)

(8.3)

5 We only include up to the third order because we plan to have only four coils per bucket. Each coil has a current flowing
through it with a magnitude that we can use as a free tuning parameter. We want to keep ∂zBz constant at the ion location
during translation, and this uses up one free parameter, leaving us with only three more free parameters to tweak; one for each
k ∈ {0, 2, 3} in ∂k

zBz .
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where

I(α, β) := 2

√
α− βE

(
− 2β

α−β

)
+
√
α+ βE

(
2β

α+β

)
α2 − β2

(8.4a)

C(α, β) := − 2

β

[
α

α2 − β2

(√
α− β E

(
− 2β

α− β

)
+

√
α+ β E

(
2β

α+ β

))

− 1√
α2 − β2

(√
α+ β K

(
− 2β

α− β

)
+

√
α− β K

(
2β

α+ β

))]
(8.4b)

α = R2 + x2 + z2, (8.4c)

β = −2Rx, (8.4d)

where E(x) and K(x) are the elliptic E- and K-integrals. When x → 0, the above expression reduces to

µ0IR
2

2(R2+z2)3/2
, as expected, where we use the limits:

lim
x→0

E(x) =
π

2
, lim

x→0
K(x) =

π

2
, lim

x→0

E(x)−K(x)

x
= −π

4
.

The Bucket Brigade consists of many such coils. These coils will be placed along the outside of the

vacuum chamber, with spacing l = Λ/4 between neighboring coils, where Λ is the length of one bucket. The

mth coil (with current Im(t), where we conveniently define m = 0 to be the coil placed at the center of the

Bucket Brigade) placed on the x-y plane at z = mΛ/4 (see Figure 8.2) will produce an axial magnetic field

B
(m)
z (Im, x, 0, z) given by:

B(m)
z (x, 0, z, t) = Bz(Im(t), x, 0, z −mΛ/4). (8.5)

Using Equations 8.2 and 8.5, we sum the contributions from all the coils. We then solve for Im(t) by

demanding that Bz =
∑

m B
(m)
z fulfills the following constraints:

Constant Baxgrad. We want ∂zBz(Zn) to be a constant at the (moving) ion location for the entirety of the

ion translation down the Bucket Brigade. This will give the ions a constant Zeeman frequency offset

throughout the translation. Note that this constraint is set by a moving point instead of a stationary

point.

Zero kth order gradients of Bz. Given that we have four coils per bucket, and we have already imposed

on ourselves one constraint from the above, we only have three more degrees of freedom. With these
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three degrees of freedom, we demand that ∂k
zBz(Zn) = 0 for k ∈ {0, 2, 3}. This will ensure that the

ion ensemble does not decohere through spatial inhomogeneity of the fields during the translation.

These three constraints must also be fulfilled at the (moving) ion location for the entirety of the ion

translation.

With the above constraints, we solve for Im(t) at various times during the ion translation within the Bucket

Brigade. We note that:

Im(t) = Im+8(t),

because the spatial periodicity happens every two buckets (see Figure 8.2), and there are four coils per

bucket. We also note that:

Im(t) = Im(t+ 2Λ/vtrans.),

from the temporal periodicity of the setup, where, once again, Λ is the length of a bucket, and vtrans. is the

constant speed at which the buckets are translating down the Bucket Brigade. From the above, we can also

say that:

Im(t) = Im′
(
t− (m′ −m) · Λ/(4vtrans.)

)
. (8.6)

Making use of the periodic conditions above, we solve for Im(t) with various Λ, and the results are shown in

Figure 8.4.
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Figure 8.4: Plan A: Temporal modulation of current in the mth coil. The plots show Im(t) plotted
against Z(t), where, once again, Z(t) is the axial position of the ion packet. For example, when the ion
packet is at the center of the Bucket Brigade, i.e. Z = 0, the current in the m = 0th coil (Im=0) is the
third blue point in the plots on the first row; I1 corresponds to the fourth blue point, and so on. These
modulations in Im(t) give a constant Baxgrad and ∂k

zBz = 0 for k ∈ {0, 2, 3}. The points indicate the values
of t where we solve for Im(t), and the dashed lines are third order polynomial interpolation functions from
the points. The blue (yellow) points correspond to instances where the ion packet is at a coil (between two
coils). The points are solved for the case where the coil radius is R = 10 cm, with about 20 buckets on each
side of the ion packet. To get Im′(t) for any arbitrary m′, perform the relevant graph transformation on the
plots with Equation 8.6. Note that the curves are not just simple sinusoids, in contrast to the sinusoidal
voltages we send to Rings to translate the ions down the Bucket Brigade.
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8.2.2.2 Spatial homogeneity

Using the values of currents in Figure 8.4, we can evaluate the spatial homogeneity of Baxgrad in the

Bucket Brigade. Figure 8.5 shows the results for various bucket lengths Λ.

We can see from Figure 8.5 that we need a bucket length of at least 16 cm for the spatial variation

of Baxgrad to be less than 0.01% (Criterion 8.2) within an ion cloud of radius 1 cm. This means that for a

40-bucket Bucket Brigade, the setup will be at least 40× 16 cm = 6.4 m long. This is longer than the 3 m

length that we are initially aiming for. If we limit ourselves to only 3 m, then we will lose half the number

of buckets and take a 30% hit in statistical sensitivity.

It looks like Plan A can be a little tricky to implement as is. We cannot have short buckets if we want

a region of spatial homogeneity large enough for our ion cloud. One thing to note is that we have limited

ourselves to four coils per bucket in the above analysis. We could introduce more coils per bucket for more

degrees of freedom to tweak the even higher order gradients of Bz to give us a greater region of homogeneity.

However, at four coils per bucket in a 40-bucket Bucket Brigade, this is already 160 coils that we need to

construct and control. Having more parts would introduce more sources of errors; we would only want to go

down this road if necessary.

What if we give up on alternating B̃-switch with every bucket, and just have currents going through

coils that do not change with time, but are allowed to vary according to the axial location of the coils? Could

the fields can be more spatially homogeneous that way? We shall look at this in the next section.
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Figure 8.5: Plan A: Plots of Baxgrad along the trap axis for various bucket length. There is a coil
at z = 0 (corresponding to the center of each plot) and there are coils going out to ±20 buckets in either
direction, with four coils per bucket, coil-coil spacing of Λ/4. The yellow circles indicate ion packets in the
Bucket Brigade. The plots are normalized to the value of Baxgrad at the center of the Bucket Brigade. Every
second plot is a zoomed in version of the first plot centered around the center of the Bucket Brigade. The
blue shaded region indicates the region where Baxgrad is within 0.01% of the value at the center of the ion
packet for this particular snapshot in time. The size of this region could change with the axial position of
the ion cloud as it translates down the Bucket Brigade. Having only four coils per bucket only allows us to
suppress higher order axial gradients in Bz up to the third order, and I did not investigate how the next
non-zero higher order gradient varies with axial position of the ion cloud. The grey dashed lines indicate
±1 cm from the center of the ion packet. From the plots, one can see that the field starts to settle down a
few buckets into the Bucket Brigade, and it settles down much faster if each bucket is longer.
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8.2.2.3 Plan A′: Stationary axial magnetic quadrupole

Suppose now we have coils right outside the vacuum chamber with radius R = 10 cm, and the current

flowing through the mth coil is Im = m · i0, where i0 is the difference in current between neighboring coils,

and, once again, the m = 0th coil sits right at the center of the Bucket Brigade. The value of i0 is directly

proportional to the Baxgrad that we will get along the Bucket Brigade. Figure 8.6 shows the profile of Baxgrad

along the trap axis of the Bucket Brigade for various inter-coil spacing l. Here we drop the constraint of

having four coils per bucket.
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Figure 8.6: Plan A′: Plots of Baxgrad along the trap axis for various bucket length. There is a coil
at z = 0 (corresponding to the center of each plot), and there are coils going out in both directions with
spacing l, all the way until z = ±160 cm. The yellow circles indicate locations of the ion packets with bucket
length Λ = 8 cm. The blue shaded region indicates where Baxgrad is within 0.01% of that at the center of
the Bucket Brigade. When the inter-coil spacing is comparable to the coil radius R, there are noticeable
fluctuations in Baxgrad.

One can tell from the plots in Figure 8.6 that the fields can be much more homogeneous. The edge
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effects at the ends of the Bucket Brigade can be compensated for by use current magnitudes with non-

linear dependence of the coils’ axial positions. This would require some numerical modelling, but it is

straightforward nonetheless.

In addition to being able to have homogeneous fields with short buckets, another advantage that Plan

A′ has over Plan A is that the currents are do not vary in time in the former. This means easier control over

the experiment; one can just send in DC currents instead of AC currents with special waveforms.

With Plan A′, switching the direction of the magnetic field will be a slow switch: we will have to clear

the whole Bucket Brigade of ions, switch the direction of the currents, and load the whole Bucket Brigade

again to perform the experiment with fields in the opposite direction. This is in contrast to Plan A, where

the fields switch every bucket. Once again, this is not necessary for an eEDM experiment, but being able to

switch the fields quickly allows for suppression of systematic effects in our precision measurement.

One consequence of using Plan A′ is that we will have large axial magnetic fields towards the ends of

the Bucket Brigade. We need Baxgrad = − 1
2∂zBz = 3 mG/cm for an f0 = 50 Hz. Suppose Bz(z = 0) = 0 G

by the (anti-)symmetry of the current configuration, then at the end of the Bucket Brigade at about 1.5 m

away, we have an axial field of Bz(z = ±1.5 m) = ∓0.9 G. It is not immediately clear what this axial

magnetic field would do to our eEDM measurement. I shall leave this to the rest of the group to find out.

We have seen how we can implement Plan A (and its variant) that involves a Zeeman frequency offset

from an axial quadrupole magnetic field in the Bucket Brigade. Before we move on to the other Plans, it

serves to discuss (document (verb) in this thesis) one peculiar source of decoherence that could come from

the combined effect of RF micromotion and axial quadrupole magnetic fields.

8.2.3 RF trapping field-induced decoherence

A form of decoherence within the ion cloud was brought up during one of our group meetings as

part of a discussion on systematics in the Gen. II experiment. This form of decoherence has avoided our

radar so far because its effects have not been seen directly in the Gen. I and II setups. Unlike the previous

sections, where we were talking about decoherence effects due to spatial inhomogeneities in Baxgrad, the

physics behind this new form of decoherence comes from the interplay between (a perfectly homogeneous)
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Baxgrad and the RF trapping fields.

The physics behind Plan A involves the ions seeing an effective magnetic field in their rotating frame

of the form (handwavingly; reproduced from Equation 8.1 for comparison with a latter equation):

Brot = Baxgradrrot = Baxgrad
eErot
mω2

rot

.

In other words, Plan A works because of how the rotating polarization axis moves in phase with the rotation

micromotion, resulting in a net magnetic field as seen by ions in an axial quadrupole magnetic field.

In a spirit similar to the above, there is a small contribution to the net B-field to the above with the

form (handwavingly):

Brf(r) = Baxgradrrf(r) = Baxgrad
eErf(r)
mω2

rf

,

where Erf(r) is the RF electric field at location r, ωrf is the angular frequency of the RF field. Note that this

is a position-dependent effect, because the RF field strength is a quadrupolar field.

The above handwaving expressions neglect the fact that the polarization axis is not rotating at a

constant angular velocity. To be more precise, the net magnetic field as seen by the ions in their rotating

frame has the form:

Brot = B(r) · Ê(r), (8.7a)

where the overline indicates time-averaged, and

B(r) = Baxgrad (x, y,−2z), (8.7b)

E⃗(r) = Erot (cosωrott, sinωrott, 0) +
2Vrf

R2
0

cosωrft (x,−y, 0), (8.7c)

where Vrf is the RF potential applied, and R0 is a trap geometry parameter defined in Equation A.1.

Splitting up the ion motion into its various components based on time scales (ωrot = 2π× 150 kHz≫

ωrf = 2π × 50 kHz), we have

Brot = Baxgrad r · Ê(r)

= Baxgrad (r0 + rrot + rrf) · Ê(r)

= Baxgrad (0 + rrot + rrf), (8.8)
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where we see that the r0 term (instantaneous secular position) evaluates to zero through the symmetry of the

fields in space and time, and the overlines on rrot (rotation micromotion amplitude) and rrf (RF micromotion

amplitude) are just symbols to remind us that these are time-averaged values. Evaluating the time-averaged

r’s up to first order in 1/Erot gives (being very careful with the signs):

rrot = −
eErot
mω2

rot

+
e

mω2
rot

(
Vrf

R2
0

)2
x2 + y2

2Erot
(8.9a)

rrf = −
e

mω2
rf

(
Vrf

R2
0

)2
x2 + y2

Erot
. (8.9b)

Combining Equations 8.8, 8.9a, and 6.21, we evaluate6 the expression at a 1σ ion cloud radius to

get (substituting x2 + y2 → σ2, and using the Mathieu parameters in Appendix A to convert Vrf into the

angular secular frequencies):

f0 = 3gµB|Brot|

= f̃0

[
1
∣∣
rrot
− kBTmω2

rf

(eErot)2

(
1 +

o2

2

) ∣∣∣∣
rrot

+
1

2

2kBTmω2
rot

(eErot)2

(
1 +

o2

2

) ∣∣∣∣
rrf

]
, (8.10)

where f̃0 = 3gµB|Baxgrad| eErot

mω2
rot

, o := ωz/ω{x,y} is the oblateness of the ion cloud, and ω{x,y,z} are the angular

secular frequencies of the ions in the trap. Typical values at typical operating parameters in Gen. III7 give

fractional decoherence of 0.0048% and 0.043% for the rrot and rrf terms, respectively. Those for Gen. II8

give 0.0016% and 0.088%. The surprising factor of 1/2 in the expression for rrf comes from taking into

account the fact that the RF micromotion amplitude changes sinusoidally as the ion performs its secular

motion, so the average amplitude-squared is given by cos2 ωsect = 1/2.

Equation 8.10 also says that the oblateness of the ion cloud contributes to decoherence. The physics

is easy to understand: a stronger confinement in the z direction necessitates a stronger Vrm to keep the ions

confined radially, ultimately resulting in RF-induced decoherence. Moral of this paragraph: prolate good,

oblate bad.

It is interesting why we are seeing decoherence much less than 0.088% in the Gen. II setup. One

possible guess is collisional narrowing (the topic of Section 6.5.2). Our ansatz Equation 6.15 tells us that the

6 The time averaging is done over a time domain t ∈ [0, T ] big enough that the rotation and RF micromotions come back to
the same phase together, i.e., T = 2πp/ωrot = 2πq/ωrf where p and q are very large integers.

7 Gen. III: T = 50 K, ωrf = 2π × 50 kHz, ωrot = 2π × 150 kHz, Erot = 60 V/cm, o ≈ 1.
8 Gen. II: T = 20 K, ωrf = 2π × 50 kHz, ωrot = 2π × 375 kHz, Erot = 58 V/cm, o ≈ 1.
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rate of collisional narrowing decreases with increasing temperature and decreasing ion number density. We

expect to have a hotter and less dense ion cloud in Gen. III than in Gen. II, so it may not be wise to pin our

hopes of pulling the 0.2% decoherence down to 0.01% with collisional narrowing, especially when the effect

is still not very well studied in the group at this point in time.

On the topic of Gen. II, Equation 8.10 also suggests that the mean frequency of the ion cloud shifts

with temperature. As the temperature of the ion cloud increases, the modal radius of the ion cloud also

increases, so the mean frequency of the ion cloud would increase. In fact, we saw that the ion cloud heats up

with time in Section 6.5.4 and Figure 6.15. This is a possible systematic, and I shall leave detailed studies

to my colleagues.

Plan A seems difficult: homogeneity requirements in Baxgrad demands either very long buckets or few

buckets. Furthermore, we still get RF-field induced decoherence even if Baxgrad is perfectly homogeneous.

But let us perform one last struggle: can we shim away/in gradients in Baxgrad? Doing so allows us to tweak

some things:

Shim away the RF-induced decoherence. Since the decoherence effect discussed in this chapter be-

haves as though Baxgrad varies quadratically as we move away from the trap axis, we could try to

shim this decoherence away by intentionally introducing a quadratic spatial variation of Baxgrad.

Shim away spatial inhomogeneity of Baxgrad. For decoherence through, say, axial variation of Baxgrad,

it would be nice if we can use shimming coils as extra degrees of freedom to shim the spatial variation

away. Subjected to constraints from Maxwell’s equations.

A combination of the above. Maxwell’s equations do not let us win for free. When we shim the curvature

of Baxgrad away along one axis, we have to pay by introducing curvature in another axis. We would

probably have to settle for a compromise between the two points mentioned above.

The next section will cover some basic ideas of what kinds of field gradient shimming are allowed by Maxwell.
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8.2.4 Shimming away gradients in Baxgrad

Within our Bucket Brigade, we do not have sources of magnetic fields (ignoring the magnetic dipoles

of our molecules). In a region absent of sources of magnetic fields, Maxwell’s equations allow us to express

the magnetic field as a gradient of a scalar potential field:

B(r) = −∇ΦB(r),

where ΦB(r) is the scalar magnetic potential. Together with ∇ ·B(r) = 0, we have:

∇2ΦB(r) = 0,

which, in turn, implies that ΦB(r) can be expanded out in terms of spherical harmonics Y m
l (Ω):

ΦB(r) =
∑

l=0,−l≤m≤l

(
al,mrl +

bl,m
rl+1

)
Y m
l (Ω),

where Ω is a shorthand for the usual angular variables (θ, ϕ), l andm are the usual quantum numbers for total

angular momentum and projection of the angular momentum onto the quantization axis, respectively, and

a and b are constants to be determined through boundary conditions. We can simplify the above expression

even further by noting that (i) the magnetic field is a field with real components, and (ii) the field does not

blow up at r = 0. We define real spherical harmonics by:

Yl,m =



i√
2

(
Y m
l − (−1)m Y −m

l

)
if m < 0,

Y 0
l if m = 0,

1√
2

(
Y −m
l + (−1)m Y m

l

)
if m > 0,

and write the scalar magnetic potential as:

ΦB(r) =
∑

l=0,−l≤m≤l

al,mrl Yl,m(Ω). (8.11)

We further label components of the magnetic field obtained from taking the gradient of the corresponding

real spherical harmonic component of the scalar potential with the same quantum numbers, i.e.,

Bl,m(r) := −∇
(
rl Yl,m(Ω)

)
. (8.12)

B(r) =
∑

l=0,−l≤m≤l

al,mBl,m(r). (8.13)
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There are many theses from our group that go in depth into the study of these spherical harmonics (for

instance, check out Noah Schlossberger’s upcoming thesis), and here I will just flash out some of the more

important spherical harmonics:

B1,{1,−1,0} Uniform field in the {x, y, z} directions.

B2,0 Quadrupole field of the form (x, y,−2z), i.e., term that gives a uniform ∂zBz =: −2Baxgrad.

B2,2 Quadrupole field of the form (−x, y, 0).

B2,−2 Quadrupole field of the form (y, x, 0); like B2,2, but rotated 45° along the z-axis.

B4,0 Term that gives a Baxgrad that varies with position as x2 + y2 − 2z2.

B4,2 Term that gives a Baxgrad that varies with position as x2 − y2.

B4,−2 Term that gives a Baxgrad that varies with position as xy; like B4,2, but rotated 45° along the z-axis.

Note that any gradients in Baxgrad that are odd in {x, y, z} will not result in an overall decoherence,

because any positive (negative) phase accumulation on one side of the trap will be nulled out by the negative

(positive) phase accumulation on the other side of the trap when the ion sloshes around the trap. Hence,

the lowest order terms in the spatial variation of Baxgrad that contributes to decoherence are terms that go

as {x, y, z}2. Assuming that the secular trapping frequencies along the x, y, and z directions are incommen-

surate, or that trajectory-changing collisions happen frequently enough in the trap, terms like {xy, yz, zx}

also do not contribute to decoherence, so the only terms that contribute to decoherence are {x2, y2, z2}. The

l = 4 terms are the lowest order terms that give spatial variations of Baxgrad that vary as {x2, y2, z2}, and

the two l = 4 terms above are the only such terms at this order.

All the fields above can be engineered with a combination of coils, e.g., Helmholtz coils for B1,{1,−1,0},

anti-Helmholtz coils for B2,0, and it turns out that we can engineer a set of coils placed in strategic positions

to create B4,0 and B4,2. The interested reader can find more details in Noah Schlossberger’s upcoming

thesis. The take home messages from evaluating these spherical harmonics and designing coil sets that

generate these harmonics are:
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(1) We can shim away any imperfections in Baxgrad with our B4,0 and B4,2 coils to reduce decoherence

introduced by spatial inhomogeneity of Baxgrad that are even about the ion cloud center. This

shimming effect only works for a local region, though; it will require much more design effort to

design coil sets that shim away B4,0 and B4,2 along a line, say, down the entire Bucket Brigade.

(2) The B4,0 term gives a Baxgrad that varies with position as x2 + y2 − 2z2. So for every two units

of decoherence we shim away in the axial direction, we incur a cost of one unit of decoherence in

the radial direction. This sounds like a win. We could make our ion cloud shaped like a pencil

along the axial direction, and put all sources of decoherence into the radial modes with our B4,0

coils. We do not win forever with this method though. The suppression factor of decoherence

through a combination of (i) making our ion cloud longer and (ii) dumping decoherence from our

axial dimension to the radial dimension with our B4,0 coils as compared to a spherical ion cloud is

given by (see Equation 8.10):

Suppression factor =

(
1 +

o2

2

)/(
1 +

12

2

)
=

2 + o2

3
,

where, once again, o = ωz/ω{x,y} is the oblateness of the ion cloud. Evidently, the best we can ever

do is to suppress decoherence to 2/3 its original value, where o → 0 is an ion cloud that is loose in

the axial direction and tight in the radial.

8.2.5 Final remarks

Working with Plan A would allow us to continue to stay in a familiar place with regards to under-

standing our systematic effects. There is a new systematic effect when we translate ions down the Bucket

Brigade, where the magnetic and electric fields conspire and vary in space such that it could mimic an eEDM

signal, but this is beyond the scope of this thesis.

Plan A does not seem easy, but it certainly is not impossible. However, there is nothing limiting us

from using other ways of introducing a frequency offset between the stretched states of the upper and lower

doublets. In the next section, we shall look at how we can introduce a frequency offset with Berry’s phase.
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8.3 Plan B: Berry’s phase

8.3.1 Working principle

The quantization axis of our ions is given by the direction of the rotating electric field, Erot. As Erot

rotates, the Erot vector traces out a solid angle. The solid angle that Erot traces out is directly related to the

Berry’s phase picked up by the quantum states [25]:

ϕBerry = Ωs.a.mF , (8.14)

where Ωs.a. is the solid angle, not to be confused with the quantum number Ω.

Defining α to be the instantaneous angle that Erot makes with the horizontal plane, and expressing

Equation 8.14 as the time-averaged energy difference between our stretched states (mF = ±3/2), we get:

hf0 = 3hfrot⟨sinα⟩, (8.15)

where ⟨·⟩ indicates time-averaging.

In the first two generations of the JILA eEDM experiment, we deliberately shim α to zero for all times

and characterize this as one of our systematic effects. In the Bucket Brigade, however, this can serve as our

Plan B for introducing a bias f0 into our system.

At first glance, one may think that to get a non-zero ⟨sinα⟩, one needs to have a non-zero time-

averaged electric field in the z-direction Ez, which will move our ions out of the trap. However, it is possible

to have a non-zero ⟨sinα⟩ AND a zero time-averaged electric field in the z-direction by modulating the

amplitudes of Erot and Ez as we shall see in the next section.

8.3.2 In the Bucket Brigade

In addition to providing axial confinement of the ions, the Rings in the Bucket Brigade can also

provide a time-varying axial electric field Ez(t). An example of such a setup is shown in Figure 8.7.
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· · · · · ·

S̃ = +1 S̃ = −1

Ion cloud translation direction

Figure 8.7: Plan B: using the Rings to introduce a time-varying axial electric field. This is a

cross-section view of a section of the Bucket Brigade. The ions move from left to right. The blue disk

indicates the ion clouds in the Bucket Brigade. The dashed lines are visual aids to indicate the boundary of

each bucket. The thick lines indicate cross-sections of the Rings. The colors of the thick lines indicate the

amplitudes of the voltages applied on the Rings: warmer (cooler) colors indicate more positive (negative)

potentials. The straight arrows indicate the direction of the local Ez generated by the potentials on the

Rings. The direction of the axial electric field flips with each neighboring bucket. S̃ = +±1 indicate buckets

with the time-varying axial electric field pointing in directions that are π out of phase with each other.

Much like Plan A, Figure 8.2 also shows that Plan B allows for neighboring buckets to have Ez of

opposite signs, which provides a very elegant solution to fast S̃-switching (Berry’s phase analogue of B̃-

switching; to be introduced in Section 8.3.3) to suppress uncertainties and systematic effects associated with

Ez.

Suppose the axial electric field (ignoring the axial confinement fields here) goes as:

Ez(t) = Edit cosωditt, (8.16a)

where Edit is the amplitude of the dithering axial electric field and ωdit is the angular dithering frequency.

Also suppose that Erot is modulated with fractional amplitude a at angular modulation frequency ωdit:

Erot(t) = Erot,0(1− a cosωditt) (8.16b)
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Then the tangent that the axial electric field makes with Erot(t) is:

tanα =
Edit cosωditt

Erot,0(1− a cosωditt)
. (8.17)

For Edit ≪ Erot,0, we use the small angle approximation, and perform a time-average over one full cycle in

the dither with the notorious half-tangent substitution to get:

⟨α⟩ = Edit
Erot,0

1

a

(
1√

1− a2
− 1

)
=
Edit
Erot,0

(
a

2
+

3a3

8
+O(a5)

)
. (8.18)

The ion accumulates the “carrier” Berry’s phase by accumulating a lot of it first when it is above the

plane, then removing the accumulated phase incompletely below plane. The actual phase evolves as follows:

∆ϕ(t) = ϕmF=+3/2(t)− ϕmF=−3/2(t)

= 3ωrot
Edit
Erot,0

[
sinωditt

ωdit
+ a

(
t

2
+

sin 2ωditt

4ωdit

)
+O(a2)

]
=

3

2

Edit
Erot,0

ωrota · t+ ϕ0(t) , ϕ0(t) = 3
ωrot

ωdit

Edit
Erot,0

[
sinωditt+

a

4
sin 2ωditt+O(a2)

]
. (8.19)

8.3.3 New switches for the experiment: {S̃, T̃}

There are many switches we can use to reverse the sign of Berry’s phase, which can be very helpful

in studying systematic effects in our setup. Inferring from Equations 8.17 and 8.18, we have three switches

associated with Berry’s phase: {R̃, S̃, T̃}. The switches can each take on values ±1. The effect of the switches

are as follows:

• R̃: Reversing the rotation direction of Erot.

• S̃: Reversing the sign of Edit.

• T̃ : Reversing the sign of amplitude modulation.

Formally, the effect of the switches on Berry’s phase is given by:

⟨α⟩R̃S̃T̃ = R̃ · S̃ · Edit + Enr
Erot,0

1

T̃ · a+ anr

 1√
1− a2 − a2nr − T̃ · 2aanr

− 1

+ αnr

≈ R̃ · S̃ · Edit + Enr
Erot,0

T̃ · a+ anr
2

+ αnr, (8.20)
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where we introduce the subscript “nr” to indicate the component of the experiment parameter that does not

flip with the sign of the switch through imperfections in our experiment like: imperfect potential shimming

for the Rings (Enr), imperfect potential shimming for the Rods (anr), any asymmetry involved in the switching

of the rotation direction of the rotation electric field (αnr).

Note that {R̃, T̃} are slow switches: the whole Bucket Brigade has to be unloaded before these switches

can be flipped. In contrast, S̃ is a fast switch that can have alternating signs for neighbouring buckets.

Once again, to measure the eEDM, we try to measure fu and f l very well, at various configurations

of the experiment parameters, and take a smart linear combination of the measured frequencies. Each of

the smart linear combinations reveal a certain aspect of our experiment, and one of them tells us about the

eEDM. We now attempt to borrow language used in the first two generations of the JILA eEDM experiment

(see theses of previous students) to have a glimpse of how using Plan B (Berry’s phase) could change the

analysis of our data. Each of the linear combinations are called “channels”. For the purpose of understanding

what the channels will look like in Plan B, we remove the slow switches from Equation 8.20 and keep only

the fast S̃ switch in the time-averaged α:

⟨α⟩S̃ = S̃⟨α⟩+ αnr. (8.21)

8.3.4 f D̃S̃ channels

8.3.4.1 Introduction

With each repetition of our eEDM experiment, we have the freedom to change the signs of the switches.

In a simplified version of Plan B, we have the following switches:

Doublet: D̃. D̃ = +1 refers to the upper doublet fu, and D̃ = −1 refers to the lower doublet f l.

Sign of Edit: S̃. We have already introduced this at the start of the Plan B section.

These switches take on values ±1. We express the frequencies we measured with the various combinations

of switches as f D̃S̃ . As an example, frequency f D̃S̃ = f++ corresponds to fu when the experiment was

performed with S̃ = +1, i.e. when Edit has a positive sign. As another example, frequency f D̃S̃ = f−+

corresponds to f l with the same S̃ experiment condition as the above.
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To get the frequency “channels”, we can then take a switch-weighted average of the above frequencies.

For instance: 

f0

fD

fS

fDS


:=

1

4



+ + + +

+ + − −

+ − + −

+ − − +





f D̃S̃ = f++

f D̃S̃ = f+−

f D̃S̃ = f−+

f D̃S̃ = f−−


.

It turns out that each switch-weighted average frequency channel is sensitive to a different systematic

effect in the experiment, and we can use these frequencies to compare our experimental results with analytical

expressions to learn about our systematic effects. To understand what each frequency channel is sensitive to,

we work in a two-level effective Hamiltonian of our system (see Section C.4), and expand out the eigenenergies

of our Hamiltonian in powers of the small quantities with the following steps:

(1) Measure the non-inertial-frame coupling term for the upper and lower doublets (∆u and ∆l), and

measure the g-factors for both doublets (gu and gl). Massage them into the following form:

∆ = (∆u +∆l)/2 ∆D = (∆u −∆l)/2

g = (gu + gl)/2 δg = (gu − gl)/2

(2) Perform studies on the two-level Hamiltonian.

(a) Solve for eigenenergies of the two-level Hamiltonian. The frequency f D̃S̃ is just the difference

of the two eigenenergies.

f D̃S̃ =
√
A2 +B2

= 3frot⟨α⟩
√
1 + 1̃(1 term) + D̃(D term) + S̃(S term) + D̃S̃(DS term).

In the above, we identified 3frot⟨α⟩ to be the biggest term in the square root, so we pull it

out. The “1 term” are terms small as compared to 3frot⟨α⟩, but do not depend on any of the

switches. The rest of the terms are terms that depend on the relevant switches. For example,

the “D term” include all the terms that depend only on the D̃ switch.

(b) Recognize that the following are small compared to relevant quantities:
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• {3gµBBnr,∆,∆D, 2EEDM} ≪ 3frot⟨α⟩

• δg ≪ g

• αnr ≪ ⟨α⟩

and expand the terms out in the square root of the f D̃S̃ expression, being consistent in keeping

the small terms up to the correct order.

8.3.4.2 Results of the expansion

With the above steps, we get, up to first non-zero correction:

f0 = 3frot⟨α⟩
[
1 +

1

2

∆2 + (∆D)2

(3frot⟨α⟩)2

]
(8.22a)

fD =
∆∆D

3frot⟨α⟩

[
1− 1

2

∆2 + (∆D)2

(3frot⟨α⟩)2
+

(
3gµBBnr + 3frotαnr

3frot⟨α⟩

)2
]

+ 2EEDM

[
2EEDM∆∆D

(3frot⟨α⟩)3
+

∆2 + (∆D)2

(3frot⟨α⟩)2
3gµBBnr + 3frotαnr

3frot⟨α⟩

]
(8.22b)

fS = (3gµBBnr + 3frotαnr)

[
1− 1

2

∆2 + (∆D)2

(3frot⟨α⟩)2

]
− 2EEDM∆∆D

(3frot⟨α⟩)2
(8.22c)

fDS = 2EEDM

[
1− 1

2

∆2 + (∆D)2

(3frot⟨α⟩)2

]
+ 3 δgµBBnr −

∆∆D

3frot⟨α⟩
3gµBBnr + 3frotαnr

3frot⟨α⟩
(8.22d)

A simple check shows that f0 ± fD = fu/l with gu/l = g± δg and ∆u/l = ∆±∆D. For future reference, the

first non-zero term in the f0 channel for small Erot amplitude modulation (a≪ 1) and small dither electric

field (Edit ≪ Erot,0) is:

f0 = 3frot⟨α⟩ =
3

2

Edit
Erot,0

frota. (8.23)

8.3.4.3 Comparison with Zeeman-dominated f0 in Plan A

For reference, the channels for a Zeeman-dominated f0, e.g. in Plan A, can be evaluated in a way

similar to the above. The relevant switches are:

Sign of Baxgrad: B̃. The sign can be switched by switching the direction of the current in the coils.

Doublet: D̃. D̃ = +1 refers to the upper doublet fu, and D̃ = −1 refers to the lower doublet f l.

Rotation direction of Erot: R̃. We conveniently left this out for the Berry’s phase f D̃s̃ suite, but we shall

include this here for comparison with previous theses and papers.
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The frequency channels are given as follows, to the first non-zero correction term (except for fR and fDR,

where we also include the next non-zero correction term):

f0 = 3gµBBrot
[
1 +

1

2

∆2 + (∆D)2

(3gµBBrot)2

]
, (8.24a)

fB = (3gµBBnr + 3frotαnr)

[
1− 1

2

∆2 + (∆D)2

(3gµBBrot)2

]
− 2EEDM∆∆D

(3gµBBrot)2
, (8.24b)

fD = 3 δgµBBrot +
∆∆D

3gµBBrot
, (8.24c)

fR =
3frot⟨α⟩

(3gµBBrot)3
[
(∆2 + (∆D)2)(3gµBBnr + 3frotαnr) + 2EEDM · 2∆∆D

]
, (8.24d)

fBD = 2EEDM

[
1− 1

2

∆2 + (∆D)2

(3gµBBrot)2

]
+ 3 δgµBBnr −

∆∆D

3gµBBrot
3gµBBnr + 3frotαnr

3gµBBrot
, (8.24e)

fBR = 3frot⟨α⟩
[
1− 1

2

∆2 + (∆D)2

(3gµBBrot)2

]
, (8.24f)

fDR =
3frot⟨α⟩

(3gµBBrot)3
[
2∆∆D(3gµBBnr + 3frotαnr) + 2EEDM(∆2 + (∆D)2)

]
, (8.24g)

fBDR =
3frot⟨α⟩

(3gµBBrot)2

[
−∆∆D +

δg

g

(
∆2 + (∆D)2

)]
. (8.24h)

These are the expressions more familiar to the first two generations of the JILA eEDM experiments. All the

terms above have already been introduced in earlier parts of this section.

Here are some observations from comparing f D̃S̃ and f B̃D̃R̃:

(1) f0 and the eEDM channels {fDS , fBD} agree across the Berry’s phase f D̃S̃ and the Zeeman f B̃D̃R̃

up to an expansion of this order, where we identify 3frot⟨α⟩ with 3gµBBrot.

(2) Since there is no Brot in f D̃S̃ , the leading term in fD is the first correction term of that in fBDR.

Therefore, we see that fD
Berry < fD

Zeeman, especially at large f0. In Gen. II, we expect fD to increase

with f0, but in the Berry’s phase picture, we expect fD to decrease with f0 instead.

We shall now move on to the details of how we can implement Plan B in the experiment.

8.3.5 Q-factor & Resonant Circuit

One important ingredient in Plan B is the modulation of the amplitude of Erot. We plan to charge the

Rods with a resonant circuit. One advantage of the resonant circuit is that it stomps on the second harmonic

of Erot that plagues the systematic effects seen in the first two generations of the JILA eEDM experiment.
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One disadvantage, however, is that it stomps on all Fourier components that are not the resonant frequency,

thereby suppressing the effects of amplitude modulation. The degree of suppression of the Fourier frequencies

in the waveform depends on the Q-factor of the resonant circuit.

For an frot = 150 kHz, we want to be able to send in sidebands at about 15 kHz away, so we do not

want to work with too high a Q-factor. Hence, we aim for a Q-factor of about 20. Figure 8.8 shows the

resonance plots at Q = 20.
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Figure 8.8: Resonance curves for Q = 20. Top plots: Resonance curves with resonance at 150 kHz. For

a V (t) going into the system, the response of I(t) will have a phase shift given by the left plot, and an

attenuation given by the right plot. Dashed lines show location of the 15 kHz sidebands. The sidebands

are at 23.0% of the maximum on the right plot. Bottom plot: variation of the attenuation factor of the

sidebands with a varying Q. The range of Q used corresponds to a change in R = 53.0 Ω of ±10 Ω.
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We want to have a time modulating Erot that looks like:

Erot(t) = Erot,0(1− a cosωditt)


cosωrott

sinωrott

0



= Erot,0


cosωrott− a

2 [cos(ωrot + ωdit)t+ cos(ωrot − ωdit)t]

sinωrott− a
2 [sin(ωrot + ωdit)t+ sin(ωrot − ωdit)t]

0


so we reconstruct the input waveform using information in Figure 8.8, and they have the following expression:

Erot(t) = Erot,0
[
1− a

23.0%
cos(ωditt+ 1.34)

]

cosωrott

sinωrott

0

 .

8.3.6 Spatial homogeneity of the dithering axial electric field

The other crucial ingredient for Plan B is the dithering axial electric field. We shall see if Plan B

fulfils Criteria 8.1 and 8.2. Once again, we go back to Equation 7.6 and Table 7.3 and adapt the results for

Plan B.

Given the attenuation factors in Table 7.3, it is not practical to work with harmonics of order higher

than n = 3. Including only up to n = 3, the waveform of a potential V (z, ρ) that minimizes spatial

inhomogeneity of Edit is:

V (z, ρ) = V (k, z, ρ)− 1

27
V (3k, z, ρ),

Edit = −∂zV (z, ρ) = −V0

[
8k

9
+

k5

120

(
−15ρ4 + 120ρ2z2 − 40z4

)
+O

(
{ρ, z}7

)]
.

Note, once again, that k = 2π/λ, where λ is the wavelength of the fundamental waveform on the Rings.

In the case of Plan B, λ = 2Λ. Evidently, the inhomogeneity comes in starting on the fourth power of the

size of the ion cloud 2σ ∼ {ρ, z}. From the coefficients of each inhomogeneity term, we see that the axial

inhomogeneity is more stringent than the radial.

The axial inhomogeneity in Edit comes in through the first order correction term involving (kz)4. To

fulfil Criterion 8.2, we demand that 3
8 (kz4σ)

4 < 0.01%, which means that λ > 2π 4

√
30000

8 z4σ ≈ 49.2z4σ. For
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an ion cloud with a 4σ radial extent of 1 cm, we see that each bucket needs to be about 25 cm in length. A

spatial plot of such an inhomogeneity is shown in Figure 8.9.
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Figure 8.9: Spatial inhomogeneity of Edit w.r.t. point at center of a bucket. The coordinates ρ and
z represent the radial and axial directions, respectively. This plot is generated with Λ = 50 cm. The white
dashed circle indicates a 1 cm radius, corresponding to a 2σ ion cloud radius. The dotted lines indicate
contour lines of 0.01%, in line with Criterion 8.2.

8.3.7 Final remarks

Plan B started out looking rather promising, much like Plan A, until we saw the constraints that

Criteria 8.1 and 8.2 place on the dimensions of the Bucket Brigade. To this we say, “we should not be sad

because it doesn’t work, we should be happy because we tried.” However, instead of alternating S̃ once

every bucket, we could alternate it once every few buckets. This will allow us to have short buckets and

homogeneous Edit at the same time. This relaxes a lot of design constraints, e.g. λ can even be longer than

50 cm, which improves spatial homogeneity. Having longer λ makes the attenuation factors work less hard

(in our favor) so we can add more higher harmonics into the waveform to the potential to make it more

triangular. I shall leave the analysis to future generations of students and post-docs.

Much like Plan A, Plan B looks hard, but not impossible. With this, we have looked at examples of

how we can introduce a Zeeman frequency offset with Plan A, and Berry’s frequency offset with Plan B.

The rest of the chapter explores other ingenious ways of introducing Zeeman frequency offsets that do not
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require axial quadrupole magnetic fields.
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8.4 Plan C: Uniform ambient magnetic field

8.4.1 Working principle

8.4.1.1 History: systematic effect in the Gen. I experiment

Before we talk about Plan C proper, it serves to take a trip back down memory lane to the first

two generations of the JILA eEDM experiments, where the inspiration for Plan C is drawn. One of the

systematic effects seen in the Gen. I experiment involves the following [14]:

fB ∝ ϵ (BxX0 + ByY0) , (8.25a)

fBR ∝ ϵ (BxY0 − ByX0) , (8.25b)

where fB and fBR are the frequency channels defined in Equation 8.24; ϵ = V2f/Vrot is the ratio of the

amplitude of the second harmonic of Erot to the fundamental; Bx,y is the ambient magnetic field strength in

the x and y directions, respectively; X0 and Y0 are the positions of the ion cloud w.r.t. the trap center in

the x and y directions, respectively. The physics behind the above systematic effects is as follows:

(1) The electric potential for Erot in the Gen. I experiment was provided by six radial electrodes that

are powered by an op-amp each.

(2) Despite receiving a first harmonic low voltage input, the high voltage output from each op-amp also

has a component of the second harmonic that is at some phase w.r.t. the first harmonic. This results

in an output voltage on the nth electrode of the form: Vn(R̃) = Vrot

[
cos

(
ωrott+ R̃nπ

3

)
+ ϵ cos

(
2ωrott+ R̃ 2nπ

3 + ϕ
)]

,

where ϕ is the relative phase between the first and the second harmonic, and is determined by the

nature of the op-amp; and R̃ is the rotation switch, e.g. +1 for Erot rotating counter-clockwise, and

−1 for clockwise.

(3) Summing the potentials from all the fins, we see that the Lissajous figures that
−−→
Erot traces out as

seen by ions at various locations within the ion trap is shown in Figure 8.10.
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Figure 8.10: Lissajous figures traced out by
−−→
Erot as seen by ions at various locations within

the trap. X0 and Y0 are the mean ion cloud positions w.r.t. the center of the trap, and are expressed

in fractions of the radial distance of the electrodes away from the trap center (i.e. ions will be touching

the electrodes at, say, X0 = 1). The green dashed circle indicates the Lissajous figure traced out by the

−−→
Erot vector without the second harmonic component as it rotates along the plane. The blue (yellow) circle

indicates the corresponding Lissajous figures with the effect of the second harmonic, and when R̃ is +1 (−1).

(4) From Figure 8.10, we note the following:

(a) Moving out along the i-axis (where i ∈ {X0, Y0}) displaces the centroid of the Lissajous figure

along the i-direction.
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(b) Flipping the sign of R̃ flips the Lissajous figure about the radial axis.

(5) If there is an ambient magnetic field along the plane of the rotating electric field B = Bxx̂ + By ŷ,

the ions can see a non-zero time-averaged9 magnetic field in the frame of the rotating electric field:

⟨Bxx̂ · Êrot⟩ ∝ Bx · ϵ ·
(
X0 cosϕ− R̃ Y0 sinϕ

)
+O({ϵ,X0, Y0}2), (8.26a)

⟨By ŷ · Êrot⟩ ∝ By · ϵ ·
(
Y0 cosϕ+ R̃X0 sinϕ

)
+O({ϵ,X0, Y0}2). (8.26b)

(6) Together with the fact that the ambient magnetic field flips direction w.r.t. the fields introduced by

Baxgrad under a sign flip of the B̃-switch, we see that:

fB ∝ ϵ (BxX0 + ByY0) cosϕ+O({ϵ,X0, Y0}2), (8.27a)

fBR ∝ ϵ (BxY0 − ByX0) sinϕ+O({ϵ,X0, Y0}2), (8.27b)

which agrees with Equations 8.25 when the phase between the first and second harmonic ϕ is chosen

correctly. Evidently, this is a Zeeman effect.

8.4.1.2 Adaptation of the physics behind the systematic effect

From the previous section, we see that we can introduce a bias f0 if (i) we can disrupt the Lissajous

figure of Erot such that ⟨B · Êrot⟩ ≠ 0, and (ii) introduce a uniform ambient magnetic field parallel to the

direction of the displacement. The effect that we saw in the previous section only turns on with a non-zero

ion cloud displacement from the trap center, but we do not wish to displace our ions from the trap center

because this would introduce additional RF-micromotion and heat up our ion cloud at a much higher rate.

Hence, we need to engineer an Erot Lissajous figure such that Erot such that ⟨B · Êrot⟩ ≠ 0 even when the ion

cloud is nominally at the trap center. We shall see how this can be done in the next section.

8.4.2 In the Bucket Brigade

It turns out that having an oscillating uniform electric field in the, say, x direction that oscillates at

the second harmonic of Erot would give Erot such that ⟨B · Êrot⟩ ≠ 0. The analytical form for such an electric

9 Important: the averaging must be done over the time domain and not the spatial domain.
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field is:

E(t) =


Erot cosωrott+ E2harm cos(2ωrott+ ϕ)

Erot sinωrott

0

 , (8.28)

where ϕ is the phase between the first and second harmonic, and E2harm is the amplitude of the second

harmonic. An example of an Lissajous figure traced out by such a field is shown in Figure 8.11.

x

y rot

rot + 2harm

Figure 8.11: Lissajous figure traced out by
−−→
Erot as seen by ions in the Bucket Brigade. The dashed

line indicates the Lissajous figure in the absence of E2harm. For illustrative purposes, ϵ = E2harm/Erot = 0.2,
an unrealistically large value, to exaggerate the features.

The Plan C equivalent of Equations 8.26 are:

⟨Bxx̂ · Êrot⟩ ∝ −Bx · ϵ · cosϕ, (8.29a)

⟨By ŷ · Êrot⟩ ∝ By · ϵ · R̃ sinϕ, (8.29b)

which necessarily implies10 :

f0 ∝ ϵBx cosϕ, (8.30a)

fR ∝ −ϵBy sinϕ. (8.30b)

In fact, up to second order in ϵ = E2harm/Erot, we have a frequency offset:

f0 = 3gµBBeff , Beff = Bx
[ ϵ
4
+O(ϵ3)

]
cosϕ. (8.31)

10 Even though “the proportional sign” is used, and frequency is a positive definite value, the relative sign difference between
the two expressions shown is included explicitly for future reference.
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For typical f0 = 50 Hz and ϵ = 0.01, we just need Bx ≈ 0.3 G, which is a doable field that we can apply.

The uniform magnetic field will be produced by very wide “Helmholtz coils” running the entire length of the

whole Bucket Brigade.

8.4.3 Final remarks

One might think that since Beff ∝ Bx ϵ, as long as we choose the values such that they give the

Beff we want things will be fine. This is not true. Roughly speaking, what the second harmonic does is it

accumulates some Zeeman phase for one half of the Erot cycle, and removes some of it in the second half to

result in a net phase gain. The effect of this is frequency modulation of f0. From our simulations, when ϵ is

too small, the frequency modulation becomes apparent. Since frot = 150 kHz and f0 = 50 Hz nominally, if

we want the modulation index to be less than 0.1, then ϵ ≳ 0.003.

One final thing to note is that the rods used to generate Erot will be driven by a resonant circuit,

which does not like to have a second harmonic component. We will have to drive the second harmonic hard,

and we will also need to pay special attention to the stability of the amplitudes of the second harmonic on

all the Rods to ensure that we have a homogeneous uniform oscillating second harmonic electric field. This

sounds like a hassle, but not impossible. Still, in our quest to get away with being lazy, we came up with

Plan D.
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8.5 Plan D: Transverse magnetic quadrupole

8.5.1 Working principle

The working principle behind Plan D is similar in spirit to Plans B and C: we allow for an asymmetric

phase build-up and subtraction at various parts of the Erot cycle. In both Plans B and C, the asymmetry is

introduced by modulating the strength of Erot at a frequency that is commensurate with the phase-inducing

physics (Berry’s phase for Plan B, and Zeeman shift for Plan C). Plan D seeks to overcome the problem in

Plan C where we will have to drive the second harmonic into the resonant circuit for the rods very hard. To

do this, we use the fields of the following form:

−−→
Erot = Erot


(1 + ε) cosωrott

(1− ε) sinωrott

0

 , B = Btransgrad


cos 2ϕ sin 2ϕ 0

− sin 2ϕ cos 2ϕ 0

0 0 1




x

−y

0

 , (8.32)

where ϕ is the angle between the x-axis and the principal axis of the transverse magnetic quadrupole that

would nominally be aligned with the x-axis; and ε is the ellipticity. Such an
−−→
Erot will give a slightly modified

rotational micromotion:

r(t) = rsec(t)− rrot


(1 + ε) cosωrott

(1− ε) sinωrott

0

 , (8.33)

where rsec is the secular position of the ion; evidently the rotational micromotion is now elliptical.

Employing the same trick used in Plan C, i.e. evaluating ⟨B · Êrot⟩, the resulting f0 holds the form:

f0 = 3gµBBeff , Beff =
3

2
ε ·Btransgradrrot


0

sin 2ϕ

cos 2ϕ

+O(ε3), (8.34)

where the z-component of Beff is the one that goes into f0, while the y-component is included there to remind

ourselves that a non-zero ϕ can induce additional coupling between states of neighboring mF through the

Zeeman term in the Hamiltonian. Fortunately, this additional coupling term (∼ f0 = 50 Hz) is small

compared to the rotation term in the Hamiltonian (∼ frot = 150 kHz), so modifications to ∆u/l should be

small.
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8.5.2 In the Bucket Brigade

The transverse magnetic field gradient will be produced by very wide “anti-Helmholtz coils” running

the entire length of the whole Bucket Brigade. For wires at radial distance R ≳ 4′′ away from the trap axis,

the magnetic field within the vicinity of the trap axis is:

B =
2µ0I

πR

[( x

R
,− y

R
, 0
)
+O

((
{x, y}
R

)5 )]
,

and for typical ion cloud radius of lsim1 cm, we see that the transverse field will be very homogeneous in

the region of interest.

The resonant circuits driving the Rods will be driven only at the resonant frequency. The amplitudes

will be tuned such that four of the Rods will operate at (1 + ε) the nominal amplitude, while the other four

at (1− ε). This is easy.

However, to ensure that Criterion 8.1 is fulfilled, we need to ensure that we can maintain the amplitudes

of Vrot on all the rods down to 0.01% of the desired ellipticity of Erot. To put things into perspective, the

number of significant digits involved for an ε = 0.01 is:

1 + ε = 1.010000,

1− ε = 0.990000,

which is a demand of stability down to 1 ppm on our resonant circuit.

8.5.3 Final remarks

As of the time of writing, we do not know if the above demand is realistic. We currently have a 0.1%

amplitude precision for the transformers in the b.B.B., and it is not immediately obvious how we can make

this better. To this, our advisors say, “work harder.”
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8.6 Plan E: Rotating magnetic field with time-oscillating currents

8.6.1 Working Principle

The field generated by a current flowing down a straight infinitely-long wire with current i is given

by B(r) = µ0i
2πr ϕ̂, as one can easily check with Ampère’s law. Suppose in addition to driving the radial

electrodes with the RF-trapping potentials and the rotating electric field that polarizes our ions, we drive

the electrodes with oscillating currents with phases matched to the rotating electric field. This would give

us a net magnetic field along the trap axis that rotates with the electric field — a magnetic field that is truly

co-rotating with the polarizing electric field.

8.6.2 In the Bucket Brigade

8.6.2.1 Intentional currents

Suppose we have eight radial electrodes that we number from 1 to 8, these radial electrodes can be

long rods that stretch the whole length of the Bucket Brigade. The näıve picture would involve sending

oscillating currents intentionally and voltages down the rods numbered n with phases like:

in(t) = −i0 sin
(
ωrott+

2π(n− 1)

8

)
, (8.35)

Vn(t) = Vrot cos

(
ωrott+

2π(n− 1)

8

)
. (8.36)

This would introduce a Brot that is anti-parallel to Erot. See Figure 8.12 for the same geometry of the setup,

but using charging currents instead of intentional currents.

8.6.2.2 Charging currents

The rods have non-zero capacitance, so charging the rods up to Vrot would require charging currents

to run through the rods. See Figure 8.12 for a schematic of the geometry involved.

The charging currents are to be distinguished from the currents that we intentionally want to add

to give a rotating Brot. If the Rods are only being fed the charging currents from one end, there will be a
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Figure 8.12: Plan E: geometry of setup with charging currents. Grey disks represent a cross section
of the Rods. The Rods are charged into the page. The red arrow indicates the direction of Erot at this
instance in time. The blue arrows indicate magnetic field lines generated by the charging currents running
through the respective Rods. The arrow head/tail symbols indicate the direction of the current flowing in
those Rods. Only the charging currents and magnetic fields for two Rods are shown to prevent clutter. The
sum of all the magnetic field contributions give rise to a Brot,charging that is anti-parallel to Erot.

(linear) gradient of charging currents as we move along the Rods. Through the capacitor equation, we have:

icharging,n(t) = −CRodVrotωrot sin

(
ωrott+

2π(n− 1)

8

)
, (8.37)

where CRod is the capacitance of each Rod. The above expression incidentally has the same phase as the

intentional currents that we wish to send. This would be great — we could just use the charging currents as

the intentional currents — except the gradient of charging currents along the rods would introduce a gradient

in the magnitude of Brot along the Bucket Brigade. This calls for segmented rods or multiple charging points

along the rods11 to reduce charging current gradients.

8.6.3 Final remarks

Assuming that only the intentional current is flowing down the rods12 , the magnetic field generated

by Plan E can be surprisingly uniform in the vicinity of the trap axis with our eight-rod setup. The first

11 This method would require a current bus along the length of the rod, acting as a highway for current to be fed to multiple
points on the rods like highway exits. One would need to shield the fields generated by the currents flowing up and down the
bus.

12 One can also use a separate set of long continuous rods or wires that carry the intentional current parallel to the rods
supplying the rotating electric field, as this would decouple the wiring for the intentional current from the segmented rods.
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non-trivial deviation from uniformity comes in as the sixth order in radial coordinates, i.e., {x, y}6.

Plan E looks promising in terms of uniformity. The trade off comes in the construction and assembly

of parts, especially if we are going to use the segmented rods. Inhomogeneity can come in through the

imperfections of the assembly, e.g., if a rod segment is not fully aligned with the rest of the setup, it could

introduce deviations in the fields at the homogeneity levels that we care about.

8.7 Further discussion

There are uncertainties associated with all the aforementioned Plans. Spatial field homogeneity re-

quirements also place hard limits on size and geometry of the setup, giving rise to several hard-to-go conclu-

sions. Before we make the big decision to redesign the Bucket Brigade and tailor fit it to a particular Plan,

it would be wise to test out some of the Plans in the b.B.B.. This is something that will happen after I am

gone from the group, unfortunately.

As of this writing, we are using Plan A in the b.B.B.. There is a pair of circular anti-Helmholtz coils

(8′′ diameter, 10 turns, giving 0.65 Hz/mA at Erot = 60 V/cm with frot = 147.5 kHz) at the Octagon for

diagnostics experiments at the Octagon. The wire was wrapped around the Six-way Cross and the Cold

Tube on either side of the Octagon. There is another pair of square anti-Helmholtz coils13 (56 cm each side,

3 turns, giving 21 Hz/A with the same conditions as before) at the Cold Tube where the ions sit, the Science

region. When we run experiments at the Science region, we only keep the square anti-Helmholtz coils turned

on, and we keep the circular anti-Helmholtz coils at the Octagon turned off.

When we charge up the Rods to give us the rotating electric field, there is enough capacitance per

unit length of the Rods with the rest of the world to induce charging currents along the rods. In the current

b.B.B. configuration, we charge up the Rods from the warm end (the side closest to the ion detector). At

this end of the Rod, the magnitude of the charging current is:

Icharging = CRodVrotωrot,

where CRod is the total capacitance of the Rod-World system, Vrot and ωrot are the voltage amplitudes and

13 The anti-Helmholtz condition for a square set of coils is for the separation d to be 0.946 times that of the length of each
side of the square L, i.e. d ≈ 0.946L.
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angular frequency of the voltage that we send to the Rods to generate the rotating electric fields, respectively.

In the same spirit as Plan E (Section 8.6), these charging currents generate a Brot,charging aligned with Erot,

giving rise to a net Zeeman shift in our molecules. The magnetic field induced by the charging current

decreases in magnitude as we move from the charged (warm) end of the Rods to the unconnected (cold) end

of the Rods. Hence, there is a net gradient of Zeeman frequency as we move from the Octagon to the Science

region. Figure 8.13 shows a scan of the Zeeman frequency from the charging currents along the length of

the b.B.B..
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Figure 8.13: Charging-current–induced Zeeman frequencies in the b.B.B.. Data was taken on 30
April 2023. Steps taken to produce this plot are as follow.

(1) Perform a Ramsey experiment at various locations within the b.B.B. (horizontal axis indicates loca-
tion into the Cold Tube from the Octagon in units of buckets travelled; one bucket length ≡ 8 cm)
and extract the Ramsey frequency. Perform all these Ramsey experiments with the rotating electric
field rotating in one direction, say, clockwise, corresponding to rotation switch R̃ = +1.

(2) Repeat the experiments with the electric field rotating in the other direction, corresponding to
rotation switch R̃ = −1.

(3) Take the difference between these two frequencies (vertical axis, fR =
[
(f R̃ = f+)− (f R̃ = f−)

]
/2),

and plot them out for various locations within the b.B.B. (horizontal axis).

At each position, the Zeeman shift measured is a sum of two contributions: (i) ambient axial magnetic field
gradient (physics from Plan A), and (ii) magnetic fields from charging currents (Plan E). Reversing the
rotation direction of the electric field flips the sign of the Zeeman shift from the charging currents, but keeps
the sign of the Zeeman shift from the ambient magnetic field gradients invariant. By taking the difference
in frequencies for the two rotation directions, we can extract the component of the Zeeman shift that comes
from the charging currents only. We fit two lines to the points. These two lines have different gradients,
with a kink connecting them at about three buckets in. This suggests that the capacitance of the Rods per
unit length has a sudden change at about three buckets in. It is not immediately clear why the kink happens
at three buckets in, but we believe it to come from a combination of extra stray capacitance from the Rods
with additional structural support and wiring in the region before three buckets in (see Figure 7.11).
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The gradient of Zeeman shift from charging currents is bad for precision metrology with ions in

multiple buckets at different axial location within the b.B.B., but it is helpful in preserving the definition of

the Zeeman states as we move the ions (that have already gone through state preparation at the Octagon

into the X 3∆1(v = 0, J = 1, F = 3/2,mF = 3/2) states) from the Octagon to the Science region.

In the future, there will be additional sets of coils that will suppress the axial gradient introduced by

the charging currents so that we can try out multiplexing protocols in the b.B.B. where we will have three

or four ion clouds in neighboring buckets inside the b.B.B. for a simultaneous Ramsey spectroscopy.

In the last few chapters, we laid out our ambition to perform a multiplexed ion trap experiment. With

so many electrodes to control, so many other instruments to coordinate, and so many ideas we wish to try

out, this calls for a robust and scalable control system to govern the operations of the experiment. In the

next chapter, we shall look at the brain that holds everything together.



Chapter 9

Control System

9.1 Introduction

We aim to perform a 20 s experiment with nanosecond timing precision on some of our operations,

so this requires serious coordination of various components of our hardware. We also need to be able to

run our experiment in a programmable and automated way with a user friendly interface, preferably with

a system that does not break with operating system or software version updates. The systems used by the

first two generations of the JILA eEDM experiments and the ThF spectroscopy experiment use hardware

(e.g. ViewPoint DIO64) that are no longer available on the market. It is also not obvious how to implement

a pseudo-continuous operation mode that is required for the Bucket Brigade using the old control systems.

We decided to take this opportunity to develop a new control system and test it out on the baby Bucket

Brigade.

We had a sneak peak at how we will be driving the electrodes with the Rod driver (Section 7.5.1.4) and

Ring driver (Section 7.5.2). However, we also need to coordinate the timing of the voltages with the pulses

controlling when, say, the nozzle opens, or when the laser fires to perform our eEDM experiment (Section

4.3.3 and Figure 7.9). This requires a control system that knows and controls everything. At some point,

we will want to test out some of the Plans that we discussed in Chapter 8. This would require a control

system that is scalable and modular. The following sections will briefly touch on the various components of

our control system built upon the ARTIQ Sinara systems from M-Labs.
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9.2 Hardware

We built upon the wisdom from the Gen. I JILA eEDM experiment to set up our control system.

Much of the instruments used in the b.B.B. setup is also inherited from the ThF/ThF+ spectroscopy setup.

There are a few main components:

Master clock (SRS DS345). Amaster clock at 10 MHz is distributed to all our timing critical components

in the experiment. The clock is distributed via a clock distributor (SRS FS735).

Digital delay generator (SRS DG645). A digital delay generator (DDG) generates pulses at 10 Hz

repetition rate for our pulsed Nd:YAG lasers. These lasers need to be fired continuously at 10 Hz

for optimal performance. The DDG sends out four pulses with well defined delays between them.

Two of these pulses go to our SpectraPhysics Lab-190 Nd:YAG laser, and the other two to our

SpectraPhysics INDI Nd:YAG laser. The two pulses trigger the flashlamp and the Q-switch of the

lasers. The DDG also sends a start pulse to our FPGA controller at the start of each burst of a set

of four pulses to synchronize the timing of the DDG with the TTL generator.

FPGA controller. An independent processor that receives commands from the main control computer on

when to set off the TTL generator, DACs, and DDSes to run an experiment. Uses the external clock

signal from the master clock.

TTL generators. An on-off square pulse generator (referred to as TTL generators, despite not necessarily

conforming to TTL standards) triggers the rest of our components, e.g. laser shutters, nozzles,

oscilloscope, microwave switches, camera, AOM.

Digital-to-analog converters (DAC). To generate arbitrary voltages that change at low frequencies.

This is usually used to add shimming voltages to our electrodes or to act as analog inputs to HV

power supplies.

Direct digital synthesizers (DDS). To generate arbitrary voltages that change at higher frequencies.

This is used to generate our RF trapping voltages, our rotating electric fields, and our parametric

excitation voltages. Uses the external clock signal from the master clock.



234

Function generators. To strobe our AOMs or to chirp our microwave frequencies. They use the external

clock signal from the master clock.

Main control computer. A computer dedicated to talk to the FPGA controller directly.

Auxiliary control computers. Computers throughout the lab that run drivers for other satellite control

systems, e.g. wavemeter, fiberswitch, doubling optics servo system, asynchronous camera system,

asynchronous oscilloscope system, magnetic field coils driver, and cryocooler control system. These

control computers can receive commands from the main control computer, and they can also send

information to the main control computer regarding statuses of the systems. Communication is

performed with TCP/IP over an intranet system set up in the lab.

In the early days of the ThF spectroscopy, we used “spare parts” from the Gen. I JILA eEDM experiment to

set up our control system (Section 9.2.1), but we upgraded to a new system during the pandemic when we

switched gears from ThF/ThF+ spectroscopy to the design and construction of the b.B.B. (Section 9.2.2).

9.2.1 Legacy system

The DDSes used were the part of the trap driver from the Gen. I JILA eEDM experiment. The details

of the trap driver can be found in Huanqian Loh’s thesis.

The DACs used were from National Instruments. We combined two sets of DACs together in a

home-built “consolidator box” to switch between the two sets of voltages quickly.

The main brain of the legacy system uses the ViewPoint DIO64 card, which served both as the FPGA

controller and the TTL generator. It boasted 64 TTL output channels, way more than any of its competitors,

and it came at a reasonable price. Unfortunately, good things never last, and they were no longer available

even at the start of the ThF spectroscopy experiments. We barely made it through the spectroscopy before

the DIO64 card started to show signs of failing. This was the main push to search for a new system.
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9.2.2 Current system

We were introduced to the ARTIQ control system by our fellow ion trappers from the Ion Storage

Group down the street at NIST. ARTIQ was first developed at NIST, and is commercialized by M-Labs,

based in Hong Kong. It is a system that is currently used by ion trappers at NIST, Duke, Oxford, and many

more. The Thompson Group at JILA is also porting their control system to ARTIQ. Alternatives to ARTIQ

includes Quantum Machines (based in Israel) or sticking to the National Instruments suite. We settled for

ARTIQ in the end.

We bought two ARTIQ crates (the “cu3 variant”) that come with (the datasheets can be found on

the M-Labs website, but some of the more critical specifications are listed here):

FPGA controller, the core device (Sinara 1124 Carrier, Kasli). Communicates with the main con-

trol computer through ethernet; this is an upgrade over the ViewPoint DIO64 that communicates

through GPIB.

64 TTL channels (Sinara 2118 BNC-TTL). There are four channels that can be switched between

input and output, and the rest of the sixty channels are output only. We use one of the input

channels to receive the start pulse from the DDG to synchronize the TTL outputs with the four

pulses for the pulsed Nd:YAG lasers. Outputs a high of 2 V on a 50 Ω load, with a timing jitter of

350 ps. Minimum pulse width of 3 ns.

64 DAC channels (Sinara 5432 Zotino). There are two Sinaro Zotino cards, each with 32 DAC chan-

nels. Outputs ±10 V with a 1 MSPS update rate shared across all channels (within each Zotino

card). Has a 3 dB bandwidth of 75 kHz, with a 1-99% rise/fall time of about 30 µs.

Figure 9.1 shows a list of how the channels are being used in the current setup.
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Figure 9.1: List of things connected to the TTL and DAC channels. A picture of the hardware is
also shown here for a feel of the density of cable connections.



237

9.3 Software

One of the features of ARTIQ that appealed to us is that it comes with software with built-in graphics

user interface (GUI). Despite being students who have had programming experience, programming a GUI is

non-trivial, and there is no reason not to use a control system that comes with an in-built GUI. Figure 9.2

shows the ARTIQ dashboard, serving as the GUI frontend.

Figure 9.2: The ARTIQ dashboard. The panels on the left and right are applets that we can write (using
PyQtGraph) to show live data streaming in. For example, the top left panel shows the image captured by
our camera; each bright spot corresponds to a Th+ ion hitting our ion detector. The top right panel shows
the progress of the experiment that is currently running. The panel in the center allows us to set parameters
for an experiment that we wish to use or scan. The bottom left panel shows experiments that are queued
to run, and the bottom right panel shows the log. The user is free to move the panels around to suit their
tastes.

Upon successful execution of the experiment, the experiment parameters given as user arguments

through the dashboard are saved together with the data collected into an HDF5 file on our local server.

These saved experimental parameters can be loaded onto the dashboard to rerun the experiment with the

exact same conditions as the one saved. The Gens. I and II JILA eEDM experiments’ equivalent to this is

the *.ubin file (see Matt Grau’s thesis).
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We built our day-to-day experiment runs upon the ARTIQ software platform. I shall go into details

for some of the structure that we have built upon the ARTIQ software platform in the following sections.

9.3.1 ARTIQ for the uninitiated

These section is mainly a summary of some key points about the ARTIQ system for the uninitiated.

Interested readers can read their more extensive manuals on their website.

The artiq_master main control loop handles job scheduling and sends out commands to the FPGA

to start the experiment sequence. On the user side, one typically writes code with the typical structure as

shown in Figure 9.3. The code is written in python.

Figure 9.3: Typical code structure. One would have to write a class for each experiment. The class inherits
from EnvExperiment, which is defined by ARTIQ, with methods build, prepare, run, and analyze. The
user then overloads the methods by defining their own version within the user-defined class. In this case, the
user defined class is Ramsey. The build method associates devices and user input arguments as attributes
to the class. The prepare method runs part of the code that is independent of the actual experiment, e.g.
calculating some variables from user specified arguments. The run part is where the actual sequences are
written. The analyze part (not shown in the figure because we do not use it) is where we can perform some
post-analysis of the data collected.

Users typically submit jobs to the queue through the ARTIQ dashboard, but can also submit jobs

through a command line interface command artiq_run or artiq_client submit.

Upon a power cycle (from, say, power surges during the summer at JILA), we would need to run

the artiq_master command on the main control computer once to let the main control loop run. On a

day-to-day basis, we would run the artiq_dashboard command on our workstations, which will then open

up the ARTIQ dashboard GUI, and communicate with the main control computer through our intranet

regarding job submission and information.

As alluded to earlier on, the only hardware that the main control computer is connected to is the Sinara
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FPGA. The main control computer communicates with the other instruments through remote procedure

calls (RPCs). When this happens, the main control computer talks to the instruments through the auxiliary

control computers. A list of devices is stored in the device_db.py file.

9.3.2 Important folders and files

The folder structure is as follows:

artiq_master/

dataset_db.pyon, last_rid.pyon

repository/

device_db.py

analyses/

eedm.py, analyze.py, h5_unpack.py

applets/

controllers/

experiments/

Commissioned/

Personal_sandboxes/

Utilities/

helper/

gen3_macro.py

ARTIQ_DAC/driver.py

TTL_helper/driver.py

results/

<YYYY-MM-DD>/<HH>/<RID>_<experiment_name>.h5

First we have the home directory artiq_master/, not to be confused with the program artiq_master

mentioned above. It contains two Python JSON files (*.pyon). The dataset_db.pyon stores a list of
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persistent datasets that the users broadcast to the entire system. We use this to broadcast common variables

that could change on a day-to-day basis to every connected workstation, e.g. trap shimming voltages. The

last_rid.pyon file stores the Run ID number of the last run experiment. Within artiq_master/ there are

two folders: repository/ and results/.

Within the repository/ folder, we have a few important things. The device_db.py file stores a

list of devices that the main control computer can talk to through the auxiliary control computers, and the

addresses and ports of the auxiliary control computers.

The analyses/ folder contains the suite of analysis tools that we have developed for the experiment

(Section 9.3.4.3). analyze.py is the main workhorse of the data analysis package. eedm.py is the tool that

gives all the optical pumping, PQR branch simulations, and ThF+ Hamiltonian related tools. h5_unpack.py

is a macro we wrote to unpack the HDF5 files.

The folder applets/ contain the code for the applets that we saw on the ARTIQ dashboard (Figure

9.2). The folder controllers/ contains all the drivers that we wrote for our devices. The drivers usually

contain a list of important commands in the “programmer’s manual” that comes with the device. We try to

use VISA communication with the devices whenever possible.

The experiments/ folder contains all the code with structure mentioned in Figure 9.3 that tells

ARTIQ how to run the experiment. We split it up into three main folders: Commissioned/ for all the code

that have been proven to work, Personal_sandboxes/ for code that each individual would like to mess

around with before commissioning, and Utilities/ for macros to execute small things on devices that are

not directly related to an experiment per se, e.g. ramping the microchannel plate assembly to the right

voltages.

The folder helper/ consists of macros that we wrote to make our lives easier. gen3_macro.py is

a dictionary of names that we assign to TTL channels (see Figure 9.1). The ARTIQ_DAC and TTL_helper

driver files parses high-level commands used by the experimentalists into timing and voltage commands that

ARTIQ understands. For example, it parses the following:

<TTL_helper>.add_pulse(`Trap loading', `Consolidator TTL',\
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pulse_duration = self.pulse_pulser,\

delay_duration = 0)

into a series of <coredevice>.core.seconds_to_mu() commands to set the time for the next event, and

<coredevice>.ttl.TTLOut.on() and <coredevice>.ttl.TTLOut.off() to turn the TTLs on or off at the

corresponding times.

Finally, we have the results/ folder, which contains all the HDF5 files with the data and user input

arguments for all the experiment. This folder is further sorted into the YYYY-MM-DD/HH/ subfolders based

on when the experiment was run.

9.3.3 Communication with auxiliary control computers.

Communication with devices from the main control computer is done through the auxiliary control

computers. We used to write our own TCP/IP communication VIs when we were using the LabVIEW

system. ARTIQ comes with the Simple Python Communication (SiPyCo) library1 that allows us to do just

that, but in a “pythonic” form that is also fully compatible with ARTIQ.

The communication comes in two parts: (i) the drivers with the relevant commands from the devices’

“programmer’s manual”, and (ii) a controller server loop that opens a connection with the device through

the drivers.

Device drivers. The device drivers declare one python class for each device. Upon initiation of

the class, communication is established by the auxiliary control computer with the device if the device is

connected. Users can call on the methods of the class to ask the device to perform certain tasks. We show

an example of a code for a driver in Listing 1.

Controller server loop. The server loop runs on the auxiliary control computer. It runs the

drivers and establishes direct communication with the devices. Within the loop, it listens for RPCs from

other control computers and runs the relevant RPC commands (involving the methods written in the device

drivers). An example of a code for a controller server loop is shown in in Listing 2.

1 SiPyCo used to be part of ARTIQ, but was split out so that one can use the former without having to install the rest of
ARTIQ.
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1 class ds30_cryocooler(_visa_comm): # inherit methods from `_visa_comm`

2 """ DS30 Cryocooler """

3 def __init__(self, visa_resource, baud_rate=None, read_termination=None,\

4 write_termination=None, silent_bool=None):

5 ### Inherit `__init__` from `_visa_comm`

6 if write_termination==None:

7 write_termination = '\r'

8 if baud_rate==None:

9 baud_rate = 9600

10 _visa_comm.__init__(self, visa_resource, baud_rate=baud_rate,\

11 read_termination=read_termination,\

12 write_termination=write_termination,\

13 silent_bool=silent_bool)

14

15 def on(self):

16 """ Turns on cryocooler. """

17 self.WRITE('COOLER=ON')

18

19 def off(self):

20 """ Turns off cryocooler. """

21 self.WRITE('COOLER=OFF')

22

23 def set_TTARGET(self,TTARGET):

24 """ Sets TTARGET (target temperature). Takes in argument `TTARGET`. """

25 self.WRITE('TTARGET={}'.format(TTARGET))

Listing 1: A snippet of the DS30 cryocooler driver. We communicate with the DS30 cryocooler
through VISA. Three methods are shown here: <ds30 cryocooler>.on() to turn the cryocooler on,
<ds30 cryocooler>.off() to turn the cryocooler off, and <ds30 cryocooler>.set TTARGET(TTARGET) to
set the target temperature to TTARGET.

One can talk to a particular device (e.g. to turn the DS30 cryocooler) on a particular auxiliary control

computer connected to the device (e.g. IP address 172.31.1.207, port 7000) from any workstation connected

to the intranet with a SiPyCo command (in the terminal or command prompt) of the form:

sipyco_rpctool 172.31.1.207 7000 call -t ds30 on

where the -t <device_name> flag is to indicate which device to talk to in case the auxiliary control computer

is connected to multiple devices. I recommend the learning graduate student or post-doc to check the manual

on their website (https://m-labs.hk/artiq/sipyco-manual/#remote-procedure-call-tool) for more

information on SiPyCo commands.

In general, it is bad practice to connect all the devices to one auxiliary control computer. Doing so

https://m-labs.hk/artiq/sipyco-manual/#remote-procedure-call-tool
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1 import argparse, sys, asyncio

2 from camera_vimba.driver import mcp_camera

3 from current_control.driver import keysight_current

4 from sipyco.pc_rpc import simple_server_loop

5 from sipyco import common_args

6

7 ### To parse argument for controller

8 def get_argparser():

9 """ Argument parser """

10

11 ### Define argument parser object

12 parser = argparse.ArgumentParser()

13

14 ### Boilerplate

15 common_args.simple_network_args(parser, 7000) # (parser, default_port)

16 common_args.verbosity_args(parser)

17 return parser

18

19 ### Main code

20 def main():

21 ### Boilerplate

22 args = get_argparser().parse_args() # retrieves dict of arguments

23 common_args.init_logger_from_args(args)

24

25 ### Define devices

26 connected_dev = {}

27 try:

28 connected_dev['camera_mako'] = mcp_camera('DEV_000F315C339E')

29 try:

30 connected_dev['Baxgrad_supply'] = keysight_current()

31

32 ### Open server in a loop

33 try:

34 simple_server_loop(connected_dev, common_args.bind_address_from_args(args),\

35 args.port)

Listing 2: An example of a controller server loop. The gist of the code is as follows. We import the
classes from the relevant driver files. We then create a dict of connected devices, with names of the devices
as keys and the relevant class as the values. Then we execute the server loop with simple server loop.

will reduce the bandwidth of the computer to work with all the devices simultaneously. In cases where there

needs to be simultaneous transfer of information from multiple devices, the computer may make unhappy

noises instead.
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9.3.4 The JILA eEDM suite

The ARTIQ software framework is very versatile, and in principle one can write code to run any

experiment of their liking. We can easily scan experiment parameters by using the for loop in python.

However, we quickly realized in the early days of getting familiar with ARTIQ that this is not scalable. We

would have to write a different for loop each time we wish to scan a different parameter or over a different

range. Depending on the order at which we change settings on our devices, changing the order of the for

loops could end up being a total disaster. We need a scalable framework.

To address our needs, we introduce a particular structure to our code.2 We do not claim that this

is the best way of doing it. We also encourage users of the code to come up with creative ways to make the

code more efficient and more streamlined. The code that we use was written in the land of the free, so free

it shall be: free to modify and distribute. This section and the next only serve as a form of documentation

of the code structure that we currently have in our lab. The target audience includes incoming students and

post-docs, and, of course, people who wish to adopt something similar in their labs.

Like all projects that involve coding, one does not hope to be an expert just from reading the doc-

umentation. I certainly do not intend for the content in this section to be fully self explanatory. I highly

encourage new students and post-docs to learn by using our system with the guidance of those who have

already been using it for some time. Hopefully through a combination of hands-on approach and the sum-

mary that I provide here, one would be able to pick up the essence of the JILA eEDM suite, and suit it to

their purposes.

9.3.4.1 Experiment code structure

As alluded to in Figure 9.3, to run an experiment, one writes a class with methods build, prepare,

run, and analyze. Out of the four, only build and run are the absolutely necessary. The former declares

the devices, and the latter is the actual sequence to run for the experiment.

In the JILA eEDM suite, we introduce two types of classes in our attempt to make our code more

2 We learnt about ndscan (see https://github.com/OxfordIonTrapGroup/ndscan) a little too late for us to implement it
with minimal effort in our setup.

https://github.com/OxfordIonTrapGroup/ndscan
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modular:

The “underscored” class: class <experiment>( edmScan). We write the “underscored” class to be as

general as possible within the framework of a type of experiment. For example, we have a class called

_Ramsey(edmScan) that performs a Ramsey experiment: (i) create ions and trap them, (ii) perform

state preparation, (iii) translate ions into the Science region, (iv) perform the Ramsey sequence, (v)

translate ions back into the Octagon, (vi) perform the state detection sequence, and (vii) kick ions

out onto detector. Within each stage, all experiment parameters are set to be user input arguments.

These user input arguments can be set through ARTIQ dashboard; they also have default values if

the user does not wish to change them.

We have a separate “underscored” class for each type of experiment. For example, we also have a

class called _Slosh_Ions(_edmScan) that kicks the ions in the trap to induce slosh: (i) create ions

and trap them, (ii) kick them in a certain direction, (iii) wait for some time, and (iv) kick ions out

onto detector. Evidently this type of experiment is very different from that catered by _Ramsey.

The “underscored” class inherits from class _edmScan(HasEnvironment) that defines all the com-

monly used user arguments under its build method. These user arguments can be shared across

multiple types of experiments, e.g. _Slosh_Ions and _Ramsey. The class _edmScan also has a method

that consolidates all the user input arguments into a list that can be accessed as an attribute of the

class. This list will be used in the non-“underscored” class.

The non-“underscored” class: class <experiment>(EnvExperiment). The non-“underscored” class is

a wrapper around the “underscored” one, where it sets the user input arguments programmatically.

It assigns the “underscored” class as an attribute to itself, and invokes its methods whenever we

need to communicate with our devices. The non-“underscored” class allows the user to choose a user

argument from the list generated by _edmScan, and perform a scan by looping through multiple calls

of the “underscored” class. The non-“underscored” class also allows the user to input “chop names”

that can be parsed by the “underscored” class to switch between various states of the experiment.

This allows lab users to run different variants of the same type of experiment without modifying the
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code each time.

We leverage on the class inheritance mechanism to define non-“underscored” classes that inherit

from the base non-“underscored” classes to perform a fixed set of routine. For example, we can have

class R_branch(Ramsey) inheriting from the non-“underscored” Ramsey. See Figure 9.4) for more

information.

Figure 9.4: Example of having multiple non-“underscored” classes inheriting from the main
non-“underscored” class. The class Pulse Phosphor is used to scan the timings of when to gate the
phosphor off to distinguish phosphorescence signal between Th+ and ThF+. The class R branch is used to
scan the R branch of the REMPD intermediate state.

9.3.4.2 Parsing the code names

As mentioned in Section 4.3.1.2, we use abbreviated one-character code names to represent each laser

and microwave. The JILA eEDM suite turns all the laser and microwaves off by default, but it turns them

on instead if it receives the corresponding code name. For example, it the software receives a string “SU”, it

will turn Sheep and the 43 GHz microwaves on (see Section 4.3.1.1 for the corresponding code names). The

user inputs this under the Chop section of the ARTIQ dashboard interface.

The code that implements this is a parser written in the “underscored” class. It is just a series of if

clauses of the form:

if 'S' in chop_name:

<code to turn Sheep's shutter on>

if 'U' in chop_name:

<code to turn 43~GHz microwave on>



247

...

To differentiate between having the lasers/microwaves turned on during the state preparation and

state detection stages, we use a “+” as a divider. For example, “SU+GL” will turn only Sheep and the

43 GHz microwave on for the state preparation stage, and only Goat and Llama for the state detection stage.

This implementation is just the (upgraded) code version of clicking checkboxes on the LabVIEW GUI

in the Gens. I and II experiments to choose which set of lasers/microwaves to turn on. One can easily scale

up this protocol to include other “switches” (e.g. whether to translate the ions into the Science region) by

encoding the relevant code names into the parser in the JILA eEDM suite.

9.3.4.3 Analysis package

All experiment data and user input variables are saved into HDF5 files after each run. Our analysis

suite is contained in the analyze.py file mentioned in Section 9.3.2. It consists of class get_moments()

that takes in an HDF5 file object and an optional dict of keyword arguments. Upon initialization of the class,

it extracts (i) the capacitively coupled output from the oscilloscopes, and (ii) phosphorescence as captured

by our camera. From here, it massages the data into structured dicts sorted by “chop names” and ascending

order of the scan parameter, if any. This forms the basis of our analysis package.

Within get_moments, there are methods that can take the structured dicts and perform further

analysis, e.g. segregate the detected Th+ ions into those of the two different doublets depending on which

side of the swatch they sit on, and plot out Ramsey fringes for both doublets. One usually writes such

analysis code in their personal sandboxes, and only shares it with others by commissioning it into a method

in get_moments on the demand of others.

There is a wrapper function edm_analyze(fn) in analyze.py. This wrapper function takes in a

filename (of the HDF5 file), analyzes the type of the experiment that was run (saved as metadata in the

HDF5 file), and calls the appropriate methods from get_moments to generate the plots associated with that

type of the experiment.
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9.4 Further discussion

We saw how we borrowed wisdom from the Gen. I experiment in setting up our control system. We

also listed some of the more critical components of our hardware system. We then discussed how we upgraded

our old system to a new one based on the ARTIQ control system. It is mainly an upgrade in the hardware,

but the software comes for free. As with all experiments, the control system is mutable. The control system

evolves with each stage of the experiment. It is up to the lab users to adapt the tools available to them to

their needs.

I led the team in building the control system that we have now. I tried to design it to be as scalable

and modular as possible, guided by my limited foresight of the kind of experiments that we wish to perform

with the setup. Nevertheless, our experiment is heading in the direction of pseudo-continuous operation with

the multiplexed ion trap. This is something that has never been tried in the JILA eEDM labs. Turning an

experiment setup that runs one shot of the experiment at a time into one that can coordinate a pseudo-

continuous operation is certainly non-trivial. Furthermore, it can also be tricky to correlate the stored HDF5

files with the corresponding bucket of ions. Here, I lay out some extensions to our current system that the

group may wish to adopt in their endeavors to get to a fully mature Bucket Brigade experiment.

Idle kernel. The idle kernel is a piece of code that is stored on the core device. It runs whenever the core

device is idle. One can possibly use this like a DDG, spitting out pulses continuously with well

defined delays between them. I imagine using a version of the idle kernel (or another SRS DG645)

to coordinate the pseudo-continuous operations in the Bucket Brigade setup.

Distributed Real Time Input/Output (DRTIO). Verbatim from the ARTIQ website:

DRTIO is a time and data transfer system that allows ARTIQ RTIO channels to be
distributed among several satellite devices synchronized and controlled by a central core
device.

Much like how we have on-board FPGAs that control our DDSes in our Rod drivers, we could lessen

the burden on our core device and distribute it among several satellite devices. This may come in

useful in the future when we find ourselves exceeding 64 TTL channels, or when the core device
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cannot keep up with the number of events happening concurrently.

Upgrading to ARTIQ 7+. New versions always come with new features. One of the features in ARTIQ

7 is that one can now configure the number of FIFO lanes in the scalable events dispatcher (SED)

directly. One of the problems that we see in our experiment is that when we try to schedule too

many events too close in timing, the FIFO lanes (eight of them, by default) fill up and the rest of the

events are jammed. This results in events being skipped, and the experiment does not work. When

the FIFO lanes are full, sometimes it returns an RTIO underflow error (which is already irritating

by itself) but sometimes it does not even return an error (a known bug in our system). It turns out

that configuring the number of FIFO lanes in the SED in our current ARTIQ 6 system is a real pain.

There is a saying that goes, “if it works, do not change it,” because there is always a non-zero chance

that the thing will break with the change. One will need to have great determination to upgrade

our currently working ARTIQ 6 framework into ARTIQ 7+ to get the aforementioned feature. I

shall leave this big decision to the diligent, intelligent, and responsible people in the group after I

am gone.



Chapter 10

Cryogenics

10.1 Introduction

The Ramsey interrogation time in the HfF+ experiments are limited by the radiative decay of 3∆1 →

X 1Σ+. The radiative lifetime was estimated to be about 2 s [86]. This is sufficient for a Ramsey interrogation

time of about 3 s in the Gen. II experiment. As alluded to earlier on, the 3∆1 electronic state is the ground

state in ThF+. This means that we will not be limited by decay from X 3∆1 in ThF+ to any lower lying

states. One limiting factor for our state lifetime (T1) is the rate at which molecules are excited out of

the X 3∆1(v = 0) manifold through blackbody radiation. We have estimated this to be dominated by the

(v = 1) ← (v = 0) channel with a lifetime of about 4 s at 300 K (see Table 4.2). We mentioned in Section

4.2.3 that we can suppress this loss by working with cryogenic temperatures. Figure 10.1 shows how quickly

we can suppress the blackbody radiation photon numbers by going down to lower temperatures. The relevant
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Figure 10.1: Number of blackbody radiation photons. Plotted as a function of wavenumbers for easy
comparison with Figure 10.2.
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energy scales for both molecules are shown in Figure 10.2 for comparison.
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Figure 10.2: Energy level diagram for the lowest lying states for HfF+ and ThF+. 1 cm−1 ≈
30 GHz. Blackbody radiation excitation from the Science state in HfF+ was never a major concern because
the lifetime of the Science state is limited by the radiative decay 3∆1 → X 1Σ+.

In this chapter we shall see how we introduce cryogenics into our setup. We will first look at the

design of our cryogenics setup in the context of the Bucket Brigade (Section 10.2). We will then look at the

performance of the cryogenics system on our b.B.B. (Seciton 10.3). Finally, we will conclude this chapter

with a discussion on possible future upgrades (Section 10.4).
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10.2 Design in the context of the Bucket Brigade

The cryogenic temperature that we are aiming for is only about 150 K. This is not serious cryogenics.

Here is a list of some common cold stuff for comparison.

• Coldest natural temperature recorded in Boulder: 237 K (17 January 1930, from NOAA)

• Carbon dioxide, sublimation point (dry ice): 195 K

• Coldest natural temperature recorded on Earth: 184 K (21 July 1983, Antarctica [87])

• Bucket Brigade: 150 K

• Methane, boiling point: 112 K

• Oxygen, boiling point: 90 K

• Nitrogen, boiling point (LN2): 77 K

• Helium-4, boiling point: 4.2 K

There are many tried-and-tested solutions to cryogenics (e.g. multi-layer insulation1 , cold shields2 ,

and vacuum jacket3 ), many of these are developed for setup involving serious cryogenics where they want

to minimize heat load from the ambient 300 K environment. Although the aforementioned tried-and-tested

solutions are established techniques that have been around for some time, they come with intricate problems

of their own, which can differ from setup to setup. We explored several options with engineers4 from NASA,

many of those involve using LN2, but the size of our setup makes LN2 an expensive option. In the end

we were advised by our in-house Dr. Eric Cornell to try a combination of household insulation foam and a

modest cryocooler to get us down to 150 K.

1 MLIs: multiple layers of thin sheets to suppress radiative heat losses. Commonly used in spacecrafts and cryogenic setup.
This was recommended to us by Dr. Eric Silk from NASA.

2 Cold shields act as heat sinks.
3 Vacuum jackets are vacuum chambers surrounding the main chamber at cryogenic temperature. The vacuum suppresses

conductive and convective heat transfer, so the only mode of heat transport from the cryogenic main chamber to the ambient
room temperature environment will be through radiation. Vacuum jackets are typically used in conjunction with MLIs to
suppress radiative heat transfer.

4 Much thanks to Dr. Eric Silk and Dr. Richard Ottens from NASA.
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This section proceeds as follows. We will estimate the heat load in the Bucket Brigade at steady state

operation (Section 10.2.1). We then look at the effects of (differential) thermal contraction of objects in the

Bucket Brigade which can be made of different materials (Section 10.2.3). Finally, we discuss how we want

to spread the cold from the cold source (Section 10.2.2).

10.2.1 Heat load

The cryogenic part of the Bucket Brigade setup is shown as the blue part of Figure 5.5. For the

purpose of the analysis, we shall work with the schematic diagram shown in Figure 10.3.

Octagon for state prep. Octagon for state det.

Cold Head

Thermal insulation (foam)
Cold Jacket

≈ 30 cm 0.12′′
8′′

300 K 150 KFoam thickness ≈ 7′′

Figure 10.3: Schematic diagram of a simplified setup for heat load analysis. There is one Octagon
on each side for optics access. These are not temperature controlled, and are nominally at 300 K. A long
nipple connects the two Octagon. The dimensions of the nipple are informed by a combination of field
homogeneity simulations (Section 7.3) and what can be bought, say, from Kurt Lesker. A Cold Jacket is
clamped onto the nipple to spread the cold from the Cold Head. The Cold Head is situated at the center
of the setup. The Cold Jacket ends at about 15 cm from each end of the nipple. This provides a natural
temperature gradient from the Octagon at 300 K to the Cold Jacket at 150 K. The nipple and the Cold
Jacket are enclosed by thermal insulation. The Bucket Brigade is not drawn in the schematic diagram to
prevent overclutter.

Heat load in the system comes mainly through three channels: (i) conduction through the nipple,

(ii) radiation/conduction from the Bucket Brigade, and (iii) conduction through the thermal insulation. We

shall first look at the former.

The rate of heat flow per unit time associated with thermal conduction is given by:

P = κ(T )A
dT

dx
=⇒ P = A

∫∆T
κ(T ) dT

∆x
. (10.1)
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Evaluating the above for the nipple with dimensions stated in Figure 10.3, we get a heat load of about 13

and 5.9 W coming in from each side of the nipple for the cases where the nipple is made of 304 SS and

Ti-6Al-4V, respectively.5

For the Bucket Brigade, we expect to work with eight stainless steel Rods, each 0.5′′ in diameter, 1 mm

thick. We assume that the Rods come in thermal equilibrium with the nipple along the axial direction. The

thermal equilibrium comes from radiative heat transfer along the radial direction.6 This gives 250 mW per

Rod per side, totalling to 4 W. Using titanium would half this amount.

For conduction through the thermal insulation, we estimate it for the case where the foam is cylin-

drically symmetric, with the outer surface at 300 K, inner surface at 150 K, total length of 3 m, with a

conductivity of 60 mW/(m K).7 A plot of the conduction power at various foam thickness is shown in

Figure 10.4.
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Figure 10.4: Calculated conduction power through household foam. Foam thickness is defined in
Figure 10.3. The foam is assumed to be cylindrically symmetric, with inner diameter the same as the outer
diameter of the nipple. The foam is set to 3 m long, with the outer surface at 300 K and inner surface at
150 K.

We will also have some structural support that will run down the Bucket Brigade. We do not expect

to use structures that have huge cross sectional area, or much higher thermal conductivity than stainless

steel. The total heat load at steady state from the nipple, Rods, and structural support is estimated to be

about 40 W if all of them are made from stainless steel. Using 7′′ thick foam will give an additional heat

5 Thermal conductance of 304 SS and Ti-6Al-4V are obtained from Table 1A (NIST).
6 There will be some smoothing effect along the axial direction, but we will be ignoring this in our estimation for the heat

load budget.
7 The foam was advertised to have an R-value per inch of 5.48, corresponding to 26 mW/(m K), but we ran tests and found

that the net conductivity between a surface at 300 K and the other at 150 K is about 60 mW/(m K); see Section 10.3.1.

https://trc.nist.gov/cryogenics/Papers/Cryo_Materials.pdf
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load of about 35 W, bringing the total to about 75 W.

Blackbody radiation from the warm ends down the Bucket Brigade contribute to about 30 W (summed

from both sides), bringing the total to about 105 W.

Resistive heating from charging currents running up and down the Rods contribute negligibly to the

heat load (∼ 100 µW). We do not expect any other significant heat load in the Bucket Brigade. However,

one may need to add additional sources of heat from, say, currents flowing in magnet wires used to generate

magnetic fields. These could go up to a few watts. They would contribute to the heat load significantly if

placed in direct contact with the cold.

105 W is a reasonable heat load at 150 K. As we shall see in a later section, we can buy an off-the-

shelf Stirling cryocooler that can operate at around half that heat load, so we just need two of those. It

certainly looks like our modest cryogenic temperature allows us to get away with using a simple cryocooler

and household insulating foam. However, the above only holds if we can spread the cold effectively. We shall

look at how we do this in the next section.

10.2.2 Spreading the cold with the Cold Jacket

The Cold Head is a local heat sink, and we need to spread the cold to the rest of the Bucket Brigade

setup. This requires a Cold Jacket made from a material with high thermal conductivity, like copper or

aluminum. We went through a few iterations for this design, including (see Figure 10.5):

Slab + copper braids. Cold Head attached to the middle of an aluminum slab on the top of the nipple to

spread the cold axially along the top of the nipple. Copper braids wrap around the nipple to spread

the cold azimuthally.

Backbone + ribs. A rib-like structure that hugs the nipple. It comes in two halves, one for the top half,

and one for the bottom. The “backbone” of the rib-like structure will be on the top part of the nipple,

and the Cold Head will be at the center of the backbone. The ribs spread the cold azimuthally, and

replace the copper braids in the previous design.

Clamshells. Two clamshells of half-cylinders. This spreads cold in the same way as the rib-like struture,
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except that we fill in the gaps of the ribs to simplify the geometry.

Octagon for state prep. Octagon for state det.
Cold Head

Thermal insulation

Copper braid300 K 150 K

Nipple

(c)

(b)

(a)

Backbone

Ribs

Top clamshell

Bottom clamshell

Figure 10.5: Early plans for Cold Jacket. (a) Slab + copper braids. (b) Backbone + ribs. (c) Clamshells.

Some design constraints include:

• Being able to fit the Cold Jacket onto the nipple. The copper braid design just involves wrapping

the braids around. The other two designs involve clamping the two halves onto the nipple. Since we

want good thermal contact between the Cold Jacket and the nipple, it could be a little tricky to get
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the machining tolerances right for the latter two.

• Having high thermal conductivity. This means that we would want to use copper or aluminum.

Aluminum is lighter (and cheaper) than copper, so the former is the preferred choice.

To get efficient thermal conduction, though, we would need to have big cross sectional areas. We first

stumbled upon the rib design to save on some materials (and thermal mass). However, we realized that it

complicated the machining process and did not save us that much time and money, so we ended up going

with the clamshell of half-cylinders. Having a big cross sectional area means high thermal mass for the Cold

Jacket. The question now is: will the high thermal mass result in a longer cool down time?

Here I present a simple model for us to understand how the cool down time constant depends on the

design parameters of the Cold Jacket. We make a few simplifying assumptions:

(1) We assume that the thermal mass of the Bucket Brigade system is dominated by the thermal mass

of the Cold Jacket. This is true for a Cold Jacket with large cross section area. This ensures that

the main route of axial thermal transfer is through the Cold Jacket.

(2) We assume that there is no additional heat load. We just want to know how long it takes for us to

extract all the thermal energy from the Cold Jacket.

(3) We simplify the geometry and model the Cold Jacket as a long slab with cross-sectional area A and

length L = 3 m.

This slab is being cooled from the center (x = 0) with a cold thermal bath held at Tcold (skip ahead to

Figure 10.7 for the geometry of this toy model). We discretize the slab into chunks of length ∆x to study the

time required to cool the slab down to some temperature of interest from room temperature. A schematic

is shown in Figure 10.6.

In a short time ∆t, the net energy going into the discrete chunk at x is given by:

(Pin − Pout)∆t =

[
κA

T (x−∆x)− T (x)

∆x
− κA

T (x)− T (x+∆x)

∆x

]
∆t

= κA∆t
T (x+∆x)− 2T (x) + T (x−∆x)

∆x
. (10.2)
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x− ∆x x x+ ∆x

κAT (x−∆x)−T (x)
∆x κAT (x)−T (x+∆x)

∆x

A

Figure 10.6: Schematic of model used to study cool down time of cold plate.

The change in the thermal energy stored in the chunk at x in this time is given by:

U(t+∆t)− U(t) = mc[T (t+∆t)− T (t)] = ρ∆xAc[T (t+∆t)− T (t)].

We equate the two equations above and work in the limits {∆x→ 0,∆t→ 0} to get:

∂2
xT (x, t) =

ρc

κ
∂tT (x, t), (10.3)

where T (x, t) is the time-varying temperature profile of the slab, ρ is the mass density of the slab, c is the

specific heat capacity of the slab, and κ is the conductivity of the slab. Note that the cross sectional area

drops out.

Using the separation of variables, we demand that T (x, t) = X(x)T(t) to get:

1

X
∂2
xX =

1

T
ρc

κ
∂tT = −K2,

where K is some real positive constant to be determined. The solution to the above is as follows:

X(x) = AK sinKx+BK cosKx, (10.4a)

T(t) = e−
K2κ
ρc ·t, (10.4b)

where we conveniently define T(0) = 1. To determine the constants {AK , BK}, first we note by symmetry

of the setup about x = 0, X(x) has to be an even function, so AK = 0. Next, we note that there are two

boundary conditions:

(1) From the cryocooler: T (x = 0, t) = Tcold.

(2) There is no heat flow into the ends (by assumption), so ∂xT (x = ±L/2, t) = 0.
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Actual setup Equivalent setup
by symmetry

Region of interest

x = −L/2 x = L/2x = 0 x = 0 x = L/2 x = L

Figure 10.7: Equivalent mathematical model for the actual setup. Blue and grey areas denote the
cryocooler and the cold-transmitting slab, respectively.

By the symmetry of the second boundary condition above, we recast the problem into an equivalent setup

shown in Figure 10.7.

Also important to note is that we can always add or subtract a constant from T (x, t) from Equation

10.3, so the quantity that matters is the temperature difference. Hence, we demand the following:

(1) X(x = 0) = X(x = L) = 0 =⇒ BK = 0 and K = nπ/L.

(2) X(x) is to be an even function about x = L/2.

(3) X(x = L/2) = Tstart − Tcold.

The above gives:

An = (Tstart − Tcold) ·
4 sin2(nπ/2)

nπ
, Bn = 0 , n ∈ Z+,

and so our final solution is

T (x, t) = Tcold +

∞∑
n=1

(Tstart − Tcold) ·
4 sin2(nπ/2)

nπ
· sin nπx

L
· e−

n2π2κ
ρcL2 ·t

. (10.5)

One important thing to note from the above analysis is that we assumed that κ and c have no temperature

dependence. In the following results, we use values κ = min[κ(T = 150 K), κ(T = 300 K)] and c =

max[c(T = 150 K), c(T = 300 K)] to get the upper bound on cooling time required. The plots below assume

Tstart = 300 K and Tcold = 120 K. We also show plots for the cases where the slab is made of aluminum and

copper.

Time constant We can define the time constant as the following:

τ :=
ρcL2

π2κ
, (10.6)
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which is the decay time constant for the n = 1 mode. Since the higher harmonics decay at rates ∼ en
2

faster

than the fundamental, this time constant gives us a good idea of how fast the system cools down. Figure

10.8 shows the temperature profile of the cold slab at various times.
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Figure 10.8: Temperature profile along cold slab at various times. Ringing in the t = 0 plot is
attributed to taking a finite sum of Equation 10.5 to n = 50 for the numerical plot.

Not surprisingly, copper (OFHC) gives a shorter cooldown time constant than aluminum for the same

dimensions of the slab. Nevertheless, the time constant of about 5 hours for the case of aluminum is already

a very friendly time scale to work with.

Temperature drop Figure 10.9 shows the temperature drop at various parts of the cold slab with

time. We see that the whole setup is cooled down to 150 K in about 10 hours. This means that one can turn
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Figure 10.9: Plots of temperature drop at various positions with time.

the cryocooler on before they leave for the day, and come back the next morning to a nice and cool setup to

begin experiments with.

Cooling power Figure 10.10 shows the cooling power required for the above cooling process. Note

that the powers plotted are those required to cool one half of the slab. This requires us to have two cryocoolers

with cooling power at 80 W at 150 K (or actually 120 K at the Cold Head) placed on both sides of the slab.
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Figure 10.10: Plot of cooling power required versus time. The cooling power here only accounts for
the thermal mass of the slab, and neglects that of the Bucket Brigade. Width of slab is assumed to be 10 cm.
Grey dashed line shows the 80 W mark. Legend shows the thickness of the slab. We need more cooling
power to cool off the extra thermal mass of the cooling slab. Note that the thermal mass of the nipple (and
the Bucket Brigade) is assumed to be small compared to the slab in this (overly) simplified model.

One is actually enough if we are willing to wait a little while more. There are a few places to get cryocoolers

with the cooling power that we need: RIX, Cryomech, and Sunpower.

In this section we simplified the geometry of the cylindrical Cold Jacket to a planar slab. We also

ignored the thermal mass of the nipple and the Bucket Brigade. One can easily show with COMSOL

simulations that making the geometry and thermal masses more faithful only increases the time constants

by order unity. Equation 10.6 still captures the characteristic time scale involved. The time scales are

reasonable time scales that one can be comfortable working with. The cooling power at steady state is also

manageable by cryocoolers that we can buy off the shelf. We believe we have spreading of the cold under

control. In the next section, we shall look at what happens to the system during the cool down.

10.2.3 Thermal contraction

We learn in kindergarten that objects contract when cooled. Even though we are not ambitious in

our cryogenic temperatures, thermal contraction will still be a noticeable effect in our setup. This effect

comes in twice: (i) change in the length of the setup at steady state, and (ii) differential changes in length

for different parts of the setup during the cooldown. We shall look at the former first.

Thermal contraction at steady state. Using temperature-dependent thermal expansion coeffi-

cients from NIST, the absolute changes in length (of the 300-cm apparatus) during the temperature change

from 300 K to 150 K and 300 K to 120 K were calculated for 304 SS and Ti (Table 10.1). For a setup made

https://www.rixindustries.com/thermoacoustic-stirling-cryocooler
https://www.cryomech.com/products/al60/
https://www.sunpowerinc.com/products/stirling-cryocoolers/cryotel-cryocoolers/ds-30
https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph29.pdf
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150 K 120 K

∆L 304 SS (cm) -0.648 -0.756
∆L Titanium (cm) -0.348 -0.393

Table 10.1: Thermal contraction of a 3 m long setup. We calculate for stainless steel because it is very
strong (and cheap), so having the Bucket Brigade made from stainless steel will be strong. Titanium is also
strong. Furthermore, it is non-magnetic. However, it is much more expensive than steel. Our current setup
uses 304 SS and the “non-magnetic” 316LN SS, but we have plans to upgrade to titanium in the future to
suppress spatial magnetic field noise coming from the material.

fully from stainless steel, we expect the whole setup to contract by slightly more than 5 mm. This implies a

few things:

(1) We will need to install expansion tubes on at least one side of the nipple so that the thermal

contraction does not result in strain on the structural support of our setup.

(2) If the Bucket Brigade is one continuous structure, it will not end up aligned both with the Octagon

for state preparation and the other Octagon for state detection after cooling down. We will either

have to (i) break up the Bucket Brigade into smaller sections so that the thermal contraction does

not manifest all on one end, or (ii) be comfortable with realigning optics and reoptimizing the ion

ejection protocol every time we warm up or cool down the Bucket Brigade setup. We may have field

homogeneity concerns if we do the former. We have to ensure that the graduate students are well

fed if we want to go with the latter.

Differential thermal contraction during cool down. In the above, we discussed the problem

at steady states, i.e. comparing the setup when it is warm and when it is cool. There could also be problems

during the cool down. Different parts of the Bucket Brigade setup will not be at the same temperature

during the cool down. The parts closer (thermally) to the cryocooler will be colder than the rest, and so

they will thermally contract first. The Bucket Brigade sits in the nipple, and is supported by the structural

support which makes points of contact with the nipple. When the cool down happens, the Bucket Brigade

will cool down slower than the nipple, and the nipple will contract first. This will result in strain between

the nipple and the contact points of the Bucket Brigade. This strain could deform the Bucket Brigade, albeit

so slightly, and change the positioning of our electrodes. Given that we care about field inhomogeneity down
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to a level of 0.01%, and that position tolerances of the Rods are only on the order of 100 µm, we will need

to ensure that the structural support is strong enough to withstand strains from the differential thermal

contraction.

Caterpillar action from differential thermal contraction during cool down. Furthermore,

even if the structural support is strong enough to ensure that our electrodes do not move, there could be

another problem. If the differential thermal contraction between the nipple and the Bucket Brigade is large

enough to cause the contact points to slip and stick at a new place, the Bucket Brigade may end up moving

along the nipple like a caterpillar after a few warm-up–cool-down cycles unless we secure the Bucket Brigade.

Securing one structure is still relatively easy, but if we wish to break up the Bucket Brigade to ensure that

the thermal contraction does not manifest all on one end, then we will have to secure all those structures

to the nipple. It is not immediately obvious at the point of this writing how we want to do this inside the

nipple.

We are testing the cryogenics out in the b.B.B., and we are learning as we go along. We are not seeing

any major issues with this 1/3-scale prototype yet, but we are cautious in our design of the full scale Bucket

Brigade. Let us now look at the state of cryogenics in the b.B.B..

10.3 Current status in the baby Bucket Brigade

The short version of the current status of the cryogenic system in the b.B.B. is that it works. We have

already seen in Figure 4.13 all the way back in Chapter 4 showing the effect of cryogenics on increasing our

T1 time. We shall go into a little bit more detail in the next few sections, partly to serve as documentation.8

We will first look at characterization of the properties of the household insulation foam (Section 10.3.1).

We then look at the specifications of our cryocooler (Section 10.3.2). Finally, we shall discuss the effective

temperature that the ions see at the Science region (Section 10.3.3).

8 Or, looking ahead into Section 10.4, an obituary of using household insulation foam for insulation in the Bucket Brigade
setup, documenting all the fun times we had with foam. Spoiler alert: we have plans to move away from household insulation
foam.
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10.3.1 Household insulation foam

10.3.1.1 Foam versus aerogel

Before we dive into the fun we had with foam proper, we should first address the debate the group had

early on in the cryogenics design. Having given up on vacuum jackets and MLIs, we were still presented with

two choices for thermal insulation: household insulation foam and aerogel. There were many uncertainties

back then, and I will list some of them here:

Foam. • How does foam perform at 150 K? Will it crumble at low temperatures?

• Can we spray it evenly enough that there are no air pockets?

• Are the foam kits from Home Depot going to work? If not, where should we get them?

• How does foam react to condensation and frost?

• Is it safe for us to spray it ourselves?

Aerogel. • The datasheet (for Cryogel Z) includes 150 K, but how much can we trust it, especially given

our inexperienced skills in wrapping it?

• How hard is it to wrap it? How do we wrap it?

• Aerogel feels powdery to the touch between the layers. This is bad for optics. How bad will it

be for optics in the long run?

• How does aerogel react to condensation and frost?

• How bad will it be for us when we cut and wrap it? Is it going to be like asbestos?

Just looking at the datasheets, we see that aerogel boasts a thermal conductivity of only 14 mW/(m

K) at 150 K. Aerogel is also the tried-and-tested insulating material used in many cryogenic applications.

Aerogel can also withstand baking temperatures of up to 125 ◦C, whereas foam starts to degrade at around

70 ◦C. A lot can be said for using aerogel. However, we know for a fact that aerogel is bad for optics. We

will have to wrap the nipple up with aerogel with all the surrounding optics covered. It can be a pain if we

need to remove or replace the aerogel when all the optics are in place. Once again, advised by our in-house
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Dr. Eric Cornell, “where’s the fun if we just use standard techniques,” he asked, so we decided to give foam

a try.

10.3.1.2 Recipe for working with household insulation foam

Now that we are committed to foam, we ordered some spray foam kits from Home Depot and started

spraying. We made a container with a 1/30-scale Bucket Brigade (just a half-cylinder) and filled it with

spray foam. Figure 10.11 shows the disaster from our first try.

(a) We thought the foam has cured. (b) It had not.

Figure 10.11: First attempt at spraying foam into a container. A total disaster. We sprayed the foam
in a fume hood, and let it cure for about an hour. The top layer has cured completely, but this forms a
seal preventing the lower layers from curing. The mess was absolutely disgusting. It was very hard to clean.
The uncured part was sticky and left stains. The stains either had to be scrapped off through mechanical
means, or dissolved with acetone (recommended by the internet) which left even stickier stains if not done
thoroughly.

We got smarter with each attempt, and eventually we came up with a recipe:

• Keep the spray foam at room temperature before using it. If not, it will not cure well.

• Spray foam at a distance of about half a meter away at least.

• With a sweeping action, spray a thin layer of foam each time. Allow the newly sprayed foam to

expand and fill gaps naturally. When the foam has stopped expanding, apply the next layer if

desired.
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• Aim for the corners first when spraying, otherwise air pockets will form around the corners.

• When making the mold, line the surfaces with aluminum foil. The foam will stick to the foil, but

one can easily slide the foam that is set out of the mold by detaching the aluminum foil from the

mold.

• After the foam has cured, surfaces that are exposed to air or the aluminum foil will have a nice

finish. However, if one cuts the foam (to shape it into something more convenient), the cut surface

will turn powdery. This is bad for optics. Paint these surfaces with acrylic paint to stop the powder

from coming off the surfaces.

• Outgassing from the spray foam stinks. Do it in a ventilated area.

A photo montage of the whole process is shown in Figure 10.12. This whole process happened at a random

garage that was available to us.9

Before we end this section, we have some closing remarks on foam. The manual says that the thermal

conductivity of the foam will degrade after about 90 days. We have not seen significant degradation of

insulating properties. The current set of foam on the b.B.B. setup is still those that we made on 25 May

2021 (from the photo montage in Figure 10.12). We tried several brands of foam, and we find that HandiFoam

has a better after-feel: less powdery.

Now that we know how to make foam blocks, it is time to characterize the performance of the foam.

10.3.1.3 Characterizing the thermal conductivity

The thermal conductivity of household insulation foam is typically reported as an R-value.10 The

R-value is related to the thermal conductivity through:

κ = ∆x/R-value,

9 Prior to this, the author has never seen a garage before. Having grown up in Singapore reading books written by American
authors who write about elves, forests, and garages, the author is happy to have finally seen at least two out of the three during
his Ph.D..

10 There is a closely related quantity called the RSI-value, and it is the SI version of the R-value, but people in the industry
call the RSI-value the R-value nonetheless. The units have to be determined from context. This is the thermal insulation
version of kilocalories, Calories, and calories. The R-value (inch-Pound system) is expressed in units of ◦F · ft2 · h/BTU. The
RSI-value is expressed in units of K · m2/W. The conversion factor between the two is given by: RSI-value[K · m2/W] ≈
0.176× R-value[◦F · ft2 · h/BTU]. You are welcome.
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Figure 10.12: Photo montage of the process of making the foam blocks. Top row: (i) mold for one
half of the foam, lined with aluminum sheets; (ii) applied first layer of foam; (iii) end product after spraying.
Bottom row: (i) painting the surfaces of the foam blocks with acrylic paint; (ii) cutting the top surface of
the foam block, because it is easier to clamp the two halves together with flat surfaces; (iii) end products.
Shown in this picture are also fellow graduate students Sun Yool Park and Noah Schlossberger; one can also
make out undergraduate Gustavo Santaella cleaning up in the garage; the extra pair of hands holding on to
the foam being cut belongs to JILA instrument maker James Uhrich. James helped us make the big saw to
cut the foam, also shown in that picture.

where ∆x is the thickness of the sample used to determine the R-value. One needs to be careful to ensure

consistency of units (see Footnote 10 below).

Thermal conductivity of foam could be very different at 150 K than at room temperature or normal

winter temperatures. We constructed a simple setup that is a 1/20-scale version of the Bucket Brigade to

test the insulation properties of the foam. Figure 10.13 shows some pictures of the setup.

The idea behind the experiment is simple. We want to measure the thermal conductivity of the foam.

To do this, we need to know (i) the temperature on the inner and outer surfaces of the foam, and (ii) the

heat flux flowing through it. We can measure the temperatures with thermometers. We can also deduce the

heat flux through the foam with conservation of energy flow:

(1) Referring to the top right diagram in Figure 10.13, we see that heat is flowing from the warm outer
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Figure 10.13: Schematic diagrams and pictures of the setup used to test thermal conductivity
of foam. Upper left: setup viewed from an angle. Upper right: parts of the setup. Lower left: the setup
with half of the foam block removed. Lower right: setup with viewing angle of upper left. The teal colored
goop is the sealant used to seal the gap between the two halves of the foam blocks. The tube is hollowed
out in the center to allow access for screws that secure the extension, thermal resistor, and the tube to the
Cold Head. Several holes for resistance temperature devices (RTDs) can also be seen in the left figure. The
extension and tube are made from aluminum, while the thermal resistor is made from Teflon.

surfaces of the foam to the cold inner surfaces of the foam (in contact with the tube).

(2) All the heat flux going through the foam between the thermal resistor and the far right end of the

foam has to go into the tube.

(3) This heat flux has to go through the thermal resistor to get to the heat sink on the Cold Head. This

results in a temperature difference across the thermal resistor.

(4) By using a thermal resistor with a well characterized thermal conductivity, and measuring the

temperature difference across the thermal resistor, we can deduce the heat flux through the foam.
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As a result, there are several key aspects to this setup: (i) foam blocks, (ii) thermal resistor, (iii)

resistance temperature devices (RTDs), (iv) extension,(v) tube, (vi) power resistors, and (vii) sealant. A

table of dimensions and important parameters of the above are summarized in Table 10.2. Before we dive

Part Parameters

Foam Product: Handi-Foam model #P10625
Cross sectional dimensions: 21 cm by 21 cm
Bottom thickness: 2′′ thickness on far end from Cold Head
Top thickness: 3 cm thickness on for cold neck side
Inner diameter (tube part): 76 mm
Inner diameter (cold neck part): 30 mm

Thermal resistor Material: Teflon (McMaster item #9266K82)
Thickness: 1.62 mm (measured)
Diameter: 76 mm
Thermal conductivity at 150 K: 26 mW/(m K)

RTD Model: PT100, DigiKey #1528-2090-ND

Thermal grease Model: Apiezon N Cryogenic Heat-Transfer Greases

Extension Material: aluminum
Length: 30 mm
Diameter: 76 mm

Tube Material: aluminum
Length: 15 cm
Outer diameter: 76 mm
Inner diameter: 51 mm
Base thickness: 1 cm

Table 10.2: Some important parameters of setup used.

into the results, we shall cover a little bit more detail of the setup. We have already seen our recipe for

making foam blocks in Section 10.3.1.2. We shall go through the remainder on the list in the following

paragraphs.

Thermal resistor Using a thermal resistor with known thermal conductivity at 150 K, we can

deduce the amount of heat flowing through it by measuring the temperature difference across the thermal

resistor. We then attribute the heat flowing through the thermal resistor at steady state with the conduction

heat flux through the foam into the tube.

We use Teflon for the thermal resistor because it has a well known thermal conductivity11 at 150 K

of 260 mW/(m K), which allows for a measurable temperature drop (∼10 K) across a piece of reasonable

11 https://trc.nist.gov/cryogenics/materials/Teflon/Teflon_rev.htm

https://trc.nist.gov/cryogenics/materials/Teflon/Teflon_rev.htm
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thickness (∼2 mm) for an expected conduction heat flux through the foam at steady state (∼10 W) simulated

with COMSOL.

Resistance temperature devices (RTDs) The RTDs used in this experiment are PT100 (DigiKey

#1528-2090-ND). These RTDs have a temperature dependent resistance of the form:

R(T ) = R0

[
1 +A · T +B · T 2 + C · T 3(T − 100)

]
,

where T is temperature in Celsius, A = 3.9083× 10−3, B = −5.775× 10−7 and C = −4.138× 10−12 if T < 0

and C = 0 otherwise, and R0 = 100 Ω for the PT100.

We send in about 2 mA of current into each RTD12 and read out the potential difference across each

of them to deduce the temperature of the environment that the RTDs are exposed to. The RTDs are slotted

into machined holes on the extention and the tube of very similar dimensions to the RTDs, and thermal

grease (Apiezon N Cryogenic Heat-Transfer Grease) is applied to the RTDs to ensure good thermal contact

with the surroundings.

Extension The extension is a cylindrical block of aluminum in direct contact with the Cold Head.

Its purposes are (i) to spread the temperature of the Cold Head to a bigger cross-sectional surface area, and

(ii) to act as a holder for an RTD to measure the temperature on one side of the thermal resistor.

Tube The tube is a cylindrical block of aluminum that conducts the conduction heat flux from the

foam to the Cold Head. It has two holes for RTDs on both of its ends. The RTD on the side of the thermal

resistor is used to measure the temperature difference across the thermal resistor, while the RTD on the far

side is there to ensure that things are making sense. We bored the tube out so that we can screw the whole

assembly to the Cold Head from the far end.

Power resistors It turns out that the cryocooler that we have has a minimum cooling power13 .

The working range of the cryocooler is shown in Figure 10.14.

At steady state, our COMSOL simulation suggests a heat load of about 10 W at 150 K. Hence, we

need to introduce active heating elements into the setup to bring the total heat load into the grey region

(about 35 W in total at 150 K).

12 Each RTD is in series with a 2 kΩ resistor, and a total potential of 5 V is applied across the setup.
13 The compressors use air bearing sliders to reduce friction between moving parts, so there is a minimum power that has to

be sent into the compressors to maintain the air flow, which results in a minimum cooling power.
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Figure 10.14: Working range for the Ametek CryoTel DS30 cryocooler. The blue points are the
quoted minimum cooling power, while the orange points are the maximum cooling power that the cryocooler
can deliver. The grey region is a visual aid to the working region of the cryocooler.

The power resistors we use are Ohmite HS10 100R, which are 100 Ω resistors rated for 10 W each.

Three such power resistors are mounted on the Cold Head side of the extension as shown in Figure 10.15.

The power resistors are connected in series, and hooked up to a Variac. The nominal voltage applied on them

at steady state is Vrms = 72.5 V, corresponding to about 17.5 W of additional heat load into the system.

Sealant The sealant’s only function is to seal the small gaps between the two halves of the foam

blocks to prevent convection. We tried two types of sealant: (i) Molykote Valve Lubricant and Sealant, and

(ii) Gasoila Soft-Set Thread Sealant with PTFE.

We noticed that the Gasoila sealant freezes at low temperatures, and it also dries up when exposed

to air in Boulder and turns into a strong glue that holds the two halves together. It is also quite messy to

deal with, so our preferred choice is the Molykote sealant for areas close to delicate parts.

Discussion and Results The results of an instance of an experimental run is shown in Figure

10.16. We performed the experiment with two different runs using two different sets of foam blocks, and also

an additional run to estimate additional heat load from the RTD cables14 . The final result is an effective

conductivity of the foam at about 60 mW/(m K), which is not far away from that of closed-cell foam at

room temperature as quoted in literature15 .

14 This run involves having additional RTDs attached to the tube, and having their cables come out between the two halves
of the foam blocks like the RTDs that are used to measure the temperatures. Each cable brings in an additional 1 W.

15 COMSOL has data on closed-cell foam between 293 K and 373 K. The conductivity quoted at 293 K is 49 mW/(m K).
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Figure 10.15: Power resistors mounted onto the extension.

Note that the value of the measured conductivity is an effective thermal conductivity, because the

calculations assume that the foam blocks have a isotropic thermal conductivity throughout. However, there

is a huge temperature gradient along the thickness of the foam, and we expect the thermal conductivity

to change along the thickness of the foam because of the temperature gradient. So this effective thermal

conductivity is a weighted average of a case with a specific boundary condition. We put the words above

into an equation: approximating the foam blocks as cylinders instead of cuboids, we have for the conduction

power through the foam:

P = κ(T )A(r)
dT

dr
=⇒ P

∫ R2

R1

1

2πLr
dr =

∫ T2

T1

κ(T ) dT

P

2πL
log

R2

R1
= κ̄T1,T2

(T2 − T1)

P = 2πL · κ̄T1,T2(T2 − T1)

log(R2/R1)
,

where L is the length of the setup, {R1, T1} are the inner radius of the foam and the temperature there,

{R2, T2} are the outer radius and the temperature there, and κ̄T1,T2
is the effective thermal conductivity.

We see that as long as T1 and T2 do not change, the effective thermal conductivity will remain unchanged

even if there are changes to the radii.
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Figure 10.16: Temperature readings of RTDs in one experimental run. Points of interest are noted
in the figure. The lower plot of power vs time is obtained from the difference between the values of the blue
and orange lines in the upper plot, i.e., the temperature difference across the thermal resistor.

10.3.1.4 In the baby Bucket Brigade

We now understand the thermal properties of the foam. It is time to scale up the experiment and test

this on the b.B.B.. Figure 10.17 shows the results of using foam as thermal insulation in the b.B.B..

The test shows that the design is a great success. The cold can be maintained by the foam, the cool

down time is acceptable, and the cryocooler has enough cooling power to sustain the cold. Subsequently

with the full setup, including the b.B.B. trap (and ThF+ ions), we demonstrated no problem maintaining

170 K at where the ions sit with a Cold Head temperature of 150 K. The b.B.B. trap also stomped on the

“smoothing out” of the hot and cold sides of the Cold Tube seen in part (d) of Figure 10.17 by restricting

the reach of blackbody radiation from the hotter surfaces. This works using the same principle behind how

MLIs work.

10.3.2 Cryocooler

We now know how to make foam blocks. We also know its thermal insulation properties. It is time to

move on to the next big thing in our cryogenic system: the cryocooler. There are two main things to discuss

here: (i) cooling power of the cryocooler, and (ii) magnetic fields from the cryocooler.
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(a) Simulation of the steady state temperature pro-
file. Numbers shown are temperature contour lines in
kelvins.

(b) Time evolution of the simulated temperature profile
along the inner surface of the Cold Tube.

(c) Test setup. (d) Measured temperature profile with time.

Figure 10.17: Testing the cryogenics out in the b.B.B. setup. In all the simulations and experiment, we
did not include the effect of the b.B.B. trap, i.e. the Cold Tube is empty inside (except for the thermometers).

(a) The Cold Head is set to 120 K, while the exterior surfaces of the foam and the exposed parts of the Cold
Tube are set to 300 K. The Cold Jacket starts at the 40 cm mark.

(b) The Cold Head is set to 150 K for this simulation. The Cold Jacket (40 cm mark) falls below 200 K in
about 14 hours. Bounds are not set on the cooling power in the simulation. Thermal radiation within
the Cold Tube is not included in the simulation.

(c) One half of the foam block is removed to show the insides. The white goop is the Molykote sealant
used to break convective flow along the axial direction of the Cold Tube between the Cold Tube and
the foam. One can also see the Cold Jacket for the b.B.B. here. The Cold Jacket was machined by the
JILA instrument makers.

(d) We placed RTDs along the bottom of the Cold Tube. The Cold Tube was pumped down to about
1 mTorr with a scroll pump. The time constant is longer than those in (b), but it is still within an
acceptable range. The temperature profiles have smoother kinks than in (b) probably because (i) the
temperature on the surfaces are “smoothed out” by blackbody radiation within the inner surface, and
(ii) there is imperfect thermal contact between the Cold Jacket and the Cold Tube.
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10.3.2.1 Cooling power

We had a sneak peak at the cooling power of our cryocooler in Figure 10.14. It has a minimum cooling

power to run smoothly. The consequence is that if the heat load is smaller than the minimum cooling power,

the cryocooler will cool the sample to temperatures below the set point. This is only a problem if the setup

has a small heat load. We expect a heat load of about 80 W on the Bucket Brigade, so this is not a problem.

From Figure 10.14, we also see that the total cooling power at 150 K is also slightly lower than 80 W.

If we find ourselves liking the cryocooler, we could buy another one for a total of two in the Bucket Brigade

setup.

10.3.2.2 Magnetic fields

The cryocooler we have is a Stirling refrigerator. It has two counter-moving magnetic pistons that

are moved by the 60 Hz AC current from the wall. The counter-movement reduces vibration in the setup by

making making use of the symmetry to keep the center of mass stationary.

The magnetic fields from the pistons decay with distance away from the cryocooler. Associated with

the decaying field is a magnetic field with gradients. We saw in Section 8.2 that having an axial magnetic

field gradient gives rise to a non-zero f0. We also saw in Section 6.3 that any spatial inhomogeneity of the

axial magnetic field gradient within the spatial extent of the ion cloud gives rise to decoherence. We can

mitigate these effects by parking our ions far away from the cryocooler. However, the cooling power of the

cryocooler decreases with distance because of the additional heat load that comes with the distance. We

want to park our ions far enough that the fields are homogeneous enough, but close enough that the ions

are still bathed in a 150 K thermal environment. The question now is where should we park our ions?

We measure the magnetic fields of the cryocooler with a setup shown in Figure 10.18. The cryocooler

sits on a movable platform some distance away from an array of magnetometers. The Cold Head points

towards the magnetometer array. The magnetometer array consists of seven magnetometers, one on each end

of the (3D) cross, and one at the center. The magnetometers are Adafruit LSM303 three-axes magnetometers,

connected to an Arduino Uno with I2C communication. The arms of the cross are 9 cm in length, and the

axes are defined to be {x, y, z} in the directions { up, towards the measuring tape, the direction that the
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Figure 10.18: Setup used to measure the magnetic fields from the cryocooler. An array of magne-
tometers arranged in the shape of a cross is shown in the bottom right of the picture.

Cold Head is facing } in a right-handed convention, respectively.

We measure the magnetic field strengths at varying distances between the center of the magnetometer

cross and the Cold Head. We first do this with the cryocooler turned off, i.e. no moving parts in the

cryocooler.

Axial direction We assume that the local magnetic field can be expressed as an expansion up to

first order derivatives:

B(x, y, z) = B0 +Baxgrad

( x
y

−2z

)
+Btransgrad

( x
−y
0
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(
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0
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)
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(
0
z
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)
. (10.7)

Using the parameters that we got from performing a least squares fit of Equation 10.7 onto the data points

acquired, we obtain the variation of Baxgrad with axial distance from the Cold Head, as shown in Figure

10.19. The fit of the form f(d) = ae−bd + c, where a, b, and c are fit parameters, seems to work very well,
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Figure 10.19: Plot of Baxgrad vs d, the distance between the Cold Head and the center of the
magnetometer cross. The fit of the form ae−bd + c, where a, b, and c are fit parameters, seems to work
very well. A Baxgrad of 3.07 mG/cm corresponds to an f0 of 50 Hz for ThF+ at an frot = 150 kHz and
Erot = 60 V/cm.

with d in units of cm, and a = 206(2), b = 0.1116(8), c = −0.33(8). The fit is done after converting the

Baxgrad values to the Ramsey frequency as seen by ThF+ at an frot = 150 kHz and Erot = 60 V/cm. Taylor

expanding f(d) = a exp(−b d) + c about d = d0, we get:

f(d) = f(d0)− b f(d0) · (d− d0) +
1

2
b2 f(d0) · (d− d0)

2 +O[(d− d0)
3].

The constant term is the base frequency as seen by all ions. The linear term is averaged out by ions in

their secular motion in the trap. Evidently, the third term is the first non-trivial term that is responsible

for decoherence within the ion cloud. We see that it scales with the distance between the Cold Head and

the center of the magnetometer cross (d0) as a decreasing exponential, and it scales with the size of the ion

cloud (d− d0) with the second power. For an ion cloud of 1 cm radius at 40 cm away from the Cold Head,

this term corresponds to ∆f = 0.015 Hz, which is 0.03% of f = 50 Hz, not that far away from our desired

0.01%.

Radial direction In the radial direction, the variations are much smaller than the radial direction

at d0 = 40 cm. We did not measure anything significant down to the precision of our magnetometers within

the spatial extent of ion cloud.

Cryocooler turned on Turning on the cryocooler and repeating the experiment gives similar

results down to the precision of our magnetometers.
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Summary To suppress decoherence effects coming from gradients of axial magnetic field gradients

from the cryocooler, we just need to park our ions at least 40 cm away from the Cold Head.

10.3.3 Effective temperature and lifetime

Cryogenics is only applied to part of the b.B.B. setup. This means that the ions will see a non-zero

solid angle of 300 K blackbody radiation photons coming at them. However, as we shall see later on, this

solid angle decreases very quickly as the ions translate into the cold region. The effective rate is then the

rate given by Equation 4.1 weighted by the solid angle of the temperature involved:

Γb.B.B.(f, µ12) =
|µv,v+1|2

6ϵ0ℏ2

∫
ρ

(
f, T (Ω)

)
dΩ,

where µv,v+1 is given by Equation 4.3.

We estimate the effective lifetime for the full 3 m long Bucket Brigade, with both ends open to 300 K,

and Cold Tube cooled to 150 K.16 The results shown in Figure 10.20 are very reassuring. We do not have

to be worried about the ends exposed to 300 K.

10.4 Further discussion

10.4.1 Vacuum

One can see from our design (see, for instance, Figures 10.5 and 10.17) that we do not have access

ports in the cryogenic part of the Cold Tube to install vacuum pumps. Our cryogenic temperature is cold

enough to suppress some outgassing, but it is not cold enough to act as a cryopump, except for water vapor

and some organic molecules. Even without the cryopump action on water and organic molecules, the partial

pressures are already very low in our vacuum chamber after a bake at around 150 ◦C for a few days.

There are currently no vacuum pumps inside the Cold Tube in the b.B.B. setup. The pressure reading

from our ion gauge at the Six-way Cross is at 1 × 10−9 Torr. The pressure is maintained by a 500 L/s

turbomolecular pump and a non-evaporable getter pump at the Six-way Cross (see Figure 7.9). We are

currently limited by T1 losses from ion-ion collisions. We are not seeing signs that we are being limited

16 The b.B.B. has one end open to 300 K, so the estimate for the blackbody radiation excitation lifetime for the Bucket
Brigade will be a lower bound for the b.B.B..
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(b) Effective blackbody radiation excitation lifetime.

Figure 10.20: Effective blackbody radiation excitation lifetime in the Bucket Brigade. We sim-
plified the geometry such the walls of the Bucket Brigade are at 150 K within −150 cm ≤ z ≥ 150 cm and
300 K beyond that. We assume that the radial direction is bound by the inner radii of the Rings at 7.5 cm.

(a) The inset shows the same plot, but in log scale. The yellow dashed lines indicate one bucket in (8 cm).
One can see that the solid angle of 300 K drops to below 10% just one bucket into the cold region.

(b) The lifetime is evaluated for the transition (v = 0) → (v = 1). The vertical dashed lines indicate one
bucket in (8 cm). The horizontal dashed line indicates 20 s. One can see that once we are one bucket
into the Bucket Brigade, blackbody radiation excitation limits our T1 lifetime to only about 20 s.

by ion-neutral collisions, yet. We believe the vacuum in the b.B.B. is good enough for now. If we need to

improve the vacuum, we could put some getters inside the Cold Tube at strategically chosen locations to act

as passive pumps.

10.4.2 Liquid nitrogen, LN2

Liquid nitrogen (LN2) costs about $160 per dewar (240 L) at JILA (circa 2020). LN2 has a latent heat

of vaporization of about 1.6× 106 J/L. This means LN2 costs about $0.40 per watt-day. One would näıvely

think that with 80 W of heat load (Section 10.2.1), this would total to only $32 per day. However, if we bathe

the Bucket Brigade setup in LN2, the temperature would be lower (77 K instead of 150 K), and there would

be additional heat load. So the correct cost would be around $50 per day, still cheap compared to graduate

students17 (accounting only for additional heat load from the increased temperature gradient between the

cold region at 77 K and warm at 300 K). Furthermore, dewars can be magnetic, so we want to put them far

away from the Bucket Brigade, but in doing so the LN2 needs to travel a longer path before getting to the

17 And we know graduate students are only slight more expensive than fresh air in Boulder.
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cold region. Having a longer path means more heat load. Depending on how we do the thermal insulation

and LN2 transport, using LN2 on our setup could easily be just as expensive as a graduate student.

Instead of bathing the Bucket Brigade setup in LN2, we could instead use a temperature regulated

thermostat with LN2 as the cryogen. This has already been demonstrated in the Ye group downstairs, so we

just need to copy the technology over and scale it up. This is highly non-trivial though, but if the magnetic

fields from our cryocooler turns out to be a huge source of decoherence, we have to seek alternative sources

of cold.

10.4.3 Raining cryogen

An alternative cooling method that is being pursued in the group right now is to bridge the cryocooler

and the Bucket Brigade with a cryogen. Much of the cooling power is lost in the long thermal conduction

path between the b.B.B. setup and the Cold Head in the current setup. We could place the cryocooler

far above the b.B.B. setup, where its magnetic fields are small at the region where ions are. We then use

the cryocooler to cool a gaseous cryogen, whereupon it condenses (at the temperature we want) and rains

upon the b.B.B. setup. The cryogen then absorbs heat from the b.B.B. setup and evaporates back up to

the cryocooler. The condensation point of the cryogen can be controlled by choosing a suitable cryogen

and working pressure. This work was started by undergraduate Gustavo Santaella, and is currently being

pursued by graduate student Trevor Wright. The source of the cold need not be the cryocooler, it can be a

pool of LN2. I am excited as to how this will turn out.

10.4.4 Cold shield

One disadvantage of using foam for thermal insulation is that it is bulky. We learnt from the systemat-

ics studies in the Gen. II experiment that magnetic field gradients can be a huge source of systematic errors.

Furthermore, our ions are going to be translating inside the Bucket Brigade, so we do not have the option

to park them at a spot where the fields are the most homogeneous; we need the fields to be homogeneous

and well controlled throughout the Bucket Brigade. This requires some form of magnetic shielding.

Magnetic shielding with µ-metal (or other metals with high permeability) works by concentrating the
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field lines into itself. A nicely sealed enclosure made from µ-metal can give a very nice field-free region inside

it. However, our Bucket Brigade extends in the axial direction to Octagons and Six-way Crosses, so there is

no easy way for us to enclose only the Cold Tube inside the magnetic shielding. Fortunately, if the shield is a

long cylinder, the fields inside the cylinder (with distance inside z greater than the diameter of the cylinder

d, i.e. z ≳ d) can still be suppressed.

The above would work if we can put magnetic shielding right outside the Cold Tube. Leaving the

cryogenic behaviors of the shield aside, we see that the bulky foam is in the way of the shield. The shield

will have to be big to enclose the foam, but it would also lose its effectiveness in shielding external magnetic

fields. The solution is to (i) make the whole cryogenic setup smaller by moving away from foam, or (ii) come

up with a design where the magnetic shield is sandwiched between the Cold Tube and foam blocks, or even

within an inner and outer layer of foam.

Whatever we end up doing in the full Bucket Brigade setup will likely look quite different from what

we have now. Much of what I have described in this chapter will become outdated. I seek solace in that this

chapter has been fun, with many pretty looking pictures of the setup.



Chapter 11

Conclusion

This thesis has been a rather extensive investigation on the prospects of performing a multiplexed ion

trap eEDM experiment with ThF+. The group is currently working on suppressing ion-ion collisions hoping

to demonstrate 20 s coherence time. These collisions can be reduced by working with a weaker confining

trap, but we first need to reduce the spatial gradients of the ponderomotive potentials from the rotating

electric fields; the trap was ramped up to retain ions with the deconfining ponderomotive potentials.

The group is also branching out into many exciting new directions, and I shall list some here:

REMPD 1+(532 nm) (Section 3.4.2). I foresee in the near term performing the survey spectroscopy

will be a now-or-never experiment. We would like to settle down on the beam directions and

polarizations so that we can design the rest of the setup around the constraints imposed upon

us by the two-state detection protocol.

New ion detector (Figure 7.13). We believe that the current setup introduces substantial lensing effects

because the microchannel plates are recessed from the flange into the assembly. We could upgrade

to a better designed ion detector system after we settle on the REMPD protocol. If we found a

protocol such that KEdissoc. is much larger than what we have now, we may need to get a larger ion

detector to capture all the ions; or we need to introduce ion optics to focus them down (still in the

velocity mapping regime).

Using Ω = 0+ for depletion (Section 4.3.1.1). This would allow for a cleaner depletion fromX 3∆1(v =

0, J = 1) instead of using Goat.
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Multiple buckets. What is the point of having a prototype of a multiplexed ion trap if we are not using

it multiplexed? Multiplexing the experiment in the b.B.B. will be slightly different from that in the

Bucket Brigade in the sense that operations in the b.B.B. will not be pseudo-continuous, but will

still be a single shot experiment. Nevertheless, it will still be meaningful to try preparing multiple

buckets of ions and performing a simultaneous Ramsey experiment on all of them, first-in-last-out.

Magnetic shielding (Section 10.4). The JILA eEDM group has not experimented with magnetic shield-

ing yet. We managed to get away with this because of our rotating quantization axis behaves like

a lock-in detector, making us very insensitive to uniform ambient fields. Unfortunately, the g-factor

in ThF+ is larger than HfF+, and the rotation micromotion is also larger because we are using a

smaller frot in Gen. III than II. These two combine to make us about thirty times more sensitive

to magnetic field effects than the Gen. II experiment. Aiming to break our Gen. II record, we need

magnetic shielding.

New cryogenic scheme (Section 10.4). This will help with the design for magnetic shielding by making

the cryogenic setup more compact. It will also move the magnetic cryocooler further away from the

ions (or remove it totally).

Catching ions with Erot. We ramp Erot up after we caught our ions in the trap in the b.B.B.. However,

the Bucket Brigade requires pseudo-continuous operation. It would be great if we can catch our

ions with Erot always turned on. We would match the phase of Erot with when the molecular beam

enters the trap. Since the molecular beam goes into the trap at a speed lower than the rotation

micromotion, we will have to accelerate the ions instead of stopping them.

More DAC channels (Section 7.5.2). We now have two sets of DAC channels that allow us to switch

the voltages on the Rings between a short pulse (e.g. stop pulse to stop the ions) and a steady state

(e.g. usual trapping conditions). Much can be said for having a third channel so that we can, say,

switch from stop pulse (to stop the ions) to kick pulse (to eject the ions from the trap) to ground (so

that the ions see no fields for the rest of the flight to the ion detector). This will involve upgrades

to the current Ring driver.
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Testing out various f0-generating Plans (Chapter 8). As we learn about the decohering mechanisms

and possible new systematic effects in the b.B.B. we may want to explore various plans of introducing

f0.

New π/2 pulse. Depending on the Plan we decide to use in the end, there could be more novel π/2 pulses

that we can use. The current π/2 pulse involves ramping Erot, but this would be bad for ions in

neighboring buckets in the Bucket Brigade. We could, instead, sweep through f0 = 0 in some kind

of an adiabatic rapid passage in some way that would only affect this local bucket and not the

neighboring ones.

Travelator. The state preparation and detection stages of the experiment are quite destructive to the

quantum states: they move population around the Hilbert space. When we perform these operations

to the relevant buckets, we do not want ions in the neighboring buckets to be affected. One way

to do this is to keep the buckets undergoing these operations well separated in space from the next

bucket. Once state preparation is done, we move the bucket quickly into the cold region and match

the translation speed with the rest of the buckets. On the far end, we also pull it out quickly to do

the state detection sequence. We call this problem the travelator: it is like matching one’s walking

speed when hopping on or off a travelator at the Denver International Airport. One could try this

out in the b.B.B..

Fighting against aging flashlamps, thinking about whether vacuum is broken during summer when

power surges at JILA are common, and with so many things to try, the JILA eEDM group will stay busy

for quite some time. With that, I present you an incomplete guide on using ThF+ for an eEDM experiment,

the first of its series, with many more to follow.
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Appendix A

Paul Trap and Mathieu Equations

A.1 Introduction

Paul traps come in various geometries, and I will just list two here:1

3D Paul trap. The original Paul trap. The electrodes consist of a ring shaped like a hyperboloid, and two

hyperbolic cylindrically symmetric caps placed on either side of the ring. An electric field oscillating

at an RF frequency is applied between the ring and caps for radial confinement. A DC potential

is applied on the caps w.r.t. the ring for axial confinement. See, for example, Figure 6 of Ref. [81].

The electrodes are shaped like hyperboloids because the equipotential surfaces for a quadrupolar

potential are hyperboloids.

2D/linear Paul trap. Originally used as a quadrupole mass filter; only charged particles with the right

charge-mass ratio can stay within the “trap” (see Figure 4 of Ref. [81]). The electrodes consist of

two sets of radial electrodes, and end caps on either end of the radial electrodes. An electric field

oscillating at an RF frequency is applied between the two sets of radial electrodes for radial confine-

ment. A DC potential is applied on the end caps w.r.t. the radial electrodes for axial confinement.

See, for example, Figure 1 of Ref. [77]. The electrodes are sometimes shaped like hyperboloids, but

usually they are of the shape of more convenient geometries, e.g. rods for radial electrodes, plates

for end caps. The potentials generated by these electrodes will not be of a pure quadrupolar form,

but the quadrupolar potential is the most dominant one at the trap center.

1 Check out R. Bradford Blakestad’s thesis from the Wineland group for a compilation of common geometries not mentioned
here (e.g. surface trap, wafer traps, wire trap).
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The equations of motion have the form of a Mathieu’s differential equations (see Section A.4), so the motion

of the ions in a Paul trap are described by the Mathieu functions. Hence, the working of Paul traps are

usually parameterized in terms of the Mathieu parameters (a, q) to be defined below. One thing to note is

that the relation between the Mathieu parameters to the trap configuration depends on whether it is a 3D

or 2D Paul trap. Here, I summarize the expressions for a 2D Paul trap, our Paul trap.

A.2 Definition of variables

There are quite a number of variables used throughout this appendix, so here I present a list of all

the parameters.

Spatial coordinates, x, y, z. The spatial coordinates in the Cartesian system. The trap center is defined

to be at x = y = z = 0. The z axis is defined to be along the axial direction.

RF voltage amplitude, Vrf,0. The amplitude (peak) of the RF voltage on the radial electrodes.

Effective radial distance, R0. The effective radial distance of the radial electrodes from the trap axis.

This would be the radial distance of the hyperboloid surface of the radial electrode from the trap

axis if it were shaped like a hyperboloid.

RF angular frequency, ωrf . The angular frequency of the RF oscillation.

DC axial voltage, Uec,0. The potential difference between the z = 0 plane and the end cap. Usually this is

just the voltage applied on the end caps, because the radial electrodes are at DC ground. However, in

our Bucket Brigade, we apply a sinusoidal spatial modulation on the voltages on the Rings, so Uec,0

would correspond to the peak-to-peak voltage applied on the Rings. See Figure A.1 for a comparison

between the definitions for linear Paul traps and the Bucket Brigade.

Effective axial distance, Z0. The effective axial distance of the axial electrodes from the z = 0 plane.

This would be the axial distance of the hyperboloid surface of the caps from the z = 0 plane if it

were shaped like a hyperboloid. In the Bucket Brigade, this parameter is just there to parameterize
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U = Uec,0/2

U = Uec,0/2

U = −Uec,0/2

U = 0

U = 0

U = Uec,0

U = Uec,0

U = 0

Linear Paul trap Bucket Brigade

...

...

z

Figure A.1: Comparing definition of Uec,0 between conventional linear Paul traps and the Bucket
Brigade. The red blob represents the ion cloud. Left: a linear Paul trap. The red boxes indicate end caps,
while the blue fins indicate radial electrodes. The radial electrodes are held at DC ground. Right: the Bucket
Brigade with Rings and Rods. Rods are colored blue. The Rings are represented by colored horizontal lines.

the curvature of the axial trapping potentials as a “length”; it does not correspond to the distance

from the ion cloud center to any Ring.

DC radial quadrupole voltage, VDC,0. Half of the DC potential difference between the two sets of radial

electrodes, defined to be positive for the set of radial electrodes along the x direction. This DC

voltage will introduce a DC quadrupole potential in the radial direction, making the trap more

confining in x and deconfining in y for a positive VDC,0. We turn this on sometimes to filter away

the heavier species from our trap, e.g. ThF+
2 . Some non-zero effective VDC,0 may be present due to

patch charges on Rods.

Mathieu a parameter. Contains all the information of the DC voltages. Typically a ≈ −0.0027.

Mathieu q parameter. Contains all the information of the RF voltages. Typically q ≈ 0.14.

Angular secular trap frequency, Ω. To flash out the secular frequencies from the rest of the frequencies

in this appendix, we use Ω instead of ω to represent angular secular trap frequencies for the rest of

this appendix.

Electric charge, e. The charge of our singly charged ion.

Ion mass, m. The mass of our ion.

The rest of the sections will just list the equations involved with minimal elaboration.
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A.3 Potentials

RF potential

Vrf = Vrf,0

(
x2 − y2

R2
0

)
cosωrft. (A.1)

DC end caps

Uec =
Uec,0

Z2
0

(
z2 − x2 + y2

2

)
, where Uec,0 is the peak-to-peak voltage on Rings. (A.2)

DC electrodes

VDC =
VDC,0

R2
0

(x2 − y2).

Total electric potential

Vtot =

[
−
(
Uec,0

2Z2
0

− VDC,0

R2
0

)
+

Vrf,0

R2
0

cosωrft

]
x2 +

[
−
(
Uec,0

2Z2
0

+
VDC,0

R2
0

)
− Vrf,0

R2
0

cosωrft

]
y2 +

Uec,0

Z2
0

z2.

A.4 Equations of motion

Total force 
ẍ

ÿ

z̈

 =



[
−
(

Uec,0

2Z2
0
− VDC,0

R2
0

)
+

Vrf,0

R2
0
cosωrft

]
−2e
m x[

−
(

Uec,0

2Z2
0
+

VDC,0

R2
0

)
− Vrf,0

R2
0
cosωrft

]
−2e
m y

Uec,0

Z2
0

−2e
m z

 . (A.3)

Form of Mathieu equations

λ̈(τ) = (−a+ 2q cos 2τ)λ(τ).

Our Mathieu equations Performing the transformations 2τ := ωrft and ∂t =
ωrf

2 ∂τ on Equation

(A.3) gives: 
ẍ

ÿ

z̈

 =



[
−
(

Uec,0

2Z2
0
− VDC,0

R2
0

)
+

Vrf,0

R2
0
cos 2τ

]
−8e
mω2

rf
x[

−
(

Uec,0

2Z2
0
+

VDC,0

R2
0

)
− Vrf,0

R2
0
cos 2τ

]
−8e
mω2

rf
y

Uec,0

Z2
0

−8e
mω2

rf
z

 ,
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where we can define the following:

ax = − 8e

mω2
rf

(
Uec,0

2Z2
0

− VDC,0

R2
0

)
qx = − 4e

mω2
rf

Vrf,0

R2
0

ay = − 8e

mω2
rf

(
Uec,0

2Z2
0

+
VDC,0

R2
0

)
qy =

4e

mω2
rf

Vrf,0

R2
0

az =
8e

mω2
rf

Uec,0

Z2
0

qz = 0,

and relate to the more familiar forms:

a0 = − 4e

mω2
rf

Uec,0

Z2
0

< 0 ax = −|a0|+ a′ qx = −q0

a′ =
8e

mω2
rf

VDC,0

R2
0

> 0 ay = −|a0| − a′ qy = q0

q0 =
4e

mω2
rf

Vrf,0

R2
0

> 0 az = 2|a0| qz = 0

Secular frequencies

Ωz =
ωrf

2

√
az , Ωx,y =

ωrf

2

√
ax,y + q20/2. (A.4)



Appendix B

Typical Parameters for the Bucket Brigade

In this part of the appendix, we present (i) the typical trap parameters of the baby Bucket Brigade for

quick reference to ion dynamic quantities, and (ii) typical experiment and molecular parameters that could

go into the study of possible systematic effects in Gen. III.

B.1 Trap parameters

Parameter Value Comments

Ring inner radius 7.5 cm ×90% Scaled down to make space for structural support.
Ring outer radius 8.5 cm ×90% Scaled down to make space for structural support.
Inter-ring spacing 2 cm 4 Rings per bucket.
Rod outer diameter 0.5′′ Stock dimension.
Rod radial distance 6.5 cm ×90% Center-to-center. Scaled down to make space for structural support.

Erot per Vrot 14.0 (V/m)/V From COMSOL simulations.
Vrot 430 V For Erot = 60 V/cm.
R0 5.36 cm From COMSOL. Effective radial distance of radial electrodes.
Vrf,0 25.6 V RF voltage for radial secular frequency of 2 kHz, Vrf,0 ∼ fsec,radial.
Z0 33.8 cm From COMSOL. Effective axial distance of “end caps”.
Uec,0 19.9 Vpp “End cap” voltage for axial secular frequency of 2 kHz, Uec,0 ∝ f2

sec,axial.

ωrf 2π × 50 kHz RF frequency.

Table B.1: Table of typical parameters for the (Baby) Bucket Brigade. Refer to Appendix A for
the definition of the variables. R0 is obtained from a fit to the potential within 2 cm of the trap axis.
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B.2 Internal state and trapping field parameters

Parameter Value (to 3 s.f.) Notes

deEeff 2π × 0.851 µHz Assuming de = 10−31e · cm.
A|| 2π ×−20.1 MHz Hyperfine splitting constant.
Ehf 2π ×−15.1 MHz Hyperfine splitting.
ωef 2π × 5.29 MHz Ω-doubling splitting constant.
dmf 3.37 D 2π × 1.70 MHz/(V/cm).
Erot 60 V/cm .
Ecapture 18.8 V/cm Supersonic expansion speed for Neon is 780 m/s.
ωrot 2π × 147.5 kHz .
Erot 93500 K Kinetic energy of rotational micromotion.
rrot 2.69 mm Radius of rotational circular motion.

rcapture 0.842 mm Radius of capture circular motion.
dmfErot 2π × 102 MHz .

3
2γF=3/2dmfErot 2π × 50.9 MHz Stark shift of mF = ±3/2 states in J = 1.

gF=3/2 −0.0149 Sign not measured.
gF=1/2 - -
Baxgrad 2.97 mG/cm -
Brot 799 µG -

3gFµBBrot 2π × 50 Hz Zeeman splitting.
δgF /gF −2.55× 10−3 At Erot == 60 V/cm.
∆u 2π × 0.511 Hz .
∆l 2π × 1.43 Hz .
B⊥ - -

ωx,y,z 2π × 2 kHz Trap secular frequencies.
r1σ 0.251 cm 1σ radius of ion cloud.
T 30 K Temperature of ion cloud.
Ez 20.6 mV/cm Axial electric field for confinement at 2σ radius.
Erf 0.447 V/cm RF field strength at 1σ radius.
ωrf 2π × 50 kHz RF frequency
⟨Erf⟩ 15.5 mV/cm Averaged over one Paul cycle.
Erf 22.6 K Kinetic energy of RF micromotion over one Paul cycle.

Ttrap,z 1000 K Trap depth along the z direction.
Ttrap,ρ 2100 K Trap depth along the radial direction.

Table B.2: Table of typical parameters for the Gen. III experiment. Additional notes:

• Ez = mω2
zz/e.

• Erf = Vrf,ppr1σ/R
2
0, where R0 is given in Table B.1.

• ⟨Erf⟩ = eE2
rf

2mω2
rfr1σ

(Huanqian’s thesis Equation 4.7) and is lightly larger than Ez because of deconfining

potential from rings.

• Erf =
e2E2

rf

4mω2
rf

(Huanqian’s thesis Equation 4.8).



Appendix C

Hamiltonian

C.1 Introduction

Writing out the full Hamiltonian is highly non-trivial. The details of the Hamiltonian are scattered

across many papers [14, 25] and theses of previous group members. This chapter seeks to (i) consolidate

information pertaining to ThF+, (ii) address common pitfalls in understanding1 , and (iii) serve as a reference

for the previous chapters.

Before we go into the details of the Hamiltonian, it serves to address the first common pitfall in

understanding: frames of reference. Two frames of reference are used in the evaluation of the Hamiltonian:

(i) frame defining the quantization axis, and (ii) frame of the molecule. The former is defined to be a frame

of reference that is rotating with Erot, and we define quantum numbers like F , mF , and J in this frame of

reference. The latter has quantization axis defined along the internuclear axis, pointing towards thorium,

and we define the quantum number Ω in this frame of reference.

C.2 Terms in the Hamiltonian

The Hamiltonian has this simple form:

H = Hhyperfine +HΩ-doub. +Hrot. +HStark +HZeeman +Hoffset(v, J) +HeEDM. (C.1)

The following sections go into the details of each term in order.

1 Mainly to do justice to the insane amount of time I put into understanding and writing legible code to solve the Schrödinger’s
equation, and to lessen the burden on whoever the new Hamiltonian custodian is.



299

C.2.1 Hyperfine

The hyperfine splitting arises from the interaction between the total angular momentum J and the

total nuclear spin I. Since 232Th has no nuclear spin, the nuclear spin comes solely from the spin-1/2 19F

nucleus. Since the angular momenta precesses around the internuclear axis n, the interaction energy has the

form: Ehyperfine ∼ (I · n) (J · n). Using the projection theorem (e.g. Sakurai Equation 3.10.40), we have:

Hhyperfine = A||
F2 − I2 − J2

2J2
, (C.2)

where A|| is the hyperfine splitting constant; F = I+ J, I, and J are the hyperfine states, nuclear spin, and

total angular momentum, respectively.

For ThF+ in the X 3∆1(v = 0) manifold where I = 1/2, we have the ratio

∆Ehyperfine,J=1/∆Ehyperfine,J=2 = 9/5,

which says that the hyperfine splitting in the J = 1 state is larger than that in J = 2.

C.2.2 Ω-doubling

The Ω-doubling splitting arises from the interaction between electronic and rotational motions that

splits the energy degeneracy of Ω = J · n of opposite signs2 . This Hamiltonian only couples |Ω⟩ to | − Ω⟩

with the same J , F , and mF . In our group, we defined it as:

HΩ-doub. =
⊕
J≥Ω

(−1)J

2
ℏωefΩ

(J)
x , (C.3)

where
⊕

is the direct sum, ωef is the energy splitting between the two Ω levels for J = 1, and Ω
(J)
x connects

states of Ω with opposite signs within the same J subspace:

Ω(J)
x =

J(J + 1)

2

[
|J,Ω = +1⟩⟨J,Ω = −1|+ |J,Ω = −1⟩⟨J,Ω = +1|

]
.

The Ω states are connected to the parity states |±⟩ through:

|Ω = ±1⟩ = |+⟩ ± |−⟩√
2

.

The factor (−1)J is there to account for the alternating parity with J .

2 For more details see Chapter 7.9 of Dave DeMille’s book [88].
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C.2.3 Rotation

Since we are operating in a rotating reference frame defined by Erot, there is a non-inertial-frame

term in the Hamiltonian. This is the part of the Hamiltonian that is responsible for Berry’s phase. This

Hamiltonian couples states with ∆mF = ±1 with the same F , J , and Ω. We define the z-axis to be pointing

in the direction of Erot, and the x-axis to be anti-parallel to the (counter-clockwise) rotation vector. Hence,

we have:

Hrot. = ℏωrot.Fx, (C.4)

where Fx = F++F−
2 , F±|F,mF ⟩ =

√
(F ∓mF )(F ±mF + 1)|F,mF ± 1⟩, and ωrot. is the angular frequency

of Erot.

C.2.4 Stark

In the presence of external electric fields, states of opposite parities are mixed to give us states of

good Ω. The mixing happens across states of different J and F , but share the same Ω and mF . Hence,

states between J = 1 and J = 2 can couple to each other, and depending on the exact energy difference

between the coupling states, properties like the magnetic g-factor can be different between the upper and

lower doublets. Expressing the Hamiltonian in element-form, we have:

HStark = −dmfn · E = −dmf

∑
p∈{0,±1}

Ep × (−1)F+J′+1+I


J F I

F ′ J ′ 1


× (−1)F

′−m′
F

√
(2F + 1)(2F ′ + 1)

 F ′ 1 F

−m′
F p mF



× (−1)J
′−Ω′√

(2J + 1)(2J ′ + 1)

 J ′ 1 J

−Ω′ q = 0 Ω

 . (C.5)

We have chosen q = 0 because the dipole is aligned along the internuclear axis, and p = 0,±1, which

correspond to the spherical tensor components. The derivation is long, so I recommend interested readers

to start from page 167 in Brown and Carrington [47].
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C.2.5 Zeeman

In the presence of external magnetic fields, states of different F are mixed. Since the magnetic g-factor

depends on F , we get different extents of mixing of gF depending on the exact energy difference between

the coupling states. This is the other reason for a differential g-factor δg. In the presence of weak external

magnetic fields, J couples more strongly to the internuclear axis than the external magnetic field, and the

Hamiltonian can be expressed in the following form:

HZeeman = −G||µB(J · n) (n · B)− gNµNI · B, (C.6)

where gN is the nuclear g-factor of 19F, and G|| is related to the hyperfine g-factor through the following

[89]:

gF = −G||
F (F + 1) + J(J + 1)− 3/4

2F (F + 1)J(J + 1)
+ gN

µN

µB

F (F + 1)− J(J + 1) + 3/4

2F (F + 1)
,

which evaluates to 1
3

(
−G|| + gN

µN

µB

)
for F = 3/2, J = 1. Evaluating the dot products in the Hamiltonian

give:

(J · n) (n · B) = Ω
∑

p∈{0,±1}

Bp × (−1)F+J′+I+1


J F I

F ′ J ′ 1


× (−1)F

′−m′
F

√
(2F + 1)(2F ′ + 1)

 F ′ 1 F

−m′
F p mF



× (−1)J
′−Ω′√

(2J + 1)(2J ′ + 1)

 J ′ 1 J

−Ω′ q = 0 Ω

 .

I · B =
∑

p∈{0,±1}

Bp × (−1)F
′+J′+I+1

√
I(I + 1)(2I + 1)


I F ′ J ′

F I 1


× (−1)F

′−m′
F

√
(2F + 1)(2F ′ + 1)

 F ′ 1 F

−m′
F p mF

 .

The astute reader will recognize that the first form above is similar to Equation (C.5). Once again, the

derivation is long, so I recommend interested readers to start from page 606 in Brown and Carrington [47].



302

C.2.6 Offset

While all the Hamiltonians above deal with energy scales ≲ 2π × 100 MHz, this last term is on the

order of 10 GHz and above. For the numbers relevant to ThF+ [43], the energy levels within the same

electronic level hold the approximate form:

Hoffset = G(v) + E(v, J), (C.7a)

G(v) = ℏωe

(
v +

1

2

)
− ℏωeχe

(
v +

1

2

)2

, (C.7b)

E(v, J) = BeJ(J + 1)−D [J(J + 1)]
2 − αe

(
v +

1

2

)
J(J + 1). (C.7c)

= BvJ(J + 1)−D [J(J + 1)]
2
. (C.7d)

G(v) accounts for vibrational levels, and the energy spacing is on the order of about 600 cm−1 (1 cm−1 ≈

30 GHz), while E(v, J) accounts for the rotational levels, with energy spacing on the order of 15 GHz. The

spectroscopic constants are the vibrational constant ωe, anharmonicity constant ωeχe, equilibrium rotational

constant Be, centrifugal distortion constant De, and rotational-vibrational coupling constant αe. The terms

involving Be and αe are often grouped together to give a v-dependent B = Be − αe(v + 1/2).

C.2.7 eEDM

For completeness, the effective Hamiltonian responsible for the shift in the energy levels due to the

eEDM is [25]3 :

HeEDM = −deEeff
Ω

|Ω|
, (C.8)

where Eeff ≈ 35 GV/cm is the effective electric field within ThF+ that is seen by the unpaired electron in

the X 3∆1 state [22, 40, 41].

Since the Stark shifts go as mFΩ while the eEDM term goes as Ω, we see that states that are

energetically degenerate under Stark shifts (e.g. |mF = +3/2,Ω = +1⟩ and |mF = −3/2,Ω = −1⟩) have

eEDM shifts of different signs.

3 There is an extra factor of 1/2 in the cited paper [25], which uses a different convention for how Eeff is defined in papers
that calculate the value [22, 40, 41]. The factor of 1/2 is removed for consistency with the cited value of Eeff .
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In principle, all we need to do to determine the eEDM is to measure the energy difference between

degenerate Stark pairs. In practice, we choose to do so with the outer-most stretched Stark pairs, because

these stretched states are the easiest to prepare. There are two such pairs, and we call the pair that is more

(less) energetic the “upper doublet” (“lower doublet”).

C.3 Solving the Schrödinger’s Equation

C.3.1 Time-independent

Solving the time-independent Schrödinger’s Equation is as easy as diagonalizing the full 12- (for J = 1

only) or 32-state (for J = 1&2) Hamiltonian. In general, the eigenstates are superposition states of our basis

set {|J,Ω, F,mF ⟩} because of the mixing induced by Hrot., HStark, and HZeeman. Nevertheless, one can still

distill out the dominant component of the basis set from each eigenstate, and draw meaningful descriptions

of the system. Figure 4.7 shows an example of diagonalizing the 32-state Hamiltonian at Erot = 60 V/cm

for ThF+.

C.3.2 Time-dependent

Propagating the quantum state with time is not cheap computationally. Unless one wishes to inves-

tigate the effects of the J = 2 states coupling to the J = 1 states, it is highly advisable to use the 12-state

Hamiltonian instead of the 32-state Hamiltonian. Unfortunately, many systematics involve contribution

from coupling between the J = 1&2 states. We can speed up the computation by propagating the quantum

state of different R̃ and B̃ switches in parallel. The python package QuTip [90] allows for such parallel

computation, and has been used for simulation works in this thesis.
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C.4 Two-level effective Hamiltonian

For a more intuitive understanding of the relevant parameters involved in studies of systematics, it is

helpful to work with a two-level effective Hamiltonian that captures all the physics in newly defined effective

parameters. There are two of such two-level Hamiltonians, corresponding to the upper (states 8 and 9 in

Figure 4.7) and the lower doublets (states 0 and 1 in Figure 4.7). The effective parameters are defined as

such:

Magnetic g-factor, g, δg. The mean magnetic g-factor of the upper and lower doublets is defined as g =

(gu+gl)/2, while the difference in magnetic g-factor between the upper and lower doublets is defined

as δg = (gu− gl)/2, where “u” and “l” refer to the upper and lower doublets, respectively. Typically

δg ≪ g.

Non-reversing magnetic field, Bnr. In the eEDM experiments with HfF+, we switch the direction of the

applied magnetic field to search for systematics. In the event of an imperfect switch, the magnetic

field can be decomposed into a part that reverses, and a part that does not, i.e. B(B̃) = B̃B + Bnr,

where B̃ = ±1 is the sign of the switch. In the Bucket Brigade experiment, we do not plan to apply

Zeeman shifts to our eEDM sensitive states, so B = 0 and Bnr corresponds to the ambient magnetic

field.

Berry’s frequency, 3frot(S̃⟨α⟩+ αnr). This term (integrated with time) is the Berry’s phase accumulated

by the states. Much like the case for magnetic fields in the second generation experiment, we can

also switch the sign of Berry’s phase in our experiment by switching the direction of the relevant

fields. In the case of an imperfect switch, Berry’s phase can also be decomposed into a reversing

part ⟨α⟩ and a non-reversing part αnr. We aim for αnr ≪ ⟨α⟩. The switch is defined as S̃ = ±1.

Energy splitting at avoided crossing, ∆, ∆D. Rotation coupling from Equation C.4 splits the degen-

eracy of the eEDM sensitive states within each doublet into those with avoided crossings ∆u and

∆l for the upper and lower doublets, respectively. The mean and the difference are defined as

∆ = (∆u + ∆l)/2 and ∆D = (∆u − ∆l)/2, respectively. Typically ∆D ≈ ∆. We also define a
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convenient “doublet switch” D̃ such that ∆u,l = ∆+ D̃∆D, D̃ = ±1.

Using the eEDM experiment with ThF+ in the Bucket Brigade using Berry’s phase as the dominant frequency

as an example, the steps involved are detailed in Section 8.3.4.
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