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Here we analyze the Hawking radiation detected by an inertial observer in an arbitrary position in a
Reissner-Nordström spacetime, with special emphasis on the asymptotic behavior of the Hawking
spectrum as an observer approaches the inner or outer horizon. Two different methods are used to analyze
the Hawking flux: first, we calculate an effective temperature quantifying the rate of exponential redshift
experienced by an observer from an emitter’s vacuum modes, which reproduces the Hawking effect
provided the redshift is sufficiently adiabatic. Second, we compute the full Bogoliubov graybody spectrum
observed in the three regimes where the wave equation can be solved analytically (at infinity and at the
outer and inner horizons). We find that for an observer at the event horizon, the effective Hawking
temperature is finite and becomes negative when ðQ=MÞ2 > 8=9, while at the inner horizon, the effective
temperature is always negative and infinite in every direction the observer looks, coinciding with an
ultraviolet-divergent spectrum.
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I. INTRODUCTION

Some of the most extraordinary effects in the study of
quantum field theory in curved spacetime occur near the
horizons of black holes. A black hole’s event horizon is
well known to exhibit a characteristic peeling of null
geodesics that results in the detection of field radiation
asymptotically far from the black hole [1,2]. This radiation,
known as Hawking radiation, has a thermal distribution (in
the geometric optics limit), with a temperature directly
proportional to the black hole’s surface gravity at the event
horizon.
Despite the success and relative robustness of Hawking’s

calculation, much debate has continued to this day con-
cerning the nature, origin, and implications of Hawking
radiation. From the perspective of quantum information
theory, a driving question has been to understand how black
holes evolve unitarily in spite of their seemingly thermal,
informationless radiation. Though the calculations given in
this paper give no quantitative measure of entropy and thus
cannot address this problem directly, it may be that the
increasing (and eventually diverging) presence of Hawking
radiation we find as one ventures farther into a black hole’s
interior is closely tied to the mediation of unitary evolution,
or at the least helps explain the vast number of degrees of
freedom a black hole is expected to host.
More relevant to the present study, if the steady Hawking

flux at late times is to be taken literally as originating from
the event horizon, one might expect a local infaller at that

horizon to detect a diverging number of particles seeping
out with an initially divergent blueshift. However, sub-
sequent derivations of Hawking radiation that rely more
heavily on local phenomena, such as particles tunneling
across the horizon [3], pairs ripped apart by gravitational
tidal forces [4], and particles created locally via the
renormalized stress-energy tensor [5], find no divergence
at the event horizon, but rather a modest “quantum
atmosphere” of Hawking particles produced in its vicinity.
Though Hawking’s original calculation only applies for

radiation seen asymptotically far from a black hole, a
formalism to study the Hawking radiation detected by an
arbitrary observer any distance from a black hole was
introduced in Refs. [6,7]. Those authors define an “effective
temperature” function κ that reduces to the surface gravity
when it is sufficiently adiabatic over an interval (as will be
detailed in Sec. II A). This effective temperature is simply a
measure of the rate of exponential redshifting seen by an
observer from modes climbing out of collapsing matter’s
gravitational potential. In the context of quantum field
theory in curved spacetime, such a redshifting, which need
not rely on the actual formation of an event horizon, implies
an excitation out of the vacuum state (i.e., particle produc-
tion) due to the mixing of positive and negative frequencies.
For a Schwarzschild black hole, as a freely falling observer is
taken to infinity, κ approaches the surface gravity 1=ð4MÞ1
predicted by Hawking, and as an observer approaches the
event horizon, κ is coincidentally found to approach a value
exactly four times the surface gravity [8]. One of the main
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goals of the present paper is to extend this formalism to a
charged (Reissner-Nordström) black hole.
A key difference between a Schwarzschild and Reissner-

Nordström black hole is the presence in the latter case of a
Cauchy horizon, a null hypersurface in the black hole’s
interior beyond which an observer can see a timelike
singularity. Such a horizon, which will subsequently be
referred to as the “inner horizon,” is of considerable interest
both because of its presence in the astrophysically relevant
Kerr metric and because of the open problem related to its
stability in the presence of perturbative classical or quan-
tum effects.
In 1968, Penrose was the first to point out that the inner

horizon is a surface of infinite blueshift [9,10]. Any
external perturbations to the spacetime will produce
ingoing radiation that an outgoing observer approaching
the inner horizon will detect with diverging energy. Poisson
and Israel pioneered the first full nonlinear analysis of this
instability in 1990 [11,12], giving it the name “mass
inflation” in reference to the exponentially inflated
Misner-Sharp mass parameter [13] measured at the inner
horizon. As a result, the spacetime geometry near the inner
horizon will classically break down and collapse to form a
strong, spacelike singularity [14–23], potentially alongside
a weak, null singularity at late times [24–30].
Because of the unstable nature of the inner horizon in

classical models, studies of quantum effects at the inner
horizon have been ongoing. Early studies modeled the
quantum effect of pair creation from the black hole’s
electric field by replacing the near-inner-horizon regime
with a Schwarzschild-type solution once the electric field
exceeded a critical value [31,32], and later numerical
studies with dynamical evolution found that Schwinger
pair creation does indeed cause the inner horizon to form a
spacelike singularity, but with a weak, null portion still
surviving depending on the critical value of the electric
field [33]. Those same authors also pioneered the first
numerical study of Hawking radiation at the inner hori-
zon [34], with the result that a spacelike surface with
diverging (super-Planckian) curvature forms [35].
However, these studies of Hawking radiation relied on the

use of the 1þ 1D renormalized stress-energy tensor hTμνi of
a quantized scalar field to estimate the semiclassical back-
reaction. Renormalization of the full 3þ 1D stress-energy
tensor for a black hole spacetime is a difficult problem with
no known analytic solution; only recently have numerical
studies begun to calculate the quantum fluxes of hTuui and
hTvvi at the inner horizon, generically finding divergen-
ces [36,37]. Of particular note for the present study is the
finding in Ref. [36] that the flux components of hTμνi in
double-null coordinates become negative for sufficiently
large charge-to-mass ratios (Q=M ≳ 0.97). When taking
into account first-order backreaction effects, this negative
stress-energy implies the local abrupt expansion of the inner
horizon geometry (see also [38–44]).

Instead of focusing on the quantum renormalized stress-
energy tensor, we here study the particle perception effects
of Hawking radiation that do not rely on the ambiguities of
renormalization in curved spacetime. Our choice of for-
malism also allows for a straightforward extension to the
Hawking radiation seen in an arbitrary viewing direction,
so that we may answer the question of whether the radial
modes assumed in virtually all analyses of Hawking
radiation are actually the dominant source of feedback at
the inner horizon (especially since, for an outgoing
observer across the inner horizon, only an exponentially
small portion of the field of view is taken up by the
blueshifting sky radially overhead). Following up on the
study of the Schwarzschild interior in Ref. [45], we extend
those results to the Reissner-Nordström interior and focus
on the seemingly paradoxical result that the effective
Hawking temperature seen by an inertial observer always
becomes negative and diverges at the inner horizon when
the black hole has nonzero charge.
The conclusion that Hawking radiation diverges and

possesses a negative temperature at the inner horizon of a
Reissner-Nordström black hole highlights the need for a
more realistic, dynamical model to describe the singular
behavior of an astrophysical blackhole near its inner horizon.
The present study seeks to analyze this singular behavior in
order to learn more about the constraints semiclassical
physics imposes on near-inner horizon geometries.
Before diving into the bulk of the paper, it isworth pausing

to comment on the implications (and especially the non-
implications) of a negative Hawking temperature. Hawking
radiation is often pictured as a positive flux of particles
escaping a black hole’s horizon, coinciding with a negative
flux of partner particles traveling inward to the black hole’s
singularity [2]. However, the negative-temperature Hawking
flux analyzed here is not simply anobservation of the inward-
traveling negative-energy Hawking partners. In contrast, our
negative temperature will be found in both the ingoing and
outgoing radiation sectors, and further, our calculations do
not involve any tunneling across horizons. It may still be
possible to formulate a local picture for the global calcu-
lations donehere, but instead of the simple pair splitting at the
outer horizon, one should imagine that virtual particle pairs
created anywhere near and inside the black hole will be
perturbed by radial gravitational tidal forces, and a negative
temperature is realized because these forces will begin
compressing instead of stretching once an observer comes
close enough to the inner horizon [46,47].
How then should one interpret a negative Hawking

temperature under the present formalism? The most
straightforward answer is that the modes reaching an
observer are blueshifting instead of redshifting, and this
blueshift will result in a change in sign of the effective
temperature of Eq. (4) below. However, the thermodynamic
implications of such a change in sign are less apparent.
Reference [48] was the first to comment on the implications
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of the fact that the surface gravity ϰ− defined at the inner
horizon is negative, and many authors since have attempted
to provide a consistent thermodynamic picture of a black
hole with a negative-temperature inner horizon [49–52].
However, here we make no claims based on the Bekenstein-
Hawking entropy nor any thermodynamic laws, and we
also do not rely on any assumptions about what happens
beyond the inner horizon. It may well be that the negative
surface gravity has some implication for the temperature of
a purely mathematical, analytically extended white hole
emerging from an inner horizon. Nonetheless, the inner
horizon effective temperature κ describing the experience
of an infalling observer is distinct from the global surface
gravity ϰ−, and in fact κ will be found either to diverge at
the inner horizon or to equal some constant multiple of ϰ−
(see Sec. III A 2), depending on whether the observer looks
up or down.
The structure of this paper is as follows: we begin in

Sec. II with a preliminary discussion of the effective
temperature formalism used to calculate the Hawking
radiation, then we proceed to calculate the effective temper-
ature for various charges and observer positions in Sec. III,
commenting on validity of the adiabatic approximation in
Sec. III B and generalizing from radial modes to arbitrary
viewing directions in Sec. III C. Finally, in Sec. IVwe extend
beyond the geometric optics approximation to calculate the
full Bogoliubov spectrum in the asymptotic regimes where
the scattering modes become simple (namely at infinity, the
event horizon, and the inner horizon), and we concludewith
a discussion in Sec. V.

II. FORMALISM

A. Defining an effective temperature as the rate of
exponential redshift

The Hawking flux perceived by a timelike geodesic
observer in a black hole spacetime can be calculated
through the use of an effective temperature function

κðuÞ≡ −
d
du

ln

�
dU
du

�
; ð1Þ

where the outgoing null coordinate u gives the observer’s
position and the null coordinate U gives the position of an
emitter that defines the vacuum state [6,7]. By a slight
abuse of notation, the two worldlines labeled by coordi-
nates U and u are connected by a null ray encoded by the
function UðuÞ, and as long as κðuÞ remains approximately
constant over a small interval around some point u�, it
directly implies that the vacuum expectation value of the
particle number operator is consistent with that of a
Planckian spectrum with temperature

THðu�Þ ¼
κðu�Þ
2π

: ð2Þ

The constancy condition can be quantified by the adiabatic
control function

ϵðuÞ≡ 1

κ2

���� dκdu
����; ð3Þ

which must satisfy ϵðu�Þ ≪ 1 in order for a thermal
Hawking flux to be detected at u� [8]. However, even if
the adiabatic condition is not satisfied, a nonzero κ still
implies the detection of particles corresponding to a non-
zero Bogoliubov coefficient β; the only difference is that
the spectral content will generally be non-Planckian.
Since both the observer and emitter can naturally use

their proper times τob and τem to label the different null rays
they encounter throughout their journey, Eq. (1) can be
recast in a more intuitive form:

κ ¼ −
d

dτob
ln

�
ωob

ωem

�
; ð4Þ

where the frequency ω (with either subscripts “ob” or “em,”
which will be dropped hereafter when either label could
apply), defined by

ω≡ −kμ _xμ; ð5Þ

is the temporal component of a null particle’s coordinate
4-velocity kμ ≡ dxμ=dλ,measured in the frameof an observer
or emitter with coordinate 4-velocity _xμ ≡ dxμ=dτ.
Equation (4) makes it apparent that the effective temperature
κ is nothing more than a measure of the rate of frequency
redshifting seen by an observer, an indicator of the expo-
nential peeling of null rays first noted by Hawking as the
crucial feature of black hole horizons responsible for particle
creation [1,2].
For black hole spacetimes with a Killing horizon, in the

limit as an observer approaches future timelike infinity, the
notion of the effective temperature κðτÞ defined above
coincides precisely with the notion of the surface gravity ϰ
used to define a black hole’s Hawking temperature [6].
Thus, κðτÞ provides a generalization of the Hawking effect
for arbitrary observers around or inside of a black hole.

B. Vacuum states

Instead of performing calculations in a fully dynamical
collapse spacetime, it is common to formulate an equivalent
problem in an empty, eternal black hole spacetime like the
Schwarzschild metric [53]. As a result, the collapsing body
must be replaced by appropriate boundary conditions on
the past horizon, and these boundary conditions define the
quantum field’s vacuum state in that spacetime. Three
options are generally discussed in the literature: the
Boulware state, in which the quantum field’s modes are
defined to be positive frequency with respect to the Killing
vector ∂=∂t on both the past horizon and past null infinity;
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the Hartle-Hawking state, in which modes are defined to be
positive frequency with respect to the past boundaries’
canonical affine coordinates2 ∂=∂U and ∂=∂V; and the
(past) Unruh state [53], in which modes are defined to be
positive frequency with respect to ∂=∂U on the past horizon
and ∂=∂t at past null infinity. The last of these states is the
one that is most physically relevant to the production of a
Hawking flux to the future of a collapsing black hole and is
the state that will be employed here.
In the effective temperature framework, the vacuum state

is specified by the spacetime position and state of motion
(the orbital parameters) of the emitter. For example, the
Boulware state corresponds to a static emitter maintaining a
constant radius r0. This state is thus only defined for the
exterior portion of the black hole, since an emitter cannot
remain static below the event horizon. A freely falling
observer measuring in the Boulware state will see diverging
stress-energy at the horizon, as a result of the diverging
acceleration required for the Boulware emitter to remain
static there.
In contrast, the Unruh state is associated with a freely

falling emitter, positioned either at the black hole’s horizon
or at infinity. The outgoing Unruh modes correspond to the
limit rem → rþ, so that the observer sees the emitter frozen
on the past horizon (one may equivalently take the Unruh
emitter’s descent into the black hole to have occurred
sufficiently far into the past), and the ingoing Unruh modes
correspond to the limit rem → ∞, so that the observer sees
the emitter safely resting in the sky above. Since the
observer and the Unruh emitter are generally not located
at the same spacetime coordinate (as in the Boulware state),
their modes must be connected via a null geodesic, since
the quantum field under study here is massless.
To see how the choice of vacuum corresponds to the

specification of the emitter’s worldline, consider an emitter
radially free-falling from rest at infinity3 into a static,
asymptotically flat, spherically symmetric black hole,
which is given by the line element

ds2 ¼ −ΔðrÞ dt2 þ dr2

ΔðrÞ þ r2 ðdθ2 þ sin2θdϕ2Þ: ð6Þ

The horizon function ΔðrÞ has the property that it vanishes
linearly as r approaches a horizon, and it asymptotes to
unity as r → ∞.
Such an emitter will have coordinate 4-velocity with

nonzero components

_t≡ dt
dτ

¼ 1

Δ
; ð7aÞ

_r≡ dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ

p
: ð7bÞ

When the emitter is at infinity (Δ → 1) sending modes
inward, Eq. (7a) implies that the emitter’s proper time τ will
tick at the same proportionate rate as the global timelike
Killing coordinate t. Thus, twill be the coordinate the emitter
uses to define positive frequency, just as expected for ingoing
Hawking modes originating from past null infinity.
However, when the emitter reaches a horizon (Δ → 0),

Eq. (7a) implies that the static Schwarzschild time t will
tick at an infinitely faster rate than the emitter’s proper time
τ. So heuristically, instead of seeing wave modes of the
form expð−iωtÞ, the emitter should end up seeing modes of
the form exp½−iω expð−ktÞ� (for some constant k), so that
even when t diverges, the emitter’s proper time will still
remain finite. The new time coordinate defined by these
modes will be found to coincide with the oft-studied
Kruskal-Szekeres coordinate U.
To make the above arguments more precise, and to

extend the discussion to distinguish ingoing and outgoing
modes (which depend on both the emitter’s proper time and
the proper distance between wavefronts), consider a set of
eikonal waves in the emitter’s locally orthonormal tetrad
frame fγ0; γ1; γ2; γ3g, whose tangent-space coordinates
will be labeled ξ0, ξ1, ξ2, and ξ3. This tetrad frame is
constructed so that it is continuous across the event horizon
and so that the time axis γ0 is always timelike and future-
directed, while the radial axis γ1 is always spacelike and
outward-directed. In the limit of large frequency ω, to
leading order in 1=ω, the ingoing (þ) or outgoing (−)
components of the eikonal wavefront will follow a null
geodesic congruence with tetrad-frame 4-momentum
(neglecting any normalization factors)

km̂ ≡ dξm̂

dλ
¼ ð1;�1; 0; 0Þ: ð8Þ

The transformation from the emitter’s local tetrad frame to a
coordinate frame can be accomplished through the use of the
appropriate vierbein. For an external4 radial free-faller with
specific energy E (where E ¼ 1 corresponds to rest at
infinity), in the static polar spherical chart this vierbein reads

em̂μ ¼

0
BBB@

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ

p
0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Δ
p

E 0 0

0 0 r 0

0 0 0 r sin θ

1
CCCA; ð9Þ

2For example, for a Schwarzschild black hole, U ¼
−4Me−u=ð4MÞ is the outgoing Kruskal-Szekeres coordinate,
whose vector field ∂=∂U is of Killing type on the past horizon.
Positive frequency modes are then defined to be the eigenfunc-
tions of the Lie derivative of the field in the ∂=∂U direction.

3The same arguments should hold for any inertial free-faller;
here we present the radial, E ¼ 1 case for simplicity.

4The case of a free-faller in the black hole interior follows the
same line of reasoning as the exterior case presented here, mutatis
mutandis.
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(where rows label the coordinates ξ0, ξ1, ξ2, ξ3 of the
emitter’s locally inertial frame, and columns label the
global coordinates t, r�, θ, φ). Here we define the tortoise
coordinate r� by

dr
dr�

¼ Δ: ð10Þ

The coordinate-frame 4-momentum kμ ¼ km̂em̂μ then fol-
lows immediately:

kμ ¼
�
E ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Δ
p

Δ
;�E ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Δ
p

Δ
; 0; 0

�
: ð11Þ

If the emitter defines some positive frequency ω (along
with the corresponding wave number ω=c), then their
natural choice of ingoing (upper sign) or outgoing (lower
sign) modes will take the form exp½−iωðξ0 � ξ1Þ�, which
can be written in coordinate form by matching the affine
distances of Eqs. (8) and (11):

dξ0 � dξ1 ¼ Δ
E ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 − Δ
p ðdt� dr�Þ: ð12Þ

Asymptotically, as a unit-energy emitter approaches infin-
ity (Δ → 1), the fraction in Eq. (12) reduces to unity, so that
the proper choice of coordinates to define Unruh modes at
infinity is the Eddington-Finkelstein double null coordinate
system, defined in both the exterior and interior as

u≡ t − r�; v≡ tþ r�; ð13Þ

where u here is the same outgoing null coordinate as
in Eq. (1).
When the emitter is at a horizon (Δ → 0), the mode

behavior depends on whether the waves are ingoing or
outgoing. For the ingoing modes of a positive-energy free-
faller or the outgoing modes of a negative-energy free-faller
(neither of which are needed to define an Unruh emitter
but will prove useful later to define the natural modes
seen by horizon observers), the fraction in Eq. (12)
reduces to 2E, so that the proper modes (after ω is properly
scaled) are once again the Eddington-Finkelstein modes
exp½−iωðt� r�Þ�.
But for the outgoing modes of a positive-energy free-

faller or the ingoing modes of a negative-energy free-faller
at the horizon, the fraction in Eq. (12) vanishes, so a more
appropriate coordinate choice must be found. Define a new
coordinate Ū such that the outgoing Unruh modes at the
horizon will be written as exp½−iωŪ�. Then Eq. (12)
implies that Ū must satisfy

dŪ
du

¼
Δ→0

Δ
2E

≈
r − r�
2E

dΔ
dr

����
r�

ð14Þ

in the near-horizon limit. From this expression one can
identify the quantity

ϰ� ≡ 1

2

dΔ
dr

����
r�

ð15Þ

as the outer (þ) or inner (−) horizon’s surface gravity. For
an emitter with E ¼ 1, since from Eqs. (8), (10), and (11),
the radius r is related to the horizon-limit outgoing proper
null coordinate Ū by

dr
dŪ

¼ −
1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δ
p

2
¼

Δ→0
− 1; ð16Þ

then Eq. (14) solves as

Ū ∝ exp ð−ϰ�uÞ: ð17Þ

Equation (17) assumes that Ū is chosen to begin at 0 at the
event horizon, when u → ∞. This form of the emitter’s
proper time (up to an irrelevant normalization factor) is
precisely the form of the outgoing Kruskal-Szekeres
coordinate U used by Unruh to define positive frequency
on the past horizon [53]. Thus, the outgoing modes of the
Unruh state correspond to those seen as positive frequency
by an emitter in free fall asymptotically close to the past
horizon.
In some sense, we have done nothing more than

“rederive the obvious” in showing how one may obtain
past Unruh null boundary conditions. However, in addition
to providing yet another way of understanding the validity
of this choice of vacuum state, the generalized derivation
above also provides a natural specification of ingoing and
outgoing modes for freely falling observers at either
horizon, without any reliance on global Killing vector
fields or asymptotically Minkowski regimes. We will return
to this idea when solving the wave equation in Sec. IV.
As a final comment concerning the choice of vacuum

state, an additional family of vacuum states was used by
Ref. [8] to mimic the switching on of Hawking radiation as
a black hole first forms during a collapse. These “collapse
vacua” correspond to emitters in free fall from rest at
infinity, each separated from the observer by a time delay δτ
(as in the Unruh state), but not necessarily in the limit as
they approach the horizon or infinity. However, in the
present work, we are not concerned with the initial transient
collapse dynamics of a black hole; rather, we will focus on
the late-time steady-state behavior once the black hole has
settled down into the Unruh state, which should occur only
a few light-crossing times after the black hole’s formation.

III. REDSHIFTING PERCEIVED
BY AN INFALLER

Here we examine the effective temperature seen by a
freely falling inertial observer in a charged black hole
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spacetime with a quantized scalar field. In Sec. III A we
calculate the effective temperature κ for an observer
looking in the radial direction via Eq. (4), in Sec. III B
we analyze when this κ satisfies adiabaticity, and in
Sec. III C we generalize to an observer looking in an
arbitrary direction.

A. Radial effective temperature

Consider the line element of Eq. (6), which describes the
geometry of a charged, spherically symmetric black hole
when the horizon function Δ takes the form

Δ ¼
�
1 −

rþ
r

��
1 −

r−
r

�
; ð18Þ

r� ≡M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð19Þ

The black hole modeled by this geometry is known as the
Reissner-Nordström black hole, which possesses a massM
and a charge Q. The length scales rþ and r− are referred to
respectively as the outer (event) horizon and the inner
(Cauchy) horizon.
The rate of redshift seen by a radially infalling observer

has already been calculated for the spacetime of Eq. (6) for
arbitrary Δ (see Appendix B of Ref. [45]), though that
analysis was only carried out explicitly for Schwarzschild
(Q=M ¼ 0). Here we quote the main results and specialize
to Reissner-Nordström with a focus on the inner horizon.
The frequency ω measured in the frame of an observer

(≡ωob) or emitter (≡ωem) with specific energy E, normal-
ized to the frequency ω∞ seen at rest at infinity, is

ω

ω∞
¼ E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ

p

Δ
; ð20Þ

where the upper (lower) sign applies to outgoing (ingoing)
null rays. The effective temperature κ can then be calculated
with the help of the chain rule:

κ ¼ −
d

dτob
ln

�
ωob

ωem

�

¼ −ωob

�
_rob
ωob

∂ ln ωob

∂rob
−

_rem
ωem

∂ ln ωem

∂rem

�

¼ ∓ 1

2

ωob

ω∞

�
dΔob

drob
−
dΔem

drem

�
; ð21Þ

where an overdot signifies differentiation with respect to
the observer’s or emitter’s proper time τ.
For outgoing modes (upper sign), the Unruh emitter must

be placed at the event horizon (rem → rþ), and for ingoing
modes (lower sign), the Unruh emitter resides at infinity
(rem → ∞). The result, for an observer in free fall from rest
at infinity (Eob ¼ 1), is the sensation of two independent
effective temperatures corresponding to the outgoing (κþ)

and ingoing (κ−) Hawking modes (throughout the rest of
this paper, � superscripts will always refer to outgoing/
ingoing quantities, while � subscripts will always refer to
outer/inner horizon quantities):

κþ ¼ Mrobð1 − r2ob=r
2þÞ −Q2ð1 − r3ob=r

3þÞ
r2obð−rob þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrob −Q2

p
Þ

; ð22aÞ

κ− ¼ Mrob −Q2

r2obðrob þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mrob −Q2

p
Þ
: ð22bÞ

The rest of this Sec. III Awill be devoted to exploring the
implications of Eq. (22). As a first comment, because of the
square root in the denominator, both temperatures become
imaginary when the observer is located close enough to the
origin, specifically when rob < Q2=ð2MÞ. However, such
values of rob are strictly less than the inner horizon radius
r− for all choices of Q, and the failure of Eq. (22) in this
region coincides with the failure of Gullstrand-Painlevé
coordinates in the same region, indicative of the presence of
an unphysical negative interior mass MðrÞ (i.e., this is
where an infaller would bounce back due to the effects of
the repulsive charged singularity on the spacetime) [54].
Since the region below the inner horizon should be
physically disregarded due to the semiclassical singular
behavior examined below, that region will not be explored
any further here.
Second, it should be noted that for an observer asymp-

totically far from the black hole, the above formulas
reproduce familiar results: the outgoing sector’s temper-
ature asymptotically approaches the black hole’s surface
gravity ϰþ defined by Eq. (15), and the ingoing Hawking
sector vanishes:

lim
rob→∞

fκþ; κ−g ¼
�
rþ − r−
2r2þ

; 0

�
: ð23Þ

As expected, κþ approaches 1=ð4MÞ in the Schwarzschild
Q=M ¼ 0 limit and vanishes in the extremal Q=M ¼ 1
limit. These limits can be seen in the respective panels of
Fig. 1, which shows the full behavior of κþðrobÞ and
κ−ðrobÞ for different choices of the black hole’s charge-to-
mass ratio.

1. Negative κ at the event horizon and beyond

As an observer freely falling from infinity approaches
the Reissner-Nordström event horizon and enters the black
hole, the effective Hawking temperatures κþ and κ− grow
from their initial values at infinity until reaching a maxi-
mum value, after which they quickly drop to zero and
become negative (excepting the special casesQ=M ¼ 0, 1).
When the observer crosses the event horizon, the effective
temperatures in the outgoing and ingoing sectors are
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lim
rob→rþ

fκþ; κ−g ¼
�
2ðrþ − 2r−Þ
rþðrþ − r−Þ

;
rþ − r−
4r2þ

�
: ð24Þ

The most notable feature of Fig. 1 is the fact that κþ and κ−

become negative (indicated by the dashed lines) if the
observer is close enough to the inner horizon, correspond-
ing to a blueshifting of the observed modes instead of the
usual exponential redshifting. The exact regions with
negative temperature depend heavily on the charge Q,
generally extending farther outward with increasing charge.
The ingoing radiation (the blue curve) has negative temper-
ature only below the event horizon, coinciding exactly with
the change in sign of the Weyl scalar at r ¼ Q2=M, but

curiously enough, the outgoing radiation (red) can have
negative temperature even above the event horizon, and in
the extremal case, the effective temperature in the entire
exterior is negative. How large a charge is necessary for a
negative temperature to be detected outside the black hole?
From Eq. (24), κþ will be negative above the event horizon
if the event horizon is less than double the inner horizon’s
radius, which occurs when ðQ=MÞ2 > 8=9. This special
value of Q is shown in Fig. 2 with a red dot marking the
intersection of the solid red and dotted black curves.
The value ðQ=MÞ2 ¼ 8=9, where the event horizon

coincides with the radial inflection point in the black hole’s
horizon function Δ, has shown up previously in the
literature for Reissner-Nordström black holes in varying

FIG. 1. Outgoing effective temperature κþ (red curve) and ingoing effective temperature κ− (blue curve) as a function of observer
radius rob for various choices of the Reissner-Nordström black hole chargeQ, all in units of the black hole massM. Solid curves indicate
positive values on the log plot, and dashed curves indicate negative values. The inner and outer horizons are shown with gray, dotted
vertical lines, and the unphysical region below the inner horizon is grayed out.
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contexts. Ong and Good [47] used a heuristic gravitational
analog of the Schwinger effect to show that the energy of
two Hawking quanta split apart from tidal forces will be
negative near the horizon when ðQ=MÞ2 > 8=9. This
change in sign can be traced to the change in the radial
tidal force, as measured by the proper acceleration of the
free-fall-frame geodesic deviation vector, from the usual
stretching force into a compressing force as Q is
increased [46]. Similarly, the square of the free-fall temper-
ature obtained by embedding the black hole in a six-
dimensional flat spacetime and finding the Unruh temper-
ature of the analogous observer was found to be negative
for ðQ=MÞ2 > 8=9 [55], which those authors interpreted as
a failure to detect any radiation. Finally, in the 1þ 1D case,
the renormalized expectation values of the temporal and
radial components of a scalar field’s stress-energy tensor
hTμ

νi become negative at the event horizon in the exact
same range [56]. These studies apply to a variety of
different semiclassical effects that all point toward similar
semiclassical behavior, but in the present case, the physical
interpretation of a negative effective temperature κ is not so
clear-cut, especially given the lack of adiabaticity in some
regions of interest (described in Sec. III B). A more robust

physical interpretation is therefore deferred until the spec-
tral analysis of Sec. IV.

2. Diverging κ at the inner horizon

Now, consider the effective temperature seen when the
observer reaches the inner horizon. As can be seen from
Figs. 1 and 2, both the outgoing and ingoing effective
temperatures κþ and κ− are always nonpositive at the inner
horizon.5 The effective temperature κ− for the ingoing
sector remains finite for all nonzero values of Q, but the
outgoing temperature κþ always diverges at the inner
horizon. Defining a new coordinate zob ≡ ðrob − r−Þ=ðrþ −
r−Þ representing the observer’s dimensionless distance
above the inner horizon, in the limit of small zob ≪ 1,
one has (to leading order in zob):

lim
zob→0;
Eob→1

fκþ; κ−g ¼
�
−

r2þ þ r2−
r2þðrþ − r−Þzob

;−
rþ − r−
4r2−

�
: ð25Þ

From Eq. (25), one can see that the perceived temperature
from outgoing radiation at the inner horizon (when the
observer looks straight down at the past horizon) quickly
approaches negative infinity, while the practically irrelevant
perceived temperature from ingoing radiation (when the
observer looks up at the sky above) equals half the inner
horizon’s surface gravity ϰ− of Eq. (15).
Note that the above analysis applies only to an ingoing

observer, who must pass through the left leg of the inner
horizon (labeled H−

r− in Fig. 6). In order to reach the right
leg of the inner horizon, an infalling observer must
accelerate outward until they acquire negative energy as
measured by another observer at infinity. For an observer
with specific energy Eob ¼ −1 (who can exist only inside
the event horizon, where the Killing time coordinate t is
spacelike), the only change to Eq. (22) that is needed is to
swap their denominators. With this change, the resulting
effective temperatures for an outgoing observer at the inner
horizon are

lim
zob→0;
Eob→−1

fκþ; κ−g

¼
�
−
rþ − r−
4r2−

�
1 −

rþ − r−
r2þ

�
;−

1

ðrþ − r−Þzob

�
: ð26Þ

Both effective temperatures are still negative. The main
change to be noticed when traveling through the right
portion of the inner horizon instead of the left portion is that
the ingoing effective temperature κ− seen from the sky
above diverges instead of the outgoing temperature seen

FIG. 2. Regions of negative temperature in the Reissner-
Nordström charge-radius parameter space. The black dotted
curve shows the inner and outer horizons, which converge in
the extremal limit Q=M ¼ 1. The red (blue) curve shows regions
where the effective temperature in the outgoing sector κþ (in-
going sector κ−) equals zero, and the red (blue) hatched shading
shows regions where the effective temperature κþ (κ−) is
negative. The red dot marks the charge Q=M ¼ ffiffiffiffiffiffiffiffi

8=9
p

above
which the effective temperature κþ becomes negative outside the
event horizon. As in Fig. 1, the unphysical region below the inner
horizon is shaded out gray.

5Here we treat values of κ → �∞ as equivalent to maintain
consistency with the standard entropic definition of temperature,
where both coincide with zero inverse thermodynamic temper-
ature β.
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from the past horizon below. This divergence of κ− is
consistent with the inner horizon blueshift divergence first
noted by Penrose [9]. In contrast, the outgoing effective
temperature κþ remains finite for large Q, vanishing as
Q=M → 1, though as Q=M → 0, κþ diverges (just as κ−

does in the case of an ingoing observer at the inner
horizon).
One final special case is an observer with zero energy,

who passes through the intersection of the left and right legs
of the inner horizon (the uppermost point in Fig. 6). At this
special location, the ingoing and outgoing effective temper-
atures both diverge:

lim
zob→0;
Eob→0

fκþ; κ−g ¼
�
−

r2þ þ r2−
2r2þr−

ffiffiffiffiffiffi
zob

p ;−
1

2r−
ffiffiffiffiffiffi
zob

p
�
: ð27Þ

Thus, no matter what portion of the inner horizon the
observer reaches, at least one of the Hawking sectors will
always feature a divergent, negative temperature.
Divergent semiclassical behavior at the Reissner-

Nordström inner horizon is already well anticipated in
the literature. As early as 1980, it was argued that the
renormalized expectation value of the stress-energy tensor
in regular coordinates must diverge on at least one of the
two legs of the inner horizon [57]. More recently, the
renormalized stress-energy tensor in the Unruh state was
computed explicitly at the inner horizon, and it was found
generically to diverge [36]. There are a few differences
between that study’s results and the results found here;
namely, the sign of hTuuiUren and hTvviUren at the inner
horizon can be either positive or negative depending on the
chargeQ (as opposed to the purely negative κ� found here),
and those stress-energy tensor fluxes both vanish in the
extremal limit (while only κþ vanishes as Q=M → 1 for
outgoing observers) [43]. However, the effective temper-
ature and the renormalized stress-energy tensor should not
be expected to agree, since the former describes the
perception by an infaller of a spectral distribution while
the latter describes the tensorial flux and energy density of
that radiation—a perceptual formulation of hTμνi would
depend not only on κ but also on _κ [58].

3. Dependence of κ on the observer’s energy

Finally, consider how the effective temperatures κ� given
by Eq. (21) change for arbitrary observer energies. Can an
observer eliminate the detection of Hawking radiation, or
perhaps even change its sign, simply by Lorentz-boosting
to a different frame?
The only contribution to the effective temperatures of

Eq. (21) that depends on the observer’s specific energy Eob
is the factor ωob, the observer-frame frequency. Thus, any
Lorentz-boosting effects on the effective temperature seen
by a radial observer are solely confined to those caused by a
Doppler factor shift. This shift will never change the sign of

κ� for an observer at a given radius; it will only change the
overall magnitude. In particular, as the observer speeds up,
in the limit Eob ≫ 1 (or Eob ≪ −1), the magnitude of κþ
(or κ−, respectively) will increase linearly with Eob.
Similarly, in the limit Eob ≪ −1 (or Eob ≫ 1), the magni-
tude of κþ (or κ−, respectively) will drop reciprocally to
zero. Between these two limits, κ� varies monotonically
with Eob, so even if an interior observer’s energy passes
through zero, κ� will always remain the same sign.
The change in sign in the radial effective temperature for

an inertial observer is thus purely geometrical in origin. As
an observer changes their energy (or even their viewing
direction in a given patch of sky, as we shall see in
Sec. III C), they can never fully eliminate the presence
of Hawking radiation, and the effective temperature will
always change sign once they have entered into a region of
the spacetime geometry where their local surface gravity
[governed by radial gradient of the black hole’s horizon
function Δ, Eq. (15)] exceeds that of the Unruh emitter (or
vice versa). This radiation in the radial direction can thus be
regarded as “real” in the sense that it behaves in the same
Lorentz-covariant way as any classical radiation detected
by a free-faller would.

B. Adiabaticity

As mentioned in Sec. II A, the identification of the
effective temperature κ with a thermal Hawking flux is
strictly only valid in conjunction with the adiabatic con-
dition, that κ must remain approximately constant over
enough e-folds of the arriving modes [6,7]. This condition
is quantified by the adiabatic control function ϵ, which for
radial modes in a static, spherically symmetric black hole
can be written as

ϵðrobÞ≡
���� _κ

κ2

���� ¼
���� _robκ2

dκ
drob

����: ð28Þ

Whenever ϵ ≪ 1, the adiabatic condition is satisfied and a
thermal Hawking spectrum is perceived by the observer.
The exact analytic form of ϵðrobÞ for the Reissner-

Nordström free-faller in the Unruh state is not too illumi-
nating; nonetheless, several key features can be identified.
As rob → ∞, the adiabatic control function for the outgoing
modes drops to zero (as anticipated to recover Hawking’s
original thermal calculation), except in the extremal case
where κ itself is already zero and ϵ therefore diverges.
Similar diverging behavior in ϵ is observed whenever the
effective temperature κ vanishes, as a result of the κ2 term in
the denominator of Eq. (28), since it is meaningless to
define a thermal flux at zero temperature.
Based on the above observations, one might expect that ϵ

would drop to zero whenever κ diverges (e.g., when one
observes outgoing modes at the inner horizon). However,
the adiabatic control function at the inner horizon instead
passes through a finite, nonzero value, which nonetheless is
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still usually smaller than unity for outgoing modes.
Specifically, for an ingoing observer,

lim
rob→r−

fϵþ;ϵ−g

¼
�

r2þ
2ð2M2−Q2Þ ;

5Q2þ4M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−Q2

p
−3M2

M2−Q2

�
: ð29Þ

This equality technically only holds when Q ≠ 0; in the
Schwarzschild case, instead of approaching unity, both ϵþ
and ϵ− will asymptotically approach 3 (see the left panel of
Fig. 3). But for Q > 0, the value of ϵþ at the inner horizon
is always less than 1, and ϵ− is always greater than 1. For
large enough charge Q, Eq. (29) thus implies that the
outgoing temperature should be approximately thermal for
an ingoing observer close enough to the inner horizon. This
behavior holds even (and especially) for Q=M ¼ 1, where
the inflating negative temperature just above the merged
horizons occurs in the black hole’s exterior.
For reference, the behavior of ϵþðrobÞ and ϵ−ðrobÞ are

plotted in Fig. 3 for two of the same values of Q used in
Fig. 1. One may observe that for many choices of rob, κ
behaves adiabatically and the thermal results fall into place.
However, for much of the observer’s trajectory, ϵ far
exceeds unity, and deeper analysis is required, as examined
in Sec. IV.
One final technical point related to the discussion of

adiabaticity is the comment made by the authors of Ref. [6]
that the effective temperature adiabaticity formalism
described above is valid “under mild technical assump-
tions.” These assumptions are related to the more gener-
alized, precise form of the adiabaticity condition, which
assumes the existence of a finite quantity

D≡ sup
n>0

�
1

ðnþ 1Þ!
jκðnÞj
κnþ1

	
1=ðnþ1Þ

ð30Þ

such that adiabaticity is implied by the condition 2D2 ≪ 1
(instead of ϵ ≪ 1). Usually, the n ¼ 1 term in the definition
of Eq. (30) dominates so that the quantity 2D2 is equivalent
to the adiabatic control function ϵ of Eq. (28). But in certain
special cases, such as the dip observed in the blue curve in
the right panel of Fig. 3 as ϵ− goes to zero just above the
outer horizon, higher-n terms in Eq. (30) dominate. As a
result, adiabaticity is not satisfied there, even though _κ−

(and therefore ϵ−) vanishes.

C. General viewing direction

The results of Secs. III A and III B apply to a radial
infaller observing modes purely in the radial direction.
Since the mass inflation instability involves radial focusing
of all null geodesics, one may wonder whether the
diverging acceleration seen by an infaller is confined to
a single radial point on the sky.
The goal of this section is to provide a generalization of

Eq. (21) to account for photons reaching the observer from
any direction. The photon’s 4-momentum will now include
additional angular terms with the conserved quantity
b≡ kϑ=kt, the photon’s impact parameter, which equals
0 for radial trajectories but in general can take any real
value up to infinity. To translate b into a viewing angle on
the observer’s sky, it suffices to define a single parameter χ
that measures the angle in the observer’s local tetrad frame
between the radial direction and the direction the observer
is facing. This viewing angle χ ranges from 0 degrees
(facing radially inward toward the past horizon) to

FIG. 3. Outgoing and ingoing adiabatic control functions ϵþ (red curve) and ϵ− (blue curve), respectively, as a function of an ingoing
observer’s position rob for two choices of the Reissner-Nordström black hole charge Q, in units of the black hole massM. As in Fig. 1,
the inner and outer horizons are shown with gray, dotted vertical lines, and the unphysical region below the inner horizon is grayed out.
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180 degrees (facing radially outward toward the sky above,
at past null infinity). For an observer with specific energy
Eob at radius rob, the impact parameter b is related to the
viewing angle χ by [45]

b ¼
���� rob sin χ

Eob −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
ob − ΔðrobÞ

p
cos χ

����: ð31Þ

The frequency ω measured in the frame of an observer
(≡ωob) or emitter (≡ωem) with specific energy E, normal-
ized to the frequency ω∞ seen at rest at infinity, then
generalizes to

ω

ω∞
¼ E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 − ΔÞð1 − b2Δ=r2Þ

p
Δ

; ð32Þ

where, as in the radial case, the upper (lower) sign applies
to outgoing (ingoing) null rays. The calculation of κ then
follows as in the radial case, though great care must be
taken to account for turnaround radii and ensure the correct
sign for different viewing angles and observer positions.
Since the perception of particle production is highly

dependent on the choice of observer, one must take care to
make an appropriate choice depending on the context of the
calculation. For example, an observer staring in a fixed
direction χ as they fall inward is not the same as an observer
staring at a single infalling emitter, whose position will
constantly change in the observer’s field of view. As argued
in Ref. [45], the choice of observer that will introduce the
least amount of noninertial radiative effects (e.g., from the
rotation of the observer’s frame) and will reveal the most
“pure” Hawking radiation is an observer staring in a fixed
direction χ. Such an observer will see a family of infalling
emitters as they fall inward, with each emitter connected to
the observer by a null path with the same phase.
If an observer stares at the sky above (corresponding to the

ingoing Hawking sector, with a family of Unruh emitters at
rem → ∞), the generalization of Eq. (21) to account for the
frequency of Eq. (32) seen from any viewing angle χ is
sufficient to satisfy the requirement from the previous
paragraph of an inertial observer with fixed χ. However,
if the observer stares at the past horizon below them
(corresponding to the outgoing Hawking sector, with a
family of Unruh emitters at rem → rþ), the frequency seen
by the emitter or the observer will diverge, as will the affine
distance of the null geodesics connecting the two infallers. In
order to ensure that the observer is seeing the same emitted
in-modes as they follow along a geodesic staring in a fixed
direction χ, the emitted affine distance

λem ≡ ωemλ ¼ ωem

Z
rob

rem

dr
kr

; ð33Þ

(where kr ≡ dr=dλ is the radial component of photon’s
coordinate-frame 4-momentum, given by Eq. (80) of

Ref. [45]) must be held constant. The resulting effective
temperature then takes the form:

κ¼−
∂

∂τob
ln

�
ωobλ

λem

�����
χ;λem

¼−_rob
�
∂ lnωob

∂rob

����
χ

þ∂ ln λ
∂rob

����
χ

�
− _rem

ωob

ωem

∂ ln λ
∂rem

����
χ

; ð34Þ

where the derivatives of the affine distance (at constant χ)
can be expanded with the Leibniz integral rule:

∂ ln λ

∂rob

����
χ

¼ 1

λ

�
1

krob
þ ∂b
∂rob

����
χ

Z
rob

rem

dr
∂

∂b
1

kr

�
; ð35aÞ

∂ ln λ

∂rem

����
χ

¼ −
1

λkrem
: ð35bÞ

The numerical solution to Eq. (34) for various values of rob
andQ is shown in Fig. 4. These plots show similar trends to
that found in Ref. [45] for Schwarzschild black holes. First,
the outgoing Hawking radiation seen from the past horizon
(left two panels) is actually weakest in the radial direction
(except when the observer is very close to the inner horizon).
As χ increases from 0° and the observer looks farther away
from the center of the black hole’s shadow marking where
the past horizon would be, κþ increases until it diverges at
the edge of the shadow.6 As the observer falls closer and
closer to the inner horizon, the area of sky across which
Hawking radiation is visible becomes larger (in conjunction
with the growing apparent size of the black hole’s shadow),
and the Hawking radiation becomes more and more iso-
tropic across the surface of the shadow. But once the
observer falls close enough to the inner horizon, the apparent
black hole size begins to decrease as the Hawking area
shrinks to a small patch of sky ahead of the observer (this
effect is most apparent in the lower left panel of Fig. 4, but
even in the upper left panel, additional curves for smaller
radii rob would begin to shrink since the maximum angle χ
shifts down to 0° as r → r−).
When the black hole’s charge Q is nonzero, the main

effect on the outgoing effective temperature at arbitrary
viewing angle is the same result found in Sec. III A;
namely, an observer close enough to the inner horizon
will see a negative κþ, corresponding to modes that are
exponentially blueshifting instead of redshifting. The
higher the charge Q, the farther out in physical space this
blueshifting zone becomes, until it extends beyond the

6This divergence is an artifact of the unphysical metric used;
for an astrophysical black hole formed by gravitational collapse a
finite time in the past, the Hawking radiation would still
exponentially limb brighten but would remain finite before
dropping to zero outside of the black hole’s shadow [45].
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outer horizon and reaches infinity in the extremal case (as
already seen in the radial case of Fig. 2).
Similarly, ingoing Hawking radiation seen from an

observer looking up at the sky above (right two panels
of Fig. 4) reproduces the same behavior found in Ref. [45]
for the Schwarzschild case, with minimal modifications
when Q is nonzero. The rate of redshifting in the upper
hemisphere is strongest when the observer looks straight up
to the sky (in the outward radial direction, χ ¼ 180°), and
κ− changes sign at 90°, reflecting the fact that the infaller is
accelerating away from the sky above (so that the upper

hemisphere is redshifting) and accelerating toward the
black hole below (so that the lower hemisphere is
blueshifting).
However, as with the outgoing effective temperature, the

ingoing effective temperature changes sign once the
observer falls close enough to the inner horizon [seen,
e.g., with the dashed pink line at rob ¼ r− þ 10−3ðrþ − r−Þ
on the right half of the top right panel of Fig. 4], so that the
upper hemisphere is blueshifting and the lower hemisphere
is redshifting. But unlike the outgoing radiation, the sign
change in the ingoing effective temperature is restricted

FIG. 4. Effective temperatures κþ (left two panels) and κ− (right two panels) seen by a radial, inertial, nonrotating observer falling
from infinity to the left leg of the inner horizon, as a function of the observer’s viewing angle χ on the sky. Curves from green to magenta
indicate radiation observed at radii rob → ∞, 8rþ, 4rþ, 2rþ, rþ (thick line), r− þ 0.5ðrþ − r−Þ, r− þ 0.25ðrþ − r−Þ,
r− þ 10−1ðrþ − r−Þ, and r− þ 10−3ðrþ − r−Þ. All curves are normalized so that the magnitude of κþ or κ− for a given radius when
looking, respectively, straight down (χ ¼ 0°) or up (χ ¼ 180°), is 1. Solid curves indicate positive values on the log plot, and dashed
curves indicate negative values.
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only to infallers within the event horizon, regardless of the
value of Q.
Aside from the sign reversal in every direction for

observers close enough to the inner horizon, the main
contribution that an addition of charge has on the angular
distribution of Hawking radiation (for both κþ and κ−) is to
smooth out the perceived temperature gradients across the
sky—the higher the charge Q, the less sharp the temper-
ature cutoff is at the black hole shadow’s boundaries, and
therefore the less isotropic the temperature is across the

observer’s field of view for a given distance above the inner
horizon.

1. Dependence on the observer’s energy

The dependence of the ingoing and outgoing effective
temperatures κ− and κþ on the observer’s specific energy
Eob is shown in the upper two plots of Fig. 5. These plots
only show one choice of black hole charge (Q=M ¼ 0.1)
and observer position (rob=M ¼ 1) so that the relevant
qualitative trends can be observed.

FIG. 5. Effective temperatures κþ (left plots) and κ− (right plots) in units ofM−1 as a function of the observer’s specific energy Eob, for
various choices of the observer’s viewing direction χ, with intervals of 15° from χ ¼ 0° (blue) to χ ¼ 180° (orange) (note that the left
plots contain no χ ¼ 180° curves and the right plots contain no χ ¼ 0° curves). Solid curves indicate positive values and dashed curves
indicate negative values. The black hole’s charge-to-mass ratio is Q=M ¼ 0.1, and the radiation is seen from an observer halfway
between the inner and outer horizons, at rob=M ¼ 1. The upper two plots show the effective temperatures calculated from Eq. (34)
directly as a function of Eob, while the lower two plots calculate the effective temperatures only for Eob ¼ 0 and infer the effective
temperatures at other observer energies by Lorentz-boosting to the appropriate frame.
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As a check on the consistency of the upper two plots in
Fig. 5, one can find that the presence or absence of different
constant-χ curves at different observer energies exactly
matches the position of the black hole silhouette in the
observer’s field of view. For example, for a black hole with
Q=M ¼ 0.1, an observer at rob=M ¼ 1 with Eob ¼ 1 will
see the past horizon below them (the black hole’s
“shadow”) spanning from χ ¼ 0° to its border at approx-
imately χ ≈ 53.2°, and in both upper plots at Eob ¼ 1, the
radiation κ− from the sky exists only for χ > 53.2° while
the radiation κþ from the horizon exists only for χ < 53.2°.
This holds true for all observer energies—as an observer is
Lorentz-boosted to Eob → ∞, the past horizon shrinks to a
single point below them, and as they are boosted in the
other direction (Eob → −∞), the sky shrinks to a single
point above them.
The lower two plots of Fig. 5 give a further check on the

consistency of the formalism and help to show the degree to
which the effective temperatures satisfy Lorentz covari-
ance. As the observer’s energy Eob changes, the observer is
effectively Lorentz-boosting to a different frame, even
though no restriction was imposed a priori for the effective
temperature to transform under the Lorentz group. As a
test, the lower two plots of Fig. 5 start with the same
calculations of κþ and κ− at Eob ¼ 0, but instead of varying
Eob in Eq. (34) to find the effective temperature at other
observer energies, a Lorentz boost is applied to the observer
and matched to the different energies. When beginning in
the Eob ¼ 0 frame, an interior observer boosted to a frame
where they have energy E0

ob will possess the Lorentz factor

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02
ob − Δ
Δ

r
: ð36Þ

Such a boost will entail two important effects. First, the
effective temperature will be Doppler-shifted by the fre-
quency factor ωob from Eq. (32), normalized to the
frequency seen in the Eob ¼ 0 frame. And second, the
observer’s field of view will experience relativistic aberra-
tion, such that photons arriving at an angle χ for the
Eob ¼ 0 observer will be shifted to the angle

χ0 ¼ cos−1
�

cos χ þ β

1þ β cos χ

�
ð37Þ

in the boosted frame (where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ−2

p
is the observ-

er’s speed). If the Hawking radiation seen by the observer
behaved purely classically and in a Lorentz-covariant
fashion, the upper two plots of Fig. 5 would exactly match
their lower counterparts.
As anticipated by the radial case (see Sec. III A 3), the

Hawking radiation seen from the sky above (κ−, upper right
plot in Fig. 5) in every direction varies reciprocally with Eob
as the observer’s energy asymptotically increases and varies
approximately linearly as Eob → −∞. Such a behavior is

similar to what is expected for a Lorentz-boosted observer
as in the lower right plot of Fig. 5. And just as in the radial
case, changing the observer’s specific energy Eob for fixed
χ will never change the sign of κ−. The ingoing effective
temperature is always zero when χ ¼ 90°, always positive
(with this specific choice of observer halfway between the
outer and inner horizons) for larger χ, and always negative
for smaller χ. Such a delineation can be noticed in the upper
right plot of Fig. 5 from the fact that the χ < 90° curves
(blue) are always negative (dashed), while the χ > 90°
curves (orange) are always positive (solid). This behavior is
a consequence of forcing the observer to stare in a fixed
direction; such an infaller will classically always see null
geodesics from infinity blueshifting below them (when
χ < 90°) and redshifting above them as they decrease their
radius.
What about the outgoing Hawking radiation from the

horizon? As shown in the upper left plot of Fig. 5, an
interior observer can change the sign of κþ by changing
their energy Eob enough. When Eob ¼ 1, the results of the
upper left panel of Fig. 4 are reproduced; namely, a
positive-temperature horizon is seen with brighter radiation
at the edges (i.e. larger κþ for larger χ). However, as the
observer boosts to smaller and smaller energies, the
temperature at the ever-growing edge of the horizon
begins to decrease until it drops below zero. The nega-
tive-temperature outer portion of the black hole’s shadow
then begins to grow inward until the entire horizon has a
negative temperature, once again with the largest magni-
tude at the edges. Though only one specific case is shown,
an outgoing (i.e., negative-energy) observer in a black
hole’s interior will always see a completely negative-
temperature horizon below them.
One way that the upper left plot of Fig. 5 differs from the

results of Sec. III A 3 (and from the lower left plot of Fig. 5)
is that κþ diverges linearly as Eob → −∞ instead of
dropping to zero. As a reminder, the difference in the
calculation done here versus that of previous sections is that
here the affine distance is kept constant so that the family of
emitters seen by the observer will always have the same
phase, since the emitted wave’s frequency appears to
diverge as the emitter is taken to the horizon. Evidently
such a restriction has a big impact not just in the evaluation
of the horizon temperature for nonzero χ, but also for the
evaluation of the horizon temperature for negative observer
energies, even when χ ¼ 0°.
Finally, let us briefly give special attention to the case of

an interior observer with Eob ¼ 0. Classically, such an
observer will begin at the event horizon seeing nothing but
the past horizon in all directions, excepting a vanishingly
small patch of sky directly above them at χ ¼ 180°. Then,
as they fall inwards, the sky above them will grow until it
almost takes up a full hemisphere of the observer’s field of
view, after which the sky will quickly collapse back to a
single point as the horizon grows. Semiclassically, in
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Sec. III A 2 it was argued that the Hawking radiation in the
Eob ¼ 0 frame diverges as z−1=2ob as an observer approaches
the inner horizon looking both up (χ ¼ 180°) and down
(χ ¼ 0°). What happens in other directions?
When Eob ¼ 0, the effective temperature from the sky

above becomes isotropic and simplifies considerably:

lim
Eob→0

κ−ðχÞ ¼ 1

2
ffiffiffiffiffiffiffi
−Δ

p dΔ
drob

: ð38Þ

This radiation extends across the entire sky visible to the
observer, from χ ¼ 180° to the edge of the black hole
shadow at

cos χ ¼ −
�
1 −

ΔðrÞ
r2

r2c
ΔðrcÞ

	−1=2
; ð39Þ

where rc ≡ 3M
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Q2

9M2

q
Þ is the critical radius of the

photon sphere. This isotropicity can be seen by the
convergence of all the curves in the right plots of Fig. 5
as Eob → 0.
The effective temperature κþ from the horizon does not

take on a simple analytic form like κ− does, but its
dependence on χ for an observer with rob=M ¼ 1 can be
ascertained from the left plots of Fig. 5. For various charges
Q and observer positions rob, the effective temperature is
usually negative in all directions, with the smallest magni-
tude for κþ occurring when looking straight downward
(χ ¼ 0°). Notably, as the observer reaches the inner
horizon, while the temperature κ− from Eq. (38) diverges
isotropically as ð−ΔÞ−1=2 (and therefore as z−1=2ob ), the
temperature κþ from the horizon also diverges as
ð−ΔÞ−1=2, with an even stronger divergence when χ > 0°.

IV. BOGOLIUBOV SPECTRUM

Since a variety of choices for the observer position rob
and black hole charge Q lead to a nonadiabatic effective
temperature function, one may wonder how much trust can
be placed on the physical validity of the results of Sec. III.
As has been argued, even if the Hawking spectrum is
nonthermal, there should in general still be particle pro-
duction whenever κ is nonzero. To verify this claim, here
we will perform a full wave mode analysis to find the
particle spectrum seen by an infaller in the locations where
the Klein-Gordon equation simplifies enough for such a
calculation to be performed.

A. Derivation

Consider the Bogoliubov coefficients between the vac-
uum state of an Unruh emitter and that of a freely falling
observer in a Reissner-Nordström spacetime. In any space-
time with metric gμν, a canonically quantized, massless
scalar field Φ will satisfy the Klein-Gordon wave equation

1ffiffiffiffiffiffi−gp ∂

∂xμ

� ffiffiffiffiffiffi
−g

p
gμν

∂Φ
∂xν

�
¼ 0: ð40Þ

Motivated by the spacetime’s symmetries, we choose to
decompose this field Φ into a complete set of modes ϕωlm,
each accompanied by creation and annihilation operators
a† and a:

Φ ¼
Z

∞

0

dω
X∞
l¼0

Xl
m¼−l

ðϕωlmaωlm þ ϕ�
ωlma

†
ωlmÞ: ð41Þ

If these modes are separated as

ϕωlm ¼ fωlðt; rÞYlmðθ;φÞ
r

ffiffiffiffiffiffiffiffiffi
4πω

p ; ð42Þ

then Eq. (40) implies that Ylm will satisfy the spherical
harmonic equation, while fωl must satisfy

∂
2fωl
∂r�2

−
∂
2fωl
∂t2

¼ Δ
�
lðlþ 1Þ

r2
þ 1

r
dΔ
dr

	
fωl: ð43Þ

The annihilation operators aωlm of Eq. (41) define the
vacuum state of the observer:

aobj0obi ¼ 0 ð44Þ

(for convenience, the mode indices ω, l, and m will
hereafter be suppressed as needed). However, Φ could
just as easily be decomposed into any other complete set of
modes ω̄, l̄, and m̄, so a similar decomposition can be used
to define an emitter’s vacuum state as

aemj0emi ¼ 0: ð45Þ
The two vacuum states are related by a Bogoliubov
transformation through the coefficients αωlm

ω̄ l̄ m̄
and βωlm

ω̄ l̄ m̄
(and note that there should properly be a sum of two
integrals for the emitter’s ingoing and outgoing states,
which are omitted here for simplicity):

aob ¼
Z

∞

0

dω̄
X∞
l̄¼0

Xl̄
m̄¼−l̄

ðα aem þ β�a†emÞ: ð46Þ

It is then straightforward to show [59] that the vacuum
expectation value of the observer’s number operator in the
emitter’s vacuum state is related to the Bogoliubov coef-
ficient β:

h0emja†obaobj0emi ¼
Z

∞

0

dω̄
X∞
l̄¼0

Xl̄
m̄¼−l̄

jβj2

¼
Z

∞

0

dω̄
X∞
l̄¼0

Xl̄
m̄¼−l̄

jhϕemjϕ�
obij2; ð47Þ

HAWKING RADIATION INSIDE A CHARGED BLACK HOLE PHYS. REV. D 107, 085010 (2023)

085010-15



where bra-ket notation denotes the Lorentz-invariant Klein-
Gordon inner product, which consists of a 3D integral over
an arbitrary spacelike Cauchy hypersurface Σ that termi-
nates at spacelike infinity and is orthogonal to a future-
directed unit vector nμ:

hϕ1jϕ2i≡ −i
Z
Σ
dΣnμ

ffiffiffiffiffiffiffiffi
−gΣ

p
ϕ1 ∂

↔

μϕ
�
2: ð48Þ

To determine the expected particle number seen by an
observer, one thus needs only to specify the observer’s and
emitter’s modes (usually via a set of boundary conditions),
propagated through the spacetime via the wave equation so
that they coincide on some Cauchy hypersurface.
The Unruh emitter’s ingoing (−) and outgoing (þ)

modes are defined with the following boundary conditions
at past null infinity I− and the past horizonHþ

rþ ≡ intHþ
rþ ∪

extHþ
rþ [here f is defined as in Eq. (42), with ωl indices

dropped for convenience]:

fþem →

�
0; I−

e−iωU; Hþ
rþ
; ð49Þ

f−em →

�
e−iωðtþr�Þ; I−

0; Hþ
rþ

; ð50Þ

where U is the outgoing Kruskal-Szekeres coordinate,
defined in terms of the event horizon’s surface gravity
ϰþ from Eq. (15) by

U≡
�
−e−ϰþðt−r�Þ=ϰþ; rþ ≤ r < ∞

þe−ϰþðt−r�Þ=ϰþ; r− ≤ r < rþ
: ð51Þ

The relevant surfaces to which these boundary conditions
correspond are shown schematically with dotted arrows in
the Penrose diagram of Fig. 6. Note that, as shown in the
diagram, the outgoing modes can be further split into a pair
of substates via fþ ≡ ðintfþÞ ∪ ðextfþÞ, each of whose
boundary conditions are zero except on their respective
null surfaces. As argued in Sec. II B, the modes of Eqs. (49)
and (50) are precisely those which are positive frequency
with respect to the proper time of a freely falling observer
skimming asymptotically close to those surfaces. The
modes f�em can then be extended to the entire spacetime
by solving the wave Eq. (43).
Similarly, the observer’s ingoing (−) and outgoing (þ)

modes can be defined via boundary conditions, in this case
on the future null hypersurfaces. At future null infinity, the
outgoing modes are positive frequency with respect to the
outgoing Eddington-Finkelstein coordinate u≡ t − r�,
since an observer asymptotically close to that surface will
define positive frequency with respect to that coordinate (as
argued in Sec. II B). The natural question is then how this
vacuum state should be extended to the interior of the black

hole. In studies of analogous acoustic black hole sys-
tems [60,61], these interior modes are also defined with
respect to the Eddington-Finkelstein coordinates, in part
because the inner horizon of those systems is mimicked by
a physically infinite asymptotic regime. For the Reissner-
Nordström spacetime, an infaller will not reach an asymp-
totically steady state at the inner horizon; however, they
will approach an asymptotic regime (albeit a transient one)
where Δ → 0 and the scattering potential of Eq. (43)
vanishes. In the regime where this potential vanishes, as
shown in Sec. II B, freely falling observers experience a
proper time proportional to the Eddington-Finkelstein
coordinates:

fþob →

8<
:

e−iωðt−r�Þ; Iþ

e−iωðr�−tÞ; Hþ
r−

0; H−
r−

; ð52Þ

f−ob →

�
0; Iþ ∪ Hþ

r−

e−iωðr�þtÞ; H−
r−

: ð53Þ

These modes are shown with solid arrows in Fig. 6. They
represent the experience of any inertial observer with

FIG. 6. Penrose diagram showing the various boundaries for a
Reissner-Nordström black hole on which modes are defined with
nonzero values. Past (future) null infinity is labeled I− (Iþ), the
outer (inner) horizons are labeledHrþ (Hr− ), and the superscripts
þ (−) everywhere indicate whether modes traveling across a
surface are outgoing (ingoing). The boundary conditions for the
emitter’s (observer’s) modes at the locations of the dotted (solid)
lines can then be propagated (backpropagated) numerically using
the wave equation to define the modes throughout the entire
spacetime.
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arbitrary energy Eob (up to a rescaling of the frequency ω);
without loss of generality, an observer with Eob ¼ 1 is
chosen for the left potion of the inner horizon in Fig. 6
(H−

r−), while an observer with Eob ¼ −1 is chosen for the
right portion (H−

r−). Also, note that if the observer is placed
at the outer horizon instead of the inner horizon, a similar
complete set of modes can be defined mutatis mutandis. In
what follows, we will present the results for both sets of
modes simultaneously, though we will only closely follow
the steps of analysis for the inner horizon observers’ set
of modes.
Equipped with a complete set of modes for an Unruh

emitter and an inertial observer, one may now proceed to
calculate the expectation value of the particle number
operator seen by the observer in the emitter’s vacuum state
via Eq. (47). To do so, consider what will subsequently be
referred to as the past null Cauchy hypersurface, consisting
of the union of past null infinity with the exterior and
interior past horizons (I− ∪ Hþ

rþ ; see Fig. 6). On this
surface, the emitter’s modes are given by Eqs. (49) and
(50), while the observer’s modes can be found with
scattering theory, as described below.
Since the t coordinate used to define the observer’s

modes defines a global timelike Killing vector for the
spacetime, the field’s modes fωl can be separated as

fωlðt; r�Þ≡ χωlðr�Þ e�iωt: ð54Þ

This separation puts the Klein-Gordon wave Eq. (43) into
the form of a 1D scattering equation in r�. In the limits asΔ
approaches both 0 and 1, the scattering potential of Eq. (43)
vanishes, leading to asymptotic eigenmode solutions of the
form expð�iωr�Þ. As such, the observer’s modes χ�ob can be
backpropagated to the past null Cauchy hypersurface—
altogether, for an observer at future null infinity one has

extfþob → e−iωt
�
eiωr

� þRþ
exte−iωr

�
; r�ext → ∞

T þ
exteiωr

�
; r�ext → −∞

; ð55Þ

for an outgoing observer at the inner horizon,

intfþob→ eiωt

8>>><
>>>:

e−iωr
�
; r�int→∞

T þ
inte

−iωr� þRþ
inte

iωr� ; r�int→−∞
Rþ

intT
−
exteiωr

�
; r�ext →∞

Rþ
intðeiωr

� þR−
exte−iωr

�Þ; r�ext →−∞

; ð56Þ

and for an ingoing observer at the inner horizon,

intf−ob→ e−iωt

8>>><
>>>:

e−iωr
�
; r�int→∞

T −
inte

−iωr� þR−
inte

iωr� ; r�int→−∞
T −

intT
−
exte−iωr

�
; r�ext→∞

T −
intðe−iωr

� þR−
exteiωr

� Þ; r�ext→−∞

; ð57Þ

where r�int and r�ext represent the radial tortoise coordinates
r� for the black hole’s interior and exterior, respectively.
The reflection coefficients R�

int;ext and transmission coef-
ficients T �

int;ext, which depend on the observer’s mode
numbers ω and l, can be computed numerically (or
semianalytically with confluent Heun functions) with the
above boundary conditions on the wave Eq. (43); see the
Appendix for more details.
Defining annihilation operators int;exta�ob;em for each

respective set of modes int;extf�ob;em, we can now calculate
the particle content seen by the observer. The vacuum
expectation values of the number operators associated with
each choice of observer are

hN�
int;exti≡ h0emjðint;exta�obÞ†ðint;exta�obÞj0emi; ð58Þ

with hNþ
exti for the expected particle number observed

at future null infinity Iþ, hN−
exti for an observer at the

event horizon H−
rþ , hNþ

inti for an outgoing observer at the
inner horizon Hþ

r− , and hN−
inti for an ingoing observer at

the inner horizon H−
r− .

Using Eqs. (47) and (48) and evaluating the inner
product between the emitter’s modes and the observer’s
backpropagated modes along the past null Cauchy hyper-
surface, the anticipated number operators can be calculated.
After summing over the angular modes, the following inner
products yield nontrivial (i.e., up to an irrelevant phase)
contributions to the Bogoliubov coefficients:

ð59aÞ

ð59bÞ

ð59cÞ

ð59dÞ
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where each Penrose diagram stands in for the complex
conjugate of the backscattering coefficient(s) correspond-
ing to the path shown, e.g., the final diagram of Eq. (59d)
represents the combination ðRþ

intT
−
extÞ�, and the subscript

associated with each bra-ket indicates the null surface over
which that inner product is evaluated.
Several potential pathways appear to be missing from

Eq. (59), such as the pathway in Eq. (59b) connecting the
event horizon to past null infinity. However, all such path-
ways involve inner products of the form he−iω̄vjeiωvi, whose
modes are completely orthogonal and therefore do not
contribute at all to the Bogoliubov coefficients. While the
exclusion of these pathways is entirely straightforward and
routine, one may wonder how these calculations relate to
those of Sec. III, where, for example, an observer at the event
horizon does see nontrivial contributions from the ingoing
modes from past null infinity. The discrepancy lies in the fact
that adiabaticity is never satisfied for κ−ðrþÞ, and therefore
the effective temperature calculations cannot be trusted at
that specific location. There is a small range of black hole
charges around the valueQ=M ≈ 0.937 for which it appears
from Fig. 3 that ϵ dips below 1 at the event horizon; however,
as noted in Sec. III B, in this range, the adiabatic control
function ϵ fails to be a good estimator of the degree of
adiabaticity, since higher derivatives of κ dominate over the
vanishing first derivative.
The evaluation of the inner products from Eq. (59) over

each relevant surface have become a standard part of the
literature (see, e.g., Refs. [6,61], and sources therein); for
example,

���he−iω̄UjeiωuiextHþ
rþ

���2 ¼ e−πω=ϰþ

4π2ϰ2þ

ω

ω̄

����Γ
�
iω
ϰþ

�����
2

ð60Þ

Using the property of gamma functions

jΓð�ixÞj2 ¼ 2π

xðeπx − e−πxÞ ; ð61Þ

one finds a Planckian distribution in the observer’s fre-
quency ω, and while the remaining factors of 1=ð2πϰþω̄Þ
formally diverge when the integrals of Eq. (59) are carried
out, this divergence only occurs as a result of the unphysical
usage of infinite plane waves. If one were instead to use a
normalized wave packet localized in each asymptotic region
with a frequency content concentrated around some fre-
quency ω̄�, the offending terms would all reduce to unity.
Since the scattering coefficients in Eq. (59) are inde-

pendent of the emitter’s modes ω̄ (the emitter’s modes are
kept at their initial past boundaries, while the observer’s
modes are the ones that must be backpropagated through
the spacetime’s scattering potential), the final form of the
number operators at each surface simplifies to (cf. the
number operators of Ref. [61] evaluated for a simplified
scattering potential):

hNþ
exti ¼

jT þ
extj2

e2πω=ϰþ − 1
; ð62aÞ

hN−
exti ¼

jR−
extj2

e2πω=ϰþ − 1
; ð62bÞ

hN−
inti ¼

jT −
intR

−
ext −R−

inte
πω=ϰþj2

e2πω=ϰþ − 1
; ð62cÞ

hNþ
inti ¼

jT þ
int −Rþ

intR
−
exteπω=ϰþj2

e2πω=ϰþ − 1
þ jRþ

intT
−
extj2: ð62dÞ

The key feature in each of the above equations is the
familiar Planckian spectrum ðe2πω=ϰþ − 1Þ−1, modified by a
frequency-dependent graybody factor associated with the
appropriate set of scattering coefficients. For example, if no
modes were scattered in the black hole exterior (and
therefore T þ

ext ¼ 1), Eq. (62a) would reduce to a com-
pletely thermal Hawking spectrum, as expected for an
eikonal observer at infinity.

B. Results

1. Spectra for s-modes

Figure 7 shows the deviations from thermality for the
l ¼ 0 spectra of Eq. (62). These plots are computed
numerically with the help of confluent Heun functions,
as outlined in the Appendix. In the top left panel, the
particle spectrum seen asymptotically far from the black
hole is plotted as the ratio of hNþ

exti to the analogous
occupation number for a fully thermal spectrum with
temperature ϰþ=ð2πÞ (this Planckian distribution will
subsequently be referred to as a “ϰþ blackbody”). This
ratio, which from Eq. (62a) equals the transmission
probability jT þ

extj2, approaches unity in the high frequency
(geometric optics) limit, indicating a return to thermality in
that regime. However, at lower frequencies, significant
deviation from thermality occurs as the spectrum attains a
steeper power law than that of a blackbody. The trans-
mission probability approaches a power law index of 2, as
first predicted by Starobinsky and Churilov for the ana-
lytically solvable ωM ≪ 1 regime [62].
For an observer crossing the event horizon, the Hawking

radiation seen from ingoing modes in the sky above is
shown in the top right panel of Fig. 7. Just as in the top left
panel, values at unity indicate consistency with a ϰþ
blackbody spectrum, though in this case, thermality at
the surface gravity temperature mostly occurs at the lowest
frequencies instead of the highest frequencies, with slight
deviations for different black hole charges Q. At higher
frequencies, the spectrum cuts off much sooner than it does
for an asymptotically infinite observer, indicating a lower
eikonal temperature. This high-frequency-limit temperature
(multiplied by 2π) is approximately, but not exactly, equal
to the effective temperature κ− from Eq. (24), as shown by
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the dotted curves in Fig. 7. Indeed, the modes contributing
to the Bogoliubov spectrum from Eq. (59b) are ingoing at
the event horizon and therefore tied to κ−, although
adiabaticity is not quite satisfied there.
In principle, one may also calculate the spectrum of

outgoing Hawking modes seen at the event horizon,

corresponding to the effective temperature κþ there, and
indeed, an infalling observer will still see an exponentially
redshifting past horizon below them after they cross the
event horizon. However, calculating the outgoing modes
for an ingoing horizon observer (and vice versa) requires
Fourier-decomposing the observer’s modes of Eq. (17) so

FIG. 7. Graybody s-mode factors from Eq. (62) modifying the thermal ϰþ=ð2πÞ-temperature Hawking spectra seen by an observer
asymptotically far from the black hole looking downward at outgoing modes (top left), an ingoing observer at the event horizon looking
upward at ingoing modes (top right), an ingoing observer at the inner horizon looking upward at ingoing modes (bottom left), and an
outgoing observer at the inner horizon looking downward at outgoing modes (bottom right). Different black hole charges are shown with
respective colors from dark blue to yellow: Q=M ¼ 0.1, 0.5, 0.7, 0.9, 0.96, 0.99, and 0.999. Solid curves show the numerically
computed spectra, while dotted curves show the positive-valued spectra obtained from a completely thermal distribution with
temperatures κþ=ð2πÞ from Eq. (23) (upper left), κ−=ð2πÞ from Eq. (24) (upper right), κ−=ð2πÞ from Eq. (25) (lower left), or κþ=ð2πÞ
from Eq. (26) (lower right).
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that they can be backpropagated to the past horizon, which
will be deferred to a future study; for more details, see,
e.g., Ref. [63].
Though only frequencies as high as ωM ∼ 0.6 are shown

for the horizon spectra of Fig. 7 (the ωM ≫ 1 regime is
beyond our current numerical capabilities), any higher
frequencies are all but irrelevant compared to the luminos-
ity peaks of the blackbodies, which, though not shown in
the normalized spectra of Fig. 7, occur between ωM ∼ 0.2
(for the lowest charge Q) and ωM ∼ 0.01 (for the highest
charge plotted).
While the Hawking spectra seen at infinity and the event

horizon contain straightforward graybody deviations from
a thermal spectrum, the spectra seen at the inner horizon tell
a different story. Two spectra for the left and right portions
of the inner horizon are shown in the lower left and right
panels of Fig. 7, respectively. These spectra bear little
resemblance to the initial ϰþ blackbodies seen at infinity;
nonetheless, we still present the spectra normalized to the
ϰþ blackbodies due to the factors in the denominators
of Eq. (62).
At the left leg of the inner horizon (lower left panel of

Fig. 7), the particle spectrum given by the Bogoliubov
coefficient between the observer’s and emitter’s vacuum
states all appear to be ultraviolet-divergent; if an exponential
cutoff does occur, it must happen at frequencies higher
than we are able to calculate. A qualitatively similar
spectrum would occur for a Planckian distribution with
negative temperature (albeit with an overall sign change),
as anticipated in Secs. III A and III C, and for reference,
the corresponding negative-temperature κ− blackbodies are
shown by the dotted curves in Fig. 7. Notably, asQ=M → 1,
the ultraviolet divergence grows stronger, though as
Q=M → 0, the entire spectrum diverges (once Q=M goes
below ∼0.01, the spectrum is too high to be seen on these
lower two plots). Such a panchromatic divergence can be
attributed to the fact that the inner horizon’s surface gravity
ϰ−, and consequently the temperatures κ− from Eq. (25) and
κþ fromEq. (26), grow to infinity in the Schwarzschild limit,
since r− → 0.
At the inner horizon’s right leg (lower right panel of

Fig. 7), the curves once again diverge at higher frequencies,
indicating quasitemperatures much higher than the under-
lying ϰþ blackbodies. These temperatures may be high
enough to be negative, though when the black hole charge
is large enough, the spectra begin to deviate significantly
from the dotted lines showing κ− blackbodies. Nonetheless,
the spectrum is still everywhere nonthermal as a result of
the frequency-dependent additive final term in Eq. (62d).

2. Spectra for higher spherical harmonics

The dependence of the Hawking spectra on the spherical
harmonic mode number l is shown in Fig. 8. Instead of
plotting the entire spectrum for each l, we sample two
points from each spectrum, one at a higher frequency

(ωM ¼ 0.5, blue points) and one at a lower frequency
(ωM ¼ 0.05, red points). In almost all cases (except the
spectra for hN−

exti; see the upper right panel of Fig. 7), the
higher-frequency blue points exceed their lower-frequency
red counterparts, indicating that the general qualitative
trends of each spectrum in Fig. 7 remain intact for
higher-l modes.
For the Hawking radiation seen asymptotically far from

the black hole, the l ¼ 0 mode dominates over any higher
harmonics [64], as can be seen from the drop-off of the
solid circular points in Fig. 8. However, for radiation seen at
the outer and inner horizons, the spectra do not seem to fall
off as l is increased. It would appear that the ultraviolet-
divergent Hawking spectra contain substantial contribu-
tions not only from the spherical l ¼ 0 modes, but also
from much higher harmonics. One important implication of
this result is that semiclassical calculations of the renor-
malized stress-energy tensor in the ð1þ 1ÞD Polyakov
approximation potentially miss out on key beyond-s-wave
physics near the horizons.

V. DISCUSSION

Two of the main questions underpinning this study are as
follows: how would Hawking radiation appear for someone
at a black hole’s inner horizon? And what is meant by a
negative Hawking temperature in this context? Ultimately,
one may wish to understand the full quantum backreaction
near the inner horizon, and though we are not at a place to

FIG. 8. Sampled points at ωM ¼ 0.5 (blue) and ωM ¼ 0.05
(red) for the four spectra of Fig. 7 when generalized to higher-l
modes. All points use a black hole charge of Q=M ¼ 0.1. The
l ¼ 0 mode dominates the spectrum hNþ

exti seen at infinity, but
higher-lmodes make substantial contributions to the spectra seen
at the horizons.
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provide a definitive assertion regarding the fully dynamical,
quantum gravitational backreaction, the present analysis
does shed further light on the nature of both Hawking
radiation and semiclassical charged black holes.
To study the Hawking radiation seen anywhere near or

far from a black hole, we began with the effective temper-
ature functions κ� for an observer looking radially inward
or outward [6,7], as defined in Sec. II A, which reproduces
Hawking’s original calculation in the geometric optics limit
but generalizes to an arbitrary inertial observer at a radius
rob. This effective temperature, given by Eq. (22) for an
infaller from rest at infinity, diverges at the inner horizon,
and regardless of the observer’s orbital parameters, it
becomes negative (indicative of modes that are blueshifting
instead of redshifting) once the observer falls close enough
to the inner horizon. As it turns out, this negative temper-
ature is not merely confined to the black hole’s interior that
would remain inaccessible to the outside universe; instead,
when the charge-to-mass ratio is high enough, specifically
when ðQ=MÞ2 > 8=9, the inner horizon becomes close
enough to the event horizon that a negative κþ is detected
outside the black hole.
The change in sign of the effective Hawking temperature

for observers close enough to the inner horizon was found
in Sec. III C to occur not just in the radial direction, but in
every direction the observer looks in their field of view. The
classical phenomenon of mass inflation involves a diver-
gence only at a single radial point in the sky (as an outgoing
observer approaches the inner horizon, the sky above them
will shrink to a point and become infinitely blueshifted),
but semiclassically, Hawking radiation originating from the
past horizon will fill the observer’s entire field of view with
diverging, negative-temperature radiation as they approach
the inner horizon.
Are the approximations of the effective temperature

formalism even valid whenever κ becomes negative? By
studying the adiabatic control function ϵ in Sec. III B, we can
learnwhether ϵ is small enough for the adiabatic condition to
be satisfied and therefore for κ to reproduce approximately
thermal Bogoliubov coefficients. We find that at the inner
horizon, the outgoing modes for an ingoing observer are
sufficiently adiabatic for a large enough black hole chargeQ,
while the ingoing modes are never adiabatic there.
To complement these effective temperature results and

provide a more rigorous calculation in the regimes where the
adiabatic condition fails, we finally performed a full wave
mode analysis in Sec. IV to determine the Bogoliubov
spectrum at each of the asymptotic regimes. To do so, the
observer’s wave modes were backpropagated through the
spacetime to the position of the Unruh emitter using Eq. (43)
for a massless scalar Klein-Gordon field, and the inner
product of the observer’s and emitter’smodeswas computed.
Asymptotically far from the black hole, the spectrum
becomes completely thermal for high enough frequencies
(i.e., in the geometric optics limit), which is consistent with

the vanishing of the outgoing adiabatic control function ϵþ at
infinity. In contrast, for an observer at the event horizon, ϵþ is
almost never significantly smaller than unity, and the
corresponding Bogoliubov spectrum does deviate signifi-
cantly from thermality in the geometric optics limit.
At the inner horizon, the spectrum of scalar particles

appears quite different from that of a positive-temperature
blackbody, and instead looks much more like the spectrum
one would obtain (up to an overall change in sign) from a
blackbody with a negative temperature. The spectra are thus
mostly consistent with the effective temperature predictions,
despite the general lack of adiabaticity in that regime. The
familiar Rayleigh-Jeans power law is still present at lower
frequencies, but at higher frequencies, the spectral intensity
continues to climb even higher. Even if an exponential decay
at higher frequencies never occurs with the present formal-
ism, onemaynonetheless suspect that some ultraviolet cutoff
will exist once the semiclassical approximation breaks down
at the Planck scale, or, more importantly, that the semi-
classical backreaction in a dynamical collapsewould prevent
such a spectrum from ever occurring in the first place.
The right leg of the inner horizon is unique in that its

spectrum contains substantial contributions not only from
the outgoing Unruh modes originating from the past
horizon below the observer (as in all the other cases),
but also from the ingoing Unruh modes originating from
the sky above; see Eq. (59d). The resulting spectra are even
more divergent at low Q than those of the left leg of the
inner horizon, though at higher Q, the spectra appear much
tamer (albeit still with a much higher graybody temperature
than that observed asymptotically far away). If one wishes
to compare these spectra with the effective temperature
formalism of Sec. III, it should be noted that the adiabatic
control functions of Fig. 3 are only valid for the left leg of
the inner horizon—for the right leg, ϵ− always equals 1,
while ϵþ is always greater than 1.
When comparing the inner horizon values of the effective

temperatures κ� with their corresponding Bogoliubov
spectra, it is important to note that the two spectra shown
in the lower panels of Fig. 7 are associatedwith theHawking
sectors that are not expected to yield diverging effective
temperatures (but are nonetheless negative); namely, the
ingoing temperature κ− in Eq. (25) and the outgoing
temperature κþ in Eq. (26). If an ingoing (or outgoing)
observer at the inner horizon looks downward (or upward,
respectively), they should be met with an even stronger dose
of diverging Hawking radiation. But what Fig. 7 communi-
cates is that for an outgoing observer approaching the inner
horizon, while they can look upward to see the Penrose
blueshift singularity forming, if they look downward at the
initially dimming and redshifting past horizon, even this
surface will eventually begin to blueshift and produce a
semiclassically divergent spectrum of Hawking radiation.
The implications of these Hawking spectra are clear: the

interaction of a quantum scalar field with a charged black
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hole results in runaway particle creation detected at the
inner horizon. The particle spectrum diverges at all
frequencies asQ=M → 0, since the inner horizon coincides
with the r ¼ 0 singularity that was already found to feature
a diverging Hawking flux in Ref. [45]. But even for
nonzero charge, the inner horizon spectrum becomes highly
blueshifted and is potentially ultraviolet-divergent.
Such a highly energetic source of radiation will quickly

become amplified in the radial direction and provide an
ongoing source for the Poisson-Israel mass inflation insta-
bility. Even if the observer is taken to be something as
simple as a two-level atom, one may speculate that the
implied Hawking flux would energize the atom to such an
extent that the inevitable result is a positive feedback loop
resulting in the collapse of the spacetime geometry into a
spacelike singularity. The Reissner-Nordström metric can-
not remain semiclassically intact; its inner horizon must
collapse into a singularity or else evolve dynamically into
some potentially horizonless object.
Several important questions remain to be answered.

While the effective temperature and Bogoliubov spectrum
formalisms complement each other well in many regards,
the exact conditions under which they agree remain to be
proven, especially since the adiabatic control function ϵ
often fails to predict when the spectrum will or will not
appear Planckian at high frequencies (or even whether κ
itself is adiabatic). Additionally, one may wish to explore
further the implications of the dominance of higher-l
Hawking modes once an observer reaches either horizon
(note that the higher-l modes of Fig. 8 cannot be directly
compared with the observed angular modes of Fig. 4, since
the latter describe angular modes with respect to the
observer while the former describe angular modes with
respect to the black hole’s center). But the biggest question
one may wish to ask is whether either calculation is able to
predict the presence of “real” particles. We have not made
use of any response functions, Unruh-DeWitt detectors, or
renormalization schemes that would indicate the influence
of a Hawking particle on an observer or on the underlying
spacetime geometry. Nonetheless, in analyzing how the
effective temperature depends on an observer’s energy, it
does appear to preserve Lorentz covariance in some
regimes, and regardless, there is no doubt that the semi-
classical effects predicted here should substantially alter the
spacetime geometry near the inner horizon.

APPENDIX: BACK-SCATTERING
COEFFICIENTS VIA CONFLUENT

HEUN FUNCTIONS

In this appendix we outline the methodology to compute
the backscattering coefficients used in Sec. IV to find
the graybody factors associated with the Hawking spectrum
at infinity, the event horizon, and the inner horizon.
Eqs. (55)–(57) provide the boundary conditions for the
observer’s backscattered mode functions in terms of the

reflection coefficients R�
int;ext and transmission coefficients

T �
int;ext, where the subscript labels whether the scattering

occurs in the black hole’s interior (“int”) or exterior (“ext”),
and the superscript labels whether the modes are outgoing
(þ) or ingoing (−) prior to backpropagation, at the future
null surface in the relevant spacetime sector. Conservation
of the Wronskian dictates that these coefficients satisfy the
following normalization conditions:

jT �
intj2 − jR�

intj2 ¼ 1; ðA1aÞ

jT �
extj2 þ jR�

extj2 ¼ 1; ðA1bÞ

which will provide a check to ensure the accuracy of the
numerical scheme. The negative sign associated with R�

int
in Eq. (A1a) is due to the fact that the corresponding
substates have a negative norm; the scattering potential
inside the black hole allows for the existence of both the
observer’s original modes expð−iωr�Þ (positive frequency
with respect to the timelike coordinate r�) and the anoma-
lous modes expðþiωr�Þ.
The backscattering coefficients can be calculated either

by implementing an implicit numerical ODE method to
solve the Klein-Gordon wave Eq. (43), or by matching
analytic solutions to that equation. Here we will explore the
latter option.
Instead of the mode separation of Eq. (42), the Klein-

Gordon scalar field can be separated as

ϕωlm ¼ RωlðrÞ e�iωt Ylmðθ;φÞffiffiffiffiffiffiffiffiffi
4πω

p ; ðA2Þ

with the upper (þ) sign in the exponential for the outgoing
modes observed at the right leg of the inner horizon (which
can be written as intRþ

ob) and the lower (−) sign for both the
ingoing modes observed at the left leg of the inner horizon
(intR−

ob) as well as the outgoing modes observed at future
null infinity (extRþ

ob). In terms of the modes of Eq. (43), Rωl

and fωl are related by

fωlðt; rÞ ¼ rRωlðrÞe�iωt: ðA3Þ

The Klein-Gordon wave equation for the spatial modes
Rωl, or equivalently, the wave Eq. (43) for fωl, contains
three singular points throughout the spacetime, which occur
whenever r� → �∞. Two of these are the regular singu-
larities located at the inner and outer horizons, and the third
is an irregular, rank-1 singularity at spatial infinity. This
structure suggests that the wave equation can be cast into
confluent Heun form: first, apply a Möbius transformation
to define the new coordinate

z≡ r − r−
rþ − r−

ðA4Þ
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so that the singular points are shifted from r ¼ ðr−; rþ;∞Þ
to z ¼ ð0; 1;∞Þ. Then, apply a gauge transformation to the
field variable that keeps the singular points fixed (such a
shift in the Frobenius solution indices is known as an
F-homotopic transformation):

RðzÞ ¼ z
γ−1
2 jz − 1jδ−12 eε

2
zZðzÞ; ðA5Þ

so that the Klein-Gordon wave Eq. (40) reduces to:

d2Z
dz2

þ
�
γ

z
þ δ

z − 1
þ ε

�
dZ
dz

þ
�
q
z
þ α − q

z − 1

�
Z ¼ 0 ðA6Þ

provided

q ¼ lðlþ 1Þ þ 2iω
rþr−

rþ − r−
− 4ω2r2−

þ 4ω2

�
rþr−

rþ − r−

�
2

; ðA7aÞ

α ¼ −2iωðrþ − r−Þ − 4ω2r2−; ðA7bÞ

γ ¼ 1 − 2iω
r2−

rþ − r−
; ðA7cÞ

δ ¼ 1 − 2iω
r2þ

rþ − r−
; ðA7dÞ

ε ¼ −2iωðrþ − r−Þ: ðA7eÞ

For the more general Kerr-Newman case, the correspond-
ing version of these parameters can be inferred from, e.g.
Ref. [65]. Also, note that the signs of the three exponents in
Eq. (A5) can be either positive or negative, corresponding
either to outgoing or ingoing waves at each of the singular

points. Regardless of this gauge choice, both ingoing and
outgoing modes will always be recovered by the choice of
linear combinations of modes for ZðzÞ.
Two linearly independent solutions to Eq. (A6) that are

regular at the inner horizon are given via confluent Heun
functions for the equation’s allowed F-homotopic auto-
morphisms:

Zð0ÞðzÞ ¼ Að0ÞZA
ð0ÞðzÞ þ Bð0ÞZB

ð0ÞðzÞ; ðA8aÞ

ZA
ð0ÞðzÞ ¼ HeunC ðq; α; γ; δ; ε; zÞ; ðA8bÞ

ZB
ð0ÞðzÞ ¼ z1−γHeunC ðq0; α0; 2 − γ; δ; ε; zÞ; ðA8cÞ

with arbitrary complex coefficients Að0Þ and Bð0Þ, with the
definitions

q0 ¼ q − ðδ − εÞð1 − γÞ; ðA9aÞ
α0 ¼ αþ εð1 − γÞ; ðA9bÞ

and with the functions’ argument structure following the
convention used in Wolfram Mathematica, which has
newly implemented Heun functions in version 12.1.
These negative- and positive-frequency solutions can be
computed with a forwardly stable set of power series that
are convergent everywhere except at the singular points
z ¼ 1;∞ and are linearly independent except when γ ¼ 1,
in which case the factor z1−γ can be replaced with lnðzÞ.
As a reminder, the goal here is to compute the values of

the reflection and transmission coefficients R�
int;ext and

T �
int;ext, which can be used to calculate the observed spectra

of Eq. (62). These coefficients are tied to the asymptotic
forms of the field modes given in Eqs. (55)–(57), which in
the present notation take the form

extRþ
obðzÞ →

8>>><
>>>:

eiωr−
rþ−r−

eiωðrþ−r−Þzjzj2iω−1 þRþ
ext

e−iωr−
rþ−r−

e−iωðrþ−r−Þzjzj−2iω−1; z → ∞

T þ
ext

eiωrþ
rþ

jz − 1jiω
r2þ

rþ−r− ; z → 1

0; z → 0

; ðA10aÞ

intRþ
obðzÞ →

8>>>>><
>>>>>:

Rþ
intT

−
ext

eiωr−
rþ−r−

eiωðrþ−r−Þzjzj2iω−1; z → ∞

Rþ
int

eiωrþ
rþ

jz − 1jiω
r2þ

rþ−r− þ ðT þ
int þRþ

intR
−
extÞ e−iωrþrþ

jz − 1j−iω
r2þ

rþ−r− ; z → 1

e−iωr−
r−

jzjiω r2−
rþ−r− ; z → 0

; ðA10bÞ

intR−
obðzÞ →

8>>><
>>>:

T −
intT

−
ext

e−iωr−
rþ−r−

e−iωðrþ−r−Þzjzj−2iω−1; z → ∞

T −
int

e−iωrþ
rþ

jz − 1j−iω
r2þ

rþ−r− þ ðR−
int þ T −

intR
−
extÞ eiωrþrþ

jz − 1jiω
r2þ

rþ−r− ; z → 1

e−iωr−
r−

jzjiω r2−
rþ−r− ; z → 0

: ðA10cÞ
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Here the integration constant for the tortoise coordinate r�
of Eq. (10) is chosen so that

r� ¼ rþ r2þ
rþ − r−

ln jz − 1j − r2−
rþ − r−

ln jzj: ðA11Þ

Asymptotically, the modes of Eq. (A8) at the inner
horizon (z ¼ 0) reduce to

RðzÞ → Að0Þz−
1−γ
2 þ Bð0Þz

1−γ
2 ; z → 0; ðA12Þ

since the confluent Heun functions are normalized to unity
when the independent variable equals zero, provided γ is
not a nonpositive integer. This asymptotic form can then be
matched to the modes of Eq. (A10) to find expressions for
Að0Þ and Bð0Þ. One obtains Að0Þ ¼ 0 for all three sets of
modes in Eq. (A10), since by definition the inner horizon
observer only sees positive frequency waves there. For the
interior observer modes intR�

obðzÞ, Bð0Þ ¼ expð−iωr−Þ=r−,
while the exterior observer modes extRþ

obðzÞ are only defined
for z ≥ 1 and must be treated separately.
Unfortunately, analytic asymptotic forms for the modes

of Eq. (A8) are not known at the spacetime’s two other
singular points. An explicit solution to the central two-point
connection problem for confluent Heun functions is still
outstanding and is directly related to the inverse of Hilbert’s
21st problem; currently, analytic forms of the monodromy
matrices have only been found for the reduced confluent
Heun equation with ε ¼ 0 [66].
Thus, we proceed by defining a new set of local Heun

modes at each singular point and numerically matching
their coefficients via the algorithm set forth in Ref. [67].
At the event horizon (z ¼ 1), a set of regular, linearly

independent solutions to Eq. (A6) that are convergent
everywhere except at the singular points z ¼ 0;∞ can
be written as:

Zð1ÞðzÞ ¼ Að1ÞZA
ð1ÞðzÞ þ Bð1ÞZB

ð1ÞðzÞ; ðA13aÞ

ZA
ð1ÞðzÞ ¼ HeunC ðq − α;−α; δ; γ;−ε; 1 − zÞ; ðA13bÞ

ZB
ð1ÞðzÞ¼ ð1− zÞ1−δ

×HeunCðq0−α0;−α0;2−δ;γ;−ε;1− zÞ; ðA13cÞ

with arbitrary complex coefficients Að1Þ and Bð1Þ, and with
the definitions

q0 ¼ q − γð1 − δÞ; ðA14aÞ

α0 ¼ αþ εð1 − δÞ: ðA14bÞ

Asymptotically, the modes of Eq. (A13) at the event
horizon (z ¼ 1) reduce to

RðzÞ → e
ε
2jz − 1j−1−δ

2 ðAð1Þ þ Bð1Þð1 − zÞ1−δÞ; ðA15Þ

which leads to the matching

extAþ
ð1Þ ¼ 0;

extBþ
ð1Þ ¼ T þ

ext
eiωð2rþ−r−Þ

rþ
; ðA16aÞ

intAþ
ð1Þ ¼ ðT þ

int þRþ
intR

−
extÞ

e−iωr−

rþ
;

intBþ
ð1Þ ¼ Rþ

int
eiωð2rþ−r−Þ

rþ
; ðA16bÞ

intA−
ð1Þ ¼ T −

int
e−iωr−

rþ
;

intB−
ð1Þ ¼ ðR−

int þ T −
intR

−
extÞ

eiωð2rþ−r−Þ

rþ
; ðA16cÞ

for each respective set of modes; i.e., the coefficients
from Eq. (A13) for ext;intR�

ob are labeled ext;intA�
ð1Þ and

ext;intB�
ð1Þ. Equations (A16) are strictly only valid for

z < 1; for the exterior (z > 1), an additional factor of
exp½2πωr2þ=ðrþ − r−Þ� must be included in the right-hand
side of the equations for each of the B coefficients to
account for the lack of absolute values in the trailing factor
of Eq. (A15).
At some point z� in the interior (we take z� ¼ 0.5 for

simplicity), both Eqs. (A8) and (A13) provide regular
solutions to the wave Eq. (A6). One can convert between
them with the respective linear systems

ZA;B
ð1Þ ðz�Þ ¼ CA;B

A ZA
ð0Þðz�Þ þ CA;B

B ZB
ð0Þðz�Þ; ðA17aÞ

ðZA;B
ð1Þ Þ0ðzÞjz�
¼ CA;B

A ðZA
ð0ÞÞ0ðzÞjz� þ CA;B

B ðZB
ð0ÞÞ0ðzÞjz� : ðA17bÞ

The functions ZA
ð0Þðz�Þ, ZB

ð0Þðz�Þ, ZA
ð1Þðz�Þ, and ZB

ð1Þðz�Þ can
be computed numerically, and therefore the constants CA

A,
CB
A, CA

B, and CB
B can also be computed. Once these

constants are known, the total eigenmodes Zð0ÞðzÞ and
Zð1ÞðzÞ can be matched to solve for each of the back-
scattering coefficients:

Að0Þ ¼ Að1ÞCA
A þ Bð1ÞCB

A; ðA18aÞ

Bð0Þ ¼ Að1ÞCA
B þ Bð1ÞCB

B: ðA18bÞ

Once the backscattering coefficients connecting z ¼ 0 to
z ¼ 1 are known, a similar process will yield the coef-
ficients connecting z ¼ 1 to z ¼ ∞. As z approaches
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infinity, the confluent Heun solutions to Eq. (A6) asymp-
totically (in a sector) take the form

Zð∞ÞðzÞ ¼ Að∞ÞZA
ð∞ÞðzÞ þ Bð∞ÞZB

ð∞ÞðzÞ; ðA19aÞ

ZA
ð∞ÞðzÞ ¼ z−

α
ε; ðA19bÞ

ZB
ð∞ÞðzÞ ¼ e−εzz

α
ε−γ−δ; ðA19cÞ

with arbitrary complex coefficients Að∞Þ and Bð∞Þ.
Comparison with the asymptotic forms of Eq. (A10) reveals
the following matched values for these coefficients:

extAþ
ð∞Þ ¼ Rþ

ext
e−iωr−

rþ − r−
;

extBþ
ð∞Þ ¼

eiωr−

rþ − r−
; ðA20aÞ

intAþ
ð∞Þ ¼ 0;

intBþ
ð∞Þ ¼ Rþ

intT
−
ext

eiωr−

rþ − r−
; ðA20bÞ

intA−
ð∞Þ ¼ T −

intT
−
ext

e−iωr−

rþ − r−
;

intB−
ð∞Þ ¼ 0; ðA20cÞ

where the coefficient notation is the same as in Eq. (A16).
For some sufficiently large radial coordinate z ¼ z� (we

find heuristically that z� ¼ 18=ðω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Q2

p
Þ is more than

sufficient to ensure convergence at machine-level preci-
sion), both Eqs. (A13) and (A19) satisfy the wave Eq. (A6),
and so the two sets of solutions can be matched. One has
the system

ZA;B
ð1Þ ðz�Þ ¼ DA;B

A ZA
ð∞Þðz�Þ þDA;B

B ZB
ð∞Þðz�Þ; ðA21aÞ

ðZA;B
ð1Þ Þ0ðzÞjz�
¼ DA;B

A ðZA
ð∞ÞÞ0ðzÞjz� þDA;B

B ðZB
ð∞ÞÞ0ðzÞjz� ðA21bÞ

to solve for the constants DA
A, D

B
A, D

A
B, and DB

B, which can
then be used to solve for the backscattering coefficients
with the system

Að∞Þ ¼ Að1ÞDA
A þ Bð1ÞDB

A; ðA22aÞ

Bð∞Þ ¼ Að1ÞDA
B þ Bð1ÞDB

B: ðA22bÞ

Altogether, the relevant backscattering coefficients can be
written as follows (note that multiple variations to the
below equations are possible based on implicit relations
between and among the C and D coefficients):

T þ
ext ¼

rþ
rþ − r−

1

DB
B
e−2iωðrþ−r−Þ−πω=ϰþ ; ðA23aÞ

T −
ext ¼

rþ − r−
rþ

D̃
DB

B
; ðA23bÞ

Rþ
ext ¼

DB
A

DB
B
e2iωr− ; ðA23cÞ

R−
ext ¼ −

DA
B

DB
B
e−2iωrþ−πω=ϰþ ; ðA23dÞ

T þ
int ¼ −

rþ
r−

CB
AD

B
B − CA

AD
A
Be

−4iωrþ−πω=ϰþ

C̃DB
B

; ðA23eÞ

T −
int ¼ −

rþ
r−

CB
A

C̃
; ðA23fÞ

Rþ
int ¼

rþ
r−

CA
A

C̃
e−2iωrþ ; ðA23gÞ

R−
int ¼

rþ
r−

CA
AD

B
B − CB

AD
A
B

C̃DB
B

e−2iωrþ ; ðA23hÞ

where

C̃≡ CA
AC

B
B − CB

AC
A
B; ðA24Þ

D̃≡DA
AD

B
B −DB

AD
A
B: ðA25Þ

The resulting numerical values of the backscattering
coefficients are used to calculate the Hawking spectra
of Fig. 7.
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