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Enhancing spin squeezing using soft-core interactions
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We propose a protocol for preparing spin squeezed states in controllable atomic, molecular, and optical
systems, with particular relevance to emerging optical clock platforms compatible with Rydberg interactions. By
combining a short-range, soft-core potential with an external drive, we can transform naturally emerging Ising
interactions into an XX spin model while opening a many-body gap. The gap helps maintain the system within
a collective manifold of states where metrologically useful spin squeezing can be generated. We examine the
robustness of our protocol to experimentally relevant decoherence and show favorable performance over typical
protocols lacking gap protection. For example, in a 14 × 14 system, we observe that soft-core interactions can
generate spin squeezing comparable to an all-to-all Ising model even in the presence of relevant decoherence, the
same amount of squeezing as the decoherence-free XX spin model with 1/r3 dipolar interactions, and a 5.8 dB
gain over the decoherence-free XX spin model with 1/r6 interactions.
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As the control of quantum systems has progressed in re-
cent decades, so too has the ability to create and harness
quantum entanglement for improved quantum technology. In
the context of quantum sensors, this entails applying en-
tangled resources to increasingly push beyond the standard
quantum limit (SQL)—the fundamental noise floor for uncor-
related particles—towards the fundamental limits imposed by
quantum mechanics [1–5]. Although current state-of-the-art
optical clocks provide some of the most precise measurements
in physics [6–9], they will eventually reach a point where
improvements in sensing capabilities based on uncorrelated
atoms have diminishing returns due to both fundamental and
practical constraints. In light of this, the utilization of entan-
glement provides an additional axis for optimization, which
will be crucial for the next generations of optical clocks once
the limits of these constraints are reached.

In recent years, tweezer arrays of neutral atoms have
emerged as a promising new platform for optical clocks
[10–12], driven by a number of recent advances, including
the rapid preparation of tunable arrays with high filling frac-
tions and single-atom control [13–18] and half-minute-scale
coherence times on optical clock transitions [11,12]. Such
platforms combine the control and high-duty cycles of ion
clocks [9,19,20] with the scalability of optical lattice clocks
[6,7] while mitigating their respective drawbacks, such as
interatomic collisions in lattice clocks or large shot noise in
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ion clocks. Moreover, in these systems, tunable Ising inter-
actions via Rydberg states [21–24] that decay as 1/rα with
interparticle distance r offer a natural avenue for generat-
ing metrologically useful entanglement in the form of spin
squeezing [25–27].

For Ising interactions, as long as the dimension of the
array D � α, the power-law interactions provide only a small,
constant noise reduction that is independent of particle num-
ber [28]. Power-law XXZ models have also been explored
theoretically as a way to further enhance spin squeezing due
to the presence of a many-body gap [29,30]. However, the
theoretical squeezing enhancement is limited for 1/r6 van der
Waals (vdW) interactions in two dimensions (2D), while 1/r3

dipolar interactions cannot be extended to 3D due to their
angular dependence. Moreover, the generation of both 1/rα

vdW and dipolar interactions requires direct excitation to the
Rydberg state(s). As a result, the spin squeezing will be gener-
ated on a Rydberg transition. However, in order to utilize the
squeezing for quantum-enhanced metrology, the squeezing
must be encoded in a pair of long-lived states, such as on a
clock transition. Transferring the squeezing from the Rydberg
state(s) to the long-lived states will introduce additional noise,
reducing the squeezing and limiting the metrological gain.

We propose to utilize a strong transverse field in com-
bination with a soft-core potential, realizable with Rydberg
dressing, to generate strongly collective dynamics which are
protected by a many-body gap (see Fig. 1) [29–44]. Our
proposal dramatically extends the system sizes for which the
optimal spin squeezing mimics that of a fully collective Ising
model, also known as the one axis twisting (OAT) model
[25,45]. For example, in a 2D system of 32 × 32 atoms,
an interaction range of only three times the lattice spacing
is needed to realize near-OAT squeezing, even though the
number of atoms that fall within the soft-core potential is
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FIG. 1. Gap-protected spin squeezing with soft-core interactions.
(a) The state |e〉 is weakly dressed with a Rydberg state |r〉 with Rabi
frequency � and detuning �, resulting in a soft-core potential with
blockade radius (i.e., range) rb for the dressed state |d〉. (b) By ap-
plying a strong transverse field B via a drive between |g〉 and |d〉, the
system realizes an approximate OAT Hamiltonian with an additional
term which opens a gap Egap ∝ 2S between adjacent S manifolds.
Combined with the soft-core potential, near-OAT squeezing can be
realized even when the number of atoms within the blockade radius
Nb � N , such as for rb = 2.5 in a 14 × 14 lattice, where Nb ≈ N/10.
(c) Husimi distributions associated with the optimal squeezing for
several protocols in a 14 × 14 lattice, with rb = 2.5 for the soft-core
interactions as in (b). While squeezing from soft-core XX interactions
is comparable to that of OAT, the soft-core Ising and vdW XX models
produce far less squeezing.

about 36 times smaller than the system size. Unlike power-law
interactions, the protocol here generates squeezing between
two long-lived states (e.g., on a clock transition) as a result
of the Rydberg dressing [46]. Additionally, we show that in
the presence of relevant decoherence in a 14 × 14 system,
the protocol here generates the same amount of squeezing as
a decoherence-free long-range 1/r3 (dipolar) XX model, and
provides a 5.8 dB gain over a decoherence-free 1/r6 (vdW)
XX model.

Model. We consider a scheme where a long-lived internal
state |e〉 is dressed with a Rydberg state |r〉 via a drive with
Rabi frequency � and detuning � [47–59]. The resulting
dressed state |d〉 ≈ |e〉 + �

2�
|r〉 and a ground state |g〉 form

the basis of an effective spin-1/2 system governed by the
Hamiltonian

H =
∑
i< j

Ji j
(
1/2 + sz

i

)(
1/2 + sz

j

)
, (1a)

Ji j = �4

8�3

1

1 + (r/rb)6
,

C6

r6
b

= −2�, (1b)

where sμ
i ≡ σ

μ
i /2 denote the spin-1/2 operators at site i, Ji j is

a soft-core potential with a range of blockade radius rb and
1/r6 tail, and C6/r6 is the vdW interaction. Here, rb is in
units of the lattice spacing. Physically, we can understand the
emergence of this Hamiltonian as follows: at large distances,
the Rydberg states interact weakly, leading to a vdW tail with
reduced strength f 2C6, where f ≡ �2/4�2 is the Rydberg

fraction. However, at short distances where |C6/r6| � |2�|
(i.e., r � rb), the excitation of more than one Rydberg atom
is strongly suppressed due to blockade. As a result, the corre-
sponding contribution to the light shift is suppressed, leading
to a plateau of strength J0 ≡ 2� f 2 = �4/8�3. Finally, we
note that in addition to the Ising interactions, Eq. (1a) contains
an inhomogeneous longitudinal field. Unless otherwise noted,
we shall assume that these terms can be neglected either via
spin echo or a rotating wave approximation (RWA) in the pres-
ence of a strong drive, as discussed below (see Supplemental
Material [60]).

An effective transverse field along the x direction can be
generated by applying a drive which couples |g〉 and |d〉 with
Rabi frequency B. In the limit of B � (N − 1)J ≡ 1

N

∑
i, j Ji j

(see Supplemental Material [60]), where (N − 1)J is the aver-
age interaction each atom feels, and in the frame of the applied
transverse field, the Ising interactions take the form of XX
interactions since, under the RWA, the fast oscillating terms
can be dropped out. The final Hamiltonian takes the form of
an XX model [61–66],

HRWA = 1

2

∑
i< j

Ji j
(
sy

i sy
j + sz

i s
z
j

)
. (2)

Note that in the course of making the RWA, the overall
strength of the interactions has been reduced by a factor of
two.

Enhanced squeezing. For a system of N spin-1/2 particles,
the Wineland spin squeezing parameter ξ , defined as [26,27]

ξ 2 ≡ N min 〈�S2
⊥〉

|〈S〉|2 , (3)

quantifies the reduction in the phase uncertainty beyond the
SQL of 1/

√
N . Here, S ≡ ∑

i si, and min 〈�S2
⊥〉 denotes the

minimum variance in directions perpendicular to the Bloch
vector. To dynamically generate a spin squeezed state, we
initially polarize all spins in the xy plane or yz plane for
the Ising and XX models, respectively. The corresponding
dynamics will squeeze the state until it reaches an optimal
(i.e., minimal) value of ξ 2

opt ≡ ξ 2(topt) after time topt.
For Ising interactions, Rydberg dressing allows for an im-

provement in ξ 2
opt over the power-law interactions inherent to

Rydberg states [46]. This is because within a blockade radius,
the interactions are all to all, and thus the model realizes an
effective OAT Hamiltonian HOAT ≡ J

2 S2
z when the system size

N � Nb, where Nb is the number of atoms within a blockade
radius. The optimal spin squeezing accessible via OAT dy-
namics scales as ξ 2

opt ∼ N−2/3 in time Jtopt ∼ N−2/3 [25,45].
However, as we increase the system size N � Nb, the devia-
tion from the dynamics of HOAT quickly becomes significant
as the states |S, mz〉, |S′, mz〉 with S = S′ become coupled (S
denotes the total spin and mα the projection onto Sα), which
are decoupled in HOAT. Increasing the system size further
leads to limited improvement in ξ 2

opt. For vdW interactions,
the presence of the 1/r6 tail in the soft-core potential does
allow for a moderate enhancement over the naive estimate of
ξ 2

opt ∼ N−2/3
b , and ξ 2

∞ ∝ r−.76D
b ∝ N−.76

b for D � 3 [46], where
the ∞ subscript denotes ξ 2

opt in the large-N limit.
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To understand how the squeezing behavior changes for the
XX model, it is convenient to reexpress the Hamiltonian as

HRWA = 1

2
HgOAT + 1

2

∑
i< j

(J − Ji j )s
x
i sx

j, (4a)

HgOAT =
∑
i< j

Ji jsi · s j − J

2
S2

x . (4b)

We see that the effective OAT Hamiltonian has an additional
SU(2)-symmetric term. Although this is not a collective term,
it nevertheless commutes with S2. As a result, this term
will not couple different S manifolds, but it will break their
degeneracy in the OAT model, leading to a gapped OAT
Hamiltonian HgOAT. As in the Ising model, the squeezing
dynamics of the XX model reduces to that of the OAT model
for N � Nb. However, the presence of a gap between different
S manifolds permits that as N is increased beyond Nb, the
deviations from HgOAT can be initially treated as a perturba-
tion, extending the effective OAT-like behavior to larger N
compared to Ising interactions and enhancing the attainable
optimal squeezing.

To determine the degree of enhancement to ξ 2
opt from

the soft-core potential, we study both models numerically.
For the Ising model, this can be done exactly. However, for
the XX model, this is no longer possible and we must rely
on numerical approximations. We use the discrete truncated
Wigner approximation (DTWA) [67–69], which shows good
agreement with results using the time-dependent variational
principle for matrix product states in 1D (see Supplemental
Material [60]); analogous benchmarks in 2D for spin systems
with power-law interactions exhibit similar agreement [70].

In Figs. 2(a) and 2(b), we compare ξ 2
opt attainable in the

XX model vs the Ising model. The XX model retains the OAT
scaling ξ 2

opt ∼ N−2/3 for system sizes well beyond the naive
expectation of N ∼ Nb ≈ πr2

b , while ξ 2
opt for the Ising inter-

actions saturates at much smaller system sizes in comparison.
For example, for rb = 3, corresponding to Nb ≈ 28, ξ 2

opt for
Ising interactions begins to diverge from the comparable OAT
results around N = 9. In contrast, for the XX interactions, ξ 2

opt
is only slightly reduced from the OAT result at N = 1024 ≈
36Nb. Additionally, we note that rb = 1 provides a good ap-
proximation to pure 1/r6 vdW interactions, illustrating the
importance of the soft-core potential to enhancing ξ 2

opt.
To understand the scaling of ξ 2

opt with Nb, we define NOAT

as the number of atoms necessary for the OAT model to
generate a state with optimal squeezing ξ 2

∞, thus determining
the system sizes for which OAT scaling persists. We also
investigate the gap protection by investigating the behavior
of 〈S2〉/[N/2(N/2 + 1)], which provides a measure of how
collective the system is. In particular, we identify N0.95, the
number of atoms at which 〈S2〉/[N/2(N/2 + 1)] = 0.95 at
topt. This scaling is presented in Figs. 2(c) and 2(d) for 1D
and 2D with a sharp cutoff in the soft-core potential and
periodic boundary conditions. We see that both indicate that
OAT scaling for the Ising model persists to N ∝ Nb and is
independent of the dimension, as expected. In contrast, OAT
scaling for the XX model persists to N ∝ N3D/2

b , correspond-
ing to ξ 2

∞ ∝ N−D
b . Aside from the enhancement over Ising

interactions, we see that the gap protection appears to be

FIG. 2. We show the optimal squeezing generated as a function
of rb and the system side length L for 2D systems of size N = L × L
for (a) the XX model and (b) the Ising model. The black dotted line
corresponds to systems with L = 14, for which we later consider the
effects of decoherence. The dashed contours denote the reduction
in ξ 2

opt for each model compared to that of an OAT model for N
particles. (c) Scaling of effective OAT atom number NOAT associated
with ξ 2

∞ for 1D (triangles) and 2D (circles) for a potential with a
sharp cutoff as a function of Ñb ≡ Nb + 1. (d) Scaling of N0.95 (N at
which 〈S2〉/[N/2(N/2 + 1)] = 0.95 at topt) as a function of Ñb. Lines
are meant to illustrate the scaling and are not fits.

stronger at higher dimensions, leading to a further enhance-
ment in the OAT scaling. Furthermore, we note that these
calculations are done for a constant soft-core potential with
no power-law tail, indicating that the physics we identify here
is not a consequence of the power-law tail.

Finally, let us discuss the behavior of the squeezing time.
When N � Nb, J ≈ J0, so the squeezing time scales like
J0topt ≈ Jtopt ∼ N−2/3. However, for N > Nb, we have J ≈
J0Nb/N , and the squeezing time scales like J0topt ∼ N1/3/Nb,
leading to a tradeoff between enhanced squeezing and shorter
squeezing times, which can become particularly important in
the presence of decoherence.

Decoherence. While we have shown that the XX model
outperforms the Ising model under ideal conditions, it remains
to be seen whether this advantage persists in the presence of
relevant decoherence processes found in experiments. There
are two key distinctions regarding the effects of decoherence
in the two models. First, the XX model is realized in a rotating
frame, in which the decoherence takes on a different form.
Second, topt is typically much longer for the XX model, owing
to both the factor-of-two reduction in the interaction strength
in the XX model relative to the Ising model and the ability
of the XX model to sustain a continued improvement in the
squeezing over comparatively longer times (scaled by the
average interaction strength) as a result of the many-body gap.
As such, the XX model will generically be more susceptible to
decoherence.
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FIG. 3. Maximum attainable spin squeezing vs rb generated by
the XX model when incoherent effects are taken into account com-
pared to the ideal case without decoherence (black, solid). We show
results for a 14 × 14 lattice with γ− = γd = f γr/2 and f = 0.01.
The dotted continuations of each solid line denote the rb for which
the RWA is not expected to be valid for current experimentally
achievable transverse fields B. We also compare to the ideal spin
squeezing for pure power-law dipolar (purple star) and vdW (red
star) interactions. The analogous faded lines/symbols denote the
corresponding results for Ising interactions.

The dominant form of decoherence arises from decay of
the Rydberg state |r〉 or decay of |e〉. For Rydberg decay, there
are two scenarios we consider: decay to |g〉 (γrg) and decay to
|e〉 (γre). For the former, this will correspond to dissipation
from |d〉 to |g〉 at rate f γrg; for the latter, this will correspond
to an effective dephasing of rate f γre. For dissipation from |e〉
at rate γeg, this will correspond to decay from |d〉 to |g〉 at rate
(1 − f )γeg.

In the resulting effective spin-1/2 system, we include the
effects of all three forms of decoherence via the Lindblad
master equation,

ρ̇ = −i[H, ρ] +
∑

μ

γμDμ[ρ], (5a)

Dμ[ρ] ≡
∑

i

[
lμ,iρl†

μ,i − 1

2
{ρ, l†

μ,ilμ,i}
]
, (5b)

where Dμ[ρ] describes a Lindbladian evolution term with rate
γμ and Lindblad jump operator lμ. In the effective two-level
system, there is decay at rate γ− = f γrg + (1 − f )γeg, with
l− = s−, and dephasing at rate γd = f γre, with ld ≡ ni =
1/2 + sz

i . In the rotating frame, the system dephases in the
transverse field direction at a rate γ− and in the two orthogonal
directions at a rate (γ− + γd )/2 with Lindblad jump operators
sx and sy,z, respectively (see Supplemental Material [60]).

For Ising interactions, it is possible to solve Eq. (5) exactly
[71]. For the XX model, we adapt a dissipative generalization
of DTWA [72,73], which amounts to including fluctuations
from dissipation via stochastic noise terms ([74] and Sup-
plemental Material [60]). In Fig. 3, we compare ξ 2

opt in the
Ising and XX models in the presence of decoherence in a
14 × 14 lattice as a function of rb for several Rydberg states
(see Supplemental Material [60]). The relative values of γ−
and γd will depend on the choice of Rydberg state, branching
ratios, and the temperature of the system. For simplicity, we

take γ− = γd = f γr/2, where γr is the total decay rate of |r〉
at T = 300 K to all states; a more complete treatment would
take into account branching ratios and losses to states outside
the manifold we consider, but this likely affects both Ising
and XX implementations in a similar way. We also compare
to ξ 2

opt attainable with power-law interactions in the absence
of decoherence. The reason for comparing to the ideal vdW
XX model is to demonstrate that the improved performance of
the proposed scheme is not a consequence of the power-law
tail, but instead it is a combination of the soft core and the
gap protection. The comparison to the dipolar XX model is to
illustrate that the performance is comparable to that of a truly
long-range model.

We see in Fig. 3 that the soft-core XX model generates
significantly more squeezing than the other models, with
only fully coherent, gap-protected long-range dipolar inter-
actions realizing comparable squeezing. While increasing rb

nominally improves squeezing, here the role of decoherence
becomes dominant at large rb, and the best performance oc-
curs for some optimal rb < L. Moreover, unlike the soft-core
Ising model whose optimal performance occurs near rb ≈ 3–
5, the soft-core XX model performs best for rb ≈ 2–3, which
is more experimentally feasible [51,52,54,55] due to practical
limitations on the size of rb imposed by the onset of blackbody
radiation-induced avalanche processes [75–80].

A scaling analysis indicates that J ∼ J0rD
b ∼ f 2n∗−3rD−6

b
(see Supplemental Material [60]), where n∗ is the effective
principal quantum number, so decreasing f , increasing n∗,
or increasing rb reduces the requisite transverse field for the
RWA to remain valid. Additionally, noting that γr ≈ An∗−3 +
Bn∗−2, where A and B correspond to contributions from
spontaneous emission and blackbody radiation, respectively,
then f γr/J ∼ (A + Bn∗)r6−D

b / f , so the decoherence becomes
more relevant with decreasing f , increasing n∗, or increasing
rb. For typical Rydberg states, Bn∗ < A, so the dependence
on n∗ is relatively small. The observation that increasing rb

is not beneficial is fundamentally connected to the relevance
of blackbody radiation at large rb, and therefore the rela-
tively minimal effect of decoherence at the optimal rb for
soft-core interactions ensures the avalanche processes can be
mitigated.

Outlook. Overall, we find that the soft-core XX model
strongly outperforms other natural squeezing protocols for a
wide range of experimental parameters and atoms, paving the
way for generically realizing gap-protected enhanced squeez-
ing in Rydberg platforms. Although we have focused on spin
squeezing with Rydberg atoms, the driving idea discussed
here can potentially be used in other systems with finite-range
interactions. For example, since even an interaction range of
two sites is sufficient to realize significant enhancements in
the squeezing, circuit-QED systems with interactions beyond
nearest neighbor may benefit from this approach [81,82].
From a theoretical point of view, a comprehensive exam-
ination of the various scaling behaviors with rb and how
they depend on the dimension, power-law tail, and system
size, as well as any potential connection between the scaling
with the presence Anderson’s tower of states [83], would
be very illuminating. Additionally, the work here provides
a foundation for developing more sophisticated protocols,
including Floquet engineering [54,84–88] or variational
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algorithms [89–91], which might take further advantage of the
combination of a soft-core potential with gap protection and
generate even better and more robust spin squeezing.
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