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Individual qubit addressing of rotating ion crystals in a Penning trap
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Trapped ions boast long coherence times and excellent gate fidelities, making them a useful platform for
quantum information processing. Penning traps offer the possibility of trapping large two-dimensional crystals
of several hundred ions. The ions are confined by controlling the rotation of the ion crystal in the presence
of a strong magnetic field. However, the rotation of the ion crystal makes single ion addressability a significant
challenge. We propose a protocol that takes advantage of a deformable mirror to introduce AC Stark shift patterns
that are static in the rotating frame of the crystal. Through numerical simulations we validate the potential of this
protocol to perform high-fidelity single-ion gates in crystalline arrays of hundreds of ions.
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I. INTRODUCTION

Ions confined in RF traps are one of the leading platforms
for quantum information processing [1–4]. They hold the
record for the highest fidelity entangling gates [5–9], and
have exceptional coherence times [10]. However, scaling to
larger numbers of ion qubits, potentially solved by photonic
interconnects between Paul traps [11], or by shuttling ions in
the quantum charge-coupled device (QCCD) architecture [1],
remains a key challenge. In this work, we consider Penning
ion traps which offer the possibility of quantum information
processing with samples of as many as 500 trapped ions self-
assembled in a large two-dimensional (2D) Coulomb crystal.
They use a set of cylindrical electrodes and static voltages
to generate axial confinement. The radial confinement is pro-
vided by the Lorentz force experienced by the ions as they
undergo a controlled rotation about the trap symmetry axis
in the presence of a strong axial magnetic field, typically
generated by a superconducting magnet [see Fig. 1(a)]. Fol-
lowing the standard approach of encoding a qubit in two
internal levels of the ions, Penning traps have the potential
to perform quantum information processing with hundreds
of qubits. These qubits typically have transition frequencies
from 10′s to 100 GHz, making microwaves suitable for global
addressing [12]. We note that other ion trapping technologies
also allow for the generation of 2D crystals of ions. For in-
stance, it is possible to use the radial degree of a freedom in a
Paul trap, or to introduce arrays of closely spaced individual
traps [13–16]. To date the number of ions used for quantum
information processing in these experiments has been modest
(<20).
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Two-qubit gates for entangling the ions in Penning traps
have been engineered via spin-dependent optical dipole forces
[17]. These forces are generated by interfering two lasers
with a difference frequency (sometimes called the beatnote)
adjusted to excite phonons in the crystal [see Fig. 1(a)]. Virtual
excitation of the center-of-mass mode, for example, generates
collective spin-spin interactions across the ion array.

Single-site rotations along with global rotations and a
global entangling operation form a universal set of operations
for quantum computation—that is, they can be used to imple-
ment every unitary operation [18]. Thus, an important step in
enabling general quantum information processing in a Pen-
ning trap is the ability to perform individual-qubit rotations.

A well-known technique for introducing single-site qubit
rotations with one-dimensional (1D) ion strings is through
AC Stark shifts with off-resonant, focused laser beams [19].
AC Stark shifts produce σ Z rotations, which can be turned
into more general rotations through the application of global
rotations.

The analogous implementation of variable AC Stark shifts
in a Penning trap is feasible, but requires introducing fo-
cused corotating laser beams. The fast rotation frequency used
in typical experiments [20–24], ranging from tens to a few
hundred kHz in recent NIST experiments, makes this task
challenging. Variable AC Stark shifts can also be implemented
with spatially fixed, focused beams directed at the correct
radius so that an ion experiences a time-varying AC Stark shift
as it rotates through the off-resonance laser beam. Similarly
a fixed, focused pair of laser beams in a stimulated Raman
configuration can be used to generate a spin rotation as an
ion qubit passes through the laser beam waists. However,
such approaches would, in general, require some sequential
addressing of the ions, which is inherently slower than parallel
addressing.

Here we propose another path for introducing variable AC
Stark shifts that are static in the rotating frame of the ion
crystal by using the same optical dipole force that is used
for implementing a global entangling operation [17,20]. This
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FIG. 1. (a) Ions in a Penning trap. The ions are axially confined by a set of cylindrical electrodes and rotate with frequency ω. In the
presence of a strong magnetic field �B along the ẑ direction, the induced Lorentz force radially confines the ions. A moving 1D optical lattice
formed by interfering two beams with angular frequencies ωodf and ωodf + μ, respectively, generates an optical dipole force. (b) Imprinting a
phase pattern with a DM. By reflecting one of the laser beams off of a deformable mirror (grey) surface, we can imprint a phase pattern on the
wavefront (blue) of δu(xL, zL ), where xL , yL , and zL are the beam-centric coordinates. The phase pattern δu(xL, zL ) can be decomposed into a
basis of Zernike polynomials. (c) To generate a distortion δ(x, y) at the ion crystal, one must generate a distortion in the upper beam given by
δu(xL, zL ) ≡ δ(x, zL/ sin θ ) with θ the angle between the beam propagation direction and the y-axis. The ions (blue) are at z = 0.

can be done by introducing distortions (or, more precisely,
spatially dependent phase offsets) to the wavefront of the
optical dipole force while setting the beatnote frequency to be
a multiple of the rotation frequency [see Figs. 1(b) and 1(c)].
As we will see, a nice feature of this technique is that the
rotations of the ions’ spins can be conducted in parallel.

Spatially dependent wavefront deformations can be imple-
mented with a deformable mirror (DM). DM technology has
been under development for many decades, motivated by the
desire of adaptive wavefront control in astronomy [25,26]. For
the application discussed in this article, DMs with good wave-
front control that employ many physically small actuators
with fast switching speeds are desirable. Devices which em-
ploy more than 4000 actuators that are 300-micrometer in size
with a mechanical response time of order 50 microseconds
are commercially available. Wavefront control of better than
10 nm has been documented [25]. The surface of the DM can
be coated with aluminum providing good reflectivity down
to near ultraviolet wavelengths (<300 nm). The technology
continues to rapidly develop with anticipated improvements
in the actuator size and speed.

Any wavefront distortion on the unit disk can be de-
composed into the basis of Zernike polynomials [27]. Such
functions are generally expressible as

Zm
n (ρ, φ) =

{
R|m|

n (ρ) cos (mφ), for m � 0,

R|m|
n (ρ) sin (mφ), for m < 0.

(1)

Here n � |m|, R|m|
n (ρ) are radial polynomials defined on the

unit disk. For example, the first few Zernike polynomials are

Z0
0 (ρ, φ) = 1, (2)

Z−1
1 (ρ, φ) = 2ρ sin(φ), (3)

Z1
1 (ρ, φ) = 2ρ cos(φ). (4)

Through the decomposition of wavefront distortions in the
basis of Zernike polynomials, we motivate two protocols in
Sec. II for imprinting an AC Stark shift pattern across the crys-
tal of ions. A numerical simulation of the protocols is outlined
in Sec. III, followed by a discussion of three primary sources

of error in Sec. IV. These errors are from ignoring off-resonant
terms, considering a finite number of Zernike polynomials,
and applying distortions that are too large. However, in Sec. V
we show with numerics that the errors can be controlled to
have maximum infidelities as small as 10−3. In particular,
we demonstrate the faithful reconstruction of an annulus, an
elliptical Gaussian, and a displaced Gaussian using parame-
ters that are representative of typical Penning trap conditions
[17,20,21]. The annulus and elliptical Gaussian patterns pro-
duce initial states that are interesting for quantum simulation.
For example, both patterns are 2D analogs of a domain wall,
and might allow us to study nontrivial spin transport phenom-
ena [28]. The displaced Gaussian is chosen to rotate a single
qubit in the crystal. The high-fidelity reconstructions suggest
that our protocol provides a path forward for implementing
high-fidelity single- and multisite qubit rotations in a Penning
trap.

II. EXPERIMENTAL SETUP AND PROTOCOLS

In a Penning trap, a system of N ions is confined axially by
voltages applied to a set of cylindrically symmetric electrodes.
Radial confinement is implemented by the Lorentz force ex-
perienced by the ions as they rotate around the trap symmetry
axis in the presence of a static B0ẑ field [see Fig. 1(a)]. The
ion crystal rotation frequency is precisely controlled by a ro-
tating electric field [29]. In work at NIST [17,20,21], the 2S1/2

ground-state valence electron spin |↑〉 ≡ |mJ = +1/2〉 (|↓〉 ≡
|mJ = −1/2〉) in each trapped 9Be+ ion encodes a spin-1/2
degree of freedom, which can be globally controlled by exter-
nal microwaves resonant with the 124 GHz frequency splitting
of the electronic spin states in the B0 = 4.5 T magnetic field
of the trap.

In a frame rotating with the ion crystal, the motion of
the ions can be decomposed into in-plane modes, which de-
scribe ion motion in the plane of the ion crystal, and axial
or drumhead modes, which describe ion motion transverse to
the plane. For performing quantum simulations [17,20,21], the
drumhead modes are coupled to the spin degree of freedom
by a spin-dependent optical dipole force (ODF) produced by
a pair of off-resonant laser beams far detuned from the nearest
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optical transitions. The beams generate a 1D traveling-wave
lattice potential at a frequency μ [see Fig. 1(a)]. The system
can be well described by the Hamiltonian

ĤODF/h̄ = U
∑

i

cos (δkẑi − μt + ψ )σ̂ Z
i . (5)

Here U is the zero-to-peak AC Stark shift, δk the wave vector
of the moving lattice potential, and ψ is an initial phase. For
clarity, we will use capital letters to denote directions in spin
space, e.g., σ̂ Z , and lowercase letters to denote directions in
real space, e.g., ẑ.

In what follows we show how we can modify the ODF
interaction in Eq. (5) to introduce an AC Stark shift pattern
that is static in the rotating frame of the crystal through the
introduction of wavefront deformations. We assume Eq. (5)
does not excite spin-dependent motion, which is reasonable if
μ is far off-resonant with any modes.

It is convenient to assume that without a DM the two ODF
beams have flat wavefronts. Then position-dependent phase
offsets (or wavefront distortions) δ(x, y) can be implemented
in Eq. (5) with a single DM that is inserted into one of the ODF
laser beam lines, say the upper beam. The DM generates a
position-dependent phase offset δu(xL, zL ) where xL, zL are the
distances from the center of the beam in a coordinate system
perpendicular to the k-vector of the laser beam [beam-centric
coordinates, see Figs. 1(b) and 1(c)]. We can choose the xL

coordinate in the upper beam-centric coordinate system to be
the same as the laboratory frame x coordinate (xL = x) at the
single-plane crystal. Because the ODF beam crosses the ion
crystal with an angle θ , an ion located at the laboratory frame
coordinates (x, y) samples the DM generated phase offset
δu(x, y sin θ ). Therefore, to generate a wavefront offset pattern
δ(x, y) at the ion crystal requires generating a wavefront pat-
tern in the upper beam given by δu(xL, zL ) ≡ δ[xL, zL/ sin (θ )].
In general, the DM will be located at some distance from the
ion crystal and an optical imaging setup is required to image
the DM surface to the ion crystal with different demagnifica-
tion ratios in the zL and xL directions.

Suppose, as sketched in the previous paragraph, we intro-
duce waveform deformations to the 1D optical-dipole lattice
potential [Eq. (5)] so that the interaction is described by

ĤODF/h̄ = U
∑

i

cos (δkẑi − μt + ψ + δ(xi, yi ))σ̂
Z
i . (6)

Here xi = ρi cos [φlab
i (t )] and yi = ρi sin [φlab

i (t )] are the lab-
oratory frame coordinates of ion i in the z = 0 plane, and
δ(x, y) is a local phase shift that describes the distortions
of the optical dipole force wavefronts. The azimuthal angle
in the laboratory frame is related to the azimuthal angle in
the rotating frame by φlab

i = φi − ωt where φi is independent
of time for a stable crystal and ω is the ion crystal rotation
frequency.

Our goal is to employ wavefront deformations δ(x, y) de-
scribed in Eq. (6) to generate an effective Hamiltonian given
by

ĤEFF /h̄ = U
∑

i

F (ρi, φi )σ̂
Z
i . (7)

Here F describes an AC Stark shift pattern that is static in the
rotating frame of the crystal. To do this, we will consider two

different protocols with slightly different choices of δ(x, y).
Before introducing these choices, we motivate a convenient
decomposition of F (ρ, φ) by expanding in terms of Zernike
polynomials, as described in Eq. (1). This gives a decomposi-
tion of the form

F (ρ, φ) =
∞∑

n=0

∞∑
m=−∞

Acm
n Zm

n (ρ, φ)

=
∞∑

n,m=0

ARm
n (ρ)

(
cm

n cos (mφ) + c−m
n sin (mφ)

)

=
∞∑

m=0

APm(ρ) cos (mφ) + AQm(ρ) sin (mφ), (8)

where we included A as an overall amplitude scaling of
the pattern F (ρ, φ), and set max[F (ρ, φ)]/A = 1.0, which
provides a normalization condition for the cm

n . The radial func-
tions Pm(ρ) and Qm(ρ) are weighted sums of the appropriate
R|m|

n (ρ) for n � |m|. Specifically, in expanding F (ρ, φ) in this
way, we gathered all terms with the same cos (mφ) or sin (mφ)
azimuthal dependence.

We explore using the deformable mirror to generate each
term in the sum of Eq. (8). Because F in Eq. (7) can, in
general, have arbitrarily high spatial frequency components
(and the protocols we consider necessarily generate AC Stark
shifts up to some maximum order mmax) truncation error will
be introduced by considering a finite number of terms in
Eq. (8). This error will be considered in Secs. IV and V where
we carry out a numerical analysis.

We first consider generating an AC Stark shift pattern pro-
portional to the term

APm(ρ) cos (mφ) (9)

in Eq. (8). Suppose the DM is set to generate a distortion in
Eq. (6) of the form

δ̃(ρ, φlab) = δm
e (ρ) cos (mφlab). (10)

We now set ẑi = 0 (the ions are located in the z = 0 plane)
and substitute φlab

i = φi − ωt . Then Eq. (6) can be written

ĤODF/h̄ = U

2

∑
i

{ei[−μt+ψ+δ̃(ρ,φi−ωt )] + c.c.}σ̂ Z
i . (11)

The phase modulation term can be expanded in terms of
Bessel functions, using the Jacobi-Anger expansion [eiz cos θ =∑∞

	=−∞ i	J	(z)ei	θ ],

ĤODF/h̄ = U

2

∑
i

{
ei[−μt+ψ]

×
∞∑

	=−∞
i	J	

[
δm

e (ρi )
]
ei	(mφi−mωt ) + c.c.

}
σ̂ Z

i . (12)

By setting μ = mω only the 	 = −1 term is static in the
rotating frame. All other terms are rapidly oscillating and can
be ignored. It is also possible to get static terms by choosing
μ to be a higher integer multiple of mω. However, these
terms will be scaled by a higher-order Bessel function, and
therefore produce a smaller static AC Stark shift, assuming
sufficiently small arguments δm

e (ρi ). Furthermore, we will
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show in Sec. IV A and Appendix A that the contribution of
the fast rotating terms is exactly zero if we choose to apply
HODF for a duration T satisfying ωT = 2πr, with r an integer
value.

After some algebra we obtain

ĤODF/h̄ ≈ U
∑

i

J1[δm
e (ρi )] sin (mφi − ψ )σ̂ Z

i . (13)

Therefore, by choosing a distortion of the form

δm
e (ρ) = J−1

1

(
A

2
Pm(ρ)

)
, (14)

Eq. (6), under the approximations discussed above, reduces to

ĤODF/h̄ ≈ U

2

∑
i

APm(ρi ) sin (mφi − ψ )σ̂ Z
i . (15)

With ψ = −π/2 this is exactly the targeted AC Stark shift
pattern of Eq. (9) (up to a factor of 1/2, which we introduce
for convenience as we will discuss later).

In Eq. (14), we denote the choice of the wave front pattern
described by J−1

1 [ A
2 Pm(ρ)] rather than A

2 Pm(ρ) as precom-
pensation. Precompensation is always possible as long as
|A

2 Pm(ρ)| � 0.58, where 0.58 is the approximate maximum
value that the J1 Bessel function can take. This condition is
always possible to satisfy by choosing A small enough in
Eq. (14). Note that this limits the phase offset δm

e (ρ) to be
|δm

e (ρ)| � 1.84.
An identical derivation for odd Zernike polynomials re-

veals that a deformation of the form

δ(ρ, φlab) = J−1
1

(
A

2
Qm(ρ)

)
sin (mφlab) (16)

gives

ĤODF/h̄ ≈ −U

2

∑
i

AQm(ρi ) cos (mφi − ψ )σ̂ Z
i . (17)

Additionally, for m = 0 corresponding to a circularly symmet-
ric pattern, Eq. (11) reduces to

ĤODF/h̄ = U
∑

i

cos
(
δ0

e (ρi ) + ψ
)
σ̂ Z

i , (18)

so that choosing δ0
e (ρ) = cos−1[AP0(ρ)] − ψ for the m = 0

terms reproduces the desired phase pattern Eq. (9).
By sequentially setting the DM to generate each even

[APm(ρ) cos (mφ)] and odd [AQm(ρ) sin (mφ)] term in Eq. (8)
for each m, the above derivation shows that one can apply
any AC Stark shift pattern F (ρ, φ) [see Eq. (8)]. However,
sequential application can take a long time if there are many
terms and the reset time of the DM is slow. Thus, it would
be good to have a technique for applying all azimuthal phase
patterns in parallel.

Applying in parallel means applying even and odd orders
at the same time and applying different beatnote frequencies
at the same time. First, we show that we can apply both even
and odd terms simultaneously by considering a distortion of
the form

δ(ρ, φlab) = δm
e (ρ) cos (mφlab) + δm

o (ρ) sin (mφlab) . (19)

Using the Jacobi-Anger expansion, and setting μ = mω, we
find

ĤODF/h̄ = U

2

∑
i

(
ei(−μt+ψ ) exp (i

[
δm

e (ρi ) cos(mφi − mωt ) + δm
o (ρi ) sin(mφi − mωt )

]
) + c.c.

)
σ̂ Z

i , (20)

ĤODF/h̄ = U

2

∑
i

(
ei(−μt+ψ )

∞∑
a=−∞

∞∑
b=−∞

iaJa
[
δm

e (ρi )
]
Jb

[
δm

o (ρi )
]
ei[(a+b)(mφi−mωt )] + c.c.

)
σ̂ Z

i . (21)

Neglecting the fast rotating terms or operating with appli-
cation times T where ωT = 2πr with r an integer value
(a condition at which the contribution of all nonstatic terms
vanish), we obtain

ĤODF/h̄ ≈ U
∑

i

( ∑
a+b=−1

a,b∈Z

Ja
[
δm

e (ρi )
]
Jb

[
δm

o (ρi )
]

× cos

(
a
π

2
− mφi + ψ

))
σ̂ Z

i . (22)

For a = −1, and δm
o (ρ) = 0, this agrees with the expres-

sion in Eq. (13),

ĤODF/h̄ ≈ U
∑

i

J−1
[
δm

e (ρi)
]

cos

(
− π

2
− mφi + ψ

)
σ̂ Z

i

= U
∑

i

J1
[
δm

e (ρi )
]

sin (mφi − ψ )σ̂ Z
i . (23)

However, for both δm
e (ρ) and δm

o (ρ) nonzero, there are now
terms given by higher-order Bessel functions that are static
and nonzero

ĤODF/h̄ ≈ U
∑

i

(
J1

[
δm

e (ρi )
]
J0

[
δm

o (ρi )
]

sin(mφi − ψ )

− J1
[
δm

o (ρi )
]
J0

[
δm

e (ρi )
]

cos (mφi − ψ )

+ J1
[
δm

e (ρi )
]
J2

[
δm

o (ρi )
]

sin (mφi − ψ )

− J2
[
δm

e (ρi )
]
J1

[
δm

o (ρi )
]

cos (mφi − ψ ) − . . .
)
σ̂ Z

i .

(24)

Fortunately, for small arguments, J	(x) ≈ 1
	! ( x

2 )n and
J0(x) ≈ 1 − ( x

2 )2, so that if we can choose δm
e (ρi ) = APm(ρi )

and δm
o (ρi ) = AQm(ρi ) to be small (by choosing A to be small),

the first two terms will reduce to the desired results [Eqs. (15)
and (17)]. Note that we introduced the factor of 1/2 in the pre-
compensation step [Eqs. (14) and (16)] to make the outcome
of the serial and parallel protocols the same. The remaining
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terms will also be made small. Explicitly,

ĤODF/h̄ ≈ U

2

∑
i

(APm(ρi ) sin(mφi − ψ )

− AQm(ρi ) cos (mφi − ψ ) + O(A2))σ̂ Z
i . (25)

To first order in the arguments of the Bessel function, we
see the even [APm(ρ) cos (mφ)] and odd [AQm(ρ) sin (mφ)]
terms in Eq. (8) can be treated additively, and the Hamiltonian

considered in Eq. (20) can be used to apply both the even and
odd m components in parallel.

A similar analysis can be applied to show that it is pos-
sible to apply all different orders m at the same time. For
instance, consider the simplified case of two different nonzero
even orders m1 and m2, and suppose we set the beatnote
frequency to μ = m1ω. Then our wavefront deformation is
given by

δ(ρ, φlab) = APm1 (ρ) cos (m1φ
lab) + APm2 (ρ) cos (m2φ

lab)
(26)

and our Hamiltonian is

ĤODF/h̄ = U

2

∑
i

(
ei(−μt+ψ ) exp (i[APm1 (ρi ) cos(m1φi − m1ωt ) + APm2 (ρi) cos(m2φi − m2ωt )]) + c.c.

)
σ̂ Z

i , (27)

ĤODF/h̄ = U

2

∑
i

(
ei(−μt+ψ )

∞∑
a=−∞

∞∑
b=−∞

ia+bJa[APm1 (ρi )]Jb[APm2 (ρi )]e
i[a(m1φi−m1ωt )+b(m2φi−m2ωt )] + c.c.

)
σ̂ Z

i . (28)

As before, neglecting the fast rotating terms, or operating with application times T where ωT is a positive integer multiple of
2π (a condition at which all non-static terms vanish) we get

ĤODF/h̄ ≈ U
∑

i

⎛
⎜⎜⎝ ∑

am1+bm2=−m1
a,b∈Z

Ja[APm1 (ρi )]Jb[APm2 (ρi )] cos

[
(a + b)

π

2
− m1φi + ψ

]⎞
⎟⎟⎠σ̂ Z

i . (29)

The lowest-order terms occur when a = −1 and b = 0,
resulting in

ĤODF/h̄ ≈ U

2

∑
i

(APm1 (ρi ) sin (m1φi − ψ ) + O(A2) . . .)σ̂ Z
i .

(30)
For small A this is approximately the desired AC Stark shift

pattern. If we set the ODF beatnote μ = m2ω we select an AC
Stark shift pattern described by the second term in Eq. (26).

When considering terms with m = 0 and setting ψ =
−π/2, the leading-order contribution is instead UAP0(ρi), so
that there is an additional factor of 2 multiplying the radial
polynomial. Note that the precompensation for m = 0 [see
Eq. (18)] was chosen to also make the outcome of the serial
and parallel protocols the same.

The above analyses support two experimental procedures
for generating an AC Stark shift pattern F (ρ, φ) that is static
in the rotating frame of the crystal. The first is sequential:
for a phase pattern with terms of at most order mmax, we
sequentially set the DM to 2mmax + 1 different azimuthal
phase patterns, applying the appropriate beatnote frequency
at each step and the corresponding precompensation in the
applied waveform. This has the advantage of allowing for
larger amplitudes A and higher accuracy.

The second procedure is a parallel application: we set the
DM once to a phase pattern proportional to F (ρ, φ) at the ion
crystal, and simultaneously (or in rapid succession) apply all
beatnote frequencies μm = mω, for 0 � m � mmax. The beat-
note at μm will imprint an AC Stark shift in the rotating frame
of the ions proportional to Pm(ρ) cos(mφ) + Qm(ρ) sin(mφ),
rotating the ion’s spins according to the mth-order component
of F (ρ, φ). This has the benefit of being faster if the pattern

has a large number of frequency components, but at the cost
of lower accuracy and requiring smaller amplitudes. We note
that small amplitudes [i.e., A in Eq. (8) or δ in Eq. (6)] can be
offset through the use of large U or long application durations
T .

III. NUMERICAL SIMULATION

In this section we outline a numerical study whose results
are presented in Secs. IV and V for preparing arbitrary qubit
rotation profiles F (ρ, φ) across the crystal. In the work that
follows, we set U = 2π × 10 kHz and ω = 2π × 180 kHz,
which are typical experimental parameters [20,21]. Our goal
will be to prepare the ions in the state

|ψ (T )〉 =
⊗

i

e−iUF (ρi,φi )T σ̂ i
Z |+〉i , (31)

where T is the gate duration.
First, we will prepare all of the ions in the |+〉 = 1√

2
(|↑〉 +

|↓〉) state, which can be easily done by preparing all ions in
|↓〉 and then applying a global rotation around the Y axis. We
will then determine a maximum m and n, based on the desired
fidelity of the state preparation, such that we approximately
reconstruct F as F̃ , using only Zn

m for all |m| � mmax and n �
nmax. Writing αm

n for the coefficients of F in the Zernike basis,
we have

F = A
∑

−n�m�n
0�n�∞

αm
n Zm

n ≈ A
∑

−mmax�m�mmax
0�n�nmax

αm
n Zm

n = F̃ . (32)

Experimentally, nmax could be constrained by the avail-
able resolution of the deformable mirror—since an nth order
polynomial is determined by n + 1 points, a mirror with N
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actuators in a dimension can only hope to parametrize a fam-
ily of polynomials of degree N − 1. In our analysis we will
assume that the DM has a sufficiently large number of actua-
tors and prioritize minimizing mmax, which sets the number
of terms in the decomposition of F [see Eq. (8)] that will
be included in the reconstruction F̃ . Larger mmax in general
requires a longer gate duration or higher laser power.

As discussed in Sec. II, there are two ways to apply the full
phase pattern—sequentially, and in parallel. In the analysis
that follows we will consider both of these approaches. Al-
though in principle one could consider using these techniques
to apply arbitrary qubit rotations, for the purposes of assessing
the performance of our protocols we consider the experimen-
tally useful example of π rotations. That is, in the examples
considered in Secs. IV and V the time evolution will be set
for a time T such that in the final state |ψ (T )〉 the ion located
at the maximum of the phase-pattern F will be rotated by π

radians in the XY -plane.

IV. SOURCES OF ERROR

We will now discuss three sources of error that can occur
in the protocols described in Sec. II. To quantify the error and
to analyze the performance of our protocol we will use the
single-spin infidelity

I j = 1 − | 〈P jψ̃ (T )|P jψ (T )〉 |2, (33)

where P j traces out all but the jth ion. The quantity I j is the
infidelity of spin j in the simulated state |ψ̃ (T )〉 with respect to
the target state |ψ (T )〉. State-of-the-art quantum information
processing platforms often have single-qubit gate infidelities
of 10−3–10−2[30,31] or less, and so this will be the standard of

comparison in our analysis. While trapped ion computers of-
ten have substantially better single-qubit infidelities [5,6,32],
our goal here is to demonstrate that Penning traps are a
compelling candidate for quantum information processing, for
which it is sufficient to study these larger infidelities.

A. Rotating wave approximation

The first type of error comes from the rotating wave ap-
proximation, where we ignore the rapidly oscillating terms in
Eq. (12). As we will show below these errors nevertheless can
be avoided if one chooses the gate duration to be commensu-
rate with the ion crystal rotation frequency: ωT = 2πr, with
r an integer.

As a simple example, we consider a phase pattern with
a single angular order m and with an additional amplitude
parameter A that will be chosen sufficiently small so that
precompensation is not necessary. Thus our phase function in
Eq. (6) is given as

δ(ρ, φ) = APm(ρ) cos (mφ). (34)

For our simple Hamiltonian, we can analytically express the
expectation value 〈σX 〉 of the spin after evolving for time T .
Writing f (τ ) as the time-dependent coefficient in Eq. (12),
i.e., ĤODF/h̄ = ∑

j f j (t )σ̂ Z
j , and setting μ = mω, we find (for

m = 0)

〈ψ̃ (T )|σ j
X |ψ̃ (T )〉 = cos

(
2

∫ T

0
f j (τ )dτ

)
. (35)

We can write ∫ T

0
dτ f j (τ ) =

∞∑
	=−∞

s j (	), (36)

where

s j (	) =
{

UJ1[APm(ρ j )] sin[mφ j − ψ]T if 	 = −1,

4UJ	[APm (ρ j )] sin
(

1
2 m(	+1)T ω

)
cos

(
m	φ+ 1

2 [π	−m(	+1)T ω]+ψ

)
m(	+1)ω if 	 = −1.

(37)

Therefore, if UJ	[APm(ρ j )]/(mω) � 1 then

〈ψ̃ (T )|σ j
X |ψ̃ (T )〉 ≈ cos () − sin ()

∞∑
	=−∞,	 =−1

× a	[T (	 + 1)mω]
U

(	 + 1)mω
, (38)

 = 2UJ1[APm(ρ j )] sin[mφ j − ψ]T, (39)

for some function an. For m = 0 we have simply that∫ T

0
f j (τ )dτ = U cos [AP0(ρ j ) + ψ]T, (40)

which has no time-dependent corrections.
As an example, choosing m = 1 and P1(ρ) = ρ, we will

evaluate Eq. (35) at the point that will have the largest in-
fidelity, ρ = 1 and φ = 0, with A = 0.25. This choice of A
allows us to focus primarily on effects from the RWA, and
ignore the other sources of error discussed below. This gives

superimposed oscillations around a cosinuisoidal evolution,
with corrections proportional to U

mω
. Thus, by increasing ω

for fixed U , the RWA becomes more accurate. This is shown
in Fig. 2(a), where the evolution is sampled at 1000 points
in time. As ω is increased from 2π × 43.8 kHz (blue) to
2π × 180 kHz (orange), the oscillations become smaller. We
see that the ion completes a full π rotation in nearly 200 μs, as
expected from Eq. (13). Additionally, we see that at evolution
times that are positive integer multiples of 2π/ω the differ-
ence between the exact evolution and the RWA is zero (see
pink points in Fig. 2). This can be seen in Eq. (37), as the terms
with n = −1 are zero at these points. See also Appendix A for
a more generic case. In Sec. V we choose evolution times that
take advantage of this fact. Note that for this simple case the
fast-rotating terms also vanish at T = π/ω.

Figure 2(b) shows a histogram of the log infidelity obtained
at the different evolution times sampled in Fig. 2(a). By in-
creasing the rotation frequency from 2π × 43.8 kHz (blue) to
2π × 180 kHz (orange), the maximum single-spin infidelity is
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FIG. 2. (a) Error from the rotating wave approximation. Starting in the state |ψ (0)〉 = 1√
2
(|↑〉 + |↓〉), we plot 〈σX 〉 as a function of time

under evolution by Eq. (35) with μ = ω and δ(ρ, φ) = Aρ cos (φ) for A = 0.25, and different values of ω at (ρ, φ) = (1, 0). These expectation
values are compared with those coming from the rotating wave approximation given by Eq. (13) with m = 1. We see that by increasing the
ion rotation frequency from ω = 2π × 43.8 kHz to ω = 2π × 180 kHz, the correction terms in Eq. (38) get suppressed so that the maximum
infidelity is no larger that 10−2. [See Fig. 2(b)]. The pink dots mark times that are positive integer multiples of 2π/43.8kHz where the RWA
error vanishes for the slower trap rotation frequency. (b) Distribution of errors from RWA. Panel (a) samples 〈σX 〉 at 1000 different points
in time. Panel (b) shows the histogram of the log infidelities between the exact evolution and evolution under Eq. (13) evaluated at the same
points in time. Choosing ω = 2π × 43.8 kHz results in most of the infidelities being larger than 10−2. Increasing the rotation frequency to
ω = 2π × 180 kHz, the maximum infidelity is decreased to smaller than 3 × 10−3(orange). By sampling many different values of evolution
time, we can be confident that the infidelity contributed by the RWA for arbitrary angles of rotation are sufficiently small for high-fidelity
generation of |ψ (T )〉 [Eq. (31)]. Red and blue lines have been added to the red and blue distributions, respectively, to highlight the mean and
median, which are indistinguishable at this scale.

decreased from approximately 5 × 10−2 to 3 × 10−3. This im-
plies that setting ω = 2π × 180 kHz is sufficient for obtaining
infidelities of 3 × 10−3 or smaller.

B. Truncation

The second source of error comes from the fact that in
practice we apply a finite number of beatnote frequencies,
truncating the basis expansion at finite order. This will pro-
duce imperfect reconstructions of the desired phase pattern.
While choosing finite nmax is also a possible source of error, as
discussed earlier we choose nmax large enough that it is not the
limiting factor—effectively assuming that the DM has enough
actuators to give good resolution.

The Zernike polynomials form an orthogonal set of poly-
nomials on the disk D and therefore arbitrary functions can be
decomposed into these polynomials. The inner product on the
space of functions on the disk is given by

〈F, G〉 =
∫

D
ρdρdθF · G. (41)

We can write the coefficients of F from Sec. III as

αm
n = 2n + 2

εmπ

〈
F

A
, Zm

n

〉
, (42)

where εm is 2 if m = 0, and 1 otherwise. The prefactor in
Eq. (42) is due to the fact that the polynomials are not nor-
malized 〈

Zm
n (ρ, φ)Zm′

n′ (ρ, φ)
〉 = εmπ

2n + 2
δn,n′δm,m′ . (43)

Truncating the number of terms we include will give us a
different phase function F̃ , from which we can define the error
from truncation as

E = maxD(|F − F̃ |/A). (44)

Note that max[F (ρ, φ)] = A [see discussion after Eq. (8)], so
E is the truncation error normalized to the maximum value of
F .

The amount that this truncation contributes to the infidelity
will vary depending on the particular phase function F being
considered, as we will see in Sec. V. Here, to provide a rough
estimate, we consider the maximum single-spin infidelity ε

across the crystal, defined as

ε = max j (I j )

= max j (1 − | 〈P jψ̃ (T )|P jψ (T )〉 |2)

≈ max j

(
1 −

∣∣∣∣1 − 1

2
(UAT [F (ρ j, φ j ) − F̃ (ρ j, φ j )]/A)2

∣∣∣∣
2)

≈ (EUAT )2, (45)

where P j traces out all but the jth ion.
We consider rotations where the ion located at the maxi-

mum of F is rotated by π radians, corresponding to UAT =
π/2. An infidelity requirement of ε, therefore, in general
necessitates a truncation error E � 2

π

√
ε. For an infidelity

requirement of 10−2 (10−3) the maximum truncation error
should be less than 0.064 (0.02).

C. Linear approximation

The final source of infidelity, which is only relevant for
the parallel application discussed in Sec. II, is in assuming
that A in Eqs. (25) and (30) is small enough so that ignoring
higher-order terms is justified. By increasing the product UT
and decreasing the amplitude A, the linear approximation can
be made arbitrarily good. However, increasing UT will also
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increase decoherence due to off-resonant light scattering from
the ODF beams [33] during the qubit rotations.

To estimate the contribution of higher-order terms in A on
the infidelity for the target case of a π -rotation on a single ion,
we consider the parallel application of two Pm1 , Pm2 terms [see
Eq. (26)]. It can be shown that leading corrections, of order
O(A2), arise when 2m1 = m2. In this case the leading-order
static terms generate a Hamiltonain of the form

ĤODF/h̄ ≈ U

2

( ∑
i

APm1 (ρi ) sin (m1φi − ψ )

− A2

2
Pm1 (ρi)P

2m1 (ρi ) cos (m1φi − ψ ) + O(A3)

)
.

(46)

We now compute the infidelity between the state |φ〉 =
e−iĤODFT/h̄ |+〉 and |φ̃〉 = e−i UAT Pm1 (ρ0 )

2 σ̂Z |+〉 obtained by con-
sidering only the desired first-order term. We choose ψ =
−π/2 in the rest of this discussion. By Taylor expanding, we
find the infidelity to be

I (φ̃, φ) ≈
∣∣∣∣UT

4
A2Pm1 (ρi )P

2m1 (ρi ) sin (m1φi )

∣∣∣∣
2

. (47)

Thus, for Pm1 (ρi )P2m1 (ρi ) sin (m1φi ) < 1, and UTA/2 ∼
π , the infidelity reduces to

I (φ̃, φ) �
(

π

2
A

)2

. (48)

We see that if A � 0.02 the infidelity can be constrained to be
less than 10−3. If we relax our infidelity requirements to 10−2

we can choose A as large as A = 0.06. While these ampli-
tude requirements may seem strict, we note that this estimate
is pessimistic—we considered the worst-case situation when
2m1 = m2, which gives leading-order error contributions of
size O(A2). As we will see in Sec. V, the amplitude can often
be made larger. In fact, as we will see in Sec. V C where
we look at the case of flipping the spin of a single ion, the
amplitude can be taken more than an order of magnitude larger
while achieving the same infidelity goals.

V. NUMERICAL RESULTS

Following the discussion of Secs. III and IV, we now
numerically demonstrate a few interesting examples of im-
plementing different AC Stark shift patterns across a circular
crystal with our protocols from Sec. II. The preparation of
initial states with targeted spatial profiles can be of great
utility for investigating propagation of quantum information
and entanglement. With that purpose in mind, here we con-
sider a range of geometries including an annulus, an elliptical
Gaussian, and a displaced Gaussian. For these patterns results
for 〈σX 〉 as well as the log infidelity across a crystal of 91
ions are shown. This number was chosen to have interion
spacings of 0.1 of the crystal diameter. For the phase patterns
considered, Figs. 3, 6, 10 show the truncation error |E | from
considering a finite number of Zernike polynomials. Next,

FIG. 3. Absolute value of the error E = |F − F̃ |/A in recon-
structing an annulus. With nmax = 24 and m = 0 we can reconstruct
an annulus with an error no larger than 0.05. This is sufficiently low
error to reproduce a high fidelity state. (See Fig. 5.) The red dots
represent the ion positions and are shown for reference.

we study the error generated during the dynamical evolution.
First we apply the protocol in series, evolving under each even
[APm(ρ) cos (mφ)] and odd [AQm(ρ) sin (mφ)] term in Eq. (8)
that constitutes F̃ (ρ, φ) one-by-one, for two different choices
of target maximum infidelity. The infidelities of the final state
are shown in Figs. 5, 8, 12. We discuss contributions to the
infidelity arising from the RWA and truncation errors (see
Sec. IV). Next, we apply the protocol in parallel for all m such
that 0 � m � mmax in Eq. (32). In Figs. 9 and 13 we show
the corresponding infidelities for the elliptical and displaced
Gaussians. (The annulus only requires implementing a single
m = 0 term.)

A. Annulus

As a first example, we consider preparing ions in an an-
nulus. To make the problem of reconstruction in a basis of
continuous functions easier, we will smooth the edges with

FIG. 4. 〈σX 〉 for an annulus after following the protocol in
Sec. III. Using nmax = 24 and m = 0, we see that 〈σX 〉 is −1 on
the annulus and 1 outside the annulus, as desired. The pink pattern
illustrates the targeted AC Stark shift pattern F .
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FIG. 5. Infidelity I [see Eq. (33)] for preparing an annulus following the protocol of Sec. V A. (a) For n � 24 and m = 0, the maximum
infidelity is smaller than 10−2. (b) For n � 54 and m = 0, the maximum infidelity is smaller than 10−3. (c) A histogram over the ions’
infidelities, comparing (a) and (b).

sigmoid functions, giving

g(ρ) = 1

1 + e−κ (ρ−r1 )
− 1

1 + e−κ (ρ−r2 )
. (49)

Scaling this function to be one at its maximum, we have a
targeted normalized AC Stark shift pattern given by:

F (ρ, φ) = Ag(ρ)/g

(
r1 + 1

2
(r2 − r1)

)
, (50)

which corresponds to the phase function

δ(ρ, φ) = cos−1 [F (ρ, φ)] (51)

in Eq. (6). For our numerical experiment we will set r1 =
0.45, r2 = 0.55, and κ = 10. This value of κ was chosen to
avoid sharp rising and falling edges for the annulus.

1. Reconstruction

Because the phase pattern is azimuthally symmetric, the
only nonzero coefficients have m = 0 and only the application
of a single beatnote with frequency μ = mω = 0 is required.
We see that all terms are static, and therefore, incur no er-
ror from the RWA. We choose nmax to be sufficiently large
(nmax = 24) so that the reconstruction error E , presented in
Fig. 3, is less than 0.064. From the discussion in Sec. IV this
should enable a single-spin infidelity of less than 10−2. The
next contributing error term is radially symmetric since the
pattern itself is radially symmetric, which can be seen clearly
in Fig. 3.

2. Evolution

Given that all the terms in the Zernike expansion have the
same value of m, they can be applied simultaneously using
the precompensation technique [Eq. (51)] above, incurring no
errors from the linear approximation. Setting A = 1.0, we ob-
tain a gate duration of 25 μs for U = 2π × 10 kHz, which is
significantly faster than typical decoherence times in trapped
ions.

The expectation values 〈σX 〉 after performing the precom-
pensation protocol is shown in Fig. 4, and the infidelity to the
target state is shown in Fig. 5. Here the infidelity is due to
finite n truncation. Figure 5(a) shows an infidelity better than
10−2 for nmax = 24. An infidelity of 10−3 can be obtained with
nmax = 54 as shown in Fig. 5(b). A histogram of the infideli-
ties for the two different nmax values is shown in Fig. 5(c).
The presented analysis shows that the protocol can produce

a faithful reconstruction of the annulus pattern with a small
state infidelity (<10−3).

B. Elliptical Gaussian

The next example we consider is an elliptical Gaussian

F (ρ, φ) = A

2
exp[−(ρ cos (φ)]2/

(
2η2

x

) − [ρ sin (φ)]2/
(
2η2

y

)
.

(52)
We choose ηx = √

2/10 and ηy = √
2 to generate an elliptical

pattern with a “narrow” and “wide” distribution covering the
91-ion crystal. Because there is no longer azimuthal symme-
try, we must consider m > 0.

1. Reconstruction

We use a numerical integrator to compute the Zernike basis
coefficients in Eq. (42). The reconstruction error for mmax =
10 and nmax = 26 is shown in Fig. 6. Interestingly, there are
radial bands, set by the value of mmax. For mmax = 10, the next
higher-order omitted term has 12 full periods of oscillation
corresponding to the 12 pairs of dark fringes in Fig. 6. Since
the error is minimized at the bright fringes, we can, in princi-
ple, achieve a higher fidelity reconstruction by adjusting mmax

so that ions near the edge of the crystal in the y-direction are

FIG. 6. Absolute value of the error E = |F − F̃ |/A in recon-
structing an elliptical Gaussian. By using nmax = 26 and mmax = 10
with m always positive we can reconstruct an elliptical Gaussian
pattern with a maximum error of less than 0.09. Nevertheless the
maximum error at an ion is approximately 0.035 since there are no
ions sitting at the maximum of the phase pattern. The periodicity in
the error pattern is mainly set by the mmax value considered.
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FIG. 7. 〈σX 〉 for an elliptical Gaussian. We use n � 26, 0 � m �
10, and A = 0.5. Ions along the center of the elliptical phase pattern
are rotated towards |−〉, while those far away from the center remain
in |+〉.

positioned near the minima of the reconstruction error. At any
ion in the crystal, the reconstruction error E shown in Fig. 6
is less than 0.035, which should enable an implementation of
the elliptical Gaussian AC Stark shift pattern with an infidelity
less than 10−2.

The error in the reconstruction is seen to be smaller near the
center of the disk since including lower-degree radial poly-
nomials can match the behavior there. To capture the phase
pattern far from the center of the disk requires higher-order ra-
dial polynomials. In fact the error is observed to be maximum
at the vertical wings of the distribution since to capture the
decay of the Gaussian closer to the ρ = 1 boundary requires
higher-order terms.

2. Series application

Figure 7 shows 〈σX 〉 at the end of a series evolution with
mmax = 10, nmax = 26, and A = 0.5. Note that because of the
elliptical symmetry, m is restricted to nonnegative even values,
corresponding to six terms in total. We choose a gate dura-
tion of T = 18 × (2π/ω) = 100 μs and hence we remove the
errors from the rotating wave approximation. The protocol
generates spin rotations along the three vertical columns of
ions in the center of the disk, while very nearly leaving all
other ions in the |+〉 state. Figure 8(a) shows a maximum
single-spin infidelity of 10−2. With mmax = 12, corresponding

to seven terms, and making nmax = 32, Fig. 8(c) shows clearly
that the maximum infidelity is reduced to 10−3.

Each application of one even [APm(ρ) cos (mφ)] term in
Eq. (8) takes 100 μs. When done in series, the six different
values of m employed to obtain an infidelity of 10−2 sets a
gate duration of 600 μs, neglecting the reset time of the DM.
A gate duration of approximately 700 μs is required for the
seven terms that enable an infidelity of 10−3. The reset time
of the DM can significantly increase the gate duration. For
example, a DM reset time of 50 μs increases the gate duration
by 50%.

3. Parallel application

The protocol where all terms are applied in parallel has
the advantage that the DM is only set once. This can pos-
sibly lead to shorter gate durations. The targeted AC Stark
shift [Eq. (52)] and choices of parameters for the parallel
application are the same as those considered in the previous
paragraphs with the exception of the choice of A and therefore
T . The parameter A is chosen sufficiently small so that the
linear approximation discussed in Sec. II holds, and T is
picked so that the spins at the maxima of the phase pattern
experience a full π rotation, as discussed in Sec. III. By
applying the different orders in parallel, we incur all of the
errors from the previous section and additional errors from
the linear approximation discussed in Sec. IV C. Because the
n and m chosen in the previous section were minimally large
to meet our fidelity requirements, we keep them the same.
For a maximum infidelity of 10−2, Fig. 9(a) demonstrates that
choosing A = 0.4 is sufficient. This changes the gate duration
to 250 μs, obtained with T = 45 × (2π/ω). If we increase
our infidelity requirements to 3 × 10−3, we see in Figs. 9(b)
and 9(c) that we can choose A = 0.2. For the gate duration to
be commensurate with the crystal rotation frequency we find
T = (90 × 2π/ω) giving a longer gate duration of 500 μs. We
note that we chose 3 × 10−3 as the target infidelity rather than
10−3 as in the other examples that we show.

C. Displaced Gaussian

Finally, we consider an AC Stark shift pattern described by
a displaced Gaussian

F (ρ, φ) = A

2
exp(−{[ρ cos (φ) − δx]2

+ [ρ sin (φ) − δy]2}/(2η2)) (53)

FIG. 8. Infidelity for preparing an elliptical Gaussian with the serial protocol. (a) For n � 26, 0 � m � 10, and A = 0.5, the maximum
infidelity is smaller than 10−2. (b) For n � 32, 0 � m � 12, and A = 0.5, the maximum infidelity is smaller than 10−3. (c) A histogram over
the ions’ infidelities, comparing (a) and (b).

033076-10



INDIVIDUAL QUBIT ADDRESSING OF ROTATING ION … PHYSICAL REVIEW RESEARCH 4, 033076 (2022)

FIG. 9. Infidelity for preparing an elliptical Gaussian with the parallel protocol. (a) For n � 26 and 0 � m � 10. By applying all
polynomials and beatnotes simultaneously, with A = 0.4, the resulting maximum infidelity is less than 10−2. (b) With n � 32, 0 � m � 12,
but and with A = 0.2, the maximum infidelity is no more than 3 × 10−3 with all polynomials and beatnotes applied simultaneously. (c) A
histogram over the ions’ infidelities, comparing (a) and (b).

with standard deviation η = 0.1/
√

2, displaced by δx = 0.3
in x and δy = 0.1

√
3 in y. The displacement was chosen to

coincide with an ion in the crystal, and the width was chosen
to achieve a single spin rotation. In particular, this choice of
η corresponds to a Gaussian profile that decays by a factor
of 1/e at a diameter of the interparticle spacing. In this case,
we no longer have azimuthal symmetry, so we must include
m � 0 and m < 0 as well.

1. Reconstruction

In Fig. 10, we included up to m = ±9 and nmax = 40 terms.
We see that the reconstruction has a maximal error in a region
surrounding the targeted ion. The maximum truncation error
is approximately 0.06, which should enable a single-spin in-
fidelity of 10−2. We note that choosing an ion closer to the
boundary of the crystal will require a large m value to reach
similar truncation error.

2. Series application

In this example we consider A = 3.0, motivated by our
infidelity goal of 10−2. We picked this value of A to be as
large as possible while still requiring that each term being
applied in the expansion [Eq. (8)] can be inverted as dis-

FIG. 10. Absolute value of the error E = |F − F̃ |/A in recon-
structing a displaced Gaussian. With nmax = 40 and |mmax| = 9 we
get a maximum error smaller than 0.06. The error is worse around
the targeted ion since this is the sharpest feature trying to be recon-
structed with 20 dark fringes corresponding to the extrema of the
next omitted m = 10 term.

cussed in Sec. II for precompensation. Additionally, we chose
T = 3 × (2π/ω), to remove the error from the RWA. For
A = 3.0, the application time required for each beatnote is
approximately 16.66 μs. When the polynomials are applied
in series for 19 different values of m, we get a gate duration
of approximately 316.66 μs, again assuming a DM with zero
reset time. If we increase our infidelity goals to 10−3, we
can choose |m| � 20 and A = 3.0, giving a gate duration of
683.33 μs. As in the previous two cases, we see excellent
agreement with the desired phase pattern in the evolution of
〈σX 〉 shown in Fig. 11. The protocol very nearly rotates a
single spin, as all of the ions surrounding the desired ion are
very nearly in the |+〉 state. This behavior leads us to conclude
that single ion addressability is feasible with this technique,
requiring about a factor of 2 more terms than in the other
cases due to the additional odd [AQm sin (mφ)] terms. The
infidelities in Figs. 12(a) and 12(b) are worse in a radial band
of ions containing the ion being flipped. This is intuitive—
suppressing that error requires the introduction of high-order
angular terms, while we used only up to m = 9.

3. Parallel application

The parameters in this section are the same as those con-
sidered in the previous paragraphs, with the exception of the
choice of A and therefore T . Figures 13(a) and 13(b) demon-
strate that choosing A = 0.3 is sufficient for the 10−2 and

FIG. 11. 〈σX 〉 for a displaced Gaussian after following the proto-
col in Sec. III. Using nmax = 40 and |mmax| = 9, we see that a single
ion spin is rotated to a very good approximation.
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FIG. 12. Infidelity for preparing a displaced Gaussian with the serial protocol. (a) For n � 40, −9 � m � 9, and A = 3.0 the maximum
infidelity is smaller than 10−2. (b) For n � 40, −20 � m � 20, and A = 3.0 the maximum infidelity is smaller than 10−3. (c) A histogram over
the ions’ infidelities, comparing (a) and (b).

10−3 infidelity requirements. Consequently, the gate duration
in both cases is approximately 333.33 μs, which is given as
T = 60 × (2π/ω) and thus the error incurred from the rotat-
ing wave approximation is zero. This reduces the gate duration
for the parallel application compared to the serial application
only for the case of a targeted infidelity of 10−3. However,
this neglects the reset time of the DM. For a targeted infidelity
of 10−2, the serial application needed mmax = 9, which would
require the DM to be set 18 times. With a reset time as high as
50 μs, this incurs an overhead of 900 μs. This is substantially
larger than the gate duration itself, and highlights a potential
reason to instead consider the parallel protocol.

VI. CONCLUSION

Penning traps are promising candidates as platforms for
quantum information processing due to their ability to con-
trol hundreds of qubits, and perform nonlocal entangling
operations. However, existing experiments lack the ability to
address individual ions, and therefore, fail to meet the criteria
for universal quantum information processing. In this paper
we discussed a method for implementing programmable Z-
rotations in a Penning trap, thus providing a path forward for
more complex quantum simulations and general large-scale
quantum information processing.

By employing a DM in the path of one of the laser beams
that creates the optical dipole force in Refs. [17,20], we
showed how wavefront deformations introduced by the DM
can be used to generate AC Stark shift patterns that are static
in the rotating frame of the crystal. A pattern of azimuthal

order m [Pm(ρ) cos(mφ), Qm(ρ) sin(mφ)] is introduced by
setting the frequency μ of the optical dipole force to the
mth harmonic of the rotation frequency, μ = mω. General AC
Stark shift patterns are obtained through the introduction of
different azimuthal orders. We analytically and numerically
demonstrated the feasibility of this approach for generating
single-site rotations. Choosing a Gaussian phase pattern with
a 1/e diameter equal to the interparticle spacing, we demon-
strated that we can resolve single ions in a crystal of about 100
ions under typical experimental conditions [17,20]. Moreover,
by applying the required beatnote frequencies mω in parallel,
one can obtain 99% fidelity single-qubit gate durations of
333.33 μs, which is faster than typical single particle deco-
herence times, ∼10 ms, in current Penning trap experiments.

In this paper we assume a perfectly performing DM and
analyze the sources of infidelity for two different protocols
where patterns of different azimuthal order are introduced
serially or in parallel. In particular, we assume that the number
of DM actuators is large compared to the number of ions and
that the surface of the DM can be set with arbitrary precision.
Deformable mirrors with greater than 4000 actuators, surface
figures of less than 10 nm, and mechanical response times
of less than 50 μs are available commercially. The desired
AC Stark shift pattern as well as the performance of the DM
will impact whether the serial or parallel protocol should be
employed. In general, the serial protocol enables the imple-
mentation of larger amplitudes and therefore higher accuracy
phase patterns. However, for patterns that require introducing
many azimuthal orders m, the reset time of the DM can add
significant overhead in the time required to implement the
desired AC Stark shift pattern. The parallel protocol removes

FIG. 13. Infidelity for preparing a displaced Gaussian with the parallel protocol. (a) For n � 40 and −9 � m � 9. By applying all
polynomials and beatnotes simultaneously, with A = 0.3, the maximum infidelity is smaller than 10−2. (b) For n � 40, −20 � m � 20, and
still with A = 0.3, the maximum infidelity is less than 10−3. (c) A histogram over the ions’ infidelities, comparing (a) and (b).
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any overhead due to the reset time of the DM, but the re-
striction on the amplitude of the phase pattern can impact the
accuracy with which the desired phase pattern can be imple-
mented.
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APPENDIX: RWA IS EXACT FOR INTEGER MULTIPLES
OF THE TRAP ROTATION FREQUENCY

As discussed in Sec. IV A, choosing the evolution time
T such that ωT = 2πr with r a positive integer can remove
all error from the rotating wave approximation. In Sec. IV A
we showed that this was the case when we applied different
Pm patterns. We now argue that this can be generalized to
arbitrary order. The Hamiltonian we consider will have both
even [APmi cos (miθ )] and odd [AQmi sin (miθ )] terms, up to
mNf , so that i � Nf . From the Jacobi-Anger expansion each
of these terms will introduce a new sum, as in Eq. (21), with
an index ai or bi, respectively. In general, we then get phase
factors in the sum, f (t ), of the form

f (t ) = exp (−iμt − iφ
∑

i

(ai + bi )mi − i
∑

i

(ai + bi )miωt ).

(A1)
Because this is the only time dependence, we can integrate
over time from 0 to 2πr/ω to get

∫ 2πk/ω

0
dt f (t ) = exp [−iμt − iφ

∑
i(ai + bi )mi − i

∑
i(ai + bi )miωt )]

−i[μ + ∑
i(ai + bi )miω]

∣∣∣∣
2πr/ω

0

= 0. (A2)

This is true except when the denominator vanishes, which is
also the case where the term in Eq. (A1) is static. If we have a
drive μ = mjω the denominator vanishes when

mj +
Nf∑
i=1

(ai + bi )mi = 0, (A3)

as we have seen previously in the case of two terms. The case
in Sec. IV A was special in that it repeats every π/ω. The
general argument is given above, and shows that in general a
multiple of 2π/ω is needed.
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