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Surveys have long been used in physics education research to understand student reasoning and inform
course improvements. However, to make analysis of large sets of responses practical, most surveys use a
closed-response format with a small set of potential responses. Open-ended formats, such as written free
response, can provide deeper insights into student thinking, but take much longer to analyze, especially
with a large number of responses. Here, we explore natural language processing as a computational
solution to this problem. We create a machine learning model that can take student responses from the
Physics Measurement Questionnaire as input, and output a categorization of student reasoning based on
different reasoning paradigms. Our model yields classifications with the same level of agreement as that
between two humans categorizing the data, but can be done by a computer, and thus can be scaled for large
datasets. In this work, we describe the algorithms and methodologies used to create, train, and test our
natural language processing system. We also present the results of the analysis and discuss the utility of

these approaches for analyzing open-response data in education research.
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I. INTRODUCTION

Surveys and questionnaires have long been an integral
tool for physics education researchers to improve physics
courses and understand student thinking. They offer a way
to quantify or categorize aspects of students’ reasoning,
their proficiency at a task, and their attitudes, beliefs, or
epistemologies around a topic among other dimensions
important for student learning [1,2]. By doing so in a
standardized way, surveys allow researchers to measure
proportions of students within a group, track how these
proportions change over time, and observe correlations
that can suggest relationships between student character-
istics. Because their standardized assessments aim to be
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representative and generalizable, survey studies usually
involve collecting a large number of responses. To make
analysis practical, surveys used in this way are typically
designed using a closed-response format, with a predeter-
mined and manageably small set of potential responses.
However, closed-response surveys are limited in the
fullness, depth, and subtlety of student understanding
they can measure. A comprehensive overview of the role
of surveys in physics education research, as one aspect of
quantitative methods more generally, can be found
in Ref. [3].

In contrast, open-ended formats (such as written text
responses) can provide deeper insights than closed-
response data, as students are not limited to a given set
of responses. For example, by analyzing students’ own
words, we can potentially achieve a greater sense of not
only what their answer is, but how they arrived at it.
Unfortunately, though, open-response data is difficult and
time consuming to analyze with the large number of
responses that are often necessary to make representative
and generalizable claims.

Published by the American Physical Society
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Natural language processing (NLP) and machine learning
could be a computational solution to this problem in some
cases. Statistical models built around the words students use
in their written open responses can be used to quantify or
categorize these responses, achieving the same outcome as a
closed-response survey with a still-manageable level of
effort. Language processing and analysis tools like NLP
are increasingly being used in educational settings to
analyze student work [4—11]. A machine learning system
can find patterns in different types of responses, converting
students’ words into lists of numerical values that
represent different characteristics (features) of a response.
Subsequently, a computational model could be created and
fit to those features, known as training the model, to produce
an overall quantification or categorization of the response.
These techniques represent a systematic and computational
approach to classifying a student’s written response into one
of several relevant categories. Once a well performing
system has been created based on a set of precategorized
data, one can predict classifications for any sufficiently
similar response using the same model.

In this work, we use a large dataset of precategorized
written responses to open-ended questions from a research-
based assessment survey to create and test a NLP system
for subsequent quantitative data analysis. We use data from
students in the large introductory physics lab course at the
University of Colorado Boulder (CU) who completed the
Physics Measurement Questionnaire (PMQ), an assessment
tool for studying student reasoning around measurement
uncertainty [12]. Our goal of this work is not to evaluate
student learning in this environment or test how machine
learning methods can be used generally for open-ended
assessments. Rather, we want to explore if we are able to
automate the scoring process for the PMQ survey as a proof-
of-principle study using NLP techniques. To be able to do
this, we aim to answer the following research question:

* What level of performance can be achieved using
natural language processing on open-ended assess-
ment responses for the PMQ?

e How does our NLP system compare to a human
performing the same task?

In this paper, we present the background needed to put
this work in context, including the course context and the
PMQ survey itself, as well as the process of human coding
the data. We then discuss, in detail, the methods we used for
creating and testing the NLP models and the outcomes of
those models applied to our data. Finally, we present a
discussion of the outlook for using NLP methods for
analysis in physics education research.

II. BACKGROUND

A. Course context

The data for this work came from students in the
introductory physics lab course at CU. This course is a
stand-alone, large-enrollment class that students typically

TABLE 1. Self-reported gender, race, ethnicity, and major of
students enrolled in the course in Spring 2018. There are around
1200 students in total included in this work.

Women 25.6%
Men 72.7%
Gender nonconforming 1.7%
American Indian or Alaska Native 0.7%
Asian American 15.3%
Black or African American 2.3%
Hispanic or Latino 9.8%
Native Hawaiian or other Pacific Islander 0.4%
White 67.1%
Other race or ethnicity 4.3%
Physics or Engineering Physics 17.9%
Other Engineering 43.0%
Other STEM 35.1%
Other disciplines 4.0%

take during their second semester of study, and is almost
always the first physics lab course they have taken at CU.
The course is typically taken concurrently with an intro-
ductory physics theory course on electricity and magnet-
ism, with students having already taken an introductory
course on mechanics. The lab course consists of weekly
two-hour lab activities involving these topics at an intro-
ductory level. Students are graded based on work produced
from these activities and on participation in 5-6 supple-
mental lecture sessions; there is no midterm or final exam.
Self-reported information regarding students’ gender, race,
ethnicity, and major from Spring 2018, a representative
semester of the course, is shown in Table I (reproduced
from Ref. [13]).

Between 2016 and 2018, the course underwent a trans-
formation led by H. J. L., the lead instructor throughout that
period. In many respects, the course before and after the
transformation can be thought of as two completely differ-
ent courses. Prior to the transformation, the lab activities
involved mostly measuring a value that was already known
to students from their theory courses, and the supplemental
lectures focused largely on error propagation. After the
transformation, the lab activities involved making predic-
tions of unknown parameters based on preliminary mea-
surements and then testing those predictions. Lectures after
the transformation de-emphasized error propagation, focus-
ing instead on basic concepts of measurement uncertainty,
such as distributions, standard deviation, and standard error
of the mean. More details about the transformation can be
found in Refs. [13-15].

Throughout the transformation process, researchers
collected data to measure the impact of the course and
the transformation. In addition to focus group interviews
and written responses [14,15], research-based assessment
instruments were used to quantify learning before and after
the transformation [13,16-18]. They were administered as
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The students work in groups on the experiment. Their first task is to determine d when
h=400 mm. One group releases the ball down the slope at a height =400 mm and, using a

metre stick, they measure d to be 436 mm.

The following discussion then takes place between the students.

I think we should
roll the ball a few
more times from
the same height
and measure d
each time.

A B

With whom do you most closely agree?

Explain your choice.

FIG. 1.

pretest and post-test in semesters in which the original
course and the transformed course were taught. The
students completed them online either during a lab session
or outside of lab, depending on the semester, and received a
small amount of course credit for completion.

Here, we focus on data from one of these surveys, the
Physics Measurement Questionnaire, which is described in
the next section. We use a combined dataset from the pre-
and post-tests from Spring 2017 and Spring 2018. In this
work, we do not distinguish between data from pretest vs
post-test, or from the original vs the transformed course, as
we are focused on creating an automated system to
categorize responses from students more generally.

B. Physics Measurement Questionnaire

The PMQ is a research-based assessment tool for
measuring student reasoning around statistical measure-
ment uncertainty in introductory physics lab courses. It was
developed at the University of Cape Town, ZA [18-22] for
first-year university students at that institution. Subsequent
work by some of us established its utility for students at
CU [16,17].

The PMQ consists of a set of survey questions, or probes,
relating to an experiment in which a ball is rolled down a
slope, travels in free-fall, and lands a measured distance

Why? We've
got the result
already. We do
not need to do
any more rolling.

I think we
should roll the

EAS

(Circle ONE):

ball down the

slope just one
more time
from the
same height.

c

A B | C

The RD probe of the PMQ. Reproduced from Ref. [23].

away from the end of the slope. Each probe concerns a
different aspect of measurement uncertainty, such as data
collection, data processing, or data comparison. In this
work, we focus on four of these probes: RD (repeating
distance, concerning data collection), UR (using repeats,
concerning data processing), SMDS (same mean different
spread, concerning data comparison), and DMSS (different
mean same spread, also concerning data comparison). As
an example, the RD probe is shown in Fig. 1. For each
probe, students are presented with a choice and asked to
select one of several possible responses. They are then
asked to explain their choice in an open-response format.
Their choices and the text of their explanations, together for
each probe, compose the response data collected by
the PMQ.

In addition to the probes themselves, the creators of the
PMQ developed two paradigms for interpreting data from
the PMQ [20,21]. They are the pointlike paradigm and the
setlike paradigm, with the setlike paradigm tending to be
more aligned with a probabilistic approach to measurement
uncertainty and characteristic of expertlike reasoning. In
the setlike paradigm, multiple measurements form a dis-
tribution, with each data point yielding more information
about the underlying measurand, but never yielding its true
value without uncertainty. On the other hand, the pointlike
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TABLE II. Human-to-human comparison of Cohen’s kappa for
IRR on a sampling of data from each of the four probes of the
PMQ, where RD stands for “repeating distance,” UR stands for
“using repeats,” SMDS stands for “same mean different spread,”
and DMSS stands for “different mean same spread”.

RD
0.65

UR
0.90

SMDS
0.67

DMSS
0.71

paradigm attributes variation between data points to errors
or mistakes. It maintains that if all of these influences are
eliminated, a single measurement could yield the true value
of the measurand.

To analyze responses collected at CU to the four probes
in the PMQ identified above, several of us and others
developed a new coding scheme based around the point and
set paradigms. It was initially based on the coding scheme
developed by the PMQ creators using responses from
students in Cape Town, but was expanded and then
consolidated to better represent responses from CU stu-
dents. That process is described in detail in Ref. [18]. The
coding scheme consists of a separate set of 12—16 codes for
each of the four probes [24]. Each code is associated with
either the point paradigm, the set paradigm, or an undefined
classification. The undefined code is used if the response
could not be classified as either set or point in its entirety or
if there was not sufficient information to characterize the
underlying reasoning into point or set. In this work, we
analyze results only at the level of these three paradigm
classifications, losing the finer distinctions made by the
individual codes themselves.

As a final step in developing the coding scheme for PMQ
responses at CU, two researchers independently coded a
subset of data from a semester of the introductory lab
course at CU (Fall 2017) and compared their results as a
measure of interrater reliability (IRR). Cohen’s kappa [25]
was used to compare the categories assigned by the
two researchers. The resulting values are presented in

1.0

the Table II. These values act as a benchmark for the
automated system developed here.

After developing the coding scheme and establishing its
reliability with a subset of the data, one of the researchers
involved in the IRR process used the codebook to catego-
rize responses from two semesters of data from the
introductory lab course at CU, one before the course
was transformed and one after the transformation. For
each of these semesters, Spring 2017 and Spring 2018, the
PMQ was administered twice, as a pretest and as a post-test.
These four administrations were combined into a single
human-coded dataset of about 2450 responses. (Descriptive
statistics on the responses can be found in the Appendix.)
That dataset, and the corresponding human-assigned cod-
ing classifications, forms the data used in this work.

The results of the human coding are presented in Fig. 2,
where the distribution of responses categorized as setlike,
pointlike, or undefined is shown for each probe. For all of
the probes, the responses are not distributed evenly across
the categories. Instead, we see a smaller number of point-
like responses on the RD probe, while setlike and unde-
fined responses both make up about 40% of the data each
for that probe. The UR probe has so little variance in the
paradigm of the response that we did not consider it moving
forward. The SMDS and DMSS probes have a majority
setlike response, and neither have very many undefined
responses, however, there is enough variance that we can
build a classifier for those probes.

The dataset we are using comes from the RD, SMDS,
and DMSS probes, as described above. Since each probe is
measuring different measurement concepts, the pointlike
and setlike paradigms manifest themselves via different
words and phrases for each probe. For example, a student
employing setlike reasoning would likely mention the
spread of the data on the SMDS probe, but that same
student could reasonably not use that word on the RD
probe, and still have setlike reasoning. Therefore, each
probe has its own patterns in the data, and requires a
separate classification system to be built for it. The systems

(a) RD Probe (b) UR Probe

0.8

0.6

Proportion

0.4

0.2

0.0

Set-Like Point-Like Undefined Set-Like Point-Like Undefined

(c) SMDs Probe (d) DMSS Probe

Set-Like Point-Like Undefined

Set-Like Point-Like Undefined

FIG. 2. Distribution of student responses classified as set, point, and undefined for each probe for the entire human-coded dataset. The
UR probe responses are almost all setlike and therefore this probe has been omitted from the NLP study.
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for each probe are built using the same methods, but are
trained on data specific to that probe. This is consistent with
how the original human coder classified the data.

C. Automated review of student responses

Until fairly recently, reviewing student responses to
open-ended questions required dedicated instructors to
read and to mark each response. The automated review
of students’ responses has grown as the technology to
process those responses has advanced [26,27]. PYTHON’S
Natural Language Toolkit [28] and R’s tm package [29] are
widely used open source tools for text mining and analysis.
Now, we can use a variety of computer algorithms to
process answers that students produce in written (typed)
form [4-8,11], with more recent work in science education
making use of types of the open-source tools presented
here [9,10].

More recently, questions have been raised around the use
of approaches like NLP on student work. In their compre-
hensive review on the subject of artificial intelligence in
higher education, Zawacki-Richter et al. [30] discussed
several issues that need to be addressed for future work
using Al including critical reflection of challenges and risks
of using Al in education and a weak connection of the use
of Al to theoretical educational perspectives. They called
for further exploration of the use of Al in which these issues
are addressed directly.

There is evidence of wider use of text mining and
NLP in education, which include analysis of both
student work [4,7,11] and the research literature [9,10].
Importantly, these examples use both supervised (i.e.,
known coded data) and unsupervised (i.e., emergent
analysis) approaches. We limit our discussion to work that
focuses on classifying text into themes—fully acknowl-
edging that there are other uses of text mining in educa-
tional spaces. Nehm and colleagues analyzed written essays
by biology students on issues of natural selection [4]. Here,
Nehm built from their prior work including an instrument
that elicited a collection of student ideas on natural
selection [31,32]. In this work, Nehm ef al. used SPSS’s
text extraction and modeling tools. Ullmann analyzed
essays written by students using a framework for reflective
writing [7]. Students’ coded written work was mined to
determine the presence of eight dimensions of reflective
writing. Here, Ullman had each sentence coded by a human
for the presence of the eight dimensions and, later,
compared the automated analysis to the human coding.
Ullman was able to reliably find five of the eight dimen-
sions in student writing and, with less confidence, the
remaining three. Wulff and collaborators built off the work
of Ullman to analyze the reflections of preservice physics
teachers [11]. They adapted Ullman’s framework and
searched for reflective elements in preservice physics
teachers’ essays—similarly to Ullman—with reasonable
success. In contrast to the focus on student work above,

Odden and colleagues mined the text from the last decade’s
worth of the Proceedings of the Physics Education
Research Conference [9]. In their unsupervised approach,
they were able to extract 10 themes and trace their
prevalence over time. Their work was extended to the
journal Science Education where they mined the last
century’s worth of articles to extract over a dozen themes
in three topical areas [10]. They then discussed their
historical prevalence of various themes as they related to
different movements in science education.

Our work represents these kinds of explorations where
we have used NLP in a physics laboratory context. In each
of the prior studies, the specific context and questions were
critical to forming the approach and discussing the resulting
evidence—our work is no different in that respect. In
addition, the assessment that we have used (Sec. II B) is
grounded in physics education theory, in particular, point-
like and setlike reasoning [19]. Finally, as conscientious
educators ourselves, we grappled with the educational and
ethical concerns that Zawacki-Richter ef al. [30] discussed.
We present more on those concerns and implications in
Sec. V B.

III. METHODS

We divided our approach to analyzing responses to the
PMQ into four parts, as shown in Fig. 3. We describe the
preprocessing that we did on the data in Sec. III A. After
that preprocessing, we applied natural language processing
(NLP) techniques, as described in Sec. III B. The results
from NLP acted as the inputs to our machine learning
system, which we describe in Sec. III C. Lastly, we describe
the approaches and metrics we took to validate the machine
learning output in Sec. III D.

A. Preprocessing

The first part of the process, called preprocessing, aimed
to ensure that the human-analyzed dataset was consistent
and clean.

To clean the hand-categorized data, we first removed any
punctuation from the student responses and converted the
text to lower case, so that words beginning with a capital
letter would be treated the same as their lower case
counterparts. We also removed all stop words from each
response [33]. A stop word refers to the most common
words in a language, such as a, the, and of. These words do
not convey significant meaning, and would likely show up
in a student’s response regardless of which paradigm they
employ. As there is no universally agreed upon list of stop
words, we chose to use the list that comes in the Natural
Language Toolkit (NLTK) package in PyTHON [28] to
remove stop words from our responses.

Our preprocessing also included lemmatization. Often in
natural language, the same word can be used in different
forms, making it difficult for the computer to identify the
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Pre-processing

K Remove \

punctuation

[ e Converttextto

feature value

e Lower case arrays

e  Lemmatize o  Tf-idf

e Remove stop- vectorization
words

Output: arrays of
numerical values
representing student

Output: strings of
words for each student

responses.

FIG. 3.

Machine

Prediction

Learning

Output: Classify

e  Split dataset

into training response based on
and testing highest probability

e Trainon from machine learning
training set output.

e  Validation
against testing
set

Output: probability
of response being
point-like, set-like,
or undefined.

N

A diagram of the process of analyzing student responses to the PMQ. The raw responses are preprocessed and then vectorized

using NLP. These feature vectors are the input to the machine learning algorithm. The algorithm outputs probabilities that are used to

predict in which category a response belongs.

common meaning across these forms. For example, a word
can be used in different tenses or plural forms like average,
averaged, and averages. Lemmatization is a technique for
addressing this issue by returning all words to their lemma,
or dictionary headword. In the above example, all instances
of the word would be changed to average. We performed
lemmatization on our data using the 1emmatize function
from NLTK [28].

B. Natural language processing

The next step was to convert the dataset of written
responses into a vectorized representation consisting of
numerical features. To convert student responses to feature
vectors, we used a common NLP technique called term
frequency, inverse document frequency (TF-IDF) vectori-
zation [34]. In our case, a document refers to a single
student’s response to a PMQ probe, and a term refers to a
preprocessed word that appears in a response. TF-IDF
values each word proportionally to how many times it
appears in a particular document, and inversely propor-
tional to how many documents in which it appears. This
approach results in words that are common in all responses
having a low value, but words that appear many times
in only a few responses having a high value. TF-IDF
gives each word, w, a weight in a given document, d. The
TF-IDF value is calculated using the following procedure.
First, we find the fractional occurrence of a word, w, in a
document, d:

TF(w, d) — occurrences of win d

total number of wordsind

Here, TF(w,d) is this fractional occurrence. Thus,
TF(w, d) is always less than 1 (except in the extreme case

that a given w is the only word used in a document, d).
TF(w, d) is then used to compute the inverse document
frequency, IDF(w):

N

IDF(w) = log [a’f (w)]

where N is the total number of documents (student
responses) in the data corpus and df(w) is the number
of documents that contain a given word (w). Because the
number of documents containing w is less than the total N,
the logarithm always produces a number between 0 and 1
(again, except in the extreme case where w appears in every
d). Finally, we can compute the TF-IDF value for a given
word appearing in the data by multiplying the fractional
occurrence, TF(w, d), by the inverse frequency, IDF(w):

TF-IDF(w, d) = TF(w, d) x IDF(w).

Because TF(w,d) and IDF(w) are positive fractions,
TF-IDF vectorization produces a vector with elements
bounded between O and 1 that represent each word in
the data corpus.

In this work, since a feature array consisted of a value for
every word used in the training data for that probe,
excluding stop words, the RD, SMDS, and DMSS feature
arrays were all slightly over 1000 elements long. However,
for any given document, most of these feature values were
zero, since only a handful of those words were used in an
individual student response.

1. One-hot encoding of multiple choice

Because each PMQ response also contained a multiple
choice answer that was relevant in interpreting the meaning
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TABLE III. AUC of logistic regression model composed of
features including a one-hot encoding of multiple choice (MC)
and excluding a multiple-choice feature.

RD Probe
Setlike Pointlike Undefined
No MC 0.93 0.89 0.84
Including MC 0.94 0.91 0.88
SMDS Probe
Setlike Pointlike Undefined
No MC 0.94 0.94 0.66
Including MC 0.98 0.99 0.70
DMSS Probe
Setlike Pointlike Undefined
No MC 0.89 0.91 0.81
Including MC 0.91 0.92 0.82

of the response, we created a one-hot encoding (sometimes
referred to as using dummy variables) of the multiple
choice responses. A one-hot encoding, in this context, was
an array of the same length as the number of multiple
choice options a probe had. All values of this array were 0
except for the one corresponding to the student’s choice;
that array value was 1. For example, if a student answered
choice B when the options were A, B, or C, that one-hot
encoding would be [0, 1, 0]. We concatenated the one-hot
encoding array to the feature vector of each response, thus
including in the full feature vector information from a
student’s written explanation and from their multiple choice
selection. Ultimately, the impact of including the multiple
choice responses was minimal, but always better (as
measured by AUC, Sec. III D) when included in the model
as shown in Table III.

C. Machine learning

In order to create a supervised machine learning model,
that is, one that learns on a set of precategorized data, we
split our dataset into a fraining set and a testing set as
recommended by Aiken et al. [35]. The training set
consisted of data that the model (for this work: 80% of
total) learned on using predetermined category labels to
recognize patterns in the data. The testing set consisted of a
smaller portion of the data (20% of total in this case) that
the model classified without knowing the predetermined
label, which it did after it had been trained on the training
set. Using the predetermined labels in the testing set, we
compared the model’s predictions with these “true” labels
to evaluate the model’s performance.

We initially built several different types of machine
learning models, including random forest [36], K nearest
neighbors [37], and logistic regression. Our initial results

from these three types of machine learning models showed
that logistic regression was the most effective in this work,
and thus we used that approach for the rest of our analysis.

Briefly, random forest methods involve an ensemble of
decision trees, with each one making a series of decisions
based on the values of an input feature vector. An individual
decision tree can represent complex and irregular relation-
ships, however it is prone to overfitting. An ensemble of
such trees can mitigate that overfitting. By contrast, K
nearest neighbor algorithms classify an input feature vector
by defining a distance metric that calculates how far that
vector is from other examples. The algorithm selects a
group of K examples that are closest to the input vector, and
uses their classifications to classify the input. While more
straightforward and often easier to interpret than random
forest approaches, K nearest neighbor algorithms can be
overly sensitive to any peculiarities in the training data. By
comparison, logistic regression is perhaps simpler than
either of these other approaches, relying closely on linear
regression techniques. We briefly describe logistic regres-
sion in the remainder of this section.

Logistic regression is a common approach to model
processes that lead to a binary outcome (¥ = 1 or ¥ = 0),
In this model, the effect of a particular feature is modeled as
a sigmoid:

1

) = 1 +e %

In this model, z represents the product of the coefficient
and the feature (i.e., z = X). The resulting probability
outcome ¢(z) is modeled as a sigmoid, where above a
certain threshold the probability of the outcome rises
quickly and then saturates. We can generalize the definition
of z for multiple features, i.e., multidimensional logistic
regression. In the case of multidimensional logistic regres-
sion z then becomes a vector of feature values or coef-
ficients f; and the product of the data x;. Additionally, we
can cast the problem as seeking the probability, p, of
finding the outcome of Y = 1. Mathematically this is
given by

log,, =fo+Pixi + Poxa+ -+ Pux,, (1)

p
l-p
where x;,x,,...,x, are the features and the f are the
coefficients. Under this formula, logistic regression has a
similar form as linear regression.

By rearranging, we can find the odds:

odds(xy, x5, ..., x,) = % = pothnthrt-+hn) - (2)
-p

where b is traditionally the natural base, e. From either of

these formulations, we can determine the likelihood func-

tion from which the log likelihood can be determined.
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FIG. 4. An example ROC curve. This curve represents a model
that is performing well, as it is to the upper left-hand corner. The
plot suggests that there is a threshold of probability to classify
something as the positive category that will result in a high true
positive rate, and a corresponding low false positive rate. For
comparison, the dashed line represents the expected ROC curve
for a random classifier.

In most cases, a logistic regression model seeks to
maximize this log likelihood using various forms of
optimization. It is also possible to introduce penalization
to the model where features that contribute little to the
model are reduced to near zero (Ridge) or set to zero
(Lasso). Such penalization is used when you may seek a
reduced model—one with fewer input features. Typically,
such odds ratios are reported as a measure of the influence
of a given feature on the model.

D. Model validation

Before interpreting the classification results of our
model, we measured how well our model was performing
in a process of model validation. We employed a measure
referred to as an ROC curve [38]. An example ROC curve is
shown in Fig. 4. This curve is a plot the true positive rate,
the proportion of responses that were classified as the
“positive” category that actually were positive, versus the
false positive rate, the proportion of responses that were
classified as the “negative” category that were actually
positive. The ROC curve shows this value for many
different thresholds of sufficient probability to classify
something as positive. ROC curves are useful in cases
where there are unbalanced classes such as this case [39]. A
curve that approaches the top left corner represents a model
that achieves a high true positive rate with a low corre-
sponding false positive rate. Such a situation would suggest
a model that performs well. From plots of ROC curves, we
measured quantitatively how well the model is performing
by calculating the area under the curve (AUC). An AUC

value closer to 1 represents a well-performing model. An
AUC value of 0.5 corresponds to random guessing.

As another method to optimize and test the perfor-
mance of our model, we used hyperparameters, parameters
that are set before training that govern how the logistic
regression algorithm behaves and converges. This approach
is a standard one, which we have used in prior work
[35,40,41]. Details on tuning hyperparameters can be found
in those references. To find the optimal hyperparameters,
we performed a grid search, constructing many models
given predetermined options for each hyperparameter.
These outputs determined which model was optimal.
Our grid search returned the optimal regularization and
maximum iteration values for our logistic regression model.
Regularization helps the model from overfitting on the data
and classifying based on small patterns seen only in the
training set [42]. The maximum iteration value dictates the
maximum number of weight adjustments the logistic
regression algorithm can perform before converging.

After we set the hyperparameters, we assessed how our
model compared to the baseline of random guessing. The
resulting hyperparameters from the grid search included the
regularization value of 1.0, the maximum number of
iterations the model will perform when training is 500,
and the tolerance for stopping criteria of 0.0001. Our search
for hyperparameters used Monte Carlo validation where the
data are randomly split (80% training and 20% testing) and
resampled to develop a distribution of possible model
performances. We use this approach to compare the quality
of models with different hyperparameters and determine
the quality mode to carry forward.

To determine how well our analysis was performing,
we randomized the labels for all responses before con-
structing the model. We constructed 100 models with
different randomizations of the labels, and one model with
the correct labels. Since the labels were randomized, this
method eliminated the true patterns in the data. Instead, we
expected our model to have difficulty finding patterns that
lead to accurate classifications. Thus, we would expect to
see performance metrics much lower for the randomized
data than for our true labels.

Lastly, we compared our model’s output to a second
human’s categorization of the dataset. This allowed us to
compare the level of interrater reliability between two
humans, the original coder and the second one, to the
level of reliability between our model and the first human.
We used Cohen’s kappa a measure of interrater reliability.
This comparison indicated how close the performance of
our automated system was to that of a human. All of our
analysis codes are available online [43].

E. Noncharacteristic undefined scheme

To better represent the notion behind the undefined
classification, we determined that a response should only
be classified as undefined if it is not sufficiently setlike or
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TABLE IV. Noncharacteristic undefined scheme threshold
values. Each value represents how much the pointlike and setlike
probabilities of a response must differ in order to be classified as
pointlike or setlike, as opposed to undefined.

RD SMDS
0.353 0.682

DMSS
0.366

TABLE V. Comparison of three machine learning models
across the RD, SMDS, and DMSS probes of the PMQ. The
three models are logistic regression, random forest, and K nearest
neighbors. Comparison metrics are the AUC values from,
respective, ROC curves, accuracy (the proportion of correctly
classified responses), and Cohen’s kappa values. Here, Cohen’s
kappa is comparing the human coder to the model coding.

pointlike, or if it is conceivably both setlike and pointlike.
To implement this idea, we considered the decision
probabilities of the logistic regression function for setlike
and for pointlike. If the setlike probability was over a
certain threshold, or if the pointlike probability was over
that threshold, then the response was classified as such.
However, if both probabilities were under the threshold, or
if both were over it, then the response was classified as
undefined. This approach avoided basing the classification
of undefined on a set of characteristics of an undefined
response, which would go against the notion of being
undefined. Here, we call the approach of classifying
undefined responses in this way the noncharacteristic
undefined (NCU) scheme, and the previous approach
of treating each classification separately the one-vs-all
scheme.

More specifically, when a response was given a classi-
fication by the logistic regression algorithm, we identified
the probability associated with each possible class for that
response. The response was then assigned a score that
indicated the difference between the pointlike probability
and the setlike probability. By sorting the -classified
responses by this score, we can see how a classification
of undefined given that score would change the true
positive rate and false positive rate of our model. This
allows us to construct an ROC curve from that true positive
rate and false positive rate data.

The score thresholds that optimize this ROC curve for
each probe are shown in Table IV. The number repre-
sents the amount that the pointlike and setlike probabilities
must differ in order for a response to not be classified as
undefined. For more details on the implementation of the
NCU scheme, we point the reader to the open-source code
on Github [43].

IV. RESULTS

A. Model evaluation

Table V shows the results from three of our initial models
based on three different metrics: AUC, accuracy, and
Cohen’s kappa. We define accuracy as the proportion of
responses our system classified correctly based on the true
labels from the human coder. In each case, logistic
regression performs similarly or better than the other three
models, suggesting that it is the most effective model to use
for this particular investigation.

RD Probe
Model Average AUC Accuracy Cohen’s kappa
Logistic regression 0.907 0.778 0.634
Random forest 0.843 0.768 0.621
K neighbors 0.853 0.658 0.419
SMDS Probe
Model Average AUC Accuracy Cohen’s kappa
Logistic regression 0.880 0.918 0.823
Random forest 0.893 0.909 0.774
K neighbors 0.900 0.867 0.641
DMSS Probe
Model Average AUC Accuracy Cohen’s kappa
Logistic regression 0.897 0.802 0.643
Random forest 0.763 0.821 0.627
K neighbors 0.807 0.776 0.536

To further explore the effectiveness of the logistic
regression model, we created 100 randomized data sets
for each probe where the labels (i.e., point, set) were
randomized. That is, for a given student response to a given
probe, we randomized how their response would have been
coded 100 times. We then built 100 models of these
simulated data sets and computed the AUCs for these
models. In Fig. 5, these randomized models (blue dots) for
each probe are compared to our model of the data with the
true labels (red dots). The AUC scores for the randomized
data are near 0.5 (simple guessing), while, as expected, the
real model is significantly higher.

We then turned to the ROC curves resulting from TF-IDF
vectorization and the logistic regression algorithm. These
ROC curves are shown in Fig. 6. The plot for each probe
has three curves for the following reason. While an ROC
curve compares true positives and false positives for a
single classification, our system predicted three different
categories of response. Thus, the positive category for the
ROC curve could refer to any one of three categories. Thus,
each curve in the plots in Fig. 6 represents a classification
where the positive category is one of the three paradigm
classifications, and the negative category is any of the other
two classifications. This approach is known as a one-vs-all
classification [44]. For example, the blue curves in Fig. 6
represent an ROC curve where the positive category is
setlike and the negative category is not setlike. In this way,
we actually measured three binary classifiers in order to
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FIG. 5. Average AUC for 100 random trials and 1 true trial. For each probe, this graphic shows, in blue, the AUC (averaged over all
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when the correct labels are used on the training data, showing significant improvement and true pattern recognition.
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FIG. 6. ROC curves for the logistic regression classifier. After running the logistic regression algorithm on the training data for each
probe, we plot our true positive rate and false positive rate from predicting classifications on the testing data. Using one-vs-all
classification, each curve represents the classification of a student response as being of the labeled category, or not of the labeled

category (e.g., a response being setlike or not setlike).

make ROC curves that can evaluate the system’s perfor-
mance in categorizing each different classification.

However, these ROC curves do not use the NCU scheme.
The NCU scheme classifies the student responses in a
manner closer to the intention of the original human
categorization scheme, where undefined responses are
simply defined as having indistinguishable point- and
setlike attributes. To see how the NUC technique’s perfor-
mance compares to our previous one-vs-all scheme, we
created an AUC comparison shown in Fig. 7.

Error bars represent the 95% confidence interval of the
AUC scores of 500 random splits of the entire dataset into
training (80% of the data) and testing (the remaining 20%).

The NCU scheme performs generally as well as the one-
vs-all scheme, where undefined responses were treated as
having their own characteristics. On the RD probe, the one-
vs-all scheme performs better across all classes, although

the difference is small. On SMDS, the one-vs-all scheme
and NCU scheme do not perform noticeably differently on
set- or pointlike, but the NCU scheme performs slightly
better on undefined. For the DMSS probe, the one-vs-all
scheme and NCU scheme are indistinguishable for set- and
pointlike, but the system performs significantly better on
undefined responses under the one-vs-all scheme.

Based on the comparisons of the two schemes and the
fact that NCU more closely matches the process followed
by a human coder, we choose the NCU scheme for the rest
of the analysis. Next, we compared the NCU results from
our model to that of a human categorization of the same
data. We ran 100 different trials of the computational
model, each performing slightly differently based on how
we split the training and testing data, giving us a range of
Cohen’s kappa values instead of just one as seen in Fig. 8.
Here, we see that for the RD and DMSS probes, the
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FIG. 7. AUC values and 95% confidence intervals (error bars) comparing the AUC of the NCU scheme to the one-vs-all (OvA)
classification scheme. These results were determined from 500 different splits of the data into training and testing sets, and indicate
whether the NCU scheme performs differently than the one-vs-all scheme.

Cohen’s kappa value between two humans categorizing the
same data is within the range of the Cohen’s kappa value
of our model and the human that originally categorized
the data.

On the SMDS probe, the average Cohen’s kappa score
for our model and a single human coder is higher than
that of the two humans that originally coded the data
(Fig. 8). It might appear that the model is outperforming a
human or over-performing generally. But, the data used by
the model were coded fully by one human with the second
coder comparing their work to the first [18]. Thus, our
model is achieving high agreement with the single coder
(Sec. III C).
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FIG. 8. Comparison of interrater reliability of the machine

learning system and a human rater. Cohen’s kappa value ranges
are shown comparing the machine learning system to the human
categorization. Diamonds represent the kappa values between the
original human categorization and a different human categori-
zation. Generally, the machine learning system achieved the
same level of agreement with the original human rater as the
other human.

B. Model explanation

To gain some insight into how our classifier was work-
ing, we investigated the features, or words, that had the
largest magnitude of their feature coefficients. Figure 9
shows the coefficient, or relative weight, of some of the
point- and setlike features for each probe. We plot the 10
features with the highest magnitude coefficients. In general,
our model was fitting on words that are associated with the
concept of measurement. The top features for the RD and
DMSS probes consist mostly of words associated with
discussions of measurement in experiments. The SMDS
probe has slightly fewer such words, as words like less and
trial appear in the top features. There are also large
magnitude coefficients for multiple choice A and setlike
responses, and multiple choice B and pointlike responses.

V. DISCUSSION

Across several metrics and approaches to measuring the
performance of our system, we observe that it performs
significantly better than the baseline of random guessing.
This result is supported by the significantly higher AUC
score of our trained system in Fig. 5, and by the various
ROC curves in Fig. 6 that all lie far above the diagonal.
These two results combined give us confidence that our
system is learning meaningful patterns in the data.

The prevalence of words related to measurement and
uncertainty in the high-magnitude-coefficient features in
Fig. 9 give further confidence that the system is sensitive to
the same things that are meaningful to a human coder.

The RD and DMSS probes generally fit on words that
humans would associate with statistical measurement
uncertainty, such as average, range, distribution, and
spread, for setlike categorizations. Other words, such as
outlier, confirm, percent (as in “percent agreement” or
“percent error”’), and human (as in “human error”) are
strongly weighted towards pointlike categorizations.
Generally, these setlike words mirror the language that
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FIG. 9. The high-magnitude-coefficient features and their unpenalized beta coefficients for each probe. The vertical axis
lists different features, or words, that are important in categorizing a student response. The horizontal axis shows their
relative weight, or beta coefficient. The words mc_a, mc_b, and mc_c correspond to the selection of multiple choice answer A,

B, and C, respectively.

lab instructors use when communicating about measure-
ment uncertainty, whereas these pointlike words represent
the ideas that lab instructors use when talking about
concepts that hinder students’ learning [45]. The corre-
spondence between these high-magnitude coefficient fea-
tures and instructors’ language aligns with previous
research on the PMQ that identified setlike reasoning as
more expertlike [21].

On the other hand, the SMDS probe has more top
features that are not necessarily relevant words in the
context of measurement, like process and less. There is
high weight put on the multiple choice features, though, as
indicated by the features named mc followed by either a, b,
or ¢ depending on what the student chose. This high
weighting of the multiple choice decision indicates that
much of the classification of responses to this probe can be
determined by the multiple choice response. For this probe,
there is built-in paradigm knowledge in the choices
themselves, which allows the system to put less emphasis
on the students’ written explanations. We note, however,
that this strong relationship between the multiple choice
response and the classification is unique to just the SMDS
probe in our dataset.

For the other probes, the multiple choice response
carried less information relative to the weighting of the
written explanations.

We now turn to discussing the overall goal of creating a
system that mirrors the behavior of a human coder. That
goal motivated our use of the NCU scheme. We found that
the NCU scheme, overall, performed as well as the first
scheme we created. We therefore transitioned to the NCU
classification scheme to more closely follow the approach
to undefined responses in the original PMQ codebook and
analysis.

Namely, when a human categorizes a response, they
were not looking for specific traits and characteristics of
an undefined category, like they were with a setlike or

pointlike category. Rather, they determined that a response
did not show evidence of setlike or pointlike thinking,
or that it shows significant evidence of both. The NCU
scheme reflects this approach. However, in particular
categories for some probes, the results based on this method
of classification do not always perform as well as previous
models, particularly on the undefined category of the
DMSS probe. If such results are of critical importance to
a study, one could consider switching back to the original
scheme. Nevertheless, the fact that we observe results
overall that are on par with the original classification
scheme suggests that the underlying model is detecting
features and meaning in students’ responses in a way
aligned with the human approach.

When we turn to directly comparing our system’s
performance to that of another human, we find that our
system matches the original coding as well as, or better
than, another human coder. Specifically, in Fig. 8, we can
see that the Cohen’s kappa values between the two human
raters on this dataset for the RD and DMSS probes line up
well with the Cohen’s kappa range of values between the
machine learning model (here treated as a rater) and a
human. This comparison indicates that there is as much
interrater reliability between our model and a human as
there is between two humans categorizing the same data on
these two probes. On the SMDS probe, we see a kappa
value for the machine learning system that is higher than
the human-to-human kappa value on that probe. However,
this comparison does not suggest that our system is
performing better than a human in any meaningful sense.
Rather, it merely indicates that our machine learning model
agrees more with the original human that categorized the
data than with the second human that categorized the data.

We have no reason to believe that the original human
coder was inherently better or worse at interpreting
students’ responses than the second human coder. Thus,
when it comes to understanding students’ reasoning, the
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fact that the system matched the first coder better than the
second should not be taken to suggest that its results are of
higher quality than any individual human, but rather that it
is performing at the same level as a human would.

A. Limitations

Although the results we present here show promising
evidence that a natural language processing system could
be used to classify student open-response data, there are
still some limitations of our model. Most of the model’s
failures can be seen in the undefined ROC curve of the
SMDS probe in Fig. 6. This curve is the lowest performing
(AUC = 0.70) out of any from the three probes. We
speculate that this low performance can be attributed to
mostly the lack of data from the undefined category for the
SMDS probe. This lack of data means there is less for the
model to learn on. If we had a more balanced dataset for
the SMDS probe, we may see more consistent perfor-
mance akin to the RD or DMSS probe. Because of the
nature of the PMQ, however, it is possible that there will
always be such an imbalance in the proportion of
responses for our student population, as some PMQ
probes may not elicit an undefined response from our
students. From a survey design perspective, such a
situation suggests that the SMDS probe is performing
well, as it allows researchers to unambiguously character-
ize students’ reasoning into the point or the set paradigm.
In that case, an ideal dataset would be expected to have
relatively few undefined responses, making the perfor-
mance of the SMDS unknown ROC curve less of a
concern.

A more fundamental limitation of our system is the
establishment of ground truth. A machine learning model
built on an objective ground truth will often outperform
one built on a subjective ground truth. For example,
a system built to classify handwritten digits has a
higher ceiling of performance because there is little
subjectivity as to the validity of the true training label.
However, in our context, our ground truth is built on a
human’s categorization of the dataset, which may be
different than another human’s interpretation of the data.
Our ground truth can only ever be a human’s subjective
categorization, as we can never fully and unambiguously
know the inner thought processes of a student as they
reason about measurement uncertainty. Therefore, our
system can only ever be trained to be a model of particular
human coder.

B. Outlook

We have demonstrated that we can train a NLP model to
categorize open-ended responses to the Physics
Measurement Questionnaire essentially as well as a pair
of human coders. In so doing, we have taken some of the
first steps to use NLP to analyze student work in physics.
The fact that our model aligns well with human coding is

promising for researchers and instructors alike. As the
research continues, we might begin to use NLP to provide
formative feedback to large classrooms of physics students
by investigating data from digital open-response systems.
NLP could be used to more efficiently understand how
students’ responses to open-ended physics questions are
organized into common clusters in order to improve
instruction. Some may suggest NLP could also, in some
cases, replace the current approaches to assessing student
learning by automatically analyzing and scoring student
work. Here, we should be cautious.

NLP is not a panacea for physics instruction. In fact, like
every quantitative approach to modeling data, it is subject
to bias, both in terms of the data used to develop the model
and the ways we might interpret the results. Therefore, we
must be careful both with what data we are using to build
our NLP model and with how we interpret the results.
Nonetheless, we do see many relevant applications for
NLP that the physics education research community could
explore. As Science, Technology, Engineering, and
Mathematics (STEM) programs have expanded, more
students are enrolled in physics courses than in the past.
In particular, enrollments in the typical two-semester
introductory sequence have continued to grow [46,47].
With the constant pressure to reduce departmental budg-
ets, there might be real pressure on some physics pro-
grams to increase student-to-instructor ratios. In
confronting this reality, programs could be forced to
reduce the time or energy available to provide good
formative feedback to students on their progress. Here,
NLP might be able to help physics instructors continue
to deliver high quality instruction. For example, NLP
could provide a first cut of the potential clusters of student
responses that instructors can review to provide com-
mon formative feedback and individualized feedback as
needed. That is, rather than having students in large-
enrollment courses respond to conceptual multiple-choice
questions, students could turn in typewritten long form
answers that contain more depth and nuance than a close-
form question. Such long-form answers could then be
preprocessed with a NLP model, which an instructor
could then further review. It is worth reiterating that the
instructor would still need to exercise judgment with
regard to any bias in their original data used to train the
model, both in terms of how that bias could affect their
model and in how they interpret the results.

Our example above shows one potential use case for
NLP in physics education. We were careful to characterize
it in two ways: (i) as a first cut, and (ii) as formative
feedback. Our first point is important because NLP,
especially as it stands currently, is not nuanced enough
to completely replace feedback from a human instructor.
The second is important because using a NLP model to
assign grades to individual students is problematic.
Especially if the NLP system is analyzing responses from
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a research-based assessment instrument, as we did in this
work, the content of the responses to such surveys should
not be used to influence students’ course grades [48].
Moreover, any NLP model is subject to statistical biases,
which are the direct result of biases in the data on which
that model was trained [49]. As an example, the majority
of respondents studied here identified as white, as shown
in Table 1. As a result, the features and weightings in our
NLP model would be expected to have a bias towards the
written language used by white students, simply because
we have significantly more data from white students.
Thus, ample caution should be used when applying our
model to a different population than the one on which it
was trained.

Students who have difficulties expressing themselves in
written form, students who are learning English as an
additional language, and students with other dimensions
of ability and identity could be negatively affected if
responses from students sharing those identities are not
well represented in the training dataset.

Overall, while we navigate potential research applica-
tions and use cases, the ethical considerations in using NLP
should weigh heavily in our decisions, and we should be
careful to understand and characterize the potential biases
in our data that might lead to problematic results down
the road.

VI. CONCLUSION

We have developed a NLP system that performs well in
categorizing student responses to the PMQ across the three
probes that we studied, both in comparison to a random
baseline, but moreover in comparison to an independent
human coder.

In particular, the interrater reliability between our system
and the original human categorization showed significant
agreement between the two on the RD and DMSS probes,
and excellent agreement on the SMDS probe.

By performing this analysis automatically, our system
drastically cuts down on the time and labor required to use
the PMQ to study learning in a physics lab course.

In the future, one could use fundamentally different
machine learning techniques like neural networks or
unsupervised learning to classify open-ended written
survey responses. These methods are a significant shift

TABLE VL

in the structure of our current model, and thus are outside
the scope of the current investigation. Instead, we antici-
pate carrying this work forward by applying our model to
PMQ data from a different student populations. This
follow-up will allow us to see how the system’s perfor-
mance is affected by data coming from a different course
environment, where the instructors may teach the material
slightly differently, and students may have different
backgrounds.
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APPENDIX: LENGTH OF STUDENT RESPONSES

Table VI shows descriptive statistics concerning the
distributions of the lengths of responses to the students’
written explanations to the PMQ probes analyzed here.
The differences between the means and the medians, in
all cases, suggest that the distributions are skewed
towards longer responses. Written responses, such as
those used here, must be of sufficient length to carry
enough meaning to by analyzed either by a human coder
or a NLP system.

The mean, median, and standard deviation (st. dev.) of the lengths of the written explanations to each

probe. These lengths are calculated by the number of characters and by the number of words. The uncertainties on

the means are 95% confidence intervals (CIs).

Number of characters

Number of words

Mean + CI Median St. dev. Mean =+ CI Median St. dev.
RD 101 =2 81 179 +£0.4 14 13
SMDS 101 +2 84 182+ 04 15 13
DMSS 96 +2 80 17.1 £ 04 14 12
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