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Characterizing the dynamical phase diagram of the Dicke model via classical and quantum probes
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We theoretically study the dynamical phase diagram of the Dicke model in both classical and quantum limits
using large, experimentally relevant system sizes. Our analysis elucidates that the model features dynamical
critical points that are strongly influenced by features of chaos and emergent integrability in the model. Moreover,
our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact
quantum dynamics, but we also find that in regimes where quantum effects dominate signatures of the dynamical
phases and chaos can persist in purely quantum metrics such as entanglement and correlations. Our predictions
can be verified in current quantum simulators of the Dicke model including arrays of trapped ions.
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Introduction. Advances in atomic, molecular, and optical
(AMO) quantum simulators are driving a surge in the investi-
gation of dynamical phase transitions (DPTs) and associated
nonequilibrium phases of matter [1-6]. In a closed system, a
DPT is a critical point separating distinct dynamical behaviors
that emerge after a sudden quench of a control parameter
[7-13], and can be defined via nonanalytic behavior in a
time-averaged order parameter [14—17].

To date, the majority of experimental investigations in
this direction have been tailored towards integrable models,
featuring effective infinite-range interactions between spins,
which admit analytical treatments [18-21]. Richer noninte-
grable models have been pursued in trapped ion systems
[22], but the associated complexity of the quantum dynamics
limited the theoretical analysis of the DPT to small system
sizes and prevented a rigorous scaling analysis. Hence, it is
highly desirable to find and study DPTs in nonintegrable mod-
els featuring novel nonequilibrium phenomena that are both
implementable in tunable quantum simulators and theoreti-
cally tractable under controllable approximations.

We advance this direction by studying a DPT in the iconic
Dicke model [23-25], which describes the collective coupling
of many spins to a single harmonic oscillator. The model
is attractive as it features an array of phenomena, such as
nonintegrability [26-28], chaos [29-31], and equilibrium
quantum phase transitions (QPTs) in both ground and excited
states [32—37], but involves only a pair of disparate degrees of
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freedom such that the model remains amenable to analytic and
numerical treatments. Moreover, the model is already stud-
ied in state-of-the-art AMO quantum simulators, including
trapped-ion arrays [38,39] and cavity QED [40-43]. Here, we
investigate the DPT in analytically tractable spin- and boson-
dominated limits, as well as a nonintegrable regime where
near-resonant coupling of spin and bosons leads to chaotic
dynamical phases also seen in other non-integrable systems
[7,8]. Following recent works linking DPTs to coexisting
excited-state QPTs (EQPTs) [20,36,44], we find different
dynamical critical points in the spin and boson-dominated
regimes that reflect the presence of distinct EQPTs in these
limits. By studying large, experimentally relevant system sizes
using efficient numerical methods we are able to demon-
strate that mean-field features of the dynamics remain valid
in the exact quantum dynamics. Conversely, in regimes where
quantum effects dominate we find that signatures of the DPT
and chaos persist in purely quantum metrics such as entangle-
ment and correlations.

Model. The Dicke Hamiltonian for N spin-1/2 particles is
given by [30]
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Here, a (a") is the bosonic annihilation (creation) operator of
an oscillator with frequency 8, S, = 1/2 Z’;’:l 67 are collec-
tive spin operators for a = x, y, z, and 6]?‘ Pauli matrices of
the jth spin. The spins are subject to a transverse field of
strength €2 and the spin-boson coupling is characterized by
g. The Hamiltonian exhibits a Z, parity symmetry associated
with the operator [T = ¢™:+a'a+N/2) guch that [Hp, 1] = 0.
The equilibrium phase diagram of the Dicke model
features a ground-state QPT at a critical coupling gopr =
V/82/2 [32,33], which delineates a superadiant (g >> gopr)
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FIG. 1. Dynamical phase diagram for time-averaged order
parameter S, (center) and typical time traces (surrounding) for the
Dicke model. Parameters of time traces are (clockwise from top
left) (8/2,8) =(0.1,2), (§/2,8) = 4,2), (6§/,8) =(4,1), and
(8/92, 8 = (0.1, 1). Time-averaged S, is obtained up to a maximum
time g7 = 10*.

phase, with degenerate ground states associated with different
parity sectors that in the limit & — O take the form |y;) =
%[l(_N/z)z) ® lag) &+ [(=N/2);) ® | — )], and a normal
(g < gopr) phase, with |,) & [(N/2),) ® |0) in the limit of
large 2 [38]. Here, we have defined collective spin states via
§x,y,z|mx,y,z) = My |my ;) and | £ ;) is the bosonic coher-
ent state for o, = g«/]v /8. Additionally, an excited-state QPT
(EQPT) exists in the spectrum of the superradiant phase, g >
gaopt, defined by a critical energy E. = —QN/2 [34,36,37].
The EQPT is signaled by a nonanalyticity in the density of
states [35] and the existence of pairs of degenerate eigenstates
with different parity for £ < E..

Dynamical phase diagram. We study the dynamical phase
diagram that arises after a quench of the transverse field.
Concretely, the system is initialized in the ground state of Hp,
at fixed g and § with 2 = 0, such that [ (0)) = [(=N/2),) ®
|ees), and the transverse field is then quenched to a final value
Q # 0. To garner insight into the dynamics we first study
the classical model (Figs. 1-3) before probing the role of
quantum fluctuations. The classical limit of the Dicke model
is equivalent to solving the Heisenberg equations of motion
for operators under a mean-field approximation, wherein ex-
pectation values are factorized according to (O1()Ox(1)) =
(O1(1))(Oy(1)) [45]. For brevity we adopt the notation O =
(O(t)) herein.

(b)

0.15

FIG. 2. (a) Typical time trace near the transition in the resonant
region, g ~ 1.299 and §/2 = 1. (b) Characterization of phase space
via Lyapunov exponent A;. The star indicates parameter regime of
the time trace.
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FIG. 3. (a) In the integrable limits the DPT can be described as
a particle (green markers) in a 1D potential with coordinate & = S,
G/2>1) or E=X (6/2 <K 1). At small § < gppr (untrapped
phase, left) the particle has sufficient energy to traverse both wells of
the potential, whereas for large g >> gppr (trapped phase, right) the
particle remains energetically confined to a single well. (b) Typical
trajectories in phase space for trapped (red) and untrapped (blue)
phases at 6/2 = (0.1, 1, 10) (top to bottom). For the spin phase-
space we use coordinates r =1+ 2S,/N and ¢ = arctan(S,/S;)
(c) Dynamical phase diagram as a function of initial state. At small
detuning §/€2 = 0.1 we vary the boson amplitude « (top panel), and
at large detuning 6 /2 = 4 we vary the tipping angle 6, relative to the
south pole of the Bloch sphere (S, = —N/2) (bottom panel).
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It is convenient to study dynamics in terms of two
variables: g =2g/~/8Q = g/gopr and §/. The former
characterizes the effective strength of the spin-boson inter-
action relative to the single-particle terms, while the latter
describes the relative energy scales of spin and bosonic exci-
tations and loosely expresses the relative importance of each
degree of freedom to the dynamics. In the limit §/2 > 1
and g ~ 1 the dynamics are equivalent to a spin model de-
scribed by the Lipkin-Meshkov-Glick (LMG) Hamiltonian,
Hur = ( x/N )S'ZZ + @8, with the boson-mediated interaction
characterized by x = 4g%/8 [17,46]. For §/Q <« 1 and g ~ 1
the spins are instead slaved to the dynamics of the domi-
nant bosons [45]. However, in this limit a simple boson-only
Hamiltonian is not generally applicable. Lastly, for 6/ ~ 1
the dynamics is complicated and involves both degrees of
freedom. Herein, we refer to the integrable limits §/Q2 >
1 and §/2 <« 1 as the spin-dominated (SDR) and boson-
dominated (BDR) regimes respectively, and the nonintegrable
case of § /2 ~ 1 as the resonant regime (RR).

The typical dependence of the dynamics on g is shown in
the time traces of Fig. 1 for SDR and BDR. In both limits
we identify that the dynamics can be characterized as either
trapped or untrapped. The former occurs when the spin-boson
interaction dominates the Hamiltonian and leads to a locking
of the spins and bosons close to their initial configuration. In
the SDR this has been interpreted as a self-generated detuning
o (S.)S. that locks out rotations due to the transverse field
[21]. Conversely, the untrapped dynamics are characterized
by large coherent oscillations in S, and X = %(Ez +a') domi-
nated by the single-particle terms of the Hamiltonian.

We classify the dynamical phases and identify a DPT using
a pair of interchangeable time-averaged order parameters S, =
lim7oo(1/T) fil S.(t)dt and X = limy_o(1/T) [ X(1)d.
The trapped phase is defined by nonzero S, # 0 and X #
0, while in the untrapped phase S. =X = 0. The phases
are separated by a critical coupling (main panel of Fig. 1):
(1) &hpr & V2 in the spin-dominated regime and (ii) g{gPT ~
3!/4 in the boson-dominated regime. The dynamical phases in
the LMG model have recently been observed in a cavity-QED
quantum simulator [21].

In the nonintegrable RR, §/2 ~ 1, the dynamical phase
diagram is more complex. The main panel of Fig. 1 illustrates
that the time-averaged order parameter becomes noisy in the
untrapped phase. In this regime typical time traces [Fig. 2(a)]
feature erratic oscillations in both spin and boson observables
and there exist short periods where the system abruptly be-
comes re-trapped. This behavior signals a chaotic dynamical
phase [7,8] that arises due to the known nonintegrability of the
Dicke model for g > 1 and § ~ € [27,29,30,32].

We support this by computing the Lyapunov exponent Ay,
[30] in Fig. 2 (see also Ref. [45]), as a function of g and §/€2
for the initial condition corresponding to |y(0)). Chaos, and
thus nonintegrability, is signalled by Ay, > 0 [47] in regions
of parameter space that qualitatively coincide with the noisy
behavior of S, (Fig. 1). We also find evidence of small re-
gions where the chaotic dynamical phases exist but A, — 0
(within numerical error). This is not contradictory as the un-
derpinning requirement for the so-called chaotic dynamical
phase to exist is in fact the non-integrability of the Dicke

model due to the coupling of the spin and boson degrees of
freedom.

The dynamical phase diagram of SDR and BDR is captured
by an effective model involving only the dominant degree
of freedom [45,48-52]. Specifically, the mean-field dynamics
are reduced to an equivalent picture of a classical particle
with coordinate § = S, (spin dominated) or & = X (boson
dominated) confined within a one-dimensional (1D) potential
V(£) that depends only on g, §/€2, and the initial state. Near
the DPT V (§) is well approximated by a double well potential
[Fig. 3(a)].
~ The initial position and velocity of the particle, &(0) and
£(0), and the relative height of the central maximum, V (0),
characterize the dynamics of the system [8]. For g > gppr
and the particle initially located in one well, £(0) # 0, the
particle has insufficient mechanical energy to overcome the
barrier and remains confined. On the other hand, for g < gppr
the particle has sufficient energy to pass over the barrier
and traverses freely between both wells. The former scenario
describes trapped dynamics, & # 0, while the latter describes
the untrapped phase, £ = 0. The critical point is defined as
the condition for which the particle first surpasses the central
barrier and we find g}\pp = +/2 and ggPT =314 respectively,
in agreement with Fig. 1.

The DPT in the SDR coincides with the well known
EQPT of the Dicke Hamiltonian [34,35,37], i.e., the energy
of the initial state matches the EQPT critical energy, Ey =
(WolH¥0)lz,, = Ec. The EQPT features a nonanalyticity in
eigenstate observables at E. that can be intimately related
to the behavior of S, at the DPT and is related to a saddle
point that emerges in the classical phase space [35,37]. In the
BDR the Dicke model has been predicted to feature a set of
EQPTs at energies {E”} that arise in distinct sectors of the
energy spectrum labeled by values of an emergent conserved
quantity, which restores the integrability of the model [51,52].
In the large N limit our state occupies a single sector of the
spectrum and at g’,gPT < &ppr the energy of the initial state
Eo = (WolH|vo)] Do matches a different EQPT critical en-

ergy E?) = —\/3QN/4, which is consistent with the observed
shift in the DPT critical point.

The potential model is further evidenced by inspecting
typical trajectories of trapped and untrapped cases in the
classical phase space, as shown in Fig. 3(b) for the three
regimes. In BDR and SDR we observe well defined orbits in
the dominant degree of freedom that are centered around fixed
point(s) in phase space corresponding to the minima of the
potential well(s) [45]. The trajectories of the complementary
slaved observables show similar behavior, but tend to densely
fill out the available phase space due to fast micromotion on
top of the slower orbits arising from the enslavement to the
dominant degree of freedom (see also Fig. 1). In the resonant
regime the potential description breaks down as no single de-
gree of freedom dominates. Consequently, we observe a lack
of clear orbits in phase space, although the erratic trajectories
do fill out distinct volumes of phase space in each dynamical
phase.

DPTs in isolated systems are intrinsically dependent on
initial conditions [21]. We demonstrate this by probing ini-
tial states of the form |y (0)) = [(—N/2)n) ® |a), where o €
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FIG. 4. Signatures of DPT in quantum dynamics (see Ref. [45]
for details). (a) Time traces of quantum dynamics in the res-
onant regime, g =1.3 and §/Q =1, for N =40 (light gray),
200 (gray), and 600 (black). The mean-field solution (green)
is shown for reference. (b) Time-averaged entanglement entropy
Sin = (l/T)ftonto dt Syn(t) for Syy = —Tr[pIn(p,)] where p, is
the reduced density matrix of the spins. (c) Temporal fluctuations

of entanglement entropy, (AS,)*> = (1/T) f,OTHU dt[S\w(®) — S\,
normalized by S,n. (d) Growth rate y of quantum fluctuations,
obtained by an empirical fit to (A8 « (1 —e™ ). Data in
(b)—(d) are obtained for N = 600. Time averages in (b) and (c) are
computed over a window ¢ € [ty, T + 1] for gy, gT = 150, so as
to reduce transient effects in steady state estimates. Gray regions
correspond to excluded data.

R and we define S’n|mn) = My |my) for Sy = S n with n =
(0, sin(6y), cos(y)) defined by the tipping angle 9y from the
south pole of the collective Bloch sphere. In Fig. 3(c) we
probe the dependence of gppr on the initial amplitude « in
the BDR, while in the SDR we vary the initial tipping angle
6. We observe good agreement with analytic predictions for
&ppr based on the potential model [45]. Small deviations are
observed for 0 ~ +mx /2 and o /oy — 0, which correspond to
initializing a particle near the central maximum of the poten-
tial such that even a small off-resonant exchange of energy
with the complementary degree of freedom is enough for the
particle to overcome the barrier.

Quantum dynamics. Using an efficient exact diagonal-
ization method [45] we are able to simulate the quantum
dynamics and observe mean-field signatures of the DPT that
survive quantum noise. For example, in Fig. 4(a) we probe
a typical time trace of (S.) in the resonant regime [same
as Fig. 2(a)] for experimentally realistic N = 40, 200, 600
and find that it is possible to gradually observe the signature
retrapping dynamics with increasing N, before quantum fluc-
tuations dephase (S,) — 0.

Conversely, pure quantum measures such as entanglement
and quantum correlations also show clear signatures of the
DPT, chaos and nonintegrability. Figure 4(b) shows that the
critical point of the DPT is signaled in the pronounced buildup
of spin-boson entanglement in the untrapped phase, quanti-
fied by the entanglement entropy Sy = —Tr[pIn(p,)], where
ps is the reduced density matrix of the spins. For §/Q <

1 the time-averaged entropy Syn = (1/T) ftOTH” dt Syn ()

demarcates the trapped and untrapped phases consistent with
the order parameter S., with SyNtrapped K SyNuntrapped- 1N€
entanglement decreases with increasing 6/ as the bosons
become eliminated, although we expect that, e.g., bipar-
tite entanglement between the spins will retain indications
of the DPT. Panel (c) also demonstrates that the temporal
fluctuations of the entanglement vary with the underlying
integrability of the Hamiltonian [53,54]. Comparing to the
Lyapunov exponent in Fig. 2, we see a correlation between
regions of chaotic (nonintegrable) dynamics and suppressed
temporal fluctuations of Syn(#) (relative to Syn)-

Panel (d) evidences that the critical region of the DPT can
be diagnosed by the rapid growth of quantum fluctuations. By
empirically fitting ((AS;)%) = ($2) — ($,)? o (1 —e7"") we
find that the rate at which quantum fluctuations buildup, char-
acterized by y, is largest for § ~ gppr. This is consistent with
the effective potential description, as near the critical coupling
the mean-field trajectory spends an increasing amount of
time probing the central barrier (e.g., unstable fixed point)
[8,45,55,56], motivating the expectation that quantum fluctua-
tions will grow exponentially. Nevertheless, we also note that
a similarly rapid growth of fluctuations is observed away from
the DPT for 1 < §/Q < 2 as a consequence of classical chaos
[30], indicating that it is important to carefully differentiate
the effects of chaos from the DPT in quantum dynamics.

Experimental realization. The full dynamical phase
diagram of the Dicke model can be studied in a range of
current state-of-the-art AMO quantum simulators, but most
readily in arrays of trapped ions. In particular, the Dicke
model was recently realized in a 2D Penning trap configura-
tion [38,39] where a spin 1/2 is encoded in two internal states
of each ion and the collective center-of-mass motional mode
of the ion crystal realizes the bosonic degree of freedom. A
pair of lasers generates an optical dipole force that couples
the internal state of each ion to the motional degree of freedom
[57]. A transverse field is generated by applying microwaves
with tunable strength €2 that coherently drive the two inter-
nal levels and the spin-boson coupling g can be in principle
controlled via the applied laser power. Moreover, § can be
varied by controlling the detuning of the lasers relative to
the frequency of the targeted center-of-mass mode [57]. Con-
sidering the simulator reported in Refs. [38,39], we predict
it should be possible to probe regimes 0.1 < §/Q < 10 for
& ~ 1 on timescales that are fast compared to relevant sources
of single-particle decoherence of the spins [45,46,58]. In con-
trast to related studies of the Dicke model in optical cavities,
the trapped ion simulator has little damping of the bosonic
mode and thus to an excellent approximation can be neglected.
Further, ion crystals of N & 200 [58] are possible in the 2D
geometry, which is sufficient to access the signatures of the
DPT as in Figs. 1 and 4 [45]. Looking ahead, implementing
the Dicke model in 3D ion crystals [59] would open a path
to even larger system sizes that are beyond the capability of
numerical methods.

Conclusion. We have studied a DPT in the Dicke model
and unique features arising from nonintegrable and chaotic
regimes of parameter space. Our numerical study indicates
signatures of the DPT survive in the quantum dynamics
and are accessible in current state-of-the-art AMO quan-
tum simulators based on, e.g., trapped-ion arrays. This can
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motivate future investigations connecting to quantum phe-
nomena such as, e.g., information scrambling [30,60]. Ad-
ditionally, studying entanglement dynamics associated with
DPTs in collective systems will open new directions for
the generation of metrologically useful states for quantum-
enhanced sensors [61] or frequency and time standards [62].
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