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If we ever hope to describe complicated physical systems in nature, it is imperative

to �rst understand much simpler systems. In this work, we explore the fundamental problem

of two electron escape processes, which is itself a particular case of the more general three-

body problem in nonrelativistic quantum mechanics. A large body of experimental and

theoretical work performed in the last 80 years provides strong evidence that this theory

adequately describes most processes in atomic systems. Our study is also important in the

sense that the equation which describes our system of three particles is one of the simplest

nonseparable partial di�erential equations in quantum physics. For any n-particle system

(with n � 3) interacting through position or velocity dependent forces (including classical

systems), a nonseparable partial di�erential equation is required to describe the system and

allow for exchange of energy and momentum between the particles.

In this work, we adopt a method (the eigenchannel R-matrix method) with a proven

capability to accurately describe single electron escape. We make a major extension of this

method to treat escape of two electrons here. We focus on the process of double photoejection

of helium and H

�

. A single photon is absorbed by the target, transferring enough energy for

both electrons to escape. However, one observes that single electron escape occurs most of

the time, while double electron escape happens much less frequently. Since the interaction

of the electromagnetic �eld with the atom is described by a single particle operator, double

electron escape can only occur due to interactions between the two electrons. One of the

major goals of this work is a deeper understanding of the role of interactions between the

two electrons in the resulting single or double escape process.

Our initial calculations of helium double photoionization cross sections were in fair

agreement with then existing experimental values. However, these calculations also exhibited
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an internal inconsistency caused by inaccurate wavefunctions that were used to describe the

initial and �nal states of our system. A subsequent application of the eigenchannel R-matrix

approach to a simpli�ed model of electron-hydrogen (and electron-He

+

) scattering neverthe-

less indicated that this method could describe two electron escape processes accurately. To

overcome the inconsistency in our original calculations of helium double photoionization, we

next implemented the eigenchannel R-matrix method using a �nite element basis set. Appli-

cation of this approach to two electron photoejection in helium and H

�

reduced the internal

inconsistency by more than an order of magnitude. The newest helium calculations are in

good agreement with the most recent theoretical and experimental studies. Furthermore,

calculations of partial cross sections for the single escape processes h� + He ! He

+

(n) +

e

�

agree with recent experimental values for n = 2� 6.
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CHAPTER 1

INTRODUCTION

In this work, we attempt to describe a special case of the three-body problem in the

context of nonrelativistic quantum mechanics. The general three-body problem remains one

of the longstanding unsolved problems in physics. The n-body problem was �rst outlined

precisely by Newton [1]: For n particles (point masses), each of known mass interacting

with each other only through a gravitational force, given the positions and velocities of the

particles at any one time, the problem is to calculate the positions and velocities of the

particles at any other time. The motion in the n-body problem is described by a set of

3n second-order di�erential equations. Therefore, 6n constants of integration are required

to describe the complete motion of the system. However, only 10 integrals of motion (as

determined by Euler [1]) are known to exist: six constants from the center of mass motion,

three constants from conservation of angular momentum, and one constant from conservation

of energy. Using the set of 10 integrals of motion, the set of equations describing the motion of

the n-body system can be reduced to 6n�10. By replacing time with another coordinate and

using the \elimination of the nodes" as introduced by Jacobi [1], the order of the equations

of motion can be reduced to 6n � 12. Therefore, no known solution exists for the general

n-body problem for n > 2. However, particular solutions (solutions for a special set of initial

conditions) of the three-body problem are known.

One of the most well known particular solutions of the classical three-body prob-

lem was �rst given by Lagrange in 1772 [1]. He showed that for special cases the three-body

con�guration will retain its geometrical form (e.g., three points on the vertices of an equi-

lateral triangle, or three colinear points), although the shape may rotate or change in size
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[2]. Another special case of the three-body problem called the circular restricted three-body

problem has been extensively studied by Poincar�e. For this particular case, two massive

particles move in circles about the common center of mass and attract (but are not at-

tracted to) a third particle of negligible mass. This case is immediately applicable to an

Earth-Moon-spacecraft system. For the case in which the mass of the third body is small

but nonnegligible, the starting point of the problem is to describe the two massive bod-

ies with a two-body solution, then treat the change in motion of this system due to the

third body with a perturbative approach. The problem of n point charges interacting only

through electrostatic forces can be mapped onto the general n-body problem as proposed

by Newton, since the classical form of electrostatic forces is essentially equivalent to that

of gravitational forces; the only di�erence is that electrostatic forces can be both attractive

and repulsive. Although the classical three-body problem has received a great amount of

attention from astronomers and mathematicians, it remains unsolved three centuries after it

was �rst proposed.

Attempts were made early in this century to describe the three-body problem in

atomic and molecular systems using classical and semiclassical ideas. Bohr succeeded in

deriving the energy spectrum of hydrogen in 1913; however, his attempt to �nd a reasonable

estimate for the ground state energy of helium was a dismal failure [3]. Another system of

early interest was the H

+

2

molecule. The approximate classical analog of this problem was

�rst solved by Euler [4]. He treated the problem of two stationary masses attracting a third

light mass. By introducing elliptical coordinates, the system can be separated into three

second order di�erential equations which have elliptic functions as solutions. Sommerfeld

later developed a semiclassical theory by generalizing the early ideas of Bohr. He gave

Wolfgang Pauli the task of applying these semiclassical rules to describe H

+

2

for his Ph.D.

thesis. Pauli concluded (wrongly) that H

+

2

could only be metastable. Despite the recent

resurgence in semiclassical methods for treatment of quantum systems, a proper semiclassical
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treatment of helium has remained elusive [5]. These early failures of semiclassical methods to

accurately describe atomic and molecular systems were extremely important in motivating

the development of a new quantum theory.

With the introduction of nonrelativistic quantum mechanics by Schr�odinger [6]

and Heisenberg [7], the concepts of classical trajectories and orbits all but disappeared;

however, notions of energy and angular momentum remained. One of the �rst issues which

arose shortly after quantum mechanics was introduced was the application of this theory

to systems of particles [8]. This \new" quantum theory was quickly adopted to address

the three-body problem for the cases of the atom, the nucleus, and the molecule [9]. The

molecular case is di�erent from the atomic and nuclear cases, as it is a system composed of

two heavy particles and one light particle. Thus, this system can be considered a special

case of the more general three-body problem. For the molecular three-body problem (e.g.,

H

+

2

), the rapid motion of the electron dominates over the slow motion of the heavy nuclei.

This di�erence in relative speeds allows an approximate separation (using prolate spheroidal

coordinates, see Refs. [10] and [11]) of the system into two parts: 1) electronic motion about

two �xed centers, and 2) slow nuclear motion in a time averaged �eld of 1), as �rst shown

by Born and Oppenheimer [12].

For atomic and nuclear systems, the description of the three-body problem is more

complicated than that for the molecular case. For these systems, all interparticle forces

are comparable. Also, there is no single fast particle to be identi�ed; this precludes the

description of motion in a time averaged �eld. The molecular system can be transformed

into the atomic or nuclear system by gradually increasing the mass of the light particle. Upon

performing this transformation, two new features of the modi�ed system become apparent.

First, the molecular potential no longer acts between the two nuclei, but rather between

one heavy particle and the center of mass of the heavy and light particle. Second, as the

mass of the light particle is increased, the velocities of the two parts of the system become
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comparable to the internuclear motion. Using these types of ideas, Wheeler [9] addressed

nuclear structure from a molecular viewpoint, and, in addition calculated the binding energy

of

3

H.

One problem of early interest in understanding the nature of nuclear forces was

the scattering of slow neutrons by deuterons. Early attempts to describe these types of

nuclear collisions involving more than two particles [13, 14, 15, 16] used an approximate

total wavefunction of the form 	 =

X

i

 

i

f

i

, where  

i

is a product of the internal wavefunc-

tions of the two colliding nuclei, and f

i

is the wavefunction of relative motion. The sum is

performed over all pairs of nuclei whose formation is energetically possible. Although this

form of the wavefunction is accurate when the two nuclei are widely separated, it does not

accurately represent the wavefunction when the two nuclei are interacting with each other.

Motz and Schwinger [17] performed a detailed calculation of neutron-deuteron scattering

using a variational approach. Kohn [18] later developed a variational approach similar to

the Rayleigh-Ritz method and applied it to calculate neutron-protron and neutron-deuteron

scattering cross sections.

Another early test of Schr�odinger quantum mechanics in addressing three-body

systems was an accurate description of the energy levels of helium. Earlier attempts to

describe the structure of helium (and heavier atoms) adopted a central �eld approximation

[19, 20, 21]. The basic idea of the central �eld approximation is that each electron moves in

an e�ective spherically symmetric potential V (r) representing the interaction of the nucleus

and the other electrons. Adopting this approximation with the self-consistent �eld approach,

the early attempts were able to give energy values in fairly good agreement with theoret-

ical values. Hylleraas [22] adopted the Rayleigh-Ritz variational method and performed a

transformation of the independent electron coordinates r

1

and r

2

(s = r

1

+ r

2

, t = r

1

� r

2

,

and u = r

12

� j~r

1

� ~r

2

j) to obtain a very accurate description of the helium ground state.

Today, the structure of the helium atom is considered essentially \solved." For example, the
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theoretical and experimental values of the helium ionization energy agree to one part in 10

7

[11].

In contrast to the bound state structure of helium, our e�ort to understand the

helium continuum (the continuum refers to states in which one or both electrons possess

enough kinetic energy to escape to in�nity) is still a work in progress. Much progress has been

made in describing single electron escape processes in atomic physics [23]. Although the cross

section pro�les of these processes often exhibit a rich and complex set of features, re
ecting

a diverse range of interactions, theoretical methods exist to reliably reproduce these electron

escape cross sections. Scattering processes in which the target absorbs enough energy for

two electrons to escape are much more di�cult to describe. For single escape, if the energy

of the incoming projectile is known, then by energy conservation, the energy of the escaping

electron at asymptotic distances is constrained to be the initial target state energy plus the

projectile energy less the energy of the remaining fragment. However, for double escape, there

are no longer any constraints on the energy distribution between the two escaping electrons

(other than the indistinguishable particle requirement that this distribution is symmetric).

This added di�culty of not being able to analytically express the asymptotic wavefunction

for double escape has been a major barrier in past attempts to properly describe this process.

In this work, we attempt to accurately describe the two electron continuum wave-

function. Theoretical e�orts to accurately describe double electron escape have had limited

success until recently. These e�orts have been enhanced by the availability of e�cient mod-

ern day computer resources. An \exact" numerical treatment of two escaping electrons out

to in�nity remains impractical. However, suitable approximations allow an accurate de-

scription of many details in these processes. Double electron escape processes can occur in

both electron scattering and photoabsorption. In this work, the focus is primarily on double

photoejection of H

�

and He.

The �rst quantum mechanical treatment of two electron systems can be traced back
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to e�orts to describe the energy spectrum of helium. It therefore seems natural to revisit the

helium system in addressing the double continuum problem. The Schr�odinger equation for

helium is one of the simplest nonseparable equations which occurs in atomic physics. As such,

this system cannot be described by a separable analytical expression in independent particle

coordinates. Helium is an ideal system for studying the e�ects of electron correlations, since

no core electrons are present to modify the electron-nucleus Coulomb interaction. Double

electron escape by photoejection is easier to model than escape by electron scattering, due to

the absence of long-range forces between the incoming projectile and the target state. The

experimental community has also expended much e�ort in measuring helium photoionization

processes. For these reasons, the helium double photoionization process represents an ideal

test case for theoretically describing the details of two electron escape.

Past studies of helium have been motivated by e�orts to understand the importance

of electron-electron correlations in various processes. The importance of these correlations

was experimentally probed by Madden and Codling [24]. They observed the autoionization

of doubly excited states of helium after photoabsorption in the early 1960's. A few years

later, experimental studies of helium photoabsorption were performed at photon energies

above the double escape threshold. Carlson [25] �rst measured the ratio of double to single

photoionization cross sections in helium in the photon energy range of 100-600 eV. Later

experiments gave results that were inconsistent with the earlier experimental results of Carl-

son and with each other [26]. Various theoretical attempts to calculate the branching ratio

also gave a broad distribution of values [26]. Twenty-�ve years after the original experiment

of Carlson, a quantitatively accurate description of the fundamental two electron process of

helium double photoionization in the intermediate energy range (100-600 eV) remained elu-

sive. It was the lack of agreement among then-existing experimental and theoretical values of

helium double photoionization cross sections in this energy range which strongly motivated

the subject of this dissertation.
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In the early 1990's, extensions of close coupling methods which treated the con-

tinuum with a discretized representation showed promise in describing two electron escape

processes [27]. Most of these methods were developed to describe electron scattering pro-

cesses. Previous calculations of helium double photoionization used perturbative approaches

such as many-body perturbation theory, the Born approximation, or distorted wave Born

approximation. One might expect these methods to work well at high energies. For these en-

ergies the importance of interactions between electrons as they escape is small in comparison

to their large kinetic energies, thereby allowing the 1=r

12

term to be treated perturbatively.

However, at lower energies one would expect the 1=r

12

term to signi�cantly in
uence two

electron escape. Therefore, electron correlations cannot be accurately treated perturbatively

in this energy range.

In this work, we extend the eigenchannel R-matrix approach to describe two electron

photoejection processes. This method treats electron-electron interactions nonperturbatively

in the region near the target nucleus (the reaction volume), where these e�ects are assumed to

be important. Outside the reaction volume, the wavefunction is approximated by a separable

solution: the outer electron is subject to only a Coulomb potential of charge Z � 1 (Z being

the charge of the nucleus), assuming the inner electron e�ciently screens the nucleus. One

expects this approximation to break down at energies just above threshold, but it should be

valid for energies at least a few eV above threshold.

In Chapter 2 of this work, we attempt to put the double continuum problem into

perspective. Early theoretical attempts to describe two electron escape are discussed, in

addition to more recent alternatives to the eigenchannel R-matrix approach. We next dis-

cuss the dependence of two electron escape on projectile energy, experimental progress in

measuring double photoionization processes, and other aspects of the double escape process.

Chapter 3 is devoted to our initial R-matrix treatment of helium double photoion-

ization [28]. The eigenchannel R-matrix method and its extension to describing two electron
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escape are discussed in detail. Double photoionization results are presented for energies of

80-280 eV, and the discrepancy between calculations using di�erent forms of the dipole oper-

ator is addressed. An application of our approach to a simpli�ed model of electron scattering

is also included [29]. This chapter concludes with a discussion of the problems that arise

when treating the continuum with a discretized set of states, and outlines systematic tech-

niques used to overcome these problems. In particular, a frame transformation technique is

introduced as a procedure for distinguishing between single and double escape cross sections.

In Chapter 4, we combine a �nite element basis set with the eigenchannel R-matrix

method to describe double photoejection of helium and H

�

[30]. This local �nite element

basis set is adopted to replace the global hydrogenic basis set used in our initial calculations.

Application of this new approach greatly reduces discrepancies present in results obtained

using our original method. We also use this �nite element method to address other details

of two electron escape [31]. A discussion of the similarities and di�erences between helium

and H

�

targets is included.



CHAPTER 2

TWO ELECTRON ESCAPE: PUTTING THE PROBLEM IN PERSPECTIVE

2.1 Preliminary Theory and Initial Assumptions

The formalism for calculating photoionization cross sections is quite straightfor-

ward. The starting point is commonly referred to as Fermi's Golden rule [11]:

dW =

2�

�h

jh 

f

jH

int:

j 

i

ij

2

�

f

(E)�(E

f

�E

i

); (1)

where dW is the transition rate, H

int:

is the interaction Hamiltonian between the atom and

�eld, and �

f

(E) is the density of �nal states. The full Hamiltonian of the system is given by

H = H

atom

+H

int:

+H

radiation

; (2)

where the atomic Hamiltonian is

H

atom

=

X

i

�

~p

i

2

2m

�

Ze

2

j~r

i

j

�

+

X

i>j

e

2

j~r

i

� ~r

j

j

: (3)

The classical Hamiltonian (in Gaussian units) describing an atom in an electromagnetic �eld

(H

atom

+H

int:

) is given by:

H =

X

i

1

2m

i

 

~p

i

+

e

~

A(~r

i

; t)

c

!

2

+ V (~r

1

; ~r

2

; � � � ; ~r

N

); (4)

where V is the electrostatic potential energy of the atom. In this analysis, we neglect the

interaction between the nucleus and the radiation �eld, and we neglect the spin interaction

of the electron with the magnetic �eld, normally expressed as:

�

X

i

~�

i

�

~

B(~r

i

; t): (5)
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We also neglect reduced mass e�ects, assuming an in�nite mass nucleus is located at the

origin of our coordinate system. The interaction Hamiltonian is identi�ed as:

H

int:

=

N

X

i=1

�

e

2mc

h

~p

i

�

~

A(~r

i

; t) +

~

A(~r

i

; t) � ~p

i

i

+

e

2

2mc

2

�

�

�

~

A(~r

i

; t)

�

�

�

2

�

: (6)

For the weak �eld regime considered here, the j

~

Aj

2

term can be neglected. That is, we neglect

two-photon processes. Choosing the Coulomb gauge for

~

A (r �

~

A = 0), ~p and

~

A commute.

Therefore, H

int:

can be expressed as a single term. Introducing the vector potential

~

A in

the form

~

A(~r

i

; t) =

r

2�c

2

�h

!V

�̂

�

ae

i

~

k�~r

i

+ a

y

e

�i

~

k�~r

i

�

e

�i!t

; (7)

where

~

k and ~! are the wavenumber and angular frequency of the radiation, V is the volume,

and �̂ is the polarization vector. The electric dipole approximation can now be used to

replace e

�i

~

k�~r

i

by unity, since for the photon energies considered in this work, the radiation

wavelength is much larger than atomic dimensions. The interaction Hamiltonian is then

given by

H

int:

=

N

X

i=1

e

mc

r

2�c

2

�h

!V

(�̂ � ~p

i

)

�

a+ a

y

�

e

�i!t

: (8)

From the Golden rule (Eq. 1), the transition rate is given by

W

1!2

=

Z

dW

1!2

(9)

=

4�

2

e

2

m

2

!V

�

�

�

�

�

h 

2

j

X

i

�̂ � ~p

i

j 

1

i

�

�

�

�

�

2

: (10)

Dividing the transition rate by the incident 
ux (c=V ), and introducing the �ne structure

constant � = e

2

=�hc, the cross section � is given by

�

1!2

=

4�

2

�h�

m

2

!

�

�

�

�

�

h 

2

j

X

i

�̂ � ~p

i

j 

1

i

�

�

�

�

�

2

; (11)

or in atomic units (e = �h = m = 1),

�

1!2

=

4�

2

�

!

�

�

�

�

�

h 

2

j

X

i

�̂ � ~p

i

j 

1

i

�

�

�

�

�

2

(a:u:): (12)
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Cross sections in this study will be given in units of barns (1 barn = 10

�28

m

2

). Assuming

linearly polarized light (the case treated in this work) in the z-direction, and also assuming

the total orbital angular momentum of the initial state j 

1

i is zero, the cross section is given

by

�

1!2

=

4�

2

�

3!

�

�

�

�

�

h 

2

k

X

i

@

@z

i

k 

1

i

�

�

�

�

�

2

; (13)

where h 

2

k

X

i

@

@z

i

k 

1

i represents a reduced dipole matrix element.

The above form for the cross section is referred to as the velocity form. This equa-

tion has corresponding length and acceleration forms (see Appendix A). Using the identity

h 

2

j[~r;H ]j 

1

i = h 

2

j

i�h

m

~pj 

1

i = (E

2

�E

1

)h 

2

j~rj 

1

i; (14)

we can obtain the cross section by evaluating the matrix element h 

2

j~rj 

1

i. Similarly, one

can use the identity:

h 

2

j[~p;H ]j 

1

i = (E

2

�E

1

)h 

2

j~pj 

1

i = h 

2

j[~p; V ]j 

1

i = �i�hh 

2

j

X

i

r

i

j 

1

i: (15)

For a potential of the form V = �Z

X

i

e

2

r

i

+

X

i<j

e

2

j~r

i

� ~r

j

j

, the matrix element h 

2

j

X

i

r

i

j 

1

i

is given by

Ze

2

h 

2

j

X

i

~r

i

r

3

i

j 

1

i: (16)

There is no net contribution to the above expression from the gradient operator operating

on the Coulomb repulsion term, as r

i

and r

j

applied to this term give equal and opposite

contributions. If the wavefunctions j 

1

i and j 

2

i are exact, then all three forms (length,

velocity, and acceleration) should give identical results. In this work, we use all three forms

as a method for evaluating the accuracy of our wavefunctions. Since the length form is

proportional to ~r, it samples the large r behavior of the wavefunction. In contrast, the

acceleration form is proportional to 1=r

2

, and so samples the wavefunction's small r behavior.



12

2.2 Simpli�ed Descriptions of Two Electron Escape

The double ionization cross section for a two electron system can be expressed as

�

++

(E) =

4�

2

�

(2J

0

+ 1)!

X

l

Z

E

0

d�

Z

E

0

d�

0

�(�h! �E

D:I:

� �� �

0

)jM

fi

j

2

; (17)

where (for linearly polarized light in the z-direction)

M

fi

=

Z

d~r

1

Z

d~r

2

 

f

(~r

1

; ~r

2

)(

@

@z

1

+

@

@z

2

) 

i

(~r

1

; ~r

2

); (18)

J

0

is the total angular momentum of the initial state, E

D:I:

is the double ionization threshold

energy, and � and �

0

are the energies of the two escaping electrons. Information about the

initial and �nal state is all that is required to calculate this cross section. Also, since the

initial state is spatially con�ned to a small region, a description of the �nal state wavefunction

for only relatively small values of j~r

1

j and j~r

2

j is required to evaluate M

fi

. However, the

asymptotically large r form is required to determine the short-range r behavior of the �nal

state wavefunction. An accurate description of the ground state wavefunction (the Hylleraas

approach [22]) has been available for quite some time. The di�culty which remains is an

accurate description of the double continuum �nal state wavefunction.

The simplest treatment of two electron escape adopts the sudden approximation

[25]. In this approximation, the \fast" electron is assumed to suddenly escape. The am-

plitude for the inner electron to escape subsequently is proportional to the projection of

a one-electron wavefunction representing the inner electron onto a continuum hydrogenic

wavefunction. This approximation was originally applied in the context of beta decay, where

the e�ect of electron excitations was investigated for a sudden change in the charge of a

nucleus [32]. This approach is known to give reasonable results for atoms with relatively

large values of the nuclear charge Z (Z � 25, see Ref. [32]).

More sophisticated methods have been applied to describe the probability of a

second electron escaping an atom due to the change in the potential from the escape of

the �rst electron; this is known as the \shake-o�" mechanism [25]. These methods give
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roughly the correct order of magnitude for the double escape cross sections, but tend to

underpredict the correct values [25, 33]. Other mechanisms were proposed in an attempt

to describe two electron escape. Samson observed empirically that the ratio of double to

total ionization was approximately proportional to the cross section for electron impact

ionization of an ion [34]. This motivated his development of a classical model which described

double photoionization as a two step process (and therefore labeled as a \two-step one"

contribution in many body perturbation terminology): �rst, the photon is absorbed by one

electron, and second, the excited electron scatters from the remaining electron as it leaves

the ion. This simple description was recently adopted in a semiclassical treatment of helium

double photoionization and found to give reasonable results [35]. Many body perturbation

treatments [36, 37] identi�ed the contributions to double ionization as falling into three

categories: ground-state correlations, shake-o�, and two-step one. These last two processes

are �nal state correlation e�ects. However, it was shown that the relative strengths of these

mechanisms depend on the form of the dipole interaction [38, 39]. Consequently, as seen

by their dependence on the dipole form, these mechanisms can not be viewed as physical

processes; they are only useful for visualizing the process of double photoionization in a

qualitative sense.

Early studies [40] illustrated the importance of including an accurate ground state

wavefunction in order to get accurate double ionization cross sections. The �rst attempts

to calculate double photoionization normally adopted a �nal state wavefunction represented

as a symmetrized product of uncorrelated Coulomb wavefunctions [40, 41]. Each of these

Coulomb functions were for a charge of Z = 2. That is, screening between the electrons was

ignored. Although these studies obtained results that were in fairly good agreement with

existing theory, a notable discrepancy appeared between calculations using various dipole

forms.

Further attempts to analytically represent the three-body Coulomb continuum �nal
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state achieved mixed success. Using a product wavefunction consisting of three two-body

Coulomb wavefunctions (also known as the Brauner-Briggs-Klar(BBK) wavefunction [42]),

Maulbetsch and Briggs [43] were able to accurately reproduce the shape of electron angular

distributions in double photoionization, but predicted absolute cross sections that were orders

of magnitude too low. Recent attempts to address this normalization problem have been

somewhat successful [44].

2.3 Discrete Methods for Treating the Double Continuum

The greatest obstacle to the theoretical description of two electron escape derives

from an inadequate understanding of how to impose the proper boundary conditions at in-

�nity. For this reason, methods that aspire to directly represent the two-electron continuum

as a channel expansion of an uncountable in�nity of states are infeasible. Approximate

perturbative methods which treat the double continuum in this manner (e.g., the Born

approximation) have been successful in calculating double continuum cross sections at su�-

ciently high energies (on the order of 1 keV [45]). However, alternate methods are required

to describe double escape processes at lower energies.

Methods that use a discrete representation of all possible excitation channels have

enjoyed tremendous success at low energies where only single escape is energetically allowed.

This includes, for instance, the R-matrix method, variants of the close-coupling method that

use pseudostates, and the convergent close-coupling (CCC) approach. In this work, we show

that the eigenchannel R-matrix method is capable of describing a class of problems in the two-

electron continuum, excluding energies very close to the threshold energy for double escape.

Other coupled-channel methods have been similarly extended to treat the double continuum

in recent years, notably the intermediate energy R-matrix (IERM) method [46], the CCC

method [47], the R-matrix with pseudostates (RMPS) method [48], and the hyperspherical

close-coupling (HSCC) method [49]. Although many of these methods have been applied

primarily to describe electron scattering rather than photoejection, both processes involve
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the same �nal state dynamics, and are thus closely related. It is important to explore the

double escape energy region, in part because of its intrinsic theoretical interest. Yet another

reason is that even processes involving single-electron escape could be adversely a�ected if

the double continuum regions are linked in some sense, e.g., through constraints such as the

oscillator strength sum rule (often referred to as the Thomas-Reiche-Kuhn sum rule [50]).

A couple of early e�orts that demonstrated the promise of discrete methods in de-

scribing two electron escape included a pseudostate treatment of electron-hydrogen scattering

by Callaway and Oza [51], and a multichannel J-matrix calculation of double photoejection

of H

�

by Broad and Reinhardt [52]. Both of these pioneering attempts were hindered by the

lack of powerful computing resources which are presently available. The �rst true demon-

stration of the capability of a discretized method to obtain accurate total double escape

cross sections was shown in the CCC treatment of electron-hydrogen scattering by Bray and

Stelbovics [27]. They were able to obtain excellent agreement with experiment over the wide

energy range 4-500 eV above the ionization threshold. Complementing this e�ort was the

work of Kato and Watanabe [53], which used the hyperspherical close-coupling method to

calculate ionization cross sections of electron-hydrogen scattering. They were able to obtain

excellent agreement with experimental cross sections for energies as low as 0.1 eV above

the ionization threshold. These calculations are quite noteworthy, as e�orts to theoreti-

cally describe this fundamental process accurately in the previously 50 years were largely

unsuccessful.

The CCC method employs a close-coupling representation to solve the momentum-

space Lippmann-Schwinger equation that derives from the full three-body Schr�odinger equa-

tion. A Sturmian basis set is chosen to diagonalize the target Hamiltonian in momentum

space. This choice of basis functions eliminates numerical problems associated with conver-

gence and linear dependence. For a �xed energy value, the basis set size is systematically

increased until the observable of interest converges. This discrete basis set is increased in
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such a way that additional members extend to successively larger radii. Further details of

the CCC method can be found in Refs. [45] and [47].

In addition to calculating accurate two-electron continuum cross sections for electron-

hydrogen scattering, the CCC approach has produced reliable cross sections for electron-He

+

ionization from threshold to 700 eV [54], for positron-hydrogen scattering [55], and more re-

cently for electron-helium scattering in the frozen core approximation [56]. This approach

also determined accurate observables in electron scattering by Na, judging from its close

reproduction of spin-resolved measurements; furthermore, it should also be straightforward

to apply it to electron scattering by other targets with one valence electron (e.g., Li and K)

[57]. In addition to obtaining bound state excitation and ionization cross sections, the CCC

formulation was used to calculate spin asymmetries and di�erential, integral, and total cross

sections. This approach has also been recently applied to calculate helium double photoion-

ization cross sections [58]. A summary of applications of the CCC approach is reviewed in

Ref. [45]. Although this method has enjoyed great success in describing electron scatter-

ing processes, problems with this method in obtaining converged energy distributions have

recently surfaced [59]. The origin of these problems is still not fully understood.

The hyperspherical close-coupling (HSCC) approach has been used to describe two

electron escape in both electron scattering [53, 60, 61] and photoabsorption processes [62].

This method replaces the independent particle radial coordinates r

1

and r

2

by a pair of col-

lective variables R and �. The hyperradius R =

p

r

2

1

+ r

2

2

measures the \size" of the electron

system and the hyperangle � = tan

�1

(r

2

=r

1

) describes the degree of electron-electron radial

correlations. Reexpressing the two electron atom Schr�odinger equation in these coordinates,

one can apply the adiabatic approximation in the hyperradius (the only remaining in�nite

range variable). In the past, this hyperspherical coordinate method had been useful mainly

in the qualitative description of electron correlations [63, 64]. However, using the HSCC
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method, Tang et al. were able to obtain an accurate, high precision description of dou-

bly excited resonances just below the double escape threshold by treating electron-electron

interactions accurately out to very large distances (R=170 a.u.) [65].

One of the drawbacks of the hyperspherical coordinate method is the slow conver-

gence in calculating adiabatic potential curves when using the traditional basis set, namely

a set of functions of the hyperradius multiplied by adiabatic channel functions (functions

of the �ve angular coordinates �; r̂

1

; and r̂

2

, which are solutions of the adiabatic Hamilto-

nian for the parameter R). Tang et al. adopted an alternative numerical method, called

the diabatic-by-sector method [66], to solve the hyperspherical close-coupling equations. A

two-dimensional independent coordinate matching scheme was adopted [67] to match the

inner region wavefunction to the asymptotic solution. Using this HSCC method, Kato and

Watanabe were able to reproduce the experimental ionization cross sections for electron-

hydrogen scattering down to energies as low as 0.1 a.u. [53]. They were also able to provide

numerical evidence of the 1.127 value of the Wannier exponent (de�ned in Eqs. 19 and 20)

and the uniform energy distribution predicted by Wannier theory (for the near-threshold en-

ergy range) [61]. Calculations of helium double ionization cross sections were performed for

photon energies from threshold to 280 eV [62]. Very good agreement was achieved between

the length and acceleration forms of the calculation using a matching radius of R=30 a.u.

A third computational approach, R-matrix theory, was �rst introduced by Wigner

and Eisenbud to study resonance reactions in nuclear physics [68]. The advantage of R-

matrix methods over CCC and HSCC type approaches is the fact that R-matrix methods

essentially describe the electron scattering/photoabsorption process independent of the pro-

jectile energy. Therefore, R-matrix methods are ideally suited to the study of resonance

phenomena, where observables can be calculated over a �ne energy mesh with little addi-

tional computational e�ort.

In R-matrix theory, con�guration space is partitioned into two (or more) regions
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by a sphere of radius r=r

0

, as shown in Fig. 1. The most complicated physics is included

in the �nite internal region (region I in Fig. 1), called the reaction volume. In the external

region, electron-electron correlation e�ects are neglected, which is a good approximation for

large enough values of r

0

. It is the fact that exchange and correlation e�ects are con�ned

to a small volume that makes the R-matrix method appropriate even in the presence of

long-range Coulomb �elds. Once the wavefunction is determined both inside and outside the

reaction volume, the full solution is obtained by matching the logarithmic derivative of the

wavefunction across the surface of the reaction volume and solving the Schr�odinger equation

in the exterior region.

In this work, we adopt the eigenchannel R-matrix method. We use this method to

calculate variationally a particular set of Schr�odinger solutions: each solution has a constant

normal logarithmic derivative across the surface of the reaction volume. Further details of

this method will be discussed in Chapter 3. Other variations of the R-matrix method can

be used to obtain identical results for two electron processes, provided an identical basis

set is used [69, 70]. Two alternative approaches of R-matrix theory that have recently been

applied to address double continuum processes include the intermediate energy R-matrix

(IERM) method and the R-matrix with pseudostates (RMPS) method.

The major advancement of the IERM method over previous R-matrix methods

was the inclusion of continuum-continuum orbital couplings in the inner region [46]. That

is, all electron exchange and correlation e�ects between both continuum electrons and the

core are included in the reaction volume. In their approach, the internal region of con�g-

uration space is further divided into a number of subregions to treat inelastic e�ects. The

systematic introduction of continuum pseudostates in the inner region leads to pseudoreso-

nances at intermediate energies. A T-matrix energy averaging scheme [71], which involves

continuation to complex energies, is adopted to average out the 
ux contributions of these

pseudoresonances and therefore obtain smooth cross sections.
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I
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1

r
2

r
0

r
0

Figure 1. Radial con�guration space for two electrons used in R-matrix theory. Region I

represents the reaction volume, regions II and III represent single electron escape, and region

IV represents the double continuum. This �gure is taken from Ref. [28].
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The IERM method has been applied to calculate elastic, 1s� 2s, and 1s� 2p cross

sections for electron-hydrogen scattering at intermediate energies [72, 73]. This method

has also been applied to calculate electron-hydrogen ionization cross sections for projectile

energies up to 50 eV [74]. These calculated values were slightly larger than the experimental

values of Shah, Elliot, and Gilbody [75] at higher energies. Recent ionization cross section

calculations for a simpli�ed s-wave model of electron-hydrogen scattering (the Temkin-Poet

model) in the energy range from threshold to 5 eV above threshold compared favorably

with similar CCC and RMPS calculations [76]. By going to a large reaction volume, they

were able to represent the energy region above the ionization threshold with a dense set

of pseudostates. Converged results were obtained for a reaction volume radius of 150 a.u.

Preliminary IERM calculations for the full electron-hydrogen scattering problem using a

reaction volume radius of 63 a.u. appear promising; ionization cross sections for the

1

S

e

partial wave are consistent with the E

1:127

power law.

The R-matrix with pseudostates method (RMPS) recently developed by Bartschat

et al. [48] utilizes the Belfast R-matrix codes developed by Burke et al. [77]. The motivation

for using these existing computer codes, which have been developed over many years, is

the desire to extend this method to handle electron scattering processes in the low and

intermediate energy range for a general N -electron atom or ion. In this method, both target

eigenstates and pseudostates are included in the basis set. The pseudostates consist of a

�nite expansion of Sturmian orbitals. These two types of basis functions included in the

wavefunction expansion are not orthogonal. However, Bartschat et al. adopt the Schmidt

orthogonalization procedure to generate a new orthogonal basis set. Following an initial

application to electron-hydrogen scattering [78], the RMPS method has been applied to

study electron scattering by helium [79], beryllium [80], and boron [81]. Ionization cross

sections for the simpli�ed s-wave (Temkin-Poet) model of electron-hydrogen scattering have

also been calculated using this method [82]. An alternate version has recently been developed
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by Gorczyca and Badnell to study photoionization-excitation processes in helium [83].

2.4 Dependence of Double Escape on Projectile Energy

An ideal scattering/photoejection theory should be capable of calculating reliable

cross sections independent of the projectile energy. In practice, this ideal theory has not

yet been developed. To appreciate the limitations of current numerical methods to calculate

double escape cross sections over the entire energy range of an incoming projectile, it is

useful to understand the de�ning features of two electron escape in each energy region. In

this work, our focus is on the intermediate energy region, as de�ned below.

The minimum projectile energy required to produce double photoejection or elec-

tron impact ionization processes is called the double escape or ionization threshold (78.98 eV

for helium double photoionization, 14.35 eV for H

�

double photodetachment). At energies

just above threshold, the double escape process is di�cult to describe with discrete methods,

as interactions between the two escaping electrons are important out to very large distances

from the target. Also, the low speeds of near threshold particles translate into long times

over which correlations can develop. Much e�ort has been expended in exploring thresh-

old laws to describe the energy dependence of escape cross sections in the energy region

just above threshold. The primary theoretical motivation for studying threshold laws lies in

the understanding that the energy dependence is very sensitive to long range interactions

in the �nal state. Therefore, threshold laws provide a diagnostic for characterizing long

range interactions (e.g., polarization and dipole forces), a subject of broad interest in atomic

physics.

One of the earliest works on this subject was contributed by Wigner [84], who

identi�ed several key features of threshold laws. Since threshold laws are only dependent on

a single parameter, namely the excess energy E of the �nal state (for the case of inelastic

processes, as considered here), the threshold law is insensitive to the details of the initial

preparation of the state. This provides yet another close link between electron scattering
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and photoabsorption. For example, the same threshold law which describes the electron-

hydrogen scattering ionization cross sections also describes double photodetachment of H

�

.

Since threshold laws are controlled by long-range interactions, the threshold exponent is

independent of the physics within the reaction zone, the region in which the particles are

all close together. This enables one to obtain a threshold law without having to solve for

the full solution in the reaction zone, where much of the complicated physics occurs. An

additional explanation can be given as to why the region in which the outgoing particles have

a large separation controls the threshold law. For large separations the potential interaction

is small, so small values of E are signi�cant. However, when the particles are close together,

large interaction energies are involved. Therefore, small variations in E will have little e�ect

on particles of small separation.

For the three-body Coulomb continuum problem (e.g., electron impact ionization

of hydrogen or double photodetachment of H

�

), the Wigner threshold law is dependent

on the assumption one makes for the �nal state [85]. If one represents the �nal state as a

product of two one-electron wavefunctions, there are two limiting cases for modeling electron

correlations. If one makes the assumption that the slower electron completely screens the

nucleus, the �nal state can be described as a product of a Coulomb function and a plane

wave, leading to the threshold law � / E

3=2

. However, if the �nal state is represented as a

product of two Coulomb functions, then the threshold law � / E results. The real threshold

law is expected to lie between these two cases, i.e., � / E

m

, where 1 � m � 3=2.

The next major contribution to our understanding of threshold laws was provided

by Wannier [86]. Wannier's theory is a classical theory. Since for energies above the double

ionization threshold the electrons are characterized by small wavelengths at intermediate

distances, he felt a classical treatment was justi�ed for addressing this problem. Wannier

recognized the importance of correlations in describing threshold laws and concluded that

any representation of the �nal state as a product of one-electron wavefunctions would be
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insu�cient for understanding the threshold behavior. He abandoned the independent radial

coordinates, replacing them with the hyperspherical coordinates R and �.

A central concept of Wannier theory is the importance of dynamic screening. As

previously mentioned, the picture of static screening in which the �nal state is represented

as a separable solution of the Schr�odinger equation is insu�cient. Rather, a picture of the

screening changing as energy is partitioned between the two electrons is a more accurate view.

If one particle is slightly closer to the target nucleus than the other particle, the closer particle

will contribute more to screening of the outer particle. As a result, the outer particle gains

a greater share of the energy, leading to a further enhancement of the unequal screening of

the two escaping particles. Wannier reasoned that two electron escape processes would only

occur at low energies for tight energy correlations. He restricted double escape processes in

con�guration space to a small region neighboring the point �

12

= � (�

12

� cos

�1

(r̂

1

� r̂

2

)) and

� = �=4. The point �

12

= � describes the two electrons as moving in opposite directions from

the nucleus, while � = �=4 corresponds to r

1

= r

2

, namely, the two electrons escaping such

that they remain equal distances away from the nucleus. By analyzing classical trajectories

for L = 0 in the vicinity of the point (�

12

= �; � = �=4), Wannier arrived at the following

threshold law for double electron escape:

� / E

m

; (19)

where

m =

1

4

r

100Z � 9

4Z � 1

�

1

4

: (20)

For Z = 1, m

�

=

1:127, and for Z = 2, m

�

=

1:056. As Z ! 1, m ! 1. Later quantum

mechanical treatments of the threshold law [87, 88] reproduced the results of Wannier. (An

alternative dipole threshold law has been proposed by Temkin [89]:

� / [E=(lnE)

2

]f1 + C sin[�(R) lnE + �]g; (21)

where � =

p

b� 1=4, b is the dipole moment seen by the outer electron, and C and � are
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constants. However, this threshold law is not generally accepted [90].)

One consequence of the Wannier picture is the prediction concerning the energy

distribution between the two escaping electrons. According to Wannier theory, all possible

partitions of E into E

1

and E

2

are equally likely near threshold [91]. This result has been

experimentally veri�ed in electron impact ionization of helium [92] and double photoioniza-

tion of helium [93]. Concerning experimental evidence for the Wannier threshold law, these

include experiments on electron impact ionization of hydrogen [75, 94], electron impact ion-

ization of helium [92], double photodetachment of H

�

[95], and double photoionization of

helium [96]. It now appears possible that the Wannier threshold law can be explored by di-

rect numerical calculations [61, 76, 97]. However, accurate calculations for this energy region

are not possible for the eigenchannel R-matrix method adopted here for reasons which will

be discussed in Chapter 3. One issue that often arises concerning discussions of threshold

laws is the energy range over which threshold laws are valid. Although this question does

not have a clear answer, one can normally assume that a threshold law is valid up to 1-2 eV

above threshold.

The intermediate energy range can be characterized by the following two criteria:

1) the physical processes which occur in the reaction zone are important in describing the

two electron escape process, and 2) the electron-electron interactions in the reaction zone

are large enough that they can no longer be treated perturbatively. The �rst criterion

eliminates the region just above threshold, as the energy dependence of double escape cross

sections depends solely on the longe range forces. The second criterion eliminates the high

energy regions, where perturbative methods (e.g., the Born approximation) are su�cient for

accurately describing two electron escape processes. In properly describing these processes

for intermediate energies, an accurate nonperturbative method for treating the complicated

electron-electron interactions in the reaction zone (reaction volume) is essential. This has

been the focus of recent numerical discrete methods, discussed in the previous section.
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One sensitive probe of the strength of electron-electron interactions is the ratio R

of double-and-single photoejection cross sections (R � �

2e

=�

1e

). Double photoejection could

not occur in the absence of electron-electron interactions, at least in �rst-order perturbation

theory for the photon-atom interaction. Since the maximum value of this ratio as well as the

maximum value of the double escape cross section occurs in the intermediate energy range

(e.g., see Ref. [52]), escape processes in this energy range are a subject of great interest.

Previous studies of helium double photoionization for these energies will be discussed in

Chapter 3. One issue which arises for processes in this energy range is the size of the

reaction volume required to obtain accurate results. Other than the fact that the required

reaction volume radius grows as the inverse of the energy excess from threshold [61], there

is no clear theoretical value for the required reaction volume radius. In practice, the size of

the reaction volume is increased until converged results are obtained.

At high enough (but nonrelativistic) projectile energies perturbative methods can

be used to calculate accurate double escape cross sections. Perturbative treatments of elec-

tron correlations rely on the assumption that one of the ionized electrons leaves the target

area relatively rapidly. For this situation, in which the electron kinetic energies overwhelm

the electron-electron interaction potential, the �nal state correlation e�ects are minimal. The

assumption that the escaping electrons have very di�erent speeds is approximately valid for

photon energies much larger than the ionization potential of the target. The well known

Born approximation does not formally include exchange or short-range distorting potentials.

This method normally gives accurate results for projectile energies above 1 keV. Speci�c

application of the Born approximation to two electron escape include the helium double

photoionization calculations of Brown [41] and the electron-hydrogen ionization cross sec-

tion calculations of Peach, whose values are reported in Ref. [27]. The distorted wave Born

approximation (DWBA) improves on the Born approximation by including a short-range

potential; that is, plane wave solutions in the Born approximation are replaced by distorted
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waves. Further improvements can be attained by including higher order approximations,

such as the second-order distorted-wave Born approximation (DW2BA) [98], which unlike

the DWBA is able to include the e�ects of dipole polarization. Many body perturbation

theory (MBPT) approaches have also been applied to calculate double photoionization cross

sections in helium [33, 36, 37, 99]. The di�erences between these various many body calcu-

lations are due to di�erences in the choice of basis sets and in the methods used to estimate

higher order corrections. Although these methods were applied for photons in the interme-

diate energy range, it is unclear as to how electron-electron interactions can be accurately

treated perturbatively here.

One issue of great interest is the asymptotic (nonrelativistic) energy limit of the

ratio of double and single photoejection cross sections. It is known [38] that the energy

dependence of both single and double photoejection cross sections goes as E

�7=2

for high

(but nonrelativistic) energies (the decrease in the cross section with energy is actually slower

than E

�7=2

for relativistic energies [100]), and thus the ratio R approaches a constant.

Dalgarno and Stewart [101] showed that the value of this constant is solely dependent on the

initial state wavefunction. Dalgarno and Sadeghpour calculated the ratio values of 0.0150

for H

�

, 0.0167 for He, and 0.0087 for Li

+

[38, 102].

A complete description of double photoejection at high energies is complicated by

the importance of the atomic Compton e�ect [103], namely, h�+He! h�

0

+He

2+

+ e

�

+

e

�

. Compton processes result from the presence of the j

~

Aj

2

term (two photon process) in

Eq. 6, which we have previously ignored. The Compton e�ect will become important in

photoejection when the energy increase of the electron(s) (the energy E = (�p)

2

=2m corre-

sponding to the net momentum transferred (�p) to the atom by the photons) is greater than

the electron escape threshold. For helium, Compton processes are nonnegligable at photon

energies greater than roughly 2.5 keV for single photoionization and 4.5 keV for double

photoionization. These processes dominate at higher energies, since the single and double
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photoionization cross sections fall o� as E

�7=2

while the Compton scattering is roughly

independent of energy. A new parameter of interest is then the asymptotic energy limit

of the ratio R

C

of helium double-and-single ionization by Compton scattering. There was

some disagreement between theories in calculating this value. Amusia and Mikhailov [104]

calculated a value R

C

=0.0168, while three other studies [105, 106, 107] calculated a value

of R

C

=0.008. Bergstrom, Hino, and Macek calculated a value of R

C

=0.016 at 20 keV, but

concluded that their value had not yet reached an asymptotic limit [108] (their values of

R

C

were still decreasing with energy). One recent helium ionization experiment by 57-keV

X rays obtained a value R

C

=0.0125 [109] while a di�erent experiment with 58-keV X rays

measured a value which supports the smaller value of R

C

(0.008) [110].

In summary, it is di�cult for a single numerical method to accurately predict two

electron escape cross sections over the full range of projectile energies. The role of electron

correlations in double escape is highly dependent on the excess energy of the electrons, and

so is di�cult to describe. Discrete methods are primarily limited to the intermediate energy

range. Limitations in the size of the reaction volume hinder an accurate treatment of long

range correlations, which is required for describing near threshold behavior. Limitations in

the size of the basis set hinder an accurate representation of escaping electrons with large

excess energy, as the corresponding wavefunctions have small de Broglie wavelengths. The

general pro�le of the double photoejection cross section is characterized by a zero value at

threshold, a nearly linear increase for the �rst few eV above threshold, reaching a peak at

intermediate energies before decreasing to zero at high energies, with an energy dependence

of E

�7=2

. This pro�le re
ects the physical role of correlations. Double escape just above

threshold is limited to a small region of phase space, as there is little excess energy available

to partition between two escaping electrons. Likewise, double escape events at high energies

are suppressed, as the energetic electrons spend little time near each other, and therefore have

little time to interact. The pro�le of the ratio of double to single photoejection is similar to
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the double photoejection cross section, except that the peak is broader and located farther

from threshold, and the values fall o� much more slowly with energy before eventually

reaching a nonzero constant value. It is part of the challenge of discrete numerical methods

to calculate the location and value of the peak ratio.

2.5 Experimental Progress in Measuring Double Photoionization Cross Sec-

tions

Much progress has been made in developing experimental methods to observe two

electron escape processes excited by photoabsorption. In Carlson's original experiment [25],

double photoionization events were produced by using low energy x-rays emitted by an x-

ray tube. Modern double photoionization experiments are performed at synchrotron light

facilities, which provide a high intensity, high energy source of radiation [111]. In typical

experiments, the synchrotron radiation is focussed on a small jet of gas. The jet then drifts

through an externally applied electric �eld. A time-of-
ight spectrometer is used to distin-

guish between the singly- and doubly- ionized target residuals [112] (since doubly charged

ions experience a greater acceleration in the �eld than singly charged ions, these ions will

reach the detector �rst). A COLTRIMS (cold target recoil ion momentum spectroscopy)

technique has also been very useful in distinguishing between Compton scattering and pho-

toabsorption processes. For Compton processes, the momentum and energy transferred by

the photon correspond to the energy and momentum of the emitted electron(s), whereas in

photoabsorption the recoiling target ion must compensate for the momentum of the escaping

electron(s). By using this technique to distinguish between events with small and large recoil

ion momenta, Spielberger et al. [113] were able to separate photoabsorption and Compton

scattering contributions.

Double photoionization experiments are di�cult to perform, since these experi-

ments usually involve the measurement of very small cross sections (< 10

�24

m

2

for helium).
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The cross sections eventually decrease with increasing photon energy, compounding the prob-

lem. Consequently, even small sources of error can result in a signi�cant distortion of the

measured ratio of double-and-single photoionization [112]. One possible source of error in

helium double photoionization experiments is the creation of spurious helium ions due to

stray light or electrons. Since photoionization cross sections are much larger at energies

just above threshold than at higher energies, even a small amount of stray light can create

problems [112]. Another possible source of error is a di�erence in detection e�ciencies of

He

+

and He

++

with the time-of-
ight spectrometer and the channel plate, as the doubly and

singly charged ions will reach the detector at di�erent speeds. Experimental measurements

are also very sensitive to contaminants in the helium gas, because the photoionization cross

sections for these contaminants are often much larger than that for helium. Careful analysis

of these possible sources of error has allowed recent measurements of the ratio of double-

and-single photoionization to be performed with considerably improved accuracy, compared

with earlier measurements. In addition, modern experiments have been performed over a

much wider range of photon energies (e.g., see Ref. [111]).

2.6 Observables and Targets as Probes of Electron-Electron Correlations

Although much of the current investigation has focussed on calculating a single

process (photoabsorption) for a single target (helium ground state) for a single observable

(ratio of double to single photoionization cross sections), the work presented here has a

much broader context. The close relationship between electron scattering and photoejection

has already been portrayed in previous sections. The dependence of two electron escape

on the projectile energy has also been discussed. Further information about two electron

escape processes can be obtained by calculating various observables. These include not only

single, double and total photoionization cross sections, but also partial cross sections (single

photoejection plus excitation of the remaining electron), energy distributions, and angular

distributions. Exploration of these other observables help to provide a more complete picture
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of two electron escape. A wealth of experimental data of observables for electron scattering

exists; I will focus primarily on photoabsorption processes here.

A paper summarizing past theoretical and experimental determinations of helium

partial cross sections has recently been published [114]. We will compare our calculated

values to the experimental results in this paper in Chapter 4. In addition, experimental

values exist for the angular distribution of helium photoelectron satellites He

+

nl for n=2-7

over a large photon energy range [115]. Wehlitz et al. [93] have measured electron energy

distributions in helium double photoionization for excess energies of 5-41 eV. Calculations of

energy distributions for helium double photoionization include those of Hino et al. [39] using

many body perturbation theory, and of Proulx and Shakeshaft [116] over the range of photon

energies 89-140 eV. Pont and Shakeshaft explored the dependence of singly di�erential (in

energy) cross sections on excess energy for the equal energy sharing case (E

1

= E

2

= E=2)

[117]. Theoretical studies of helium double photoionization angular distributions performed

by Maulbetsch et al. [118] and by Pont and Shakeshaft [119] agree fairly well with the exper-

imental values of Schwarzkopf et al. [120]. In principle, our eigenchannel R-matrix method

can be used to calculate all of these observables, although the procedure for calculating en-

ergy distributions is not necessarily straightforward. The accuracy of our method for the

description of the double escape observables like angular distributions remains uncertain.

Further information about two electron escape can also be learned by probing dif-

ferent target states. Other than the isolated work of Teng and Shakeshaft [121], who explored

double photoionization of the He(1s2s

3

S) metastable state, helium double photoionization

studies have focused entirely on the He target ground state. Advances in experimental

methods may allow measurements of double photoionization cross sections for the initial

state He(1s2s

3

S) and other metastable states to be undertaken in the future.

Although this work has concentrated primarily on double photoejection of H

�

and

He, heavier elements in the helium isoelectronic sequence (Li

+

,Be

++

, C

4+

, O

6+

, � � �) can also
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be explored. Kornberg and Miraglia [122] have used an approximate analytical �nal state

wavefunction to show that the ratio of double-and-single photoejection scales as a simple

function of the nuclear charge Z. Further discussion of this topic is included in Chapter 4.

The study of other heliumlike atom target states (Be, Mg, Ca, Sr, Ba, Ra) provide further

opportunities for exploration of two electron escape. Accurate treatments of the heavier

atoms (Ba, Ra) will require the inclusion of relativistic e�ects. Further complications arise

at relatively high photon energies (�50 eV above threshold), where excitations of the inner-

shell core occur. Experimental double ionization studies of several gases (He, O, N, Ar, and

Ne) have been performed [123, 124]. Proper theoretical descriptions of these processes (other

than helium) are di�cult however, as these targets contain more than two electrons in the

outer shell. In general, for both the case of theory and experiment, the study of two electron

escape processes for various target species has been quite limited for photoabsorption in

comparison to electron scattering.



CHAPTER 3

INITIAL APPROACH: EIGENCHANNEL R-MATRIX CALCULATION WITH A

HYDROGENIC BASIS

3.1 Double Photoionization of Helium

The eigenchannel R-matrix method for single photoionization is extended here to

describe a class of two electron escape processes. We apply this approach to calculate the

double photoionization of helium by single-photon absorption, for photon energies in the

range 80-280 eV [28]. Calculations are performed using the length (Eq. 14), velocity (Eq.

13), and acceleration (Eq. 16) forms of the dipole operator; only the velocity and acceleration

results are presented here. Pseudoresonances in the double continuum are eliminated by

performing a Gailitis average and by averaging the �nal spectrum over the size of the R-

matrix box (Region I of Fig. 1). The ratio of double and single photoionization cross sections,

a key parameter for characterizing electron correlations, is compared to existing theoretical

and experimental values.

Methods that use a discrete representation of all possible excitation channels have

enjoyed tremendous success at low energies where only single escape is energetically allowed

[23]. Earlier theoretical attempts (before 1994) to calculate double photoionization relied on

perturbative treatments of electron-electron interactions, such as many body perturbation

theory. In this study, theoretical calculations of double photoionization cross sections are

performed with a nonperturbative approach. While this approach also faces di�culties when

applied to the escape of two electrons, it is informative to see results from a completely

di�erent formulation.

The implementation of our eigenchannel R-matrix approach starts from numerical
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(closed-type) solutions of the one-electron radial Schr�odinger equation for He

+

, calculated

inside the reaction volume subject to the boundary condition that the radial wavefunction

vanishes at the boundary r = r

0

. This generates a set of (closed-type) solutions having a

discrete energy spectrum (see Fig. 2). In essence, we are limiting the Hilbert space to the

set of eigenstates of our target state Hamiltonian in a shrunken eigenspace (0 < r < r

0

).

Virtually all methods today utilize some such set of shrunken eigenstates (see section 2.3).

The lowest energy states (with principal quantum numbers n � 3) are very similar to the

ordinary physical bound states of He

+

, as they vanish at large distances anyway. For high n

values, the spacing between energy levels is roughly proportional to n

2

, characteristic of the

energy spectrum for a square well potential. These solutions are next used to construct a two

electron basis set. The two electron trial wavefunction at each �nal state continuum energy

E is written as a linear combination of these basis functions, that now describes a continuum

energy state. A variational method described elsewhere [23] is used to solve for the optimal

coe�cients in the basis set expansion of the trial wavefunction. We neglect exchange and

correlation e�ects outside of the reaction volume.

If only closed-type one-electron orbitals were used to construct two-electron trial

functions, no electrons would be able to escape from the reaction volume, since the wave-

function would be exactly zero everywhere on its surface. Accordingly, we also introduce

\open-type" orbitals as in Ref. [125], de�ned as eigenfunctions of the He

+

Hamiltonian with

nonzero values at r = r

0

. These open-type orbitals are typically chosen to have nonvanishing

derivatives at r = r

0

. In this work, the open orbitals were determined by solving for eigen-

states at speci�ed energies; namely, the energies midway between the levels of the energy

spectrum for the closed-type eigenstates. Each \channel" in our problem is represented by

one closed-type state of He

+

for the \inner" electron, multiplied by each member of the com-

plete set of closed-type basis functions for a given outer electron partial wave, and by two

open-type basis functions for that partial wave as well. In this study, twenty-two closed-type
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Figure 2. Comparison of the energy spectra of the eigenstates of the physical target state

Hamiltonian with the eigenstates of the target state Hamiltonian in a shrunken con�guration

space. The physical target states consist of a Rydberg series and an in�nite set of continuum

states of energy �, whereas only discrete states appear for the spectrum in the shrunken

space. Note the good correspondence in energies for the lowest few states, as these physical

states �t within the shrunken con�guration space. This �gure is taken from Ref. [31].
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basis functions and two open basis functions are included for each channel.

In addressing two electron escape, one might suspect that we need to include prod-

ucts of two open-type orbitals. However, this is not the case. Inclusion of such product type

basis functions would require a two-particle matching scheme with a wavefunction represent-

ing the motion of the two electrons outside of the reaction volume. The determination of an

exact analytical expression for the three-body Coulomb continuum wavefunction remains an

unsolved problem [44]. By selecting product basis functions in which the radial coordinate

of at least one electron is zero on the surface of the reaction volume, we are able to employ

the same one electron matching scheme used for describing single electron escape, provided

we represent the wavefunction outside the reaction volume as a separable expression. In this

outer region, wavefunctions are approximated by a linear combination of Coulomb functions

with unit charge for the outer electron, multiplied by an He

+

eigenstate for the inner elec-

tron, followed by antisymmetrization. The channels included in the present photoionization

calculations are ns�p, np�s, np�d, and nd�p. That is, we include two partial waves for the

initial state and three partial waves for the �nal state. A numerical test showed that f -waves

have a relatively minor e�ect on both the single- and double-photoionization cross sections.

Approximately one thousand total two-electron con�gurations are used to describe the �nal

states reached in single and double photoionization.

Previous applications of eigenchannel R-matrix methods have treated the escape

of a single electron from the reaction volume (regions II and III in Fig. 1). The boundary

conditions imposed by these calculations do not allow for the possibility of direct electron

escape into the double continuum region of con�guration space (region IV in Fig. 1). The

eigenchannel R-matrix method is extended in this study to obtain double photoionization

cross sections for helium, using a point of view similar to that applied by Robicheaux et

al. [126] to the double continuum of H + e

�

+ e

�

. We achieve this by reinterpreting the

meaning of the remaining He

+

bound state electron in our single photoionization treatment,
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despite the fact that we actually impose the same (single-escape) boundary conditions. The

basic idea is to recognize that if the complete set of He

+

closed-type eigenfunctions in the

R-matrix box are used to represent the \inner" electron in a close-coupling expansion, then

those eigenfunctions that lie at positive energies (relative to the double escape threshold)

must physically represent a (discretized) continuum state of He

+

. Therefore, we interpret

all 
ux escaping in such channels with positive energy thresholds as 
ux that contributes

to double photoionization. Similarly, all 
ux escaping in channels at negative energies is in-

terpreted as contributing to single photoionization, even for those negative energy He

+

box

eigenstates which do not coincide with a physical He

+

eigenstate. Physically, this re
ects

our assumption that most of the photon's energy is absorbed by one of the electrons, leaving

the He

+

ion in either a negative energy bound state or a discretized positive energy contin-

uum state. Samson [34] has achieved some success using a model based on this qualitative

picture. We will introduce a frame transformation in the next section as an improvement

for distinguishing between the contributions to single and double photoionization.

One well-known [71] consequence of using a discrete spectrum of positive energy

He

+

\ionization thresholds" is the appearance of pseudoresonances in the double ionization

cross section. These pseudoresonances are an artifact of the arti�cial boundary conditions

imposed on the �nite reaction volume; they have no real physical meaning. It is desired

to average out the e�ects of these pseudoresonances in the double continuum to obtain a

smooth cross section. This can be accomplished by implementing Gailitis [127, 128] and

box averaging techniques (the \box" is another term for the reaction volume). The Gailitis

technique is useful for averaging over resonances near channel thresholds. The technique

is easily implemented in the multichannel quantum defect theory (MQDT) portion of our

calculation: we simply treat a weakly closed ionization channel (with E

i

> E) as though it

is open when solving the MQDT equations for the photoionization cross section. (Although

closed channels are energetically forbidden at larger radial distances, they are included in our
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calculation, as these channels still participate in the short-range physics.) In this analysis,

Gailitis averaging is performed from 2 eV below each He

+

threshold all the way up to

threshold. This automatically removes all or most of the Rydberg resonances converging to

that particular ionization threshold (see Fig. 3). In order to average over box size, the cross

sections are calculated for �ve di�erent box sizes (reaction volume radii) in the range 10-12

atomic units, after which they are simply averaged to obtain the �nal cross sections reported

here. These averaging techniques will be discussed further in the next section.

Calculations of double photoionization cross sections have been performed using the

length, velocity, and acceleration dipole forms. The length form calculations give unreason-

ably high values of double photoionization cross sections for our R-matrix approach, while

the results obtained using the velocity and acceleration forms are stable, consistent with each

other, and in reasonable agreement with existing calculations. The length form weights the

large-r part of the wavefunction the most, which is precisely where our unphysical boundary

conditions probably cause our variational solutions to be the least accurate. Consequently,

the large errors in the length form calculation might have been expected. However, single

ionization calculations using all three dipole forms gave nearly identical results. We only

report our velocity and acceleration results here. The averaged double photoionization cross

sections obtained with these forms are shown in Fig. 4. There is a discrepancy of roughly

20% between the two calculated curves. The e�ects of pseudoresonances are barely visible

in the small irregularities of the cross section pro�les. These irregularities could presumably

be eliminated by averaging over more box sizes, or by applying a convolution technique, as

is discussed in the next section.

Considerable e�ort has been expended, both experimentally [34, 96, 129, 130, 131,

132, 133] and theoretically [33, 36, 37, 39, 116] to determine the ratio R of the single and dou-

ble photoionization cross sections for helium in the intermediate photon energy range. Our

calculated values for the ratio R are compared in Fig. 5 to several existing experimental and
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Figure 3. Helium double photoionization cross sections are shown for the case of Gailitis av-

eraging (heavy line) and no Gailitis averaging (light line). In this analysis, Gailitis averaging

is performed from 2 eV below each channel threshold up to threshold. The results shown in

this �gure were calculated with the velocity form of the dipole operator, and a box size of

12 a.u. was used.
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theoretical values. The curve generated by Samson's simple classical model agrees well with

the available experimental data, even though this model does not account for the symmetry

of the �nal state reached in the photoionization process. The MBPT calculations of Carter

and Kelly [36] and of Hino et al. [39] represent upper and lower limits on the theoretical

values shown in Fig.5. These perturbative treatments of the electron-electron interaction

are expected to have some shortcomings in this relatively low photon energy range. Our

eigenchannel R-matrix results agree more closely with the results of Hino et al., although

the ordering of the velocity and acceleration form curves is reversed in these two sets of

calculations. Pan and Kelly [134] have used another MBPT approach to calculate a maxi-

mum R value of almost 5%, which is somewhat larger than the maximum value obtained in

both of our calculations. Proulx and Shakeshaft's [116] cross section calculations for photon

energies in the range 80-140 eV agree well with our velocity form calculations. They also

used their method to obtain values of the angular asymmetry parameter � that are in good

agreement with experimental measurements, indicating that their adopted analytical form

for the �nal state wavefunction may have some merit. Our results are slightly smaller than

the experimental values shown in Fig. 5. This discrepancy is comparable to our theoretical

\error bar," which we take to be the di�erence between our velocity and acceleration form

calculations.

It may not be obvious why the present approach of imposing arti�cial boundary

conditions at r = r

0

should accurately represent the 
ux leading to double-ionization. In

particular, we initially neglect the wavefunction in region IV of Fig. 1. However, our rein-

terpretation of positive energy partial cross sections allows the inner electron to eventually

escape to in�nity through region IV. By describing nonperturbatively the electron correlation

and exchange e�ects within the reaction volume (region I), we attempt to accurately describe

the initial outward propagation of the electron pair that is induced by the photon absorption.

The electrons are mutually de
ected as they escape to in�nity beyond the reaction zone, and
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this de
ection is not properly described by our approach, but we nevertheless expect the

amount of 
ux leading to double escape will not di�er widely from our calculated values.

However, as we do not accurately describe the physics of the two electron escape beyond

the reaction volume, we cannot expect our current approach to give a realistic description of

other details of the double photoionization process such as the photoelectron distributions

in energy and angle. However, an improved version of the approach discussed in Chapter 4

may be able to accurately provide at least some details of two electron escape processes.

In summary, a new approach was developed to calculate double photoionization

cross sections of helium. We extended the R-matrix method by reinterpreting the meaning

of discrete He

+

states that have positive energy eigenvalues. Gailitis and box averaging

techniques were used to obtain smooth cross sections, minimizing the e�ects of the arti�cial

pseudoresonances. Although a discrepancy in the ratio of double and single photoionization

exists between our calculations and experimental results, this discrepancy was comparable

to the uncertainty in our results. We will return to this problem in Chapter 4.

3.2 Simpli�ed Model of Electron Scattering

In order to better test the accuracy of wave functions obtained with our previous

approach to helium double photoionization, we applied the eigenchannel R-matrix method

to describe electron impact ionization processes, where two electron escape arises from the

arrival of an energetic electron rather than a photon. A simpli�ed model of electron scatter-

ing, called the Temkin-Poet model, was adopted for two reasons: to simplify the numerical

calculations, and to allow a comparison with other highly accurate numerical results obtained

with the convergent close-coupling (CCC) approach. Since the CCC method has been suc-

cessfully applied to many di�erent systems (see section 2.3), comparison of this method with

our R-matrix calculations provided a more conclusive test of the accuracy of our method

than was possible for the case of helium double photoionization. As illustrated in Fig. 5,

there was no consensus in 1994 as to the proper values of the ratio of double and single
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Figure 4. The averaged double photoionization cross section calculated for helium is shown

as a function of photon energy. The solid curve represents calculations performed with

the velocity dipole form, while the dotted curve represents calculations performed with the

acceleration dipole form. This �gure is taken from Ref. [28].
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Figure 5. The ratio of double and single photoionization cross sections of helium is shown

versus the photon energy (status as of 1994). The individual symbols represent experimental

measurements, while the lines represent theoretical calculations. A plot of this ratio for more

recent experimental and theoretical values is given in Fig. 16. This �gure is taken from Ref.

[28].
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photoionization for helium in the intermediate photon energy range. Consequently, we were

unable to clearly evaluate the accuracy of our method when applied to this particular case of

two electron escape. A direct evaluation of our previous results was further complicated by

the discrepancy between calculations using the various forms for the dipole operator. Since

the �nal state dynamics in electron impact ionization are very similar to those in helium dou-

ble photoionization, an application of our method to describe electron scattering provided

an equally challenging but more informative test.

3.2.1 Discussion of the Temkin-Poet Model Ionization of hydrogen by

electron impact represents one of the simplest two electron escape processes. Accurate

calculations of ionization cross sections for this process have only recently been achieved

[27]. Earlier attempts to address this problem included the adoption of a simpli�ed model of

electron scattering proposed by Temkin in which all non-zero orbital angular momenta are

neglected [135]. That is, the hydrogen atom is treated as though it only has s states, and the

total angular momentum of the electron-hydrogen system is set to zero. This model was later

studied in much greater detail by Poet [136, 137]. We will denote this model as the Temkin-

Poet (TP) model. Although the application of this oversimpli�ed model to the real e-H

system is quite limited, it does provide a nontrivial test of the accuracy of double continuum

wave functions. As an example of its limited applicability, the TP model generates incorrect

behavior in the ionization cross section near threshold. A simpli�ed model that provides

a more realistic description of threshold behavior was introduced by Peterkop. Peterkop's

model [87], which replaces 1=r

12

by 1=(r

1

+ r

2

), does generate the correct threshold law

(Wannier exponent) for double escape [88]. However, we do not consider the more realistic

Peterkop model in this study, as accurate results are only currently available for comparison

with the TP model.

The Schr�odinger equation for the TP model can be solved \exactly". Its replace-

ment of the electron-electron interaction term by 1/r

>

(the �rst term in the usual multipole
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expansion of 1=r

12

) leads to a separable partial di�erential equation. However, the boundary

conditions are not separable. Poet used an interpolation technique to obtain bound state ex-

citation cross sections. Calculations of the ionization cross section for the TP model is a non-

trivial exercise, as the presence of nonseparable boundary conditions requires numerical solu-

tion of an integral equation. Callaway and Oza [138] obtained a rough estimate of the ioniza-

tion cross section for this model by combining information about the total cross section (given

by the optical theorem) with calculated excitation cross sections for the lowest three bound

states. Since accurate bound state excitation cross sections are known for the TP model,

this model is often used to test other methods [53, 60, 76, 82, 126, 139, 140, 141, 142, 143].

3.2.2 R-matrix Application to Electron Scattering We now apply our R-

matrix method to address electron scattering, and compare our results with those obtained

using the CCC approach [29]. The CCC method has been previously applied to the TP

model for e-H scattering [142]. Extensive data has been tabulated for this case in Ref.

[144]. In addition to addressing e-H scattering in the TP model, we also investigate e-He

+

scattering for this simpli�ed model. To the best of our knowledge, results for the TP model

of e-He

+

scattering have not previously been reported. Yet the TP model should be even

simpler to apply to e-He

+

scattering than to e-H scattering, as the dominant electron-electron

correlations are more spatially con�ned for this case. Nonetheless, the e-He

+

model provides

a nontrivial test case for describing two electron escape. Also, the e�ect of pseudoresonances

are more prominent in the e-He

+

system due to the presence of the long-range Coulomb

attraction.

To explicitly describe the matching scheme adopted, a particular solution of the

spatial part of the two-electron wavefunction can be expressed as

 

�

= A

X

i

�

i

(r

<

)F

i�

(r

>

); (22)
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with a corresponding normal derivative

@ 

�

@r

>

= A

X

i

�

i

(r

<

)F

0

i�

(r

>

): (23)

Here � represents an index that distinguishes di�erent independent solutions at the speci-

�ed energy E, A is the antisymmetrization operator, i is a channel index, and r

<

and r

>

represent the radial distances of the \inner" and \outer" electron from the nucleus. (Note

that the antisymmetry operator acts on the total wavefunction, with the form of the spa-

tial wavefunction after antisymmetrization given by Eq. 81. For the S = 0 singlet case

considered here, the spatial wavefunction is symmetric.) Analogous to the case of double

photoionization of helium, the spatial part of the wavefunction is represented as a linear

combination of two-electron orbitals:

 = A

X

nn

0

C

nn

0

�

ns

(r

1

)�

n

0

s

(r

2

): (24)

In our formulation, one summation (over n) includes only closed-type orbitals (representing

the \inner" electron), while the other summation (over n

0

) includes two open-type orbitals in

addition to the same number of closed-type orbitals. That is, our two-electron basis consists

of con�gurations that are products of the closed-closed or closed-open type. Therefore, the

\inner" electron orbital can always be factored out, reducing Eq. 24 to the form of Eq. 22.

Consequently, the matching of the two-electron wave function across the reaction volume is

reduced to a matching of the \outer" electron radial wave function only. Antisymmetrization

of our wavefunction (see Fig. 1) allows the matching to be imposed either at r

1

= r

0

as a

function of r

2

(r

1

representing the \outer" electron), or at r

2

= r

0

as a function of r

1

(r

2

representing the \outer" electron). The values of F

i�

(r

>

) and its derivative are numerically

determined inside the reaction volume. Outside the reaction volume, the exact form of

F

i�

(r

>

) depends on the nature of the scattering target, or more precisely, on the �eld of the

e�ective charge that the \outer" electron experiences as it leaves the reaction volume. The

general asymptotic form for the spatial part of the energy-normalized wave function with an
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electron in incoming channel i

0

is given by

 

i

0

= A

X

i

�

i

(r

<

)

1

p

2�v

i

�

f

+

i

(r

>

)S

ii

0

� f

�

i

(r

>

)�

ii

0

�

; (25)

where f

�

i

are the outgoing and incoming wave solutions for the radial Schr�odinger equation of

the outer electron in channel i. The factor 1=

p

2�v

i

, where v

i

is the speed of the outermost

electron, is required to ensure that jS

ii

0

(E)j

2

represents the ratio of the outgoing radial

probability 
ux in channel i to incoming radial probability 
ux in channel i

0

[23]. For e-He

+

scattering at energies su�ciently high, the \outer" electron can be approximated by a linear

combination of unit charge Coulomb functions, as in helium double photoionization:

 

i

0

= A

N

X

i=1

�

i

(r

<

)[f

i

(r

>

)�

ii

0

� g

i

(r

>

)K

ii

0

]; r

>

> r

0

; (26)

where f

i

(r

>

) and g

i

(r

>

) are the regular and irregular Coulomb functions, and K

ii

0

is the

reaction matrix. For the case of e-H scattering in the TP model, however, the \outer"

electron does not experience a Coulomb charge. Therefore, the radial solution in each channel

is represented by a linear combination of spherical Bessel functions. The coe�cients of this

linear combination (and therefore the scattering matrix) can then be obtained by matching

the wave functions and normal derivatives at the surface of the reaction volume,

There are several other di�erences in e-H and e-He

+

scattering. The main di�er-

ence is the deeper Coulombic core of the He

+

target. Consequently, the maximum e-He

+

ionization cross section is more than a factor of ten smaller than the e-H ionization cross

section. Since the hydrogen bound wave functions extend roughly twice as far in space as

the He

+

bound wave functions, the reaction volume used for e-H scattering is roughly twice

as large as that used for e-He

+

scattering. Consequently, for a given r

0

and an identical

basis set size, convergence of the basis set begins to deteriorate at a lower energy for e-H

scattering. However, the maximum cross section for e-H scattering occurs at a lower energy.

Due to the absence of long-range interactions in the TP model of e-H scattering, multichan-

nel quantum defect theory (MQDT) is not needed, as weakly-closed channels generate no
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Rydberg manifolds. For the actual case of e-H scattering (in contrast to the TP model),

a long-range dipole interaction between the outgoing electron and the degenerate hydrogen

(bound state) core is also present. MQDT can be implemented to treat this case and obtain

bound state excitation cross sections e�ciently [145]. The existence of a long-range Coulomb

potential between the outgoing electron and the core motivates our use of MQDT for the

case of e-He

+

scattering. The physical scattering matrix S

ij

can be obtained from Eqs. 17-22

in Ref. [146]. The cross section is given by

�

j!i

=

�

k

2

j

2S + 1

4

jS

ij

� �

ij

j

2

; (27)

where the indices j and i refer to the incoming and outgoing electron channel states, k

j

=

p

2(E �E

j

) denotes the asymptotic wave number of the incoming electron, and S denotes

the total spin of the system. (Note that we have ignored the Coulomb phase shift here for

the case of e-He

+

elastic scattering. This was done for the present purposes of comparison.)

3.2.3 Averaging Techniques In order to calculate physical cross sections us-

ing the R-matrix approach, a method must be adopted to express the physical scattering

matrix, with incoming and outgoing electron channels corresponding to the true physical hy-

drogenic eigenstates, in terms of our calculated \box" scattering matrix, which has incoming

and outgoing electron channels corresponding to the \box" hydrogenic eigenstates (some-

times referred to as \pseudostates"). Fig. 6 shows the energies of the lowest closed-type box

states of He

+

as functions of box size. These discrete states (which represent the \inner"

electron) can have both positive and negative energies, since the radial wave functions are

forced to be zero at the surface of the reaction volume instead of at in�nity. An energy

spectrum of these box states for a single box size is shown in Fig. 2. Imposing boundary

conditions at the box radius leads to box state energies that are dependent on the box size

(the size of the reaction volume), as shown in Fig. 6.

In the previous application to helium photoionization, the double escape cross sec-

tions calculated with the eigenchannel R-matrix approach were obtained simply by summing
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Figure 6. Energy dependence of He

+

box states as a function of box size (size of the reaction

volume). This �gure is taken from Ref. [29].

50 100 150 200
Electron Energy (eV)

0.0

0.5

1.0

1.5

2.0

2.5

Io
ni

za
tio

n 
C

ro
ss

 S
ec

tio
n 

(u
ni

ts
 o

f 
πa

02 x1
0-3

)

50 100 150 200
Electron Energy (eV)

0.0

0.5

1.0

1.5

2.0

2.5

Io
ni

za
tio

n 
C

ro
ss

 S
ec

tio
n 

(u
ni

ts
 o

f 
πa

02 x1
0-3

)

50 100 150 200
Electron Energy (eV)

0.0

0.5

1.0

1.5

2.0

2.5
Io

ni
za

tio
n 

C
ro

ss
 S

ec
tio

n 
(u

ni
ts

 o
f 

πa
02 x1

0-3
)

No Box Averaging
(Single Box Size 15 a.u.)

Average Over 3 Box Sizes
(14, 15, 16 a.u.)

Average Over 5 Box Sizes
(14,14.5,15,15.5,16 a.u.)

He
+

He
+

He
+

(a) (b) (c)

Figure 7. Singlet ionization cross sections for the Temkin-Poet model of electron-He

+

scat-

tering using (a) a single box size, (b) an average over three box sizes, and (c) an average

over �ve box sizes. The frame transformation was also used to obtain these results. This

�gure is taken from Ref. [29].
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over all discrete states with a positive energy. That is, we considered a box channel with

an energy just above threshold as contributing entirely to ionization and a channel with an

energy just below threshold as contributing entirely to bound state excitation. However,

each box channel actually possesses both bound and continuum properties. Since the ener-

gies of the box states depend on the size of the reaction volume, the number of ionization

channels included changes discontinuously with box size. However, errors associated with

our discretization of the continuum should cancel out if the �nal spectra are averaged over

a proper range of box sizes.

To implement box averaging, cross sections are generated with several di�erent box

sizes, then simply averaged to obtain the �nal cross section. This averaging procedure helps

to eliminate arti�cial pseudoresonances that would otherwise appear in the continuum, and

produces a much smoother and more realistic ionization cross section. The pseudoresonances

that appear in the ionization spectrum have no physical signi�cance. Rather, they are

simply an artifact of our discretized continuum. These pseudoresonances are essentially due

to probability 
ux entering the series of Rydberg states attached to each box state in the

continuum, occurring near the energies of these box states (see Fig. 3). The range of box

sizes over which to average is normally chosen such that a particular box state for the smallest

box size has approximately the same energy as the next higher state (next higher principal

quantum number) for the largest box size (see Fig. 6). This required range �r of box sizes

actually depends on the energy range, as higher states will have a larger energy spacing

@E=@n for a �xed box size (see Figs. 2 and 6). The range �r also depends on the average

box size for which the calculations are performed. For example, with larger box sizes, the

rate of the energy shift with box size @E=@r

0

decreases more slowly for any particular state

(see Fig. 6). Since the higher energy levels can be approximated by those of a particle in a

one-dimensional square well, the box averaging range �r will be roughly proportional to the

inverse of the square root of the energy of the state being targeted for the averaging. This
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result follows from performing a �rst order Taylor expansion of the energy:
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where E(n

0

; r

0

) is the energy of the box state with principal quantum number n

0

and box size

r

0

, and E(n

1

; r

1

) is the energy of the box state with principal quantum number n

1

= n

0

+1

and box size r

1

. Applying the criterion of equal energies and solving for �r = r

1

� r

0

gives

the condition for the required range of box sizes:

�r '

�

�

@r

0

@E

��

@E

@n

0

�

: (29)

For a one-dimensional box of width r

0

, E(n

0

; r

0

) = C(n

2

0

=r

2

0

) is the energy of the nth state,

where C is a constant of proportionality. Applying Eq. 29 for this case, �r is found to be

proportional to the inverse square root of the targeted energy E. By including a su�cient

number of box sizes and averaging over the proper range, a smooth and reliable cross section

can be obtained.

Other competing factors must be considered to determine the optimal set of box

sizes over which to average. First of all, the box needs to be large enough to include signi�cant

electron-electron correlations. In practice, this can be tested by varying the box size and

observing the stability and convergence of the cross sections. At the same time, convergence

with respect to basis set size will deteriorate as the box size is increased. Consequently, the

box size must be kept small enough to give accurate cross sections over the desired projectile

energy range. Again, this can in practice be easily tested by varying the basis set size until

convergence is achieved. The energy range we have targeted here to obtain the most accurate

cross sections is near the maximum of the ionization cross section. The range �r of box

sizes was then determined by selecting a box state with this energy and applying the criteria

used to obtain Eq. 29. The e�ect of box averaging is illustrated in Fig. 7. The ionization

cross sections are shown for a single box size, an average over three box sizes, and an average

over �ve box sizes. The e�ect of the pseudoresonances is hardly noticeable for the average
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over �ve box sizes. By averaging over a larger number of box sizes, an even smoother cross

section can be obtained.

For e-He

+

scattering, a Gailitis averaging technique is also performed in order to

remove the in�nite number of Rydberg pseudoresonances near each ionization threshold (see

Fig. 3). This technique was used previously to calculate helium double photoionization cross

sections. The Rydberg series of pseudoresonances can be interpreted as a set of standing

waves. Each such wave is a superposition of outgoing 
ux and incoming 
ux that has been

re
ected by a Coulomb barrier in a closed channel far beyond the surface of the reaction

volume. The main idea of Gailitis averaging is to treat the closed channels (channels for

which E

i

> E) lying just below threshold (for our calculations, this procedure was applied

to channels from 2 eV below threshold up to threshold) as being open in the multichannel

quantum defect theory (MQDT) part of the calculation. As a result, in this energy region

there is no probability 
ux re
ected (unphysically) inward. Therefore, the Rydberg series of

pseudoresonances is eliminated.

In addition to eliminating pseudoresonances, the box averaging technique roughly

averages out errors associated with treating box states as contributing entirely to ionization

or to bound state excitation. However, we will now develop an improvement which gives

the ionization cross sections to reasonably good accuracy even before any box averaging is

performed. This is accomplished with a frame transformation, which is described below.

3.2.4 Frame Transformation A projection technique which relates pseu-

dostate excitation cross sections to the ionization cross section was originally introduced

by Gallaher [147], and later adopted by Callaway and Oza [51], and by Bray and Stelbovics

[27]. Let jni represent a physical hydrogenic bound state and jni represent a box hydrogenic

state. Gallaher adopted the following formula to calculate the ionization cross section:

�

I

(E) =

X

n

�

1�

X

n

jhnjnij

2

�

�

n

(E); (30)
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where �

n

are box state excitation cross sections and �

I

is the desired \true" ionization cross

section. The quantity in large parentheses in the above formula can be interpreted as the

di�erence between the total cross section and the bound state excitation contributions to

the cross section. Alternatively, this formula can be interpreted as the fraction of the n-th

box state which is composed of true continuum wave functions.

The frame transformation method presented here is somewhat similar to Galla-

her's method. However, we directly transform the box state scattering matrix amplitudes

instead of the box state excitation cross sections. By transforming amplitudes rather than

probabilities, our approach is closer in spirit to frame transformation methods, which have

been successfully applied to many problems [146, 148, 149]. We �rst introduce an analog of

Gallaher's technique, and then proceed to develop an alternate method to calculate ioniza-

tion cross sections. We start by de�ning a relationship between the physical (bound-bound)

scattering matrix S

phys

nn

0

and the box scattering matrix S

box

nn

0

:

S

phys

nn

0

=

X

nn

0

hnjniS

box

nn

0

hn

0

jn

0

i: (31)

Here n and n

0

denote physical bound states of the target, whereas n and n

0

represent the

closed-type box states representing the \inner" electron in the scattering process.

We will only investigate electron scattering from the ground state (n

0

= 1) of the

target here. Since the radial wavefunctions of the lowest two physical states (the 1s and 2s

states) �t inside our reaction volume, the scattering matrix elements of interest for calculating

the desired bound state excitation cross sections are given by

S

phys

n1

=

X

n

hnjniS

box

n1

: (32)

Here we have used the fact that the closed-type box states form a complete orthonormal

basis since they satisfy the same Schr�odinger equation and boundary conditions. The elastic

scattering cross section and the inelastic cross section �

1s!2s

can be calculated directly from

Eq. 27, as the matrix elements S

11

and S

21

are nearly identical to S

11

and S

21

. Ionization
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cross sections and excitation cross sections for higher bound states can be calculated by

using the frame transformation technique that is described below. Although our physical

S-matrix is not exactly unitary (the largest error in unitarity that we have observed is about

0.2%), deviations from unitarity do not signi�cantly a�ect our results. Assuming unitarity,

the ionization cross section is given by

�

I

=

�

k

2

1

2S + 1

4

�

1�

1

X

n=1

jS

phys

1n

j

2

�

(33)
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2
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2S + 1

4
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1

X

n=1
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n

max

X

n=1

hnjniS

box

1n

j

2

�

:

Obviously, this in�nite sum over n can not be explicitly evaluated numerically, but rather

must be truncated at some �nite n. Numerical tests have shown that the sum over n

converges slowly, thus requiring a relatively large number of terms to approach a converged

answer.

Rather than pursuing the approach based on Eq. 33, we develop an alternative

expression for the ionization cross section by introducing the physical hydrogenic continuum

states (Coulomb functions), which are energy normalized over the in�nite radial domain

0 � r < 1. We extend the frame transformation (Eq. 31) to relate continuum elements of

the physical scattering matrix to our box scattering matrix elements:

S

phys

�1

=

X

n

h�jniS

box

n1

; (34)

where j�i represents a physical energy-normalized continuum state at energy � for the inner

hydrogenic electron. The ionization cross section is then given by
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The transformation factor h�jni determines the fraction of the box state n which will con-

tribute to the ionization cross section at the continuum energy �. A plot of jh�jnij

2

as a
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function of the inner electron continuum energy � is shown in Fig. 8 for n=5 and n=9 (the

n=9 curve has been multiplied by a factor of two so it can be seen on the same graph). These

curves were generated for e-He

+

scattering with a box size of r

0

= 16:5 atomic units. The

pro�le of the plot is similar to the familiar function [sin(x)=x]

2

. In the limit of an in�nite

reaction volume, the transformation elements approach Dirac delta functions, in which case

the physical and box cross sections become identical. For the size of the reaction volume

shown, the n = 5 state has an energy just above the ionization threshold. The maximum

of the frame transformation factor occurs at the box state energy of n. In our previous

formulation (and application to helium photoionization), this channel would be interpreted

as contributing entirely to ionization. However, from Fig. 8, one observes that a signi�cant

portion of the 
ux in this channel (nearly half) will contribute to the excitation cross sections

of high bound states. The zeros of the transformation factor occur precisely at the energies

of the other box states, owing to their orthogonality. Apart from a normalization factor, the

closed-type box states are proportional (for r < r

0

) to the physical continuum states, but

only at those discrete energies for which the continuum wave function happens to vanish at

the surface of the reaction volume.

In practice, the e�ciency of our method for calculating the frame transformation

matrix is greatly enhanced by employing the identity

hu

n

ju

�

i =

W (u

�

; u

n

)j

r

0

2(�� �

n

)

: (36)

Here u

n

represents the box state radial wave function multiplied by r, u

�

represents the

continuum hydrogenic radial wave function multiplied by r, W (u

�

; u

n

)j

r

0

is the radial Wron-

skian evaluated at r = r

0

, � is the energy of the continuum state, and �

n

is the energy of

the box state. This identity is easily derived by manipulating the box and continuum state

radial Schr�odinger equations. The greatest changes observed in our cross sections when the

frame transformation technique is implemented (in comparison to our previous method) oc-

cur for box sizes in which the energy of one box state is very near threshold. For this case,
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Figure 8. Plot of the square of the transformation factor used in the projection technique

as a function of the continuum wave energy. The dashed line corresponds to a box state of

n = 5, while the solid line corresponds to a box state of n = 9. The n = 9 state has been

multiplied by a factor of 2 so it can be seen more easily on the same graph. This �gure is

taken from Ref. [29].
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the frame transformation gives roughly an equal contribution to the bound state excitation

and ionization cross sections for that particular near-threshold channel. An example of this

situation is shown in Fig. 9(a), where the ionization cross section for the TP model of

electron-He

+

is plotted with and without a frame transformation for box sizes of 16.5 and

17 atomic units. For a box size of 16.5 atomic units, a box state lies just above threshold.

If no frame transformation is implemented, this channel would be treated as contributing

entirely to the ionization cross section, and as a result the ionization cross section would be

overestimated. For a box size of 17 atomic units, the box state now lies just below threshold.

Since this channel would be treated as contributing entirely to the bound state excitation

cross section, the ionization cross section would be underestimated. When the frame trans-

formation is implemented, the proper ionization and bound state excitation contributions

are projected out, giving a nearly identical ionization cross section pro�le for both box sizes.

Use of a frame transformation to calculate results which are independent of box size (along

with a convolution technique to be described shortly) provides an e�cient alternative to

box averaging for obtaining stable cross sections. This technique signi�cantly reduces the

number of computations required, since results can now be obtained by simply performing

an R-matrix calculation with a single box size.

An energy convolution technique has been introduced to improve the smoothness

of cross sections shown in Fig. 9(a). A typical ionization cross section pro�le for a single

box size before the convolution approach is performed is illustrated in Fig. 7(a), with the

large oscillations re
ecting the presence of pseudoresonances. The convolution function used

to obtain the smooth pro�les in Fig. 9(a) was a Gaussian function of variable width. We

allowed the width of the Gaussian to scale as dE=dn, since this factor describes the energy

spacing between pseudoresonances (for our approximation of a particle in a one-dimensional

square well, dE=dn /

p

E). This approach forces a Gaussian of zero width to be used at

threshold, so that the convolved ionization cross section is ensured to vanish at threshold
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Figure 9. Illustration of the frame transformation and convolution methods to obtain reliable

cross sections. Singlet ionization cross sections for the Temkin-Poet model of electron-He

+

scattering (a) using box sizes of 16.5 and 17 a.u.: the dashed and long-dashed lines represent

the cross sections obtained without using a frame transformation, while the solid and dotted

lines represent the cross sections obtained when a frame transformation is implemented, and

(b) using an average of nine box sizes in the range of 14 to 16 atomic units, shown by the

dotted line, and a convolution of a single box size of 15 a.u., shown by the solid line. These

�gures are taken from Ref. [29].
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(in contrast to a �xed-width energy convolution). Fig. 9(b) shows a comparison of box

averaging of ionization cross sections over nine box sizes from 14 to 16 a.u., and a frame

transformation and convolution applied to a single box size of 15 a.u. (at the midpoint

of the range of box averaging). The frame transformation/convolution approach generates

essentially the same magnitude of the ionization cross section as obtained by box averaging,

but with a much smoother pro�le. Furthermore, the number of required calculations is

reduced by a factor of nine (the number of box sizes). Although the convolution approach

has been useful in obtaining the results presented here, this technique should be used with

prudence, since both physical and unphysical resonances will be broadened or else eliminated

altogether. This is not a concern here, as no physical resonances occur above the threshold.

More generally, double continuum cross sections obtained with the R-matrix technique may

contain both physical and unphysical resonances. For example, double photoionization of

a heavier atom such as Ar is known to produce resonances embedded in double continua.

Box averaging should be used rather than the convolution approach for such cases in order

to ensure that only arti�cial pseudoresonances are eliminated, with the \true" resonances

remaining una�ected.

3.2.5 Application to e-H and e-He

+

Scattering In the current study, up

to 46 closed and two open orbitals per channel have been included in an R-matrix calculation

of e-H scattering within the TP model. Fig. 10 shows a comparison of the singlet cross

sections obtained by the CCC approach and by the eigenchannel R-matrix method for both

the elastic and inelastic 1s�2s cross sections. The two methods agree to within 3% for these

cross sections. The circles in the �gure denote \exact" solutions of the TP model which were

calculated numerically [138, 141]. The energy range shown for the incoming electron is

10-50 eV for the CCC approach, while results from the ionization threshold (13.60 eV) to

50 eV are shown for the R-matrix approach. A basis set of 30 Sturmian functions was

used to generate the CCC results. The R-matrix results were obtained by averaging over
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�ve di�erent box sizes from 24 to 28 atomic units. Although this averaging procedure did

not signi�cantly change the results obtained for bound state excitation cross sections, it is

required to eliminate arti�cial pseudoresonances and to obtain a smooth ionization cross

section. The frame transformation technique described earlier is not required to generate

accurate elastic and 1s� 2s inelastic cross sections, as the reaction volume is large enough

to contain the physical 1s and 2s wave functions of hydrogen.

Fig. 11 shows a comparison of the elastic and 1s�2s inelastic cross sections for the

case of singlet e-He

+

scattering in the TPmodel. A basis set size of 30 Sturmian functions was

again used to generate the CCC results. Up to 34 closed and two open orbitals per channel

were used to generate the R-matrix results. The R-matrix cross section was averaged over

nine di�erent box sizes ranging from 14 to 16 atomic units. Again, the two methods agree

to within 3% over most of the energy range.

Figs. 12 and 13 show the TP model singlet ionization cross sections for electron

scattering of both hydrogen and He

+

targets. The same basis set sizes and averaging tech-

nique used to obtain the bound state excitation cross sections were adopted to obtain the

ionization cross sections. In addition, the frame transformation method, as given by Eq.

35, was used to generate the R-matrix results, and a convolution of the box averaged cross

section was performed to obtain a smooth pro�le. The circles in Fig. 12 no longer represent

the \exact" solutions of the TP model, but rather a complicated interpolation calculated

by Callaway and Oza [138]. These interpolated values agree closely with the CCC results.

The agreement between CCC and the R-matrix approach is also fairly good, especially for

incoming electron energies larger than 30 eV, where the agreement is better than 10%.

However, the R-matrix results are up to 70% smaller than those generated with the CCC

approach in the lowest energy range. We have less con�dence in our R-matrix treatment at

lower energies, since our approximation of neglecting electron-electron correlations outside

the reaction volume is expected to break down in this energy range. The CCC approach is
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Figure 10. Singlet elastic and inelastic 1s � 2s cross sections for the Temkin-Poet model

of electron-hydrogen scattering. The values for the exact results, denoted by open circles,

are taken from references [138, 141]. The dashed line represents calculations performed with

the CCC approach, while the solid line represents calculations performed with the R-matrix

technique. These �gures are taken from Ref. [29].
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Figure 11. Singlet elastic and inelastic 1s� 2s cross sections for the Temkin-Poet model of

electron-He

+

scattering. The dashed line represents calculations performed with the CCC

approach, while the solid line represents calculations performed with the R-matrix technique.

These �gures are taken from Ref. [29].
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Figure 12. Singlet ionization cross sections for the Temkin-Poet model of electron-hydrogen

scattering. The interpolated values, as calculated by Callaway and Oza [138] are denoted

by open circles. The dashed line represents calculations performed with the CCC approach,

while the solid line represents calculations performed with the R-matrix technique. This

�gure is taken from Ref. [29].
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Figure 13. Singlet ionization cross sections for the Temkin-Poet model of electron-He

+

scattering. The dashed line represents calculations performed with the CCC approach, while

the solid line represents calculations performed with the R-matrix technique. This �gure is

taken from Ref. [29].
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also not expected to predict accurate ionization cross sections at a few eV above threshold.

Application of this method to the real case of e-H scattering from threshold to 500 eV gave

results which were up to 30% lower than the experimental values in the threshold region up

to 4 eV [27]. More accurate studies of the ionization cross sections for low energies have

been discussed in sections 2.3 and 2.4.

Fig. 13 also shows fairly good agreement between the results calculated for e-He

+

ionization in the TP model with the CCC and the R-matrix method over most of the energy

range. As with the case for e-H scattering, the R-matrix method signi�cantly underestimates

the cross section in the energy range just above threshold. Presumably, better agreement

could be achieved at lower energies if a larger reaction volume size was used for the R-

matrix method, as the electron-electron correlation e�ects would then be included over a

much greater distance. Exploratory attempts to signi�cantly increase the reaction volume

size indicated that this appears to be the case, although the use of a much larger basis set

size led to numerical instabilities which did not permit a smooth cross section to be obtained

over a very large energy range.

Although the TP model greatly simpli�es the calculations required to obtain elec-

tron scattering cross sections, the R-matrix approach described here can be applied to more

complicated processes, such as the real case of e-H scattering. One reason for adopting the

TP model was to reduce the required amount of calculation. In this study, we required

roughly a couple of hours on a DEC 5000/240 workstation to obtain cross sections for a

single box size. To apply this R-matrix technique to real electron scattering processes, the

total number of two-electron orbitals needs to be increased by roughly a factor of �ve or

ten for each total orbital angular momentum of the system. Although the number of calcu-

lations required greatly increases due to a larger number of required orbital con�gurations,

the R-matrix technique should be capable of generating accurate cross sections for this case.

Furthermore, a signi�cant reduction in required calculations can be accomplished if reliable
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results are generated with a frame transformation/convolution approach for a single box size

rather than a box averaging technique.

By exploring a simpli�ed model of electron scattering, many of the advantages

and limitations of both the CCC approach and the eigenchannel R-matrix technique have

become apparent. One of the major problems encountered in extending the eigenchannel R-

matrix technique to double continuum processes involves our inability to obtain well-behaved

antisymmetric solutions outside the reaction volume in the double continuum region (region

IV of Fig. 1). This asymmetry can be seen most clearly in plots of the calculated partial

ionization cross section versus the \inner" electron energy �. If antisymmetry was strictly

enforced, the partial cross section must be symmetric about the midpoint of the channel

energy, since there would be no way of distinguishing between the channel energy �

i

of one

electron, and the energy E � �

i

of the other electron, where E is the total energy of the

system. However, this symmetry is not exhibited by our R-matrix or CCC results.

Neither method is able to provide accurate cross sections at low energies. However,

the CCC approach is able to predict better results near threshold. This re
ects the limitation

of our R-matrix approach to adequately treat electron-electron correlation e�ects outside

the reaction volume. Approximations in our current approach also appear to limit accurate

calculations to total cross sections, whereas the CCC method has been used successfully to

generate accurate di�erential cross sections. The limitations associated with basis set size

are more apparent for our R-matrix method, as the results shown here are for a smaller

energy range than has been previously reported in the CCC calculations.

A simpli�ed model of electron scattering was adopted here in order to compare

ionization cross sections obtained with an eigenchannel R-matrix method and the CCC

approach. The singlet cross sections for e-H scattering have been explored for an energy range

from threshold up to 50 eV, while e-He

+

singlet scattering cross sections have been calculated

for an energy range from threshold up to 200 eV. The results obtained by the two di�erent
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methods agree well over most of the energy range considered here. However, our R-matrix

calculations are found to underestimate the cross section for energies just above threshold.

This discrepancy at low energies indicates that our approximation to neglect the electron-

electron correlations outside our reaction volume is not adequate for describing the two

electron escape process for this energy range. Although the error associated with describing

electron impact ionization processes appears to be smaller than the error encountered in

describing helium double photoionization, the magnitude of the error associated with our

present approach may be too large to resolve the discrepancy between the experimental and

theoretical values of helium photoionization shown in Fig. 5. Nevertheless, the agreement

with the CCC approach gives us con�dence that the eigenchannel R-matrix technique can

describe two-electron escape processes in the intermediate energy region, where the maximum

ionization cross section occurs, with an error of about 10-15%.



CHAPTER 4

FINITE ELEMENTS: A NEW APPROACH

As has been shown in the previous chapter, an extension of the eigenchannel R-

matrix method achieved some success in treating double escape processes. Although this

approach seems capable of describing two electron escape processes accurately, some prob-

lems arose in its application to helium double photoionization. A discrepancy between the

various forms used in calculating dipole matrix elements indicated inaccuracies in the initial

and/or �nal state wave functions. In particular, the discrepancy between the velocity and

acceleration forms was roughly 20% (see Fig. 4), and the length form gave results which were

nearly an order of magnitude larger than the results obtained for other forms. Interestingly,

the convergent close-coupling method of Kheifets and Bray [58] gave unreasonable results

in the length form, much like our R-matrix calculations. However, the hyperspherical close-

coupling method of Tang and Shimamura [62] was able to obtain good agreement between

length and acceleration forms. In an e�ort to reduce the discrepancy between the various

dipole forms, we have combined an eigenchannel R-matrix approach with a �nite element

method to treat two electron photoejection.

4.1 Method of Finite Elements

The eigenchannel R-matrix method (Chapter 2) and its application to helium dou-

ble photoionization and electron impact ionization (Chapter 3) have been previously dis-

cussed. The major di�erence between the current approach and our previous application

involves our choice for the variational basis set. Instead of forming a two electron global

basis set consisting of products of one electron hydrogenic orbitals, we adopt a local �nite

element basis set for the present study. Our expectation was that the �nite element method
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(or other local basis set methods, e.g., B-splines) should be able to better represent the

initial and �nal state wave functions, thereby reducing the discrepancy among the di�erent

dipole forms. The suitability of a �nite element approach for calculating accurate bound

state wave functions has been previously shown [150, 151]. This method has been used to

calculate accurate bound state excitation cross sections in elastic scattering [152]. A similar

B-spline local basis set has been combined recently with R-matrix theory to address electron

scattering of hydrogen [153]. In this work, we report the �rst application of a �nite element

basis set to two electron escape processes. The �nite element set used in our approach con-

sists of a set of six �fth order Hermite interpolating polynomials that are shown in Fig. 14

and described elsewhere [152, 154].

In our original approach, we solved for the radial part of the one-electron hydrogenic

orbitals �

k

(r) subject to \box" boundary conditions, that is, boundary conditions imposed at

the surface of the reaction volume. Orbitals that vanished at the outer radius of the R-matrix

box were referred to as \closed" orbitals, while \open" orbitals referred to orbitals which

were nonzero at the box radius. In our more recent approach, we expand these hydrogenic

orbitals with a �nite element basis set:

�

k

(r) =

N

X

n=1

6

X

i=1

C

n

i

u

i

(x

n

); (37)

where n denotes the sector number, and i denotes one of the six Hermite interpolating

polynomials. These six polynomials are de�ned by enforcing a total of six \boundary"

conditions at three points within a sector, namely, the polynomial value and its �rst derivative

at the two endpoints and the center of the sector. Each of the six polynomials will have

only one nonzero boundary condition, with this boundary condition chosen to be unity (see

Fig. 14). Also, u

i

(x

n

) is de�ned to be nonzero only in sector n, and x

n

is only de�ned

over the interval [-1,1]. The transformation to the \physical sector" [r

i

; r

i+1

] for a value r

(r

i

< r < r

i+1

) is then given by

r = a

i

x

i

+ b

i

; (38)
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where

a

i

=

r

i+1

� r

i

2

; b

i

=

r

i+1

+ r

i

2

: (39)

Although there appears to be 6N independent coe�cients in Eq. 37, by enforcing boundary

conditions at the origin and the box radius r

0

, and also by imposing the constraint of a

continuous wave function and �rst derivative across each sector boundary, the number of

independent coe�cients is reduced to 4N .

As in our earlier R-matrix calculations, a two-electron wave function is formed by

taking products of one electron orbitals:
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where A is the antisymmetrization operator (see Appendix B for further details), and

Y

LM

l

1

l

2

(r̂

1

; r̂

2

) is a coupled spherical harmonic. Our two dimensional sectors are chosen to

be rectangular, so that u

i

(x

n

) and u

j

(y

m

) are of similar form. Although there are 36 coe�-

cients for each sector, enforcing continuity of the wave function and �rst derivatives across

sector boundaries reduces the number of independent coe�cients to 16. To obtain the ground

state wave function, we impose the boundary condition that the wave function vanishes on

the surface of the reaction volume. This is easy to implement with a Hermite interpolating

polynomial basis set, as only one of the six polynomials (u

5

(x), as denoted in Fig. 14) is

nonzero on the outer boundary. Simply setting the corresponding coe�cient of this basis

function in the outermost sector to zero ensures that the wave function vanishes at the box

radius.

In order to express the �nal state correctly, our expansion must include basis func-

tions which are nonvanishing on the surface of the reaction volume in order to allow for

electron escape. We retain the idea in our original approach of also including closed-open

two electron con�gurations consisting of a product of a closed and an open one-electron hy-

drogenic orbital. However, the open hydrogenic orbital is now replaced by a single Hermite
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Figure 14. The set of six Hermite interpolating polynomials adopted as the �nite element

basis set in this study.
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interpolating polynomial in the outermost sector which is nonzero at the outer boundary

(denoted by u

5

(x)). In other words, we add basis functions of the form

A

M

X

m=1

6

X
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2

) (41)

to our expansion in Eq. 40. Retaining the closed-open type of two-electron con�gurations

allows us to use the same criterion as previously to distinguish between single and double

photoionization. That is, if the energy of our closed orbital representing the \inner" electron

is negative, then we consider it to remain bound (single ionization), whereas a positive

closed orbital energy is considered ionized (double ionization). This criterion along with a

box averaging technique was used to obtain single and double photoionization cross sections

in our original study. An improvement over this approach (the frame transformation, section

3.2.4) has been developed since then. In the context of photoabsorption, each closed orbital

will contribute to both the single and double ejection cross section. The contribution of each

closed orbital to photoejection of the \inner" electron can be determined by projecting the

wave function onto a continuum hydrogenic wave function. That is, analogous to Eq. 34 in

the case of electron scattering, for double photoejection processes the \box" dipole matrix

D

(�)box

is related to the physical dipole matrix D

(�)phys

by

D
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=

X

nl

h�ljnliD

(�)box

nl;g

; (42)

where D

(�)box

nl;g

represents the dipole matrix element for excitation of the inner electron from

the ground state \g" to the �nal pseudostate nl, and �l denotes the �nal continuum state

hydrogenic wavefunction. Similarly, single photoejection cross sections (with the \inner"

electron remaining bound) are obtained by projecting the wave function onto a physical

bound state hydrogenic wave function. The double photoejection cross section is given (in

a.u.) by
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where D

(�)box

nl;g

represents the velocity form of the dipole matrix element for excitation of the

inner electron from the ground state \g" to the �nal pseudostate nl, � is the �ne-structure

constant, and ! is the photon energy in a.u. (compare to Eq. 12). This frame transformation

technique is used to obtain the results shown here.

Upon �rst glance, it would appear that the �nite element basis set has a disad-

vantage of requiring the solution of a larger number of expansion coe�cients than would

be required for the hydrogenic basis set used previously, ultimately limiting the number of

�nite element sectors that could be used. However, since the local basis functions are only

de�ned to be nonzero for a given sector, the Hamiltonian and overlap matrices are sparse.

E�cient numerical routines are implemented to take advantage of these sparse, symmetric

matrices. A Lanczos algorithm [155] is used to obtain the helium ground state wave function

and energy. This iterative numerical method allows one to obtain the lowest eigenvalues for

a speci�ed small number of eigenvectors without having to diagonalize the entire matrix.

The �nal state is obtained by solving the usual generalized eigenvalue problem [23]

�C = b�C; (44)

where

� = 2[ES �H � L]; (45)

S is the overlap matrix, H is the Hamiltonian matrix, L is the Bloch operator, and � is the

surface overlap matrix. The matrices in Eq. 44 are partitioned into closed and open basis

sets:
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This leads to the reduced generalized eigenvalue problem:




oo

C

o

= b�

oo

C

o

; (47)



71

where
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: (48)

Once the open components C

o

of the solution eigenvector are obtained by solving Eq. 47,

the closed components are given by

C

c

= �(�

cc

)

�1

�

co

C

o

: (49)

The streamlined eigenchannel treatment [23] involves a transformation which diagonalizes

the Hamiltonian matrix. For a closed two-electron basis set which is orthogonal, the closed

portion of the overlap matrix is diagonal. Consequently, �

cc

becomes diagonal after the

Hamiltonian is transformed, and so is trivial to invert. As this transformation of the Hamilto-

nian matrix only needs to be performed once, a great computational improvement is attained

over directly solving for the generalized eigenvalue problem at each desired energy.

For our purposes, application of this streamlined transformation is impractical ow-

ing to the large dimension of the Hamiltonian and overlap matrices. Rather than solve the

original generalized eigenvalue problem (Eq. 44), we would like to solve the reduced eigen-

value problem, given by Eq. 47. Note that 


oo

involves the inverse of �

cc

, which has large

dimension, but is sparse. Rather than directly calculating the inverse of this matrix, we use

a linear algebraic routine to solve the sparse system of equations

�

cc
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co
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co

: (50)

The 


oo

matrix is then given by




oo

= �

oo

� �

oc

Q

co

: (51)

For our �nite element application, the open-open part of the surface overlap matrix is di-

agonal, and in fact equal to the identity matrix. This reduces the generalized eigenvalue

problem given in Eq. 47 to the ordinary eigenvalue problem




oo

C

o

= bC

o

: (52)
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The greatest computational e�ort required to obtain results with a �nite element

basis involves solving the system of equations in Eq. 50. Originally, a conjugate gradient

method with a diagonal preconditioner was used to solve this system of equations. A gen-

eralized minimum residual method iterative method with an incomplete LU factorization

(factorization of a matrix into the product of a lower triangular and an upper triangular ma-

trix; see Ref [156] for further details) for preconditioning was later adopted from the sparse

linear algebra package (SLAP) to perform this task more e�ciently. However, the amount

of computational e�ort required to solve this linear set of equations using these iterative

methods increases rapidly with energy. This is due in part to a larger number of channels

which are required to be included, and in part due to the need for a greater density of sectors

(smaller sector sizes) in order to accurately represent the small wavelength behavior of the

wavefunction in some of the channels. Numerically, this translates into a larger number of it-

erations required to solve for each successive right hand side vector, and also a larger number

of right hand side vectors which require a solution. The number of right hand side vectors is

simply the total number of energetically allowed channels. Due to the large computational

time which was required to calculate cross sections at high energies, practical application

of this approach to helium was limited to energies no higher than 100 eV above the double

photoionization threshold.

A tremendous increase in the numerical e�ciency of our method for solving linear

systems of equations was achieved by adopting a complete factorization approach. Not only

is the �

cc

matrix in Eq. 50 a large sparse matrix, but for the appropriate numbering scheme

of �nite element nodes it also has a banded structure. LAPACK (Linear Algebra Package;

see Ref. [157]) routines for banded matrices are used to perform an LU factorization of

this matrix. This leads to a numerical method whose time requirements are only weakly

dependent on the number of channels included (and thus more nearly energy-independent).
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The time requirements for this approach now depend primarily on the number of �nite ele-

ment basis functions included. Applications of this method to helium double photoionization

have decreased the computational time required to obtain results by a factor of 30-50 over

previous iterative solvers. One drawback of the LAPACK banded factorization routine is

the greater memory requirements. Whereas previous routines could use sparse matrix stor-

age routines which only stored nonzero elements (and their indices), all elements within the

maximum bandwidth of the banded matrix must be stored in a full matrix in order to use

the LAPACK routine. Application of this numerical routine to two-electron escape processes

using 18x18 �nite element sectors has required memory usage of 750MB. Since this memory

requirement exceeds the current capabilities of our \in-house" computer resources, the use

of a SGI (Silicon Graphics Incorporated) Power Challenge machine at the National Center

for Supercomputer Applications was necessary for performing the calculations presented in

the next section.

4.2 Double Photoejection Cross Sections of He and H

�

Although helium double photoionization processes have received a tremendous

amount of attention in the past, there has been a surprisingly great amount of disagree-

ment concerning the maximum value of the ratio of double to single ionization, both from

experiment and theory, at least in the region of intermediate photon energies. The maximum

value of this ratio occurs for photon energies in the range of 150-250 eV. It has been predicted

and measured to reach peak values anywhere from 0.030 to 0.055 before slowly falling to an

asymptotic value of 0.0167 at high energies [38, 102, 113, 158]. The discrepancies among dif-

ferent approaches to obtain the values for this parameter illustrate the di�culties that have

been encountered by theoretical attempts to describe the relatively infrequent occurrence of

two electron escape processes in this intermediate energy range.

In contrast to the case for helium, studies of one- and two-electron photoejection

from H

�

at photon energies above the double escape threshold have been quite sparse. The
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determination of H

�

photodetachment cross sections has received a signi�cant amount of

focus for low photon energies [159], primarily due to its importance in astrophysics. The

threshold law for double photodetachment of H

�

has been explored both theoretically [160]

and experimentally [95], but the applicability of these studies are limited to just the �rst one

or two eV above threshold. Although no experimental values of H

�

photoejection at higher

energies are known to exist, it should be possible to perform these types of experiments

in the near future. To our knowledge, only one theoretical study has been undertaken to

address photoejection of H

�

at these energies. This sole theoretical study was performed by

Broad and Reinhardt over twenty years ago using a multichannel J-matrix technique with an

L

2

basis set [52]. Total photodetachment cross sections were reported for photon energies in

the range of 1-69 eV. They claimed a convergence of their two electron photoejection cross

sections to within 15% and quoted a value for this ratio of roughly 0.04 over this energy

range. Results presented in their paper indicated a maximum value for the ratio �

2e

=�

1e

which lies in the range of 0.055-0.085. Fluctuations in their calculated double photoejection

cross sections made it di�cult to determine a precise value for the peak ratio. However,

we can ascertain an approximate \error bar" of �0:020 for these calculations of Broad and

Reinhardt.

Like helium, H

�

is an ideal system for exploring two electron photoejection, due to

its inherent simplicity. There are important di�erences, however, between double photoion-

ization of helium and double photodetachment of H

�

. First, the ratio between the single

and double escape threshold energies is much smaller for H

�

than for He, since H

�

has only

a single bound state. Secondly, while a single electron escaping from helium experiences a

screened Coulomb potential (to �rst approximation), this Coulomb potential is absent for a

single electron escaping from H

�

. Due to the smaller nuclear charge of H

�

in comparison to

helium, one expects electron interaction e�ects to play an even greater role in the dynamics

of photoejection for this case. Fig. 15 compares the radial ground state wavefunction of
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helium and H

�

. The broader H

�

wavefunction re
ects its smaller nuclear charge.

We calculate the ratio of double to single photoejection cross sections of helium

and H

�

for photon energies of 79-460 eV and 14.35-110 eV [30]. Roughly 180 hours of

supercomputer time on a SGI Power Challenge machine was used to perform these cross

section calculations. The results presented here were obtained by using three partial waves

in the initial state and four partial waves in the �nal state. This is in contrast to our earlier

study of helium photoionization, where two partial waves were used for the initial state and

three partial waves were used for the �nal state. Box averaging was used to obtain the cross

section pro�les presented here, and a frame transformation was implemented to distinguish

between single and double photoejection contributions. A Gailitis averaging technique, as

outlined in Chapter 3, was used to obtain results for helium. Our calculated ground state

energies of helium and H

�

agree well with the \exact" nonrelativistic in�nite mass values,

which are taken from Reference [161] (see Table 1). Note that the ground state energy

of helium in our original calculation using a hydrogenic basis is much less accurate than

the value obtained with a �nite element basis. Part of this is improvement is due to the

inclusion of an additional partial wave in our �nite element calculations (see Table 2), but

some improvement is also due to our use of a local basis set.

Our results for the ratio of double to single photoionization for helium are compared

to recent theoretical and experimental values in Fig. 16. Experimental measurements of this

ratio by D�orner et al. [26] and Levin et al. [158] over the intermediate energy range have

similar pro�les, but di�er in magnitude by 10-20%. Samson's values [162] in Fig. 16 have

actually been �tted to a smooth curve, but these smoothed values di�er very little from the

original experimental values (to within roughly a couple of percent). The error bar associated

with Samson's measurements is approximately 5%, while Levin's experimental error bar is

comparable to the scatter in his reported values, as seen in Fig. 16. Recent theoretical

calculations of the ratio include our previous eigenchannel R-matrix calculations using a
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Figure 15. Comparison of the He (top) and H

�

(bottom) ground state radial wavefunctions.

These are plots of the square of the scaled radial wavefunction (jr

1

r

2

	(r

1

; r

2

)j

2

) for the

partial wave l

1

= l

2

= 0. The He wavefunction extends to approximately 4 a.u., while the

H

�

wavefunction extends to about 10 a.u. This re
ects the weaker binding energy of the

two electrons to the nucleus for H

�

.
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Table 1. Comparison of ground state energies of helium and H

�

, calculated with hydrogenic

and �nite element basis sets. The corresponding ground state wavefunctions were used to

obtain the helium and H

�

double photoejection results in Chapters 3 and 4. The \exact"

nonrelativistic in�nite mass values listed in the table were taken from Ref. [161]. Note that

the ground state energy of helium in our original calculation using a hydrogenic basis is much

less accurate than the value obtained with a �nite element basis. Part of this improvement

is due to the inclusion of an additional partial wave in our �nite element calculations (see

Table 2), but some improvement is also due to the use of a local basis set.

He (a.u.) H

�

(a.u.)

\Exact" -2.9037 -0.52775

Finite Elements -2.9028 -0.52744

Hydrogenic Basis -2.8967 |||{

Table 2. Dependence of helium and H

�

ground state energies on the number of angular

con�gurations included. Finite element values for He were obtained using a reaction volume

of 10 a.u., while a reaction volume of 26 a.u. was used for the H

�

values. The helium

calculations were performed with 12 sectors in each radial coordinate (a linear mesh of 4

sectors from 0-2 a.u. and of 8 sectors from 2-10 a.u.), while 16 sectors (a linear mesh of 4

sectors from 0-2 a.u. and of 12 sectors from 2-26 a.u.) in each radial coordinate were used

to obtain the values for H

�

.

Num. of Ang. Con�gs. He (a.u.) H

�

(a.u.)

1 -2.8790 -0.51448

2 -2.9005 -0.52658

3 -2.9028 -0.52744

4 -2.9033 -0.52762
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Figure 16. Comparison of the ratio of double to single photoionization for helium with other

theoretical and experimental values. Our results in a previous study are shown by the narrow

solid and dotted lines. This �gure is taken from Ref. [30].
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Figure 17. Comparison of the ratio of double to single photodetachment for H

�

with previous

calculations of Broad and Reinhardt [52]. The results of Broad and Reinhardt were obtained

using the �nal state basis sets: a) 10s; 10p; 6d; b) 7s; 10p; 6d; and c) 7s; 10p; 6d; 4f: This

�gure is taken from Ref. [30].



79

hydrogenic basis set [28], the convergent close-coupling calculations of Kheifets and Bray

[58], and the hyperspherical close-coupling calculations of Tang and Shimamura [62]. Our

�nite element results were obtained by box averaging over �ve box sizes in the range 12-16

a.u. for photon energies of 80-280 eV, while a single box size of 10 a.u. was used to obtain the

results for 280-460 eV. A smaller reaction volume can be used at higher energies, as electron-

electron interaction e�ects are more tightly con�ned near the nucleus. Our calculated values

of the ratio are lower than most of the other theoretical and experimental values for the �rst

few eV above threshold. This is not unexpected, as the near threshold region is where our

approximation of unequal energy sharing is anticipated to fail. For higher photon energies,

our calculated results agree well with the experimental values of Samson and coworkers. Our

results are also consistent with the experimental values of D�orner, with the exception of his

highest energy measurement.

Fig. 16 shows only our velocity form calculations. Calculations performed using the

acceleration form of the dipole operator are nearly identical (agreement to better than 1%)

to those of the velocity form over the entire energy range shown here. This is in contrast

to our previous results of helium photoionization (shown by the narrow solid and dotted

lines in Fig. 16) using a hydrogenic basis set in which the discrepancy between the velocity

and acceleration forms was 20-25%. Furthermore, the length form calculations of double

ionization cross sections in this previous study were an order of magnitude larger than the

calculations in the other forms. For our �nite element approach, calculations in the length

form agree closely with the other forms up to about 100 eV above the double escape threshold

before slowly diverging. At the highest energies shown in Fig. 16, double ionization cross

sections calculated with the length form are about 10-15% higher than the values calculated

with the other forms. Although the use of a �nite element basis set requires a much greater

computational e�ort in comparison to a hydrogenic basis set, this choice of basis set can

be systematically improved with less e�ort. The resulting improved agreement among the
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various dipole forms is dramatic, illustrating the usefulness of �nite element techniques for

addressing such problems.

Our results for the double to single photoejection ratio in H

�

are shown in Fig.

17. We averaged our calculation over �ve box radii in the range 24-32 a.u. for photon

energies of 14.35-65 eV, and over two box radii of 24 and 26 a.u. for photon energies of 65-95

eV. The results for 95-110 eV were obtained with a single box radius of 24 a.u. A box of

roughly twice the size used in our helium calculations is necessary to accurately describe H

�

photodetachment, since hydrogen wavefunctions extend roughly twice as far as those of He

+

.

We obtain a smooth pro�le of our ratio by convolving our box averaged values (open circles)

with a Gaussian function. The three curves of Broad and Reinhardt [52] in Fig. 17 were

obtained with di�erent �nal state basis sets. Our values for the H

�

total photoabsorption

cross section agree well with those of Broad and Reinhardt. However, our maximum value

of the branching ratio for double photodetachment is signi�cantly larger than their values.

The peak value of our ratio of 0.094�0.006 lies in the photon energy range of 25-35 eV. We

believe that our new calculations are more accurate than the results of Broad and Reinhardt.

Evidence of this is suggested by the smaller amount of scatter among our results in Fig. 17.

However, our results are not seriously in disagreement with their calculations, since their

calculated values have correspondingly large \theoretical error bars". For this reason, the

two calculations appear to be consistent, and the pioneering work of Ref. [52] is impressive

in view of the limited computational resources available at that time.

It is interesting to note the di�erences in two electron escape for helium and H

�

.

To a �rst approximation, one might expect the maximum in the ratio of double to single

photoejection to scale as a simple function of the nuclear charge [122]. However, H

�

is

quite di�erent from other heliumlike atoms, and so would not be expected to obey any

simple scaling law. Our calculations indicate that the maximum value of the ratio for H

�

of

0.094�0.006 is about three times as large as the value for helium of 0.037�0.001. Also, the
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peak of the ratio occurs at an energy approximately six times smaller for H

�

than for helium,

relative to the double escape threshold. This is a re
ection of the small electron a�nity of

H

�

, as a smaller required energy for removing one electron in H

�

leaves more energy available

to remove the remaining electron. The maximum value of the double photoejection cross

section for H

�

is observed to be about twenty times larger than that for helium, a re
ection

of helium's deeper Coulombic well.

Another issue of interest is the predicted high energy limit of the branching ratio

between double and single photoejection. The value of this limit is predicted to be 0.0150 for

H

�

and 0.0167 for He [38, 102]. However, our calculations show a much larger value of the

peak ratio for H

�

than for helium. The high energy values for the ratio in H

�

and helium

does not seem consistent with the idea that electron-electron correlations play a stronger role

for smaller nuclear charge. One possible explanation for this apparent inconsistency is the

fact that the n=2 partial cross section for H

�

is comparable to the n=1 cross section [52],

contributing more to the single detachment cross section, and therefore less to the double

detachment cross section [163].

One open question concerning double photoejection calculations is the number of

angular con�gurations required to accurately describe the L = 0 initial and L = 1 �nal state

wavefunctions, such that cross section values are converged. The dependence of ground

state energy on the number of angular con�gurations is shown in Table 1. In our initial

calculations, we only included two angular con�gurations (ss, pp) to describe the initial

state, whereas our latest calculations used three angular con�gurations (ss, pp, dd). From

Table 1, we see that a signi�cant improvement in the ground state energy is achieved by

increasing the number of angular con�gurations from two to three, while the improvement

in energy is comparatively less when the number of angular con�gurations is increased from

three to four. This trend is similar for helium and H

�

.

In contrast to the results found for the initial state, the contribution to the double
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photoejection cross section for each �nal state angular con�guration is quite di�erent for the

separate cases of helium and H

�

. As seen in Fig. 18, the sp angular con�guration gives

the majority of the contribution to the helium double photoejection cross section over the

photon energy range shown here, whereas the df con�guration only gives about 10-15% of

the contribution to the cross section. In contrast, the pd con�guration dominates the double

photoejection cross section of H

�

in the energy range where the peak in the cross section

occurs (see Fig. 19). At higher photon energies, the df con�guration contributes the largest

amount, whereas this con�guration contributes the smallest amount for the case of helium.

Based on the results shown in Figs. 18 and 19, we have more con�dence that our cross section

values for helium are converged with respect to the number of angular con�gurations than

for the case of H

�

. These �gures further illustrate the di�erence in the double photoejection

dynamics for a target in which both electrons are \almost equally" bound (helium) and a

target in which there is one strongly bound and one weakly bound electron (H

�

).

Preliminary calculations of photoejection processes have been performed for other

ions in the helium isoelectronic sequence (Li

+

, Be

++

, C

4+

, and O

6+

) in an e�ort to evaluate

the validity of scaling laws given in Ref. [122]. Although the adoption by Ref. [122] of a

simple analytical approximation to the �nal state wavefunction is probably not adequate to

determine accurate quantitative results, the derivation of approximate scaling laws is useful

for understanding qualitative aspects of two electron escape. Ref. [122] uses two di�erent

analytical wavefunctions: one is a product of three two-body continuum wavefunctions,

while the other contains products of only two single-center Coulomb wavefunctions. They

determined that the threshold region (the region where the Wannier threshold law is valid)

extends to energies up to approximately E = (0:5eV )Z

2

, while the high energy region (the

region where the ratio of double to single photoejection is a constant asymptotic value)

begins at about E = (1:0keV )Z

2

. By taking the limit Z !1, the following scaling laws for
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Figure 18. Contributions to the double photoejection cross section of helium for each of the

three angular con�gurations included to describe the �nal state wavefunction. These values

were obtained from averaging over �ve box sizes in the range 12-16 a.u. The con�guration

with the lowest individual angular momentum states dominates, whereas the con�guration

with highest individual angular momentum states contributes the least.
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Figure 19. Contributions to the double photoejection cross section of H

�

for each of the

three angular con�gurations included to describe the �nal state. These values were obtained

from averaging over �ve box sizes in the range 24-32 a.u. The pd con�guration is observed

to give the dominant contribution at low energies, whereas the df con�guration gives the

largest contribution at higher energies. This is in contrast to the case for helium (see Fig.

18).
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single and double photoejection were determined:

�

1e

(E

f

) � �

Z=1

1e

(E

f

=Z

2

)=Z

2

; (53)

�

2e

(E

f

) � �

Z=1

2e

(E

f

=Z

2

)=Z

4

; (54)

where E

f

is the �nal kinetic energy of the escaping electron(s).

Fig. 20 shows our calculated values of single and double photoejection cross sections

for six members of the helium isoelectronic sequence. Our results were scaled according to

the relations given in Eqs. 53 and 54. The box sizes used to obtain these results are given

in Table 3. Since the radial extent of hydrogenic orbitals scales as 1=Z, box sizes were also

chosen to scale as 1=Z. The results for H

�

and helium have been obtained by box averaging;

therefore, the pro�les for these curves are smoother than for the heavier ions. Consequently,

our results for the heavier ions should be interpreted as only providing approximate values, as

spurious e�ects from pseudoresonances are still present. Evidence of this is apparent in Fig.

20(b), where a smaller relative energy mesh was chosen for C

4+

calculations than for the other

heavier ions. However, fairly accurate ground state energies and good agreement between

the forms of the dipole operator give us con�dence that our single box size calculations for

the heavier ions are accurate to about 10-15%.

As expected, the results for H

�

deviate the most from the scaling laws given in

Eqs. 53 and 54. Although our single escape cross sections do not scale precisely as 1=Z

2

,

the deviation from this scaling law is quite small. The 1=Z

4

scaling law for double escape

seems to be in even better agreement with our calculated values. All of the scaled double

photoejection peaks have the same approximate value (within 10-20%), and the peaks occur

at roughly the same energy relative to the double escape threshold when it is scaled by

1=Z

2

. A simple \rule of thumb" implied by the results in Fig. 20 is that double escape cross

sections for targets with charge Z in the helium isoelectronic sequence (with the exception

of H

�

) will have a maximum value for photon energies (in eV) of approximately 7Z

2

+E

D:I:

,

where E

D:I:

is the double photoionization energy threshold of the target.
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Figure 20. Scaling of six members of the helium isoelectronic sequence. Using the scaling

laws reported in Ref. [122], we have plotted (a) single photoejection cross sections scaled

by Z

2

, and (b) double photoejection cross sections scaled by Z

4

. The energy relative to the

appropriate threshold is scaled by 1=Z. The results for H

�

and He were obtained by box

averaging, while the results for the heavier ions were obtained with a single box size.
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Since �

2e

scales as 1=Z

4

and �

1e

scales as 1=Z

2

, the ratio R would be expected to

scale as 1=Z

2

. However, an ambiguity arises in the energy scaling, as Eq. 53 involves a scaling

of the energy relative to the single escape threshold, while Eq. 54 scales the energy relative

to the double escape threshold. For this reason, scaled values of the ratio are not plotted

here. However, the maximum values of the ratio are listed in Table 3, and do appear to

scale roughly as 1=Z

2

for Z � 2. For the photon energy ranges considered here, the pro�les

of R for Z � 3 did not display a clear peak, but rather long plateau features. Further

investigation is required to more fully evaluate the relevance of the scaling laws proposed by

Kornberg and Miraglia [122].

The results shown here illustrate the usefulness of �nite element methods in de-

scribing two electron photoejection processes. In particular, the good agreement achieved

between various forms of the dipole operator demonstrates the advantage of �nite elements

over a hydrogenic basis set. Although only total photoejection cross sections have been

calculated with this method here, calculations of other observables will now be explored.

In particular, calculations of partial cross sections for the production of excited hydrogenic

bound states are performed in the next section. This will provide an alternate test of the

importance of electron-electron interactions. The frame transformation will once again play

a central role in obtaining these results.

4.3 Other Observables Associated with Two Electron Escape

To fully explore the usefulness of our method in describing two electron escape

processes, we now explore other details of the escape process for which electron-electron

interactions are important. Previously, our photoabsorption studies have focussed entirely

on either total single or double electron escape cross sections. One key issue that tests

the generality of our approach is single electron ejection from He or H

�

accompanied by

excitation of the residual one-electron ion He

+

(n) or atom H(n). We will refer to these

single escape processes as photoejection-induced excitation (PIE) processes.
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Table 3. Six members of the He isoelectronic sequence are listed along with the box sizes

used to obtain results for Fig. 20 and this table. Columns 2 and 3 are the experimental single

and double ejection thresholds, taken from Ref. [164]. The values in column 4 are based on

our numerical calculations. The asymptotic values for the �rst three members listed were

taken from Refs. [38] and [102], while the last three values are based on the simple scaling

law 0:0087(3=Z)

2

in Ref. [122].

Box Size(a.u.) S.E.(eV) D.E.(eV) Max. Ratio Asym. Ratio

H

�

24-32 0.755 14.360 0:094� 0:006 0.0150

He 12-16 24.587 79.007 0:037� 0:001 0.0167

Li

+

10 75.638 198.083 0:020� 0:003 0.0087

Be

++

7 153.893 371.573 0:011� 0:001 0.0049

C

4+

4.67 392.077 881.857 0:005� 0:001 0.0022

O

6+

3.5 739.315 1610.035 0:003� 0:001 0.0012
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In contrast to the extensive current literature on the ratio of double to single pho-

toejection in characterizing the strength of electron-electron interactions, the role of these

interactions in PIE have been much less frequently studied. Wehlitz et al. [114] have recently

summarized previous experimental and theoretical attempts to determine PIE cross sections

in helium. They also published their experimental values for the helium partial cross section

branching ratio �(n)=�(1s) (the ratio of the cross section for photoejection plus excitation

of an n � 2 state to the cross section for photoejection with the remaining electron in a

1s state) for a wide range of photon energies above the double escape threshold. Previous

studies were primarily limited to low n excited states (n � 3) over a comparatively small

energy range.

To calculate partial cross sections [31], we again adopt the frame transformation

method developed in the last chapter. We accomplish this by projecting the inner electron

pseudostates (calculated for a given box size r

0

) onto the in�nite-space bound hydrogenic

target states. Analogous to Eq. 32 for electron scattering, the box dipole matrix elements

D

(�)box

are related to the physical dipole matrix elements D

(�)phys

by

D

(�)phys

nl;g

=

X

nl

hnljnliD

(�)box

nl;g

; (55)

where nl represent �nal pseudostates corresponding to the inner electron, nl represent the

�nal bound target eigenstates, and g refers to the ground state. This frame transformation

technique has been used to obtain the results shown here.

Since the low n target states (n=1-3) �t within our R-matrix box, the energies of the

eigenstates �

n

of the target state Hamiltonian in the shrunken con�guration space correspond

closely to the energies of the physical target state for these n values (see Fig. 2). For this

reason, the frame transformation technique (Eq. 55) is not necessary for calculating accurate

PIE cross sections for these states. For excitation to higher lying n states, the physical target

states are represented by the set of pseudostates con�ned to our R-matrix box. For these high

n states, the electron has a high probability to be found outside our reaction volume. Since
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this region is where we adopt a simpli�ed assumption of electron-electron interactions, one

might suspect that method is incapable of describing excitations to high n states. That is,

a plausible expectation is that only a method which accurately represents electron-electron

correlations out to large distances (large enough to contain the inner electron wavefunction)

should be able to accurately describe excitation to high n states. At the same time, we

have shown that our method can accurately describe helium double photoejection. Those

studies employed a projection of pseudostates onto the physical continuum eigenstates which

extend out to in�nity. This gives some indication that our approach may be able to describe

excitation to high-lying bound states that extend beyond our R-matrix box.

Our �

n

=�

1s

branching ratios are compared with the experimental values of Wehlitz

et al. [114] in Fig. 21. R-matrix results for photon energies from threshold to 200 eV above

threshold were obtained by averaging over �ve box sizes in the range 12-16 a.u., while results

at higher energies were obtained with a single box size of 10 a.u. We can use a smaller

reaction volume at higher energies since electron correlations are more tightly con�ned near

the nucleus. Gailitis averaging is again used to average cross sections for the energy range

below the pseudostate thresholds. Single photoejection with the remaining electron left in a

1s ground state accounts for approximately 90% of the total single ionization cross section in

helium. Our ratios for n=2 and n=3 agree well with the experimental values across an energy

range from the double escape threshold (78.98 eV) up to 500 eV, except for a small number

of our calculated values which lie slightly outside the experimental error bars. Surprisingly,

this good agreement also holds for n = 4 � 6, although these states do not �t within our

R-matrix box. This result implies that long-range correlations between electrons have little

in
uence on the electron energy distribution for PIE processes to high n states. In other

words, the \decision" of the inner electron to be excited to a higher n state is made while

the electron is still near the nucleus.

Although the experiment of Wehlitz et al. was only able to measure cross section
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Figure 21. �

n

=�

1s

branching ratios of helium photoionization for n=2-6. The curves are

our calculated eigenchannel R-matrix values, while the circles are the experimental values of

Wehlitz et al. [114]. This �gure is taken from Ref. [31].



91

10 20 30 40 50 60 70 80 90 100 110
Photon Energy (eV)

0.0

0.5

1.0

1.5

2.0

2.5

σ(
n=

1)
 (

M
b)

Present Work
Broad and Reinhardt

10 20 30 40 50 60 70 80 90 100 110
Photon Energy (eV)

0.0

0.5

1.0

1.5

2.0

σ(
n=

2)
 (

M
b)

Present Work
Broad and Reinhardt

Figure 22. Comparison of our n=1 and n=2 H

�

partial cross sections with extrapolated

values taken from Fig. 1 of Ref. [52]. Note that unlike the case of photoejection-induced

excitation for helium (Fig. 21), where the remaining electron is left in a 1s state roughly

90% of the time, the n = 2 partial cross section for H

�

is comparable in magnitude to the

n = 1 partial cross section.
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Figure 23. �

n

=�

1s

branching ratios of H

�

photodetachment for n=3-6. The irregularities

in the pro�les for the �rst 30 eV above threshold are a re
ection of the denser energy mesh

used in this region.
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Figure 24. Comparison of our (a) He and (b) H

�

partial cross sections with the 1=n

3

scaling

law, re
ecting the properties of Rydberg electrons for large n values. This scaling law is

observed to be valid for n � 3, and the agreement with the scaling law improves for larger

photon energies.
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ratios, they obtained absolute cross sections indirectly by using total cross section measure-

ments from Samson et al. [165]. Our n = 1 absolute cross sections are within the error bars

of Wehlitz et al. over the entire energy range calculated. At high (but nonrelativistic) ener-

gies, the decrease in the single ionization cross section of heliumlike systems is described by

the power law E

�7=2

[101, 166]. Our calculated partial cross sections decrease at a slightly

faster rate at high photon energies, indicating that the limiting E

�7=2

energy dependence

has not yet been reached. Another noticeable feature in our partial cross section ratios is

the presence of a peak value at energies of several eV above threshold for n = 4 � 6. This

feature also appears in the experimental data for these n values. Peaks are observed in our

He

+

(n) absolute cross sections for n = 5 and n = 6.

As seen in Figs. 23 and 24, partial cross sections calculated for H

�

have features

similar to those found in helium. Analogous to the case for calculating total photoejection

cross sections, a reaction volume of roughly twice the radius used in our helium calculations

is necessary to accurately describe H

�

PIE. For the results presented here, our calculations

were box averaged over �ve box sizes in the range 24-32 a.u. for photon energies of 14.35-65

eV, and over two box sizes of 24 and 26 a.u. for photon energies of 65-95 eV. A single box size

of 24 a.u. was used to obtain the results for photon energies of 95-110 eV. The occurrence

of irregular features in Fig. 23 only for the �rst 30 eV above threshold re
ects the fact that

we used a �ner energy mesh over this range in comparison to calculations at higher energies.

Unlike the case for helium, the n = 2 partial cross section for H

�

is roughly two-thirds as

large as the n = 1 cross section. This is mainly a consequence of the comparatively large

overlap of the H

�

ground state (see Fig. 15) with the n = 2 target eigenstates. As seen in Fig.

22, our n = 1 and n = 2 cross sections are consistent with the theoretical values extracted

from the paper of Broad and Reinhardt [52]. Our H

�

total photoabsorption cross sections

also are found to agree well with the values presented by Broad and Reinhardt. Similar to

the case for helium, peaks in the n = 5 and n = 6 branching ratios and the absolute partial
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cross sections occur at photon energies of several eV above the double escape threshold.

One topic of interest is the relationship between partial cross sections for di�erent

values of n. Partial cross sections for helium are observed to scale as 1=n

3

for n � 3 (see Fig.

24(a)), a re
ection of the 1=n

3

frequency scale of Rydberg electrons to be located near the

nucleus. This 1=n

3

scaling dependence improves for higher photon energies (greater than

100 eV above the double escape threshold). As seen in Fig. 24(b), the partial cross sections

for H

�

also obey a 1=n

3

scaling law for n � 3.

Our present eigenchannel R-matrix approach does not allow for the exchange of

angular momentum and energy between the electrons in the region outside of the reaction

volume. Consequently, this approach can not hope to represent the details of a scattering

process that is sensitive to long range forces other than a screened Columb potential. Our

approximate treatment for the wavefunction outside of the reaction volume does not include

the e�ect of long-range multipole interactions between the outer electron and the remaining

fragment. The e�ect of including the long-range dipole interaction can be understood by

adopting the form of this interaction as outlined by Gailitis and Damburg [167]. The dipole

interaction mixes states with the same speci�ed principal quantum number but di�erent

angular momentum values. Our method is capable of predicting the correct cross sections

for PIE to the n = 2 state, but is not expected to give proper amplitudes of the indi-

vidual Gailitis-Damburg eigenstates (eigenstates of the dipole operator with basis elements

j2s�pi; j2p�si; and j2p�di). A previous study [168] indicated that there are no major di�cul-

ties in including the long-range dipole interaction in an eigenchannel R-matrix approach.

In conclusion, we have applied our method to obtain accurate partial cross sections

for helium and H

�

photoabsorption. By adopting the frame transformation again, we were

able to obtain helium partial cross sections which agreed well with experimental data for n

values as large as n = 6. This result is surprising, as it indicates that long-range correlations

are unimportant in determining the energy distribution of the remaining bound state electron
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in PIE processes. These long-range correlations may be important in in
uencing the angular

distributions of the remaining electron. Application of our approach to calculate angular

distributions has not yet been undertaken. The accurate description of PIE processes has

provided another demanding test of the ability of our eigenchannel R-matrix approach to

describe processes for which electron-electron interactions are important. PIE and double

escape are closely related processes. In fact, these processes are identical for the limiting

case of PIE with n ! 1. It is hoped that the results presented here will stimulate further

progress in the description of PIE processes, and therefore provide a deeper understanding

of the role that electron correlations play in atomic processes.



CHAPTER 5

CONCLUDING REMARKS

In this work, we have extended the eigenchannel R-matrix method to address two

electron escape processes. Although double escape is a much more complicated process than

single escape, R-matrix methods are still able to describe this process accurately (provided

the excess escape energy of the two electrons is larger than a few eV). Our approach indi-

cates that a proper description of electron-electron interactions is only required when the

electrons are relatively close (�10-20 a.u.) to the nucleus in order to accurately treat double

escape. This perturbative method represents a vast improvement over nonperturbative meth-

ods, which were the only theoretical treatments of double photoejection in the intermediate

photon energy range at the time this study was initiated.

Although we have focussed primarily on double photoejection of helium and H

�

,

this work has much broader applications. Our approach should be applicable to any quan-

tum mechanical three-body system with two escaping particles, provided the solution for

the long-range interactions between any two particles is known, and the complicated short-

range physics between the particles can be described numerically. Therefore, this work may

have implications in several areas of physics, including chemical physics, condensed matter,

nuclear physics, and perhaps even elementary particle physics. Although both the classical

and quantum mechanical versions of the general three-body problem remain longstanding

unsolved problems in the realm of physics, we have shown that with the use of e�cient mod-

ern computers and some well chosen approximations, one can accurately describe quantum

mechanically at least some of the details of two particle escape into the continuum.

We addressed two electron escape here for incident photons in the intermediate
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energy range. This range is characterized by incoming energies high enough that the short-

range physics is important in in
uencing the two electron escape process, yet low enough to

render perturbative methods inadequate for the determination of double escape cross sec-

tions. By adopting a �nite element basis set, we were able to address this energy range with

an internally-consistent theoretical approach. Furthermore, most of the recent experimental

data is consistent with our theoretical results. Applications of our approach to calculate

partial cross sections of helium and H

�

provided further insight into the nature of electron-

electron interactions in electron escape. In particular, our results indicated that long-range

correlations have little importance in determining the energy distribution of the remaining

bound electron in single photoejection processes, at least in the intermediate photon energy

range.

Much progress has been made in the past 5 or so years in describing two electron

escape processes. These advances have been aided by rapid improvements in computational

resources. On the experimental side, the availability of modern synchrotron light sources with

both intense and high energy radiation beams, along with fast-gated coincidence electronics,

has allowed new experiments to be performed with unprecedented precision. Following the

recent theoretical and experimental progress in this �eld, attention has begun to turn to

the description of more complicated systems. Anticipated double photoejection experiments

for H

�

and magnesium will provide additional tests of existing theoretical methods. An

accurate description of magnesium double photoionization will be further complicated by the

possibility of excitation of the core electrons at su�ciently high photon energies. Preliminary

calculations [169] have already been performed to address electron correlations in the three-

electron system of lithium. Double photoionization processes involving magnesium or lithium

represent a further level of complexity for large enough incident photon energies, as the

additional electron(s) in these systems can also be excited to higher states. A similarly

challenging problem involves a proper theoretical description of H

2

double photoionization, a
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process that also results in dissociation of the molecule. It remains to be seen how successfully

discrete methods, of the type developed and extended in this dissertation, will be able to

describe these phenomena of still greater complexity.
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APPENDIX A

EQUIVALENCE OF DIPOLE OPERATOR FORMS IN A FINITE VOLUME

In an e�ort to understand the nature of the discrepancy between calculations using

various forms of the dipole operator, we thoroughly explored the assumptions which were

made in transforming from one form of the cross section to another. For example, the

transformations given in Eqs. 14 and 15 of Chapter 2 have assumed that the Hamiltonian

^

H

is Hermitian. However, this is generally not true if the Hilbert space is restricted to a �nite

volume. This observation will now be illustrated with a simple example.

Consider the �nite volume example of a one-dimensional square well. Given the

matrix element h 

2

jx̂j 

1

i which appears in the length form of the cross section, and choosing

a closed (zero at outer boundary) wavefunction  

1

=

p

2=� sin(x) and an open (nonzero

at outer boundary) wavefunction  

2

=

p

2=� sin(x=2) (see Fig. 25), the matrix element

h 

2

jx̂j 

1

i evaluates to -32/9�+8/3. According to the relation given by Eq. 14 (substituting

p̂ with its di�erential operator form �i�h

d

dx

and using atomic units),

h 

2

jx̂j 

1

i

=

?

h 

2

j

d

dx

j 

1

i

E

2

�E

1

: (56)

However, when the expression on the right hand side of this equation is evaluated, one

obtains the value -32/9�, whereas the matrix element on the left hand side has the value

-32/9�+8/3. We will show that the proper relationship between the length and velocity

forms of the dipole operator is given by

h 

2

jx̂j 

1

i =

h 

2

j

d

dx

j 

1

i

E

2

�E

1

+

[ 

2

 

1

+  

2

x̂

d 

1

dx

�

d 

2

dx

x̂ 

1

]j

x

0

2(E

2

�E

1

)

: (57)

The only nonzero term in the second expression on the right hand side is the term involving

the derivative of  

1

, which evaluates to 8/3. For this simple example, the transformation
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ψ2

ψ1

0 πx

Figure 25. Consider the transformation of the dipole matrix element from length to velocity

for wavefunctions con�ned to a �nite volume. Let  

1

=

p

2=� sin(x) represent a closed

wavefunction and  

2

=

p

2=� sin(x=2) represent an open wavefunction. For this simple

case, the Hamiltonian is not Hermitian, since unlike the case for an in�nite Hilbert space,

the surface term (due to the nonzero derivative of  

1

and the nonzero value of  

2

on the outer

boundary) no longer vanishes. Therefore, an additional term must be added in transforming

from one dipole form to another for a �nite volume Hilbert space.
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given by Eq. 56 is not correct; the additional term on the right hand side of Eq. 57 must be

added in order for the transformation to be valid.

As shown in the previous example, the Hamiltonian

^

H is generally not Hermitian.

We can however introduce an operator

^

� which is Hermitian in a �nite volume by adding an

operator to the Hamiltonian; that is,

^

� �

^

H +

^

L (58)

is Hermitian, where

^

L �

1

2r

�(r � r

0

)

@

@r

r (59)

is the Bloch operator [23, 170] in three dimensions (in this notation, the delta function

e�ectively reduces the dimension of integration by one, leading to a \surface" term; the

general integral form for the Bloch operator is given by

1

2

Z

S

 

�

2

@

@n

 

1

dS, where @=@n is the

normal derivative). Therefore,

^

H

y

=

^

H + (

^

L�

^

L

y

): (60)

Using this identity to perform the transformation in Eq. 14, we obtain the expression

h 

2

j

^

~r j 

1

i =

i

E

2

�E

1

h 

2

j

^

~p j 

1

i+

1

E

2

�E

1

h 

2

j(

^

L�

^

L

y

)

^

~r j 

1

i: (61)

Note that the term involving the Bloch operator vanishes if the wavefunction and �rst deriva-

tive of  

1

vanish on the surface, which are the boundary conditions normally adopted for

describing a bound state wavefunction in an in�nite Hilbert space. Eq. 57 was derived by

simply using the form of Eq. 61 with the one dimensional Bloch operator

1

2

�(x� x

0

)

d

dx

.

The transformations between the length, velocity, and acceleration dipole operators

in one dimension can be summarized as follows:

d

L

= d

V

+ C

LV

; d

V

= d

A

+ C

V A

; (62)

where

d

L

� h 

2

jx̂j 

1

i; (63)
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d

V

�

h 

2

j �

d

dx

j 

1

i

E

2

�E

1

=

1

i

h 

2

jp̂j 

1

i

(E

2

�E

1

)

; (64)

d

A

�

h 

2

j

dV

dx

j 

1

i

(E

2

�E

1

)

2

; (65)

C

LV

�

h

 

2

 

1

+  

2

x

d 

1

dx

�

d 

2

dx

x 

1

i

j

x

0

2(E

2

�E

1

)

; (66)

and

C

V A

�

h

d 

1

dx

d 

2

dx

� 2(V �E

1

) 

1

 

2

i

j

x

0

2(E

2

� E

1

)

2

: (67)

Schr�odinger's equation was used to eliminate a term in the second derivative of  

1

in the

expression for C

V A

. Note that the \surface" term connecting the velocity and acceleration

forms may be nonzero even if both wavefunctions vanish on the outer boundary.

We now develop the three-dimensional transformations and apply them to the test

case of photoionization of hydrogen. In three dimensions, the dipole matrix is given by

h 

2

j�̂ � r̂j 

1

i. In the following derivation, we will make two assumptions: �rst, the light is

taken to be polarized in the z-direction (�̂ = r̂ cos � �

^

� sin �), and second, the potential is

assumed to be a function of the radial coordinate only. For photoionization of hydrogen, the

ground state  

1

is in an s state ( 

1

(~r) = '

1

(r)Y

00

(�; �)), which simpli�es the form of the

transformations; however, we derive the more general case here. The commutator of interest

is now [H; r cos �]. The resulting angular integral can be factored out of the dipole matrix,

leaving a remaining integral in r. For convenience, we will introduce the scaled wavefunction

u(r), de�ned by '(r) = u(r)=r. Note that when the three-dimensional form of the Bloch

operator (Eq. 59) is evaluated in a matrix element involving the full wavefunctions, the

matrix element is equivalent to the one formed by replacing the full wavefunctions by scaled

wavefunctions and the three-dimensional form of the Bloch operator by the one-dimensional

form. Applying the same approach used to obtain the one-dimensional results, the length

form of the dipole matrix is

d

L

� h 

2

j�̂ �

^

~r j 

1

i = d

LRAD

F

ANG1

(68)
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where

d

LRAD

� h'

2

jr̂j'

1

i (69)

and

F

ANG1

� hY

l

2

;m

j cos �jY

l

1

;m

i: (70)

The relationship between length and velocity forms is given by

d

L

= d

l

1

6=0

V RAD

F

ANG2

+ [d

V RAD

+ C

LV

]F

ANG1

; (71)

where

d

l

1

6=0

V RAD

�

h'

2

j

1

r

j'

1

i

(E

2

�E

1

)

; (72)

F

ANG2

� hY

l

2

;m

j sin �

@

@�

jY

l

1

;m

i; (73)

d

V RAD

�

h'

2

j �

d

dr

j'

1

i

(E

2

�E

1

)

; (74)

and

C

LV

�

�

u

2

u

1

+ u

2

r

du

1

dr

�

du

2

dr

ru

1

�

j

r=r

0

2(E

2

�E

1

)

: (75)

The superscript `l

1

6= 0' denotes that the angular integral multiplying this term may only be

nonzero if l

1

is nonzero. Note that for the case l

1

= 0, the radial correction form expressed

in terms of the scaled wavefunctions is identical to the form for the one-dimensional case.

The additional l

1

6= 0 term arises from the additional component in the z-component of the

angular momentum. Since the general form of the momentum is ~p = r̂

@

@r

+

^

�

1

r

@

@�

+

^

�

1

r sin �

@

@�

,

when dotted into the polarization vector, p

z

will have a term involving the derivative with

respect to �, which can contribute for l

1

6= 0. The transformation between the length and

acceleration form is given by

d

L

= [d

ARAD

+ C

LV

+ C

V A

]F

ANG1

+ C

l

1

6=0

V A

F

ANG2

; (76)

where

d

ARAD

�

h'

2

j

dV

dr

j'

1

i

(E

2

�E

1

)

2

; (77)
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C

V A

�

h

�

�

1

r

2

�

u

2

u

1

+

�

1

r

�

u

2

du

1

dr

� u

2

d

2

u

1

dr

2

�

�

1

r

�

du

2

dr

u

1

+

du

2

dr

du

1

dr

i

j

r=r

0

2(E

2

� E

1

)

2

; (78)

and

C

l

1

6=0

V A

�

�

�

�

1

r

2

�

u

2

u

1

�

�

1

r

�

du

2

dr

u

1

+

�

1

r

�

u

2

du

1

dr

�

j

r=r

0

2(E

2

�E

1

)

2

: (79)

Note that the form of C

V A

is no longer the same as for the one-dimensional case, due to

the complications with the momentum operator operating on a scaled wavefunction. The

expression d

2

u

1

=dr

2

appearing in this term can be replaced by 2[V (r)�E

1

+(l(l+1))=2r

2

]u

1

using the Schr�odinger equation.

We applied the above equations for the case of photoionization of the ground state

of hydrogen. For hydrogen, the potential is given by V (r) = �1=r, so dV=dr in the expression

d

ARAD

is replaced by 1=r

2

. For small enough box sizes (�10 a.u.), the need for correction

terms to obtain equivalence of the di�erent forms of the cross section was quite apparent.

Additional numerical tests were performed for the case l

1

= 0 to verify that all of the terms

in Eqs. 75 and 78 are indeed correct. For our study of hydrogen photoionization, we found

that the correction terms decreased roughly exponentially with increasing box size, re
ecting

the exponential decay of our ground state wavefunction near the edge of the box.

This analysis was eventually extended to the case of helium double photoionization.

For this case, the Bloch operator becomes the sum of two operators of the form given in

Eq. 59, one for each of the independent particle radial coordinates. The equations for the

two-electron system are very similar to the one-electron equations given above, so will not

be included here. One of the assumptions made in deriving the above equations was that the

potential was a central potential. However, for the case of helium there is additional angular

dependence in the 1=r

12

term. As explained in Section 2.1, this term does not contribute

to the correction terms between various dipole forms. The correction terms were included

in our helium double photoionization computer code, but no signi�cant di�erence in our

cross section values were observed in comparison to our original values. Nonetheless, it is



114

informative to understand the assumptions made in transforming from one dipole form to

another.
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APPENDIX B

DETAILS OF OUR FINITE ELEMENT IMPLEMENTATION

In implementing our �nite element approach, we had to overcome many di�culties

encountered with imposing the antisymmetrization operator A, as it appears in Eqs. 40 and

41. Also, since our approach di�ers from the approach outlined in Ref. [152], we will discuss

a few of the details of our implementation. In applying the antisymmetrization operator,

the general form of our spatial two-electron wavefunction is given by

 (~r

1

; ~r

2

) =

1

p

2(1 + �

n

1

n

2

�

l

1

l

2

)

(80)

[g

l

1

l

2

(r

1

; r

2

)Y

LM

l

1

l

2

(r̂

1

; r̂

2

) + (�1)

S

g

l

1

l

2

(r

2

; r

1

)Y

LM

l

1

l

2

(r̂

2

; r̂

1

)]:

We also require that the spatial permutation operator P

spatial

12

acting on the wavefunction

satis�es the following relation:

P

spatial

12

j i = (�1)

S

j i: (81)

In the applications considered in this work, we only consider singlet states (S=0), for which

case the spacial wavefunction is symmetric. Using the identity [171]

Y

LM

l

1

l

2

(r̂

2

; r̂

1

) = (�1)

l

1

+l

2

+L

Y

LM

l

2

l

1

(r̂

1

; r̂

2

); (82)

for the ground state of helium (L = S = 0, which implies l

1

= l

2

), the coupled spherical

harmonic can be factored out of Eq. 81. Comparison of Eqs. 81 and 81 then implies

g

l

1

l

2

(r

1

; r

2

) = g

l

1

l

2

(r

2

; r

1

). That is, for the ground state of helium, antisymmetry of the

total wavefunction requires that the two-electron radial wavefunction is symmetric about

the line r

1

= r

2

; similarly, for triplet L = 0 states, the two-electron radial wavefunction is

antisymmetric about the line r

1

= r

2

.
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As a consequence of the conditions imposed by the antisymmetry operator for the

ground state of helium, it is su�cient to solve the Schr�odinger equation in the half-plane

r

1

� r

2

or r

1

� r

2

. This is the approach adopted in Ref. [152]. By imposing the boundary

condition along the line r

1

= r

2

of a zero derivative of the radial wavefunction in the direction

perpendicular to this line, singlet wavefunctions are completely determined by solving in the

half-plane. Similarly, triplet states are obtained by solving the Schr�odinger equation in

the half-plane with the boundary conditions that the wavefunction vanishes along the line

r

1

= r

2

. Although Shertzer and Botero use a �nite element grid of rectangular sectors, they

impose these additional boundary conditions in those sectors where the points r

1

= r

2

are

located. A more straightforward approach would be to directly impose boundary conditions

along the line r

1

= r

2

using a �nite element grid of triangular sectors; however, one would

then have to deal with the complications of using triangular sectors.

To determine the ground state wavefunction in our implementation, we solve the

Schr�odinger equation directly over both regions r

1

� r

2

and r

1

� r

2

without imposing any

boundary conditions along the line r

1

= r

2

. The only boundary conditions imposed are that

the wavefunction vanish along the lines r

1

= 0, r

2

= 0, r

1

= r

0

, and r

2

= r

0

, where r

0

is the

radius of our reaction volume. A Lanczos iterative algorithm is used to partially diagonalize

our Hamiltonian and obtain the �rst few lowest energy eigenvalues. The corresponding

eigenstates include both singlet and triplet states. Our method of solving for the ground

state in the full r

1

� r

2

reaction volume space without imposing boundary conditions along

the line r

1

= r

2

is not as computationally e�cient as the method used in Ref. [152].

However, since the determination of our initial state required very little computational time

in comparison to the rest of our calculation, we chose to adopt a method based on simplicity

of implementation rather than numerical e�ciency.

For the L = 1 �nal state wavefunction, we no longer have l

1

= l

2

, so the coupled

spherical harmonics cannot be factored out of Eq. 81. However, again using the identity
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given in Eq. 82 and comparing the resulting expressions in Eqs. 81 and 81, we obtain the

condition g

l

1

l

2

(r

2

; r

1

) = g

l

2

l

1

(r

1

; r

2

). So, for example, if we determined the radial wavefunc-

tion g

01

(r

2

; r

1

) in the region r

1

� r

2

, then we have simultaneously determined the radial

wavefunction g

10

(r

1

; r

2

) in the region r

1

� r

2

. In the method implemented in Ref. [152],

separate matrices are formed for each ordering of angular con�guration (e.g., one matrix

for jl

1

= 0; l

2

= 1i and one matrix for jl

1

= 1; l

2

= 0i), but only over half-plane regions.

For example, the matrix for the j01i angular con�guration might be formed in the region

r

1

� r

2

, while the j10i angular con�guration would be formed in the corresponding region

r

1

� r

2

. In our implementation, a single matrix contains the information for the wavefunc-

tions g

l

1

l

2

(r

2

; r

1

) and g

l

2

l

1

(r

1

; r

2

) over the entire r

1

� r

2

region inside our reaction volume.

In addition to di�erences in our approach to antisymmetrization, the numbering

scheme for the ordering of our nodes was originally di�erent than the approach adopted in

Ref. [152]. The term `nodes' refers to the points within each sector where the boundary

conditions of our Hermite interpolating polynomials (see Fig. 14) are enforced; in our case,

there are nine nodes for each sector; four at the corners of each sector, four at the midpoints

of the sides of each sector, and one at the center of each sector. Our original numbering

scheme resulted in matrices with large bandwidths, which were not suitable for factorization

methods. We eventually adopted the numbering scheme of Shertzer and Botero, and so were

able to make our computer code signi�cantly more e�cient.

Another important detail in our manipulation of �nite element matrices was the

adoption of a sparse symmetric storage scheme. For the �nal state wavefunction, the Hamil-

tonian is not Hermitian (see Appendix A), so is represented by a nonsymmetrical matrix.

However, the operator

^

� introduced in Eq. 58 of Appendix A is Hermitian. To avoid non-

symmetric matrices, we always store the sum of the Hamiltonian and Bloch operators, which

is symmetric, rather than the nonsymmetric Hamiltonian and Bloch matrices separately.


