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Dipolar evaporation of reactive molecules to 
below the Fermi temperature

Giacomo Valtolina1,2 ✉, Kyle Matsuda1,2, William G. Tobias1,2, Jun-Ru Li1,2,  
Luigi De Marco1,2 & Jun Ye1,2 ✉

The control of molecules is key to the investigation of quantum phases, in which rich 
degrees of freedom can be used to encode information and strong interactions can be 
precisely tuned1. Inelastic losses in molecular collisions2–5, however, have greatly 
hampered the engineering of low-entropy molecular systems6. So far, the only 
quantum degenerate gas of molecules has been created via association of two highly 
degenerate atomic gases7,8. Here we use an external electric field along with optical 
lattice confinement to create a two-dimensional Fermi gas of spin-polarized 
potassium–rubidium (KRb) polar molecules, in which elastic, tunable dipolar 
interactions dominate over all inelastic processes. Direct thermalization among the 
molecules in the trap leads to efficient dipolar evaporative cooling, yielding a rapid 
increase in phase-space density. At the onset of quantum degeneracy, we observe the 
effects of Fermi statistics on the thermodynamics of the molecular gas. These results 
demonstrate a general strategy for achieving quantum degeneracy in dipolar 
molecular gases in which strong, long-range and anisotropic dipolar interactions can 
drive the emergence of exotic many-body phases, such as interlayer pairing and 
p-wave superfluidity.

The complex internal structure of molecules can be both useful and a 
hindrance: it represents a key resource for the development of tunable 
and programmable quantum devices1,9,10, but it is also responsible for 
strong inelastic losses during collisions11–14. Despite recent advances in 
molecular quantum science15–24, full control of elastic collisions between 
molecules has not been achieved, making it very difficult to create the 
low-entropy bulk molecular gases that are required for the exploration 
of rich many-body physics and emergent quantum phenomena1,25.

Here, we report the realization of highly tunable elastic interactions 
in a quantum gas of polar molecules through the application of an 
external electric field along a stack of two-dimensional (2D) layers 
generated with a one-dimensional optical lattice. The induced electric 
dipole moment in the laboratory frame gives rise to repulsive dipolar 
interactions that stabilize the molecular gas against reactive collisions 
and formation of collisional complexes. These long-range interactions 
provide a large elastic collision cross-section for identical ultracold 
fermionic molecules, in contrast to contact interactions26. We dem-
onstrate the enhancement of dipolar interactions by several orders 
of magnitude and achieve a ratio of elastic-to-inelastic collisions that 
exceeds 100. This favourable interaction regime enables direct molecu-
lar thermalization and efficient evaporative cooling, allowing us to 
bring the molecular temperature T below the Fermi temperature TF. 
The onset of quantum degeneracy is signalled by deviations from the 
classical expansion energy as the ratio T/TF is reduced below unity7,27.

Our strategy follows previous theory proposals28–30 and our earlier 
experimental study on molecular reactions in quasi-two dimensions31. 
This geometry allows us to take advantage of the anisotropic charac-
ter of the dipolar potential and retain only the repulsive side-to-side 

dipole–dipole interactions within each 2D site, while preventing the 
attractive head-to-tail interactions that facilitate losses at short range. 
Our recent advances in the production of degenerate Fermi gases of 
polar molecules7,8, combined with precise electric-field control using 
in-vacuum electrodes32 (Fig. 1), allow us to perform a systematic char-
acterization of the properties of a 2D Fermi gas of polar molecules.

A long-lived 2D Fermi gas of polar molecules
The KRb 2D Fermi gas is created from an ultracold atomic mixture of 
fermionic 40K and bosonic 87Rb atoms. The atomic mixture is initially 
held in a crossed optical dipole trap (ODT) and then transferred into a 
single layer of a large-spacing lattice (LSL) with an 8-μm spatial period, 
which increases the mixture’s confinement along the vertical direction 
(y). The mixture is then transferred into a vertical lattice (VL) with spac-
ing of 540 nm that confines it to a quasi-2D geometry. The intermediate 
LSL transfer results in the Rb cloud populating a controllable number 
of VL layers τ ranging between 5 and 15. We directly probe the number 
of occupied 2D layers via a matter-wave focusing technique on the 
Rb cloud (Fig. 1c)33,34. The measured τ is in excellent agreement with 
theoretical modelling of the in situ cloud size (see Methods).

Magneto-optical association is used to pair roughly half of the initial 
Rb atoms into ground-state KRb molecules35. This process is fast and 
coherent, and the resulting molecular cloud populates the same lay-
ers originally occupied by the Rb cloud. The leftover K and Rb atoms 
are selectively and quickly removed from the trap. In the VL, the trap 
frequencies are set to (ωx, ωy, ωz) = 2π × (40, 17,000, 40) Hz. The quoted 
trapping frequencies are for KRb throughout the paper unless otherwise 
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stated. We create a 2D gas with N ≈ 20,000 trapped molecules, a typical 
temperature T ≈ 250 nK, and T/TF ranging from 1.5 to 3 depending on τ.

The 2D molecular cloud is at the centre of an in-vacuum six-electrode 
assembly composed of two indium tin oxide (ITO)-coated glass plates 
and four tungsten rods (Fig. 1a). With this, we generate a highly tunable 
bias electric field EDC that induces strong dipolar interactions between 
molecules (Fig. 1b). The ratio γ of the voltage of the rods to the voltage 
of the plates can be used to cancel the curvature introduced by the 
parallel plate edges (flat-field configuration) or to introduce additional 
curvatures and gradients for molecule manipulation.

The chemically reactive KRb molecules suffer from inelastic 
two-body losses2,12, which result in the average molecular density n 
decaying over time t according to a two-body rate equation of the form:
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where β is the two-body loss rate coefficient and the second term on 
the right side of equation (1) accounts for temperature changes affect-
ing the density3.

In a three-dimensional (3D) harmonic trap, β increases sharply with EDC, 
so that inelastic interactions dominate elastic ones3,36. However, strong 
confinement along the direction of EDC suppresses this detrimental loss 
increase31 by preventing head-to-tail collisions along EDC. Even though 
n is large in the occupied layers, the molecular gas shows a remarkable 
stability with repulsive interactions turned on. With an induced dipole 
moment d = 0.2 D in the flat-field configuration, KRb molecules survive 

for several seconds (Fig. 2a). The evolution of β as a function of EDC is 
shown in Fig. 2b. Close to EDC = 4.7 kV cm−1, β reaches a minimum of nearly 
five times below the zero-field value. The increase of β for d > 0.2 D is 
consistent with a quasi-2D picture of dipolar scattering37,38.

To understand the effect of optical confinement, we perform a thor-
ough characterization of the 3D-to-2D crossover by measuring β versus 
ωy at EDC = 5 kV cm−1 (Fig. 2c). Here, β drops abruptly as the lattice vertical 
confinement is increased and reaches a plateau near ωy = 2π × 7 kHz, 
corresponding to the quasi-2D limit where kBT ≱ ħωy, with kB being the 
Boltzmann constant and ħ the reduced Planck constant, and the mol-
ecules principally occupy the lowest band of the VL. In contrast to the 
3D case, where the heating rate exceeds 3 μK s−1, in quasi-two dimen-
sions we do not record a substantial increase in temperature along the 
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Fig. 1 | Experimental setup. a, The 2D molecular cloud is trapped at the centre 
of the electrode assembly (grey). 2D optical trapping is achieved with the VL 
(green), which is loaded using the ODT (orange) and LSL (red). Absorption 
images of molecules are collected through the same lens as that used to  
focus the LSL. b, Sketch of the experiment as seen down the z axis. The bias 
electric field is generated along y, perpendicular to the 2D layers of the VL.  
c, Matter-wave focusing data of the Rb layers in the VL, which have a spacing of 
540 nm.
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Fig. 2 | Long-lived polar molecules in 2D. a, Time evolution of the molecular 
density n at d = 0.2 D. b, Inelastic loss rate β as a function of dipole moment. All 
error bars are 1 standard error of the mean (s.e.), determined from two-body 
decay fits (equation (1)) The top x axis shows the bias electric field EDC at the 
corresponding dipole moment . c, Both β (grey circles) and the heating rate 
(orange squares) saturate at their minimum values near ωy = 2π × 7 kHz (vertical 
grey bar indicates uncertainty in the molecule temperature), consistent with 
the mechanism of quasi-2D dipolar scattering. Heating rate error bars are 1 s.e., 
determined from linear fits.
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radial direction. The suppression of heating is due to cancellation of 
anti-evaporation in quasi-two dimensions30 and represents another 
advantage of this configuration.

Cross-dimensional thermalization
To characterize elastic interactions in our thermal molecular cloud, 
we perform cross-dimensional thermalization at various values of EDC. 

We diabatically change the power in one of the ODT beams to suddenly 
increase the energy along z. Elastic collisions between the molecules 
then redistribute the excess energy from z onto x. The rate Γth of the 
temperature equilibration between the two axes is proportional to the 
dipolar elastic collision rate28,39,40. We extract Γth by fitting the increase 
of T along x with an exponential curve.

With the loss suppressed in quasi-2D, we expect a substantial increase 
of the thermalization rate Γth with a d4 dependence28,30. Comparing the 
thermalization dynamics observed for d = 0.1 D and 0.21 D (Fig. 3a), we 
see Γth increase by a factor of 10. Over our investigated range of EDC, Γth 
changes by two orders of magnitude (Fig. 3b), showing the extreme 
tunability of elastic dipolar interactions in our system. We observe the 
cross-dimensional thermalization dynamics at lower dipolar strength 
(d < 0.1 D) being dominated by cross-dimensional relaxation owing to 
trap anharmonicity, which limits the smallest Γth that we can measure. 
For d ≥ 0.1 D, a fit to a power-law dependence of Γth on d yields a power of 
3.3 ± 1.0, in good agreement with theoretical expectations28,30. For the 
highest values of d we explored, the rate Γth is comparable to the radial 
trapping frequency, opening the way for future studies of collective 
dynamics in molecular gases41.

An estimate of the ratio of elastic-to-inelastic collisions is obtained by 
comparing Γth to the initial rate of inelastic losses Γin, which is expressed 
as Γin = βn0, with n0 the initial average density of the 2D gas. From the 
data in Fig. 2b, at d = 0.2 D, we estimate a rate Γin = 0.83(5) s−1, whereas 
Γth = 21(6) s−1 for the same dipole strength. In the temperature regime of 
the cross-dimensional thermalization experiments, theoretical mod-
els30 predict that α = 8 elastic collisions are needed for each molecule to 
reach thermal equilibrium. This indicates a ratio of elastic-to-inelastic 
collisions α(Γth/Γin) = 200 ± 60, demonstrating that elastic processes 
dominate in this system.

ba

0
0.3

0.4

0.5

0.6

200 400

T x
 (μ

K
)

600 800 1,000 0.30.1
Dipole moment (D)

0.03

th
 (s

–1
)

Γ

1

10

100

Time (ms)

Fig. 3 | Tuning strong dipolar elastic interactions in a 2D molecular gas.  
a, Cross-dimensional thermalization dynamics at d = 0.1 D (orange diamonds) 
and d = 0.21 D (grey squares). Error bars are 1 s.e. of 5 independent 
measurements. b, The trend of Γth extracted from cross-dimensional 
thermalization dynamics as a function of d. The solid line is a power-law fit  
for d ≥ 0.1 D that yields a power of 3.3(1.0). The filled grey circle corresponds  
to the measurement at d = 0.0 D, and it is artificially placed at d = 0.03 D for 
figure clarity. The dashed horizontal line at Γth = 2 s−1 is the background 
cross-dimensional relaxation from trap anharmonicity. All error bars are 1 s.e., 
determined from exponential fits.

Fig. 4 | Evaporative cooling to the quantum degenerate regime. a, Cuts 
along the x axis of the combined electro-optical potential for the flat-field 
configuration (left panel) and at the end of the evaporation (right panel).  
b, Evolution of N and T (orange squares) at different stages of the evaporation 
trajectory at EDC = 6.5 kV cm−1 and d = 0.25 D. The power-law fit (orange line) 
yields Sevap = 1.06(15). The dashed grey line is for a constant T/TF, corresponding 
to Sevap = 2.0. Error bars are 1 s.e. of four independent measurements. c, Summary  
of Sevap versus d. All error bars are 1 s.e., determined from power-law fits.  
d, Average of 20 band-mapped absorption images of the molecular cloud in the 
x–y plane after 5.84 ms of time of flight for T/TF = 2.0(1) (top) and T/TF = 0.81(15) 

(bottom). e, Optical density (OD, dimensionless) profiles (orange circles for 
T/TF = 2.0(1) and grey diamonds for T/TF = 0.81(15)) of the images in d 
(integrated along y), together with the Fermi–Dirac fit to the whole cloud (grey 
line) and the Gaussian fit to the outer wings (orange line). f, Measurement of 
δU/U at different values of T/TF from the Fermi–Dirac fit to the entire cloud 
(grey circles) and from the Gaussian fit to the outer wings of the cloud (orange 
squares). The solid and dashed curves show δU/U for the 2D and 3D ideal Fermi 
gases, respectively. All error bars are 1 s.e., determined from Gaussian or 
polylogarithmic fits.
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Electric-field-controlled evaporative cooling
The large elastic-to-inelastic collision ratio is an excellent setting for 
evaporatively cooling to enhance the phase-space density of our molec-
ular cloud. For non-degenerate 2D fermionic gases, phase-space density 
is inversely proportional to (T/TF)2, and phase-space density increases 
only if the change of N versus T during evaporation fulfills the criterion:

S
N
T

=
∂log
∂log

< 2. (2)evap

When Sevap = 2, the gas maintains a constant T/TF.
The efficiency of evaporative cooling relies on our ability to selectively 

remove the hottest molecules from the trap and to let the remaining mol-
ecules re-thermalize to a lower temperature. Reducing the trap depth 
by lowering the optical trap power for evaporation, as is routinely done 
in ultracold atom experiments, is not a viable solution here because we 
cannot lower the tight 2D confinement without affecting the stability of 
the cloud (Fig. 2c). Instead, by increasing γ with respect to the flat-field 
configuration, we introduce a tunable anti-trapping electric field along 
the x direction to reduce the radial confinement experienced by the 
molecules (Fig. 4a). By measuring the change of ωx as a function of γ, 
we can directly reconstruct the combined electro-optical potential 
and benchmark its theoretical modelling (see Extended Data Fig. 2).

For the evaporation measurement, we start with a 2D gas with layer 
number τ = 5 ± 1, ωy = 2π × 17 kHz, and an average T/TF = 1.5(1). After 
creating the molecules (see Methods), we ramp EDC to a target field 
while keeping γ at the flat-field value. We trigger the evaporation by 
increasing γ to reduce the trap depth. We do not observe any evapo-
ration until the truncation parameter η, defined as the ratio of trap 
depth over thermal energy kBT, reaches a value of 4 (see Methods), in 
good agreement with theoretical expectations30. We further increase 
γ over a timescale of hundreds of milliseconds, which is long enough 
for the molecules to efficiently re-thermalize at a lower T as the trap 
depth is reduced. At the end of the evaporation ramp, we return to 
the flat-field configuration and ramp EDC back to its initial value. We 
coherently convert the ground state molecules back to the Feshbach 
state and image the cloud of Feshbach molecules after band-mapping 
from the VL. Detailed time sequences for the evolution of EDC, γ and trap 
depth are shown in the Methods.

At EDC = 6.5 kV cm−1, the evolution of N and T at different stages of the 
optimized evaporation sequence is shown in Fig. 4b. To characterize 
the evaporation efficiency, we fit the N versus T dependence with a 
power-law function to extract Sevap. For the data shown in Fig. 4b, we 
obtain Sevap = 1.06(15), far below the threshold of 2 required to increase 
phase-space density. The trend of Sevap versus d is plotted in Fig. 4c 
and reaches a minimum (that is, maximum increase in phase-space 
density) at d = 0.25 D, where the ratio of elastic-to-inelastic collisions 
is the largest37,38.

When we cool molecules to T < TF (Fig. 4d), we witness the onset of 
Fermi degeneracy, which is signalled by deviations from classical ther-
modynamics owing to the increasing role of the Pauli exclusion prin-

ciple. Here, ( )T =
ħω

k
N
τF

2 1/2
R

B
, with ω ω ω= x zR  the geometric mean of the 

radial trapping frequency. Our best result produced a 2D molecular 
Fermi gas with N = 1.7(1) × 103 and T/TF = 0.6(2).

We extract T by using either a fit to the Fermi–Dirac distribution on 
the entire expanded cloud or a Gaussian fit restricted to the cloud’s 
outer wings (see Methods). As shown in Fig. 4e, for T/TF = 0.81(15) the 
Gaussian fit to the outer wings of the time of flight density profile 
overestimates the density at the centre. We quantify this through the 
increasing difference δU = U − Ucl between the energy U of the fermionic 
gas and the energy Ucl ∝ kBT, as T/TF decreases7,27. U is determined from 
a Gaussian fit to the whole cloud (see Methods) and Ucl is calculated 
based on the measured T. Owing to the different density of states in the 
harmonic trap, the chemical potential crosses zero for T/TF = 0.78 for 

the 2D case, in contrast to 0.57 for the 3D case. Correspondingly, the 
2D Fermi gas shows a larger δU with respect to the 3D case at the same 
T/TF (ref. 42). As we reach T < TF, in excellent agreement with theoreti-
cal expectations, we observe a large increase of δU (Fig. 4f). This is a 
hallmark for the onset of quantum degeneracy in trapped Fermi gases27.

Conclusions
We have realized a 2D Fermi gas of reactive polar molecules where 
precisely tunable elastic dipolar interactions dominate all inelastic 
processes. This allowed us to perform evaporative cooling of mol-
ecules to the onset of Fermi degeneracy. We demonstrated a general 
and robust scheme for ultracold gases of polar molecules to reach 
quantum degeneracy. For example, using a strong 2D confinement and 
large dipolar interactions, this method should enable Bose–Einstein 
condensation in bosonic molecular gases. It has long been anticipated 
that quantum gases of polar molecules in two dimensions would allow 
access to strongly correlated many-body phases43–52. Our results set 
the stage for exploration of these exotic regimes.
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Methods

Experimental protocol
The experiment starts with an ultracold atomic mixture of 40K and 
87Rb, held in the ODT at a magnetic field of 555 G. The trap frequencies 
for Rb in the ODT are (ωx, ωy, ωz) = 2π × (40, 180, 40) Hz. The atomic 
mixture is then transferred into a single layer of the LSL. The LSL beams 
propagate at a shallow angle of 4 degrees along z, resulting in a lattice 
spacing of 8 μm along y. At the end of the LSL ramp, we decrease the 
ODT power, so that the trap frequencies for Rb in the combined trap are  
(ωx, ωy, ωz) = 2π × (25, 600, 25) Hz. Typically, we have 4.1 × 105 K atoms 
and 7.0 × 104 Rb atoms at T = 115(10) nK. About 30% of Rb is condensed. 
At this point, we load the mixture into the VL and adjust the ODT in 
order for the KRb molecules to experience radial trap frequencies 
at zero electric field of (ωx, ωz) = 2π × (40, 40) Hz, with ωy/(2π) rang-
ing from a few kilohertz up to 20 kHz. To compensate for the limited 
transmittivity of the ITO plates at the 1.064-μm VL wavelength and to 
avoid spurious superlattices, the VL beams have a 11-degree tilt with 
respect to y, resulting in a lattice spacing of 540 nm.

To create molecules, we first sweep the magnetic field adiabatically 
through the KRb heteronuclear Feshbach resonance at 546.6 G. The 
magnetic field is ramped from 555 G to 545.5 G in 4 ms, creating 2.5 × 104 
Feshbach molecules that are subsequently transferred to the absolute 
KRb ground state by stimulated Raman adiabatic passage (STIRAP)1. 
By tuning the Raman lasers, we create KRb molecules at 0 kV cm−1 or 
4.5 kV cm−1. For molecule creation at 4.5 kV cm−1, the field is ramped to 
the target value 10 ms before the Feshbach sweep. The STIRAP one-way 
transfer efficiency is 85(2)% at 0 kV cm−1 and 82(3)% at 4.5 kV cm−1. We 
do not observe any dependence of β and Sevap on the initial value of 
the electric field.

Matter-wave focusing and layer counting
The VL layer spacing of 540 nm is too small to resolve with conventional 
absorption imaging. To quantify the number of occupied layers τ, we 
use a matter-wave technique that maps the in situ density distribution 
onto the momentum distribution, which can then be imaged in time 
of flight. To do so, we instantaneously release the cloud from the VL 
and the LSL into the ODT. The cloud expands into the ODT harmonic 
potential for a quarter of the oscillation period along y. This corre-
sponds to a 90-degree rotation in phase space. As a result, after the 
rotation, the momentum distribution along y in time of flight corre-
sponds to the original in-situ density profile. Increasing the time of 
flight increases the layer separation until they can be resolved optically. 
From a set of averaged matter-wave density profiles, we obtain a his-
togram with the normalized particle number per layer from which we 
extract the number of layers τ. We perform this analysis on a cloud of 
Rb atoms without K, eliminating the K–Rb interactions during the phase 
space rotation time. The Rb cloud used for matter-wave amplification 
imaging has the same trap parameters, number and temperature of 
the Rb cloud used for the molecule experiment. When the K–Rb inter-
actions are removed by setting the magnetic field to the zero-crossing 
of the Feshbach resonance, the full contrast is restored. For the data 
in Fig. 1c, obtained by averaging 20 matter-wave images of the Rb cloud, 
the density histogram is shown in Extended Data Fig. 1. For a fixed mol-
ecule distribution, the definition of τ depends on the physical quantity 
being calculated. Using τ N N= /⟨ ⟩i , where N⟨ ⟩i  is the average particle 
number per layer over the measured distribution, we extract τ = 4.6(2) 
for the data in Extended Data Fig. 1. Theoretical modelling53 for the Rb 
cloud in the same conditions yields a consistent value of τ = 5.1(2).

Our measurements of the molecular cloud thus involve averaging 
over layers that are not equally populated. To determine T/TF, we use 

the layer-averaged Fermi temperature ( )T N= 2 =
ħω
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 is an effective number of layers that accounts for the 
nonlinear dependence of TF on Ni. For the data in Extended Data Fig. 1, 

we extract τ = 4.9(0.2). For the T/TF data in the paper we thus use the 
closest estimate τ = 5 ± 1, where the uncertainty accounts for possible 
systematic errors arising from non-uniform conversion of Rb to KRb 
and variation of evaporation efficiency between the layers (since the 
density, and hence thermalization rate, varies between the layers).

To determine the 2D density for the measurement of β, we need to use 
a time-averaged layer number that considers the density dependence 
of the loss in each layer3. The layer-averaged 2D density is defined as 
n = N/(4πσ2τ), where σ is the root-mean-square cloud size in the radial 
direction. Through numerical simulation, we obtain the decay over time 
for a cloud with the layer distribution plotted in Extended Data Fig. 1 
and compare it with the decay of a gas with a uniform layer distribution 
and same number N. In this case, we define τ as the value for which β 
in the uniform case matches β in the non-uniform case. For Extended 
Data Fig. 1, we obtain τ = 8 ± 1.

Electric field potential
The anti-trapping potential that is used for dipolar evaporation intro-
duces an anti-curvature that changes the trap frequency ωx as a function 
of γ. Owing to the geometry of our electrodes, when γ = 0.4225 the 
electric field potential at the molecule position is as homogeneous 
as possible (fourth-order cancellation of the electric-field curvature). 
By increasing (decreasing) γ, ωx decreases (increases), as shown in 
Extended Data Fig. 2 at EDC = 5 kV cm−1. Our results follow the expected 
trend from finite-element simulations of the combined electro-optical 
potential at different γ.

Electric-field evaporation ramps
For the evaporation experiments, we lower the trap depth by increas-
ing γ over time. The trap depth at each time point of the evaporation 
is estimated by simulations of the combined electro-optical potential, 
which is benchmarked with the measurement of ωx versus γ displayed in 
Extended Data Fig. 2. For the data shown in Fig. 4, the evaporation ramp 
takes about 800 ms and EDC, γ and trap depth evolve over time according 
to the plots in Extended Data Fig. 3. We also plot the trend of the param-
eter η and T/TF at different time points of the evaporation sequence.

Thermometry of 2D Fermi gas
The 2D in situ density n of the molecular Fermi gas is given by the Fermi–
Dirac distribution54:
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After a certain time of flight t, the x coordinate scales by a factor 
ω t1/ 1 + x

2 2. The density is consequently divided by ω t1 + x
2 2 for pro-

  per renormalization. The chemical potential µ is defined through the 
relation:

N
τ

k T
ħω

= Li (− e ). (5)β µB

R

2

2
th











Combining equation (5) with the definition of TF in 2D, we obtain:
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which allows us to extract the ratio T/TF from the polylogarithmic fit.



From the Gaussian fit to the whole cloud, we obtain the Gaussian 
width σ and a release temperature Trel, defined as:

T
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The release temperature Trel is proportional to the energy density 
U of the Fermi gas, U = 2kBTrel, which saturates to a non-zero value as  
T → 0. In contrast, the energy density Ucl = 2kBT of a classical gas 
approaches zero as T → 0.

When the Gaussian fit is constrained to only the outer wings (that is, 
the high-momentum states) of the cloud, we can extract a new width 
σout from which, using equation (7), we obtain a corrected temperature 
Tout through the relation:
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As the excluded region from the centre of the Gaussian fit is 
expanded, Tout decreases from an initial value of Trel and approaches 
T. This is shown in Extended Data Fig. 4, where we plot the ratio 
Tout/Trel at different exclusion regions in units of σ. For the range of 
T/TF studied here, we find that an exclusion region of 1.5σ leaves us 
enough signal-to-noise ratio for the fit to properly converge and to 
return a value of Tout that is only 5% higher than T. In the main text, the 

Gaussian fit on the outer wings is performed with an excluded region  
of 1.5σ.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request. Source data are pro-
vided with this paper.
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Extended Data Fig. 1 | Layer occupancy. Histogram of the average number per 
layer (relative population) for the data shown in Fig. 1c.



Extended Data Fig. 2 | Trend of ωx/(2π) versus γ. Grey points are the 
experimental measurements at EDC = 5 kV cm−1, the solid grey line is a linear fit to 
guide the eye, and the dashed line is the prediction (Sim) from the 
finite-element model. All error bars are 1 standard deviation of the mean.
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Extended Data Fig. 3 | Evaporation sequence. a, Ramp in EDC. b, Ramp in γ.  
c, Trap depth versus time from the finite-element model of electro-optical 
potential. d, Evolution of η, calculated by taking the ratio of the trap depth and 

temperature at each time point. e, Evolution of T/TF during the ramp. All error 
bars are 1 standard error of the mean.



Extended Data Fig. 4 | Fermi gas thermometry. Trend of Tout/Trel as a function 
of the excluded region from the centre of the Gaussian fit for T/TF = 0.81(15) 
(orange diamonds) and T/TF = 2.0(1) (black circles). Solid lines are Gaussian fits 
to simulated density profiles for T/TF = 2.0 (black) and T/TF = 0.8 (orange). All 
error bars are 1 standard error of the mean.
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