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Controlling dipole-dipole frequency shifts in a lattice-based optical atomic clock
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Motivated by the ideas of using cold alkaline-earth atoms trapped in an optical lattice for realization of
optical atomic clocks, we investigate theoretically the perturbative effects of atom-atom interactions on a clock
transition frequency. These interactions are mediated by the dipole fields associated with the optically excited
atoms. We predict resonancelike features in the frequency shifts when constructive interference among atomic
dipoles occur. We theoretically demonstrate that by fine tuning the coherent dipole-dipole couplings in appro-
priately designed lattice geometries, the undesirable frequency shifts can be greatly suppressed.
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I. INTRODUCTION ated electromagnetic field can affect other atoms. These
atom-atom interactions can manifest themselves as shifts in
The development of increasingly accurate atomic clockshe observed transition frequencies. Because of the spatial
has led to many advances in technology and tests of fund@rdering of atoms in a lattice and the potentially high atomic
mental physics. In the search for the next generation oflensity, it is possible that such interactions may produce very
clocks and frequency standards, there has been consideraligege frequency shifts. One might expect then that dipole-
interest in using alkaline-earth species because of their natipole interactions can be much more severe here than in, for
row intercombination lines in the optical spectryr. In  example, atomic fountains, and thus could place serious lim-
order to achieve a high level of short-term stability and long-its on the accuracy of an optical lattice clock if not accounted
term reproducibility and accuracy on the clock transition, itfor. On the other hand, it might be possible to design lattice
is desirable to have a large number of cold atoms located igeometries where this shift is reduced or canceled. Although
a well-characterized trap for an improved signal-to-noise rathe trapping lasers are constrained to operate at the “magic”
tio (S/N) and reduced systematic errors associated witlwavelength, the lattice geometry can be altered by changing
atomic motion. Single ion-based systems do effectivelythe relative orientations of the trapping beams, whose de-
eliminate Doppler and other motion-related systematic errorgrees of freedom can be characterized by a set of variables
when the single ions are confined in the Lamb-Dicke regimeg «}.
[2], although the achievabl&/N is limited by single- In this paper, we investigate theoretically the dipole-
guantum absorbers. For neutral atoms it is important thadlipole interaction-induced shifts in the clock transition fre-
changes in the level structure due to the trapping potential dquency recovered by Ramsey spectroscopy. We show that by
not alter the relevant clock transition frequency. Such avarying the lattice geometry we can quantitatively control
scheme has been proposed by trapping alkaline-earth atortise clock frequency shift and even reduce the shift to zero. In
in three-dimensional optical lattices tuned to a “magic” particular, we give an analytical equation that can be solved
wavelength where the relevant states for the clock transitiogiving configurations{«,} where constructive interference
experience exactly the same level shifi]. The Sy(F causes the line shift to be very large. In these “bad” lattice
=9/2)— 3P,(F=9/2) forbidden transitionX,=700 nm) in configurations, the magnitude of the line shift scales approxi-
87Sr [3] is in particular a promising candidate for a lattice- mately like N23. Quite generally we propose that by tuning
based optical clock transition because of the long lifetime othe parameter spade:} to lie in between two of these bad
the excited state~ 160 s) and the insensitivity of thte=0  configurations, one can find “good” configurations where
states to the polarization state of the trapping light. Alreadythe shift is canceled. The mechanism of cancellation is asso-
there have been efforts towards the cooling and trapping ofiated with the destructive interference of contributions to
87Sr[4—-6], and recently this transition was directly observedthe shift from different atoms in the lattice.
and measured for the first timg7]. Calcium, another It is important to emphasize that the present mechanism
alkaline-earth atom that has been studied extensively as @nd theoretical treatment differ considerably from the con-
frequency standarfB,9], may be a candidate for optical lat- ventional approaches used to treat dipole-dipole line broad-
tice clocks as well. ening and shifts. In the case of atoms in a spatially ordered
In the case oN independent atoms, one benefits from alattice geometry, long-range effects are important, and the
JN improvement inS/N in spectroscopy. However, atoms usual methods involving binary collisions of nearest neigh-
trapped in an optical lattice can interact with each other andbors [10] are not applicable. These long-range effects in-
cannot truly be considered independent. Each optically exelude, in particular, interference of the far-field dipole radia-
cited atom represents essentially a point dipole whose radtion produced by the excited atoms, a phenomenon similar to
Bragg scattering in a crystal.
This paper is organized as follows. In Sec. Il we derive
*Electronic address: dechang@fas.harvard.edu equations describing the evolution of an atomic system with
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dipole-dipole interactions. These equations are derived as- gp
suming that the atoms are in the Lamb-Dicke regime, with gt
one atom or less per lattice site. In Sec. Ill we give a brief
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review of Ramsey spectroscopy and solve for the dipole- r L .

dipole induced line shift using perturbation theory. We find T2 4 f(krap)({og 0y .o} =204 poy)

that the shift can be qualitatively understood in terms of the ’

classical interaction energies between oscillating dipoles. 1 .

There is a contribution to the shift that is zeroth order in the 2 za: Y(p=0ap0a), @

interrogation timet, which is due to imperfections in the

Ramsey pulses. Even with perfect pulses, however, one finds

a shift that is first order int that results from spontaneous where
decay of the atoms. Section IV discusses how our result for

the line shift can be generalized for systems with imperfect

filling of the lattice sites and for multilevel atoms. In the case 3
of imperfect filling, one can calculate the mean value of the f(V)=3
frequency shift as well as some nonzero variance, due to the
uncertainty of how the lattice is filled. In Sec. V, we derive

an equation that can be solved giving lattice configurations

where the shift is large due to constructive interference. We +

derive an approximate scaling law for the shift in these bad v3 v?
configurations and discuss how the line shift can be reduced 3
by choosing an appropriate lattice design. In Sec. VI we

demonstrate these results numerically for one specific lattice ) ) )
configuration. and ¢ is the angle thav makes with thez axis.

The first term on the right-hand side of E() corre-
sponds toH,. o is the Pauli matrix of atona correspond-
ing to the population difference between the excited and
ground states, and, is the resonance frequency of the di-

To treat the problem of interacting atoms in a lattice, wepole transition. The second term correspond$itg. Here,
considerN two-level atoms in the Lamb-Dicke limit with F=k8d2/3we0ﬁ is the spontaneous decay rate of the excited
polarizability along thez axis. A simple model of the system state of a single, isolated atom, whekg=2m/\y=wq/C
consists of treating the atoms as point dipoles, and we furtheandd is the dipole matrix element between the ground and
assume that there is one or less atom per lattice site. ThRxcited statesa, is the atomic raising operator on atcm
corresponds to a Mott-insulator state for bosons or a normand o, is the lowering operator on atoim One then sees
state for fermions. In principle, to solve exactly the problemthat the effect of dipole-dipole interactions is an exchange of
of interacting atoms one would start from the full atom-field excitation between pairs of atoms. The strength of interaction
Hamiltonian and take into account not only all the atomicis modified by a functiorg(kr,,) that depends on the dis-
degrees of freedom but the continuum of electromagnetiéance and orientation between two dipoles. It is to be under-
field modes. To simplify the theoretical treatment, we effec-stood thatk=k, in the functionsf andg. We see that both
tively eliminate the field in the standard way using the Born-short-range, near-field (%)) and long-range, far-field (ay
Markov approximation(see Appendix This is valid pro- dipole interactions are included in our formalism and are

vided that the atomic system evolves slowly on time scaledr€ated on equal footing. The third term on the right side of
of the correlation timer, , which is of the ordet./c whereL ~ EU:(2) corresponds t& and also is due to atom-atom inter-

is the linear size of the system ands the speed of light. As actions. It also depends dhand has a position dependence

a result of eliminating the field, one finds an effective equa-fjescribecj bYf (krap). The non-Hermitian nature of this term

tion of motion for the density matrig of the atomic system. IS _ewdent through the anticommutator. Physically de- .
Atom-atom interactions then appear throuah an effectivescnbes the processes of both independent and cooperative

Lo pp gn a decay. Finally, we have also added phenomenological
HamiltonianH ¢ as well as through a non-Hermitian opera-

] dephasing through the term, which in particular includes
tor £: the effects of a finite, short-term linewidth of the laser inter-
rogating the clock transition.
) 1 From Eq.(2), one can derive equations of motion for any
p atomic operators. For our particular application of Ramse
ﬁ_ﬁ[HojL Herrp]+ LLp] @ spectrosc?opy, we find it necpessary to srt;?ve for the coherené,e
(o1) and the two-atom correlatiofrZay, ). Furthermore, to
remove the rapid oscillations due i, it is convenient to
Here,H is the atomic Hamiltonian for a noninteracting sys- work in the frame rotating with the interrogating laser fre-
tem. Writing out all the terms in detail, quencyw, , where

v v?

sinv COSU)

sinzasz}ﬂﬂ:%cos?e—l)(

coSv sinv”

g(v)=— ; sirﬁacovﬂ+(3co§a— 1)(

II. EQUATIONS OF MOTION
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oal) . Ty where|e) denotes the excited state of the clock transition.
. oy )— T(Ga) In Ramsey spectroscopy, one lgtg) evolve for an inter-
rogation timet to p(t). During this time the coherence be-
r ) - tween the ground and excited states acquires some time-
t3 ga [f(krap) —ig(krap){o0,), (4 dependent phase that dependssomfter a timet, one then
applies a second pulse corresponding to the inverse unitary
Hotay Ar+y r gperationUT, and then measures the signal~c0rresponding to
%z —<i6+ 5 )<aga;>—r<ag>— S[f(kray)  S=3a07, averaged over the final systes. S corresponds
to the total population inversion. Because of the second
+ig(Krap) )(oa ) —Tf(krap){on of) pulse,S will now depend ons andt, allowing one to extract
r information about the resonance line.
+ > J;a:b [f(krbj)_ig(krbj)]w;gégn Formally, we can rewrit& as

8= TI’( Ea: a'EZ,UTp(t)U)

_p%b [f(kraj) +ig(kra)]{ogop o))

=cos2) 7'< > a§> —2sin20) rRe< > ei"xao§> , (9)
a a

—rjgb[f(kraJ-)—ig(kraj>]<o;a;o,-*>, (5)

where the averages denoted above apply(t), the system
and 6= w| — wy. immediately before the second pulse.
In principle, to solve for the atomic system exactly, equa- In the case olN noninteracting, independently decaying
tions of motion for higher-order correlations are needed, alatoms,
though typically some approximation is used to truncate the

resulting hierarchy of equations. In general these equations (o2y=—1+ e ''(1—cos2)7), (10
can describe light-matter interactions in an optically dense

medium, including radiation trapping, level shifts, and super- (eag )= 1sin2Q) e~ (10+ 17272t (11)
radiance[ 11].

which gives a corresponding signal

Il. RAMSEY SPECTROSCOPY IN THE OPTICAL - e n
LATTICE CLOCK S=—N[cos)r(1—e ") +e Tcog20r

A. Basic principles +e” TFNZGir22 () reost]. (12

We now analyze the effects of atom-atom interactions ompne can see that there is a peak in the signal ar@in@.
Ramsey spectroscopy. Starting from the ground 4@€"  Determination of this peak allows one to find the frequency
Of. the system, suppose that one apphes a strong probe p”'ﬁ?the transition. One can note two important points af®ut
with the interrogating laser, given in the rotating frame by L= . o

The contrast inS with respect toéd is maximized when a

the Hamiltonian ) .
“perfect” /2 pulse is applied, i.e., whe®d 7= 7/4. Further-
RN b oiker =ik more, the contribution t& due to({o}) in Eq. (9) is inde-
H‘; 1806 a0 e %), 6) pendent ofs and thus plays no role in determination of the
resonance line. Thus, one is motivated to define an effective
where() is the Rabi frequency. For simplicity, we have madesignal S that consists of the part & that is actually used to
a plane-wave assumption about the probing laser, takitng  determine the line:
be in the positivex direction. We also assume tHatk,, and
suppress the subscript in future calculations. We can do this o o+
if the phase erroe'®“/® over the length of the sample in- S=-2sin207R ; €eoa - (13
curred by making this assumption is small. Applying this
pulse for a timer evolves the system through the unitary The equation above states that from a theoretical standpoint,

operator determination of the resonance line by measuring the popu-
R L lation inversion after the second Ramsey pulse is equivalent
1 cosQ 7 easin) 7 to measuring the real part ¢&'**ac}) directly before the
U= 4 | —e ®asinQOr  cosQr | (M second pulse.
The state vector immediately following this pulse is given by B. Effect of interactions
® Solving for S exactly in the presence of dipole-dipole in-
)= H (cosQ 7|g) + e *asinQ 7]e)), (8) teractions appears .to be quite a difficult ta§k. Since all inter-
a actions are proportional tb, our approach is to solve f@&
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as a perturbative expansionlh In particular, we solve for ) I't
the coherencéo ) in Eq. (4) to second order i". This = 2 [T(krap) =ig(krap) Je™a b =-c09 200 7)
requires solving ooy ) in Eq. (5) to first order inT". The ,

- - . . . .. l'\t 1 )
isSqutlon for the coherence with appropriate initial conditions N ( 4) 1+ E[f(krab)+ig(krab)]e*'k(xafxb)

+\ _ —ikx (I5+y/2)t 1 2 f(k X k ink

<‘Ta>— asin(2Qr)e” (1+Ca) +§j¢ab[ (KT aj)COKXqaj+ (K 5))Sink X, ] | |
(19
(Ft)
a>+ E [f(krap)—ig(krap)]

The first three terms in the parentheses of Ep) are a
result of expanding the " term that appears in the result
for independent atoms, given in E¢L2). This is just the
decay of the signal one would get from independent sponta-
neous emission. The last term in the parentheses is a correc-
tion due to atom-atom interactions. Plugging this result into
Eq. (13), we find that

X[Aap¥t?—2Bap(e” "'+ yt—=1)]|, (14)

where

NIt N(Tt)2

S~ —sirf2Qr (coséT)(N—T —E Rep,

3. 1
Agp=— Zelk(xafxb)coi 2Q07) _’_Eelk(xafxb)
—(sindt) >, |m¢a} (20)

a

1 1
+ 7 [T (krap) +ig(krap) = 5 f(krap)cog 202 7)
Because of the antisymmetric strterm now appearing i,
1 ) KX)o one immediately sees that dipole-dipole interactions intro-
2 J;a:b [f(krpj) —ig(krp;)]e™ =" cos(2Q7), duce a shifts, in the Ramsey fringes, which can be found by
’ solving 9S/96=0. Suppose that the inequalitiggt<1,I't
(19 <1 are satisfied. Under these conditions, a simple expression
for &, results:

1 p .
Bap= X 0si?(207) X [f(Kra))cOKX,; TN_E [9(Kr ap) COKXap— f (KT ) SINKX,p]
4 j*ab a b#a
+ g(Kr i) Sink X, 1, 16 1 I't 1
g(kra))Sinkxq] (16 x| =cos2d 7+ —| 1+ = >, [f(kra)cokx,:
2 4 2 j7ab ) !
Ca= > [F(Kr ap)—ig(krap) Jekacos2) 7. (17) +g(kraj)5irkxai]) : 2D
b#a

_ . _ C. Interpretation of shift
Equation(14) is correct to every order of. Equat|_on3(13) . The shift given by Eq(21) yields a simple interpretation.
and (14) can be evaluated numerically for a given lattice o ; .

In anticipation of future analysis, we writ&, as

configuration and number of atoms. To illustrate the general
features of the shift, however, we now make the following S /1 Tt
simplifications. We expand E¢l4) to lowest order iny. We L= > U §e+ ZFa),
also assume that the Ramsey pulses are nearly perf@ct
pulses, i.e., co2r=e<1. We then keep terms likel't but

(22

ignore terms likeel'?t?. With these simplifications, where

Uap=0(Kr ) COKXqp— f(KF 4) SINKXgp, (23
T . I't (I't)?
((ra)~§e *Xasin(2Q 7)e™! 1—7+ 8 — b, , e=cos2)r, (24)
(18)
1 .
a= 5 ; [ f(Kraj)COKXaj+g(Kr 4)SiNk Xy ].

where (25
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(dioy) is nonzero, interactions can influence evolution of

to the classical interaction energy between two oscillatinqga+>_ The rate of decay is characterized EX- The first

dipoles,e is a parameter characterizing the error in the Ram

sey pulses, anfl, is a dimensionless quantity characterizing
cooperative decay of the system.

To show the meaning of th&,, term in Eq.(22), con-

term inI’, is the contribution from independent decay of the

atom back to the ground state. The second contribution in-
volves a sum over other atoms and represents a correction
due to the fact that the decay process may in fact be coop-

sider the interaction between a classical, oscillating dipole agrative (e.g., superradiangeOne can easily verify that the

r, excited with phase'(*a~Y and the field incident on it
due to a classical, oscillating dipole gt excited with phase

e' =) We assume that both dipoles are oriented along

the z axis and that their magnitudesare determined from
the relationT =k3d%/3meh. The classical interaction en-
ergy between dipole and the incident field is given by
Uap=—(1/2)Rd d,- Ef (r,)]. The field atr, due to dipoleb

is [12]:
Ez(ra):ei(kxb—wt) eikr|:

)

wherer =|r,—r,|. Now using the definitions in Ed3), the
interaction energy can readily be rewritten as

)

kr

k3d

e +(3cog6—1)

1
(kr)®  (kr)?

(26)

1
Uap=— ERd:da' E;(ra)]

hl .
2 [9(Krap) COKXap = F(Krap)SinkXap] - (27)

contribution from atonj is proportional to Ifid,- Ef (r,)]:

Im[dg- Ef (ra) ] f(Kraj)cog kX)) + g(Kraj)sin(kxy;).
(29

This reflects the well-known result that the atomic inversion
(o%) is driven by the dipole component in quadrature with
the incident field.

IV. GENERALIZATION OF RESULTS
A. Imperfect filling of lattice sites

Experimentally, knowing the exact number of atoms in
the lattice and achieving a filling factor of one atom per
lattice site are difficult tasks. Most likely, one can experi-
mentally determine the densip(r) of atoms in the lattice,
such that the probability of occupation at any particular site
is P(ry)=p(ra)V, whereV is the volume of a unit cell. It is
straightforward to modify Eq(21) to the case of imperfect
filling. For simplicity, we only consider the shift that is ze-
roth order int. This shift can be written

o, 1 1
- TN ; ga €022 7] g(K ) COKXap
:Tuab' (289 _
— f(Kr 4p)SINKX4p] (30
One then sees that this indeed corresponds to the first term of
Eq. (22). ~ 2yt 20 7g(k &« 31
Although theU,, term in Eq.(22) resembles a classical TN s 5cosA7g( Fab) COKXap (3D
interaction energy, the terms in parentheses reflect the
guantum-mechanical nature of the system. There is a contri- 1 N(R)
bution to the shift that is zeroth-order in the interrogation ~Zcos7 S, U(R) , 32)
time t and proportional tee. One notes that for perfeet/2 2 RZ0 N

Ramsey pulses=0. Thus, the zeroth order shift is due to

error in the Ramsey pulse. This can be understood by con-

sidering Eq.(4). One sees that the interaction terms onIy}NhereU(R):g(kR)COSkR" {R} denotes the set of direct

influence evolution of the coherence through the termattlce vectors, anN(R) is the number of pairs of atoms

25y For a perfect/2 pulse, this term is initially zero, separated byR. In the derivation above we have utilized the

(o f . In the d

| . . ; ct that sikx,,=—sink to cancel the sum of

and in this case, interactions cannot affect the measuremepf, . D) sinkxg, ﬁba realis),(?i?: scenario. one neither knows
a . ]

at short times. This effect is due 1o the nature of deOIe'N(R) nor N exactly. In this case, one must solve instead for

dipole interactions: these interactions cannot influence th .

coherencda? ) of an atom when it is in an equal Superpo- the ensemble averagé,) and the variancé §,. For large
g a . N, one can safely pull the factor & out of the ensemble

sition of the ground and excited states. average:

Even if a perfectm/2 pulse is applied, there is an addi-

tional contribution to the shift that is first order inand

whose strength is given bly,. The intuition behind this is

also straightforward. Even {foZay ) is initially zero, decay

of the excited state will eventually evolers) away from

zero and back towards its equilibrium value ofL. Once  With this simplification,

N(R)

(NR))
N -~ .

(N)

(33
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5 1
% 2<N>coszs)72 U(R)(N(R)) (34)
1
2<N>cosm72 U(R)fdrp(r)p(r-i—R) (35)
(Aap)z_ 1 , , 1 2
= (Wcoszh) R’g‘;OU(R)U(R )(N(R)N(R"))— (2<N>cos2§)72 U(R)(N(R)) (36)

1
~l2(N)

cosZQT) { 2 U(R)U(R/)fdl’p(f)p(f+R)VZ{[l—p(r)V]p(r+R')
R,R'#0

+[1—p(r+R)V]p(r+R+R")+[1—p(r)V]p(r—R")+[1— p(r +R)V]p(r +R—R’)}

+2F;0 U(R)ZJ drp(f)p(f+R)V{[l—p(f)p(f+R)Vz]—[l—p(f)V]p(rJrR)V—p(r)[l—P(r+R)V]V}] (37

Each term in Eq(37) has a clear meaning. To calculate the multiple excited states will contribute an additional source of
average shift in Eq(35), one must evaluatéN(R)). To do  shift that is first order in't. If decay of the clock excited
this, one must perform a sum overof the probability that state constitutes the major source, the multiple excited states
the site; andr; + R are both occupied. To find the variance, will contribute a shift that is of ordeF?t2.
one must calculate quantities lik&l(R)N(R’)), and thus
the probability that the siters, ri+R, rj, andr; + R’ are all V. ANALYSIS OF RESULTS
occupied. When these four points are distinct, the probability
is simply a product of the probabilities of each point being Equation(21) or Egs.(35) and(37) can be evaluated nu-
occupied. This is untrue when one or more of the pointgnerically for a given lattice configuration and number of
0\/er|ap_ The terms in Ec(37) represent corrections due to atoms. To extract the key features of the shift, we note that
these overlaps. The product p(r)p(r+R)Vvy(1  the zeroth-order shift in in Eq. (21) essentially consists of
—p(r)V]p(r+R’), for example, is due to the overlap gf adding together the classical dipole interaction energies
andr; . Uapx—Red,- Eg (ra)]. For a generic configuration of at-
oms the amplltudes of the dipole fields incident on a given
B. Effects of multilevel atomic structure dipole a tend to interfere. For certain configurations, it is
ossible that the field amplitudes will add constructively
along some direction of propagatidn Near these configu-
rations one will expect large shifts to result. The condition
for constructive interference between radiated dipole fields is

clocks, where th_e simple level structure makes it easier WQmijar to that of Bragg scattering in a crystal, and is readily
cancel the relative ac Stark shift in the clock transition. “found to occur when

Nonetheless, our results can be generalized to more compli-
cated level structure, such as the case of an atom with a
single ground and multiple excited states. A simple argument
shows that Eq(21) remains correct to the lowest nontrivial
order inI't. If multiple excited states are present in addition
to the one that is initially excited, the equation of motion for
(01 gocd IN EQ. (18) will contain additional terms like

(0a0p othey, Where the subscript “clock” refers to the clock

transition and “other” refers to other excited state levels. Numerical results indicate that peaks in the line shift do in-

Our results derived thus far are for the case of two- Ievef3
atoms. This is the relevant case of study for thle=Q)
—(J=0) forbidden transition proposed for optical lattice

|G| =ko, (39)

where é=(Gx—ko,Gy,Gz) and G is a reciprocal lattice
vector. This condition can be rewritten as

|G|%=2k,Gy . (40)

Initially, (o ome) =0 and thus deed occur when conditiof#0) is nearly satisfied.
7+ One can easily derive an approximate scaling law for the
Mml‘t. (38)  line shift in these resonant configurations. We define a di-
(TZ0% clock) mensionless paramet@r related to the density of atoms by

n=1/(B\)3. B characterizes the spacing between neighbors
Consequently, at short times, evolution(ef, .. Will be  in the lattice. In a resonant configuration, the electric fields
dominated by the clock transition. Thus, if imperfections inadd constructively, and the total electric field experienced by
the Ramsey pulse constitute the major source of shift, than atom is approximately

023810-6



CONTROLLING DIPOLE-DIPOLE FREQUENCY SHIFS . .. PHYSICAL REVIEW A 69, 023810(2004

nr L2 z

n L
E~fd3rﬁ~fodr?~m, (41 rd

wherelL is the linear size of the system. Firtotal atoms,
L~ BANY Then 0

S N2/3 0
T 42) Y

Experimentally, one has freedom to choose the orientations
of the trapping laser beams that form the lattice. The control
parameters can be parameterized by a set of varidblps e
which will also determine the reciprocal lattice vectors _ o _ )
G({a}). One can then find solutios,} of Eq. (40) corre- FIG._l. The lattice stu_dled in our numerlc_al example is formed

sponding to configurations with large line shifts. In the pa_by thg interference of six laser beams. Thch arrows denote the
rameter space between two sets of solutibmg!, one can directions of propagation of the beams, and thin arrows denote the

numerically find configurations where the shift is signifi- direction of polarization. Four beams are oriented along>the
cantly reduced. plane, each making an angted with they axis and polarized along

. - . . o . T dditional b llel rand larized al
In the case of imperfect filling of lattice sites, it will be Z TWo addriional beams run paraTiel fmand are pofarized along
important to account for not only the mean shift but the

variance as well. For large numbers of atoms, Bq) can-
not be evaluated exactly without extensive computational re

sourcef_. Witht?] Stn:ﬁ” f|II|n_g faCtdf.Epty<%’ ?r?weve_r, we specific solutions,f,/7=0.116 andé,/7=0.180. These
can estimate that the major contribution to the variance re(':orrespond to lattice spacings  aa,.a,)

sults from thep? terms, while thep® terms remain negli- =(1.50,0.57,0.54), and (@,,a,,a,)=(1.00,0.63,0.54),
) o > XAy ,8; ,
gible. In this diffuse limit, respectively. It is evident then that the constructive interfer-

constants must be solved self-consistentl$,14].
Using Eq.(40) we can find values ofl where constructive
interference causes the shifts to be large. We focus on two

(A5,)2 1 2 ence for these configurations occurs in théirection. For
P ~(—c052() 7-) 2> U(R)? our system we consid¢N) atoms in a spherical distribution
r? 2(N) R#0 with uniform densityp(r) for r<rg,, and zero density for
>rgy. The relationship between the density and filling frac-
X f drp(r)p(r+R)V. (43 tion P is given byP=p(r)V, whereV is the volume of a unit
cell. The critical value g is determined by the equation
In this case, one readily finds that the variancé, scales 3(N)V 1/3
like (P/N)Y3. ForP<1/2, the variance increases withdue O:( P ) (44)
an

to the increasing uncertainty of whether a pair of sites will
both be occupied, but decreases wtldue to the decreasing
fractional uncertainty in the total number of pairs of atoms
separated by a vectét.

We first consider a perfectly filled lattice consisting Mf
=10° atoms. For simplicity we calculate the line shift to
zeroth order in the interrogation tinteln Fig. 3, we plot the

VI. NUMERICAL EXAMPLE 2

As an illustration of our results, we consid®Sr atoms
trapped in a lattice formed by six interfering beams, as 15
shown in Fig. 1. For®’Sr, the “magic” wavelength of the
trapping lasers is roughly+=1.07\4 [3], and one can vary
the angled between the propagation vectors of the trapping
beams. The resulting lattice is tetragonal, with lattice con-
stants ofa,= w/kysin 6, a,= m/kycos#, anda,= m/ky along 0.5
X, ¥, andz, respectively. The lattice constants are plotted in
Fig. 2. The corresponding basis of the reciprocal lattice has ‘
lengths G,=2kysiné, Gy=2kycosf, and G,=2ky. We 0 0.1 02 03 04 05
have ignored the effect of atomic backactidr8,14 on the o/n
trapping fields, whereby scattering of light by the atoms in- g1, 2. The lattice constants for the six-beam lattice are plotted

troduces phases that might modify the lattice constants. SUGR units of \, as functions of6. We assume that the ratio of the
effects are expected to be stronger in red-detuned latticefesonant wave vector to that of the trapping laserskjgky

where atoms lie in the antinodes of the potential, and with=1.07, consistent with the magic wavelength B&r. The solid
increasing atomic density. Taking into account this backactine represents the lattice constant alonghe dashed line along
tion does not modify our results, except that now the latticeand the constant dotted line alomg

alk,
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15 ‘ ration of the trapping lasers, and the effects of atomic back-
action on the lattice constants. However, it appears from the
107 | " figures that the curves remain relatively flat when the con-
figuration is not too close to resonance, and as long as one
& 5 It i remains in this regime one might expect that these other
S - l o sources of error will not significantly affect the results. In
§ O—Jb‘ _____ 4‘/‘ Fig. 3, for example, the slope around the zero crossing for
= the imperfectly filled lattice is approximately(4s,)/dé
& -5 ; N = 0.6l cos(227), or d(3,)/da,=—0.2I cos(Z27)/\,. Thus,
H it appears that the shift due to dipole-dipole interactions can
10 i be made quite small by appropriately designing the lattice,
] ‘ . . even in the presence of additional sources of error.
131 0.12 0.14 0.16 0.18

o/n
VIl. CONCLUSION

FIG. 3. The calculated mean shifts for the six-beam lattice as a . . . .
function of 6. The solid line corresponds to a systemybh=10° We have derived an expression for the line shift measured

atoms with a filling factor of 0.05, while the dashed line corre-iN Ramsey spectroscopy due to dipole-dipole interactions.
sponds toN=10° atoms in a perfectly filled lattice. The overall We find that the lattice geometry strongly affects the magni-
shapes of the curves are similar but differ in scale. For the imperfude of the shift, and is peaked in lattice configurations
fectly filled lattice, the magnitude of the shift is smaller due to bothwhere the interactions between atoms add constructively. Be-
a smaller number of atoms and a larger average spacing betwe@ause of the spatial ordering in the lattice, the shift can be
atoms. quite large in these resonant configurations. By tuning the
lattice between two of these configurations, one can reduce
quantity 25,/T'cos(Z)7) as a function off. Peaks in the the dipole-induced line shift to nearly zero.
shift are clearly visible at the poini&, that were calculated ~ While the resonant configurations might be bad for clock
analytically. It should be noted that the line shift can be veryapplications, it might be worthwhile to study these configu-
large in one of these resonant configurations. Even in théations further. The dipole-dipole couplings in an optical lat-
limit of short interrogation times, one can see that shifts oftice offer the possibility of strong, constructive interactions
order 5,~10I" are possible. This is perhaps a surprising re-that can be dynamically tuned by changing the lattice geom-
sult, and occurs because the spatial ordering of the atonfry. This might be useful for applications such as quantum
allows the interactions to behave constructively at thesénformation processing and might have interesting conse-
points. For longer interrogation times, one expects this lingluences for studying phenomena such as superradiance and
shift to become even larger, since the constructive interferfor probing the superfluid-Mott insulator transition.
ence in these configurations also leads to superradiant decay
and thus a large contribution to the shift that is first order in
t. One also sees that away from these bad points, the shift is

strongly suppressed and even becomes zero for one particu- e gratefully acknowledge A./?oen_sen, A. Andreand R.
lar value of§. Walsworth for many helpful discussions. This work was fi-

We next consider a partially filled lattice consisting of Nancially supported by the NSF, the A. Sloan Foundation, the
(N)=10° atoms and a filling factor oP=0.05. The mean David and Lucille Packard Foundation, NIST, and ONR.

shift 2(5,)/I'cos(227) as a function of¢ is also shown in
Fig. 3. The shape of the curve qualitatively looks the same as APPENDIX A: DERIVATION OF MASTER EQUATION
the case of the perfectly filled lattice, although the overall
scale is different. For the imperfectly filled lattice, the mag-
nitude of the shift is smaller by approximately a factor of 15,
due to both a smaller number of atoms and the larger averal
spacing between atoms. This factor of decrease agre
roughly with the scaling law given in E@42). The shift for

ACKNOWLEDGMENTS

In this appendix we derive Edq2) starting from the full
atom-field Hamiltonian. For a more detailed derivation and
ijscussion, one can also see R¢i%,16. The Hamiltonian
g%r the atom-field system is

the imperfectly filled lattice exhibits peaks at the same points H=Ho+V, (A1)
0, calculated earlier, and vanishes n@asr=0.125. At this h
point, one can use Ed43) to estimate the variance in the where
expected shift. Within this diffuse approximation, we find
that the variance H0: H internal+ Hfield (AZ)

As, 1 1

Tp~§COS{ZQ7')><3.1>< 103 (45 22 (Eﬁwoojz +Z hwy . alyeakyf—i—i

k,e
(A3)

Experimentally, there will be additional sources of error that
result from not knowing(r) perfectly, errors in the configu- and
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sociated  with akyeal,’5,|0)<0|, ak J0)0lay: .,
ay. .|0)(0lay ., and|0)(0law af ., wherek=k’ and e
=¢€'. Making these simplifications and replacing the sum on
_ _2 E d(o'r+gj_)(;atom' ;)(gkyeakyéeikwj_’_H.C‘)_ k by an integral gives

i ke

J
(A5) 1% 1 (= © 1
a—’fz——zf de k2 dk
of refers to the internal state of atojnw, is the atomic hcJo  Jo (2m)

transition frequency, and, . is the frequency of the mode
<

of the electromagnetic field with wave vectoand polariza- dQ 2 dzfﬁyf(%atom- €)?

tion e. r; is the position of atonj, and exom is the polariza- ab.e

tion direction of the dipoles. X[ (@kem @ THK Tapg
We now consider the evolution of the atosnfield den- o o)tk .

sity matrix p,; in the interaction picture. The equation of +e ket 0T K abg o

motion is given by A T
a

J 1 - i(wy, .—wg)T—ik- -
=i el (A6) el oy pog +Hel. (A12)
The angular integral is tedious but straightforward and gives
V(t):eiHot/hVe—iHot/ﬁ. (A?)

J dQZ eik'rab(;atom' ;)2

We can integrate EqA6) once and substitute the result back
into itself. We then trace out the field degrees of freedom to

gllz)tﬁier? an equation of motion for the atomic density magrix 4 sinzasmkrab (1-3c020)
: Krap
ap 1 U cokr,, Sinkr
il f drV(t),[V(t=7).par(t=1)]]. (AB) x 2 (A13)
h 0 (krap)®  (krgp)®

To make the above equation more useful, we employ th@he time integral can be evaluated using the formula

Born-Markov approximation, replacing,:(t— 7) with p(t) L

®|0)(0|. Physically, this amounts to assuming that correla- * Cie(kTka) T _ .

tions in the field are negligible, that the field can always be fo ¢ dre (k) _W‘S(k°+k)ilpkoik’ (AL4)

approximated by a vacuum state, and that the correlation

time of the atom-field system is much shorter than anywhereP denotes the principal value. Thfunction above

atomic time scales. These assumptions safely allow us teventually yields the non-Hermitian component of the evo-

extend the time integral to infinity, so that lution, while the principal value yields the coherent atom-
atom interactions. Performing all integrals, making the re-

ap 1 ° ~ pIacementF:deZISWEOﬁc3, and changing back to the
i ﬁTrf . dr[V(1),[V(t—7),p()®[0)(0]]]. Schrodinger picture yields Eq2).
(A9)
APPENDIX B: SECOND QUANTIZATION OF ATOMS
Writing out V(t) andV/(t’), wheret’ =t— 7, gives IN THE LATTICE
The results above were derived treating the atoms in the
\7(0: E —d&, E(;atom. ;)(O-;eiwot-q- g;e*iwot) lattice in first quantization. Starting instead from second
ake gquantization, one can see that the results derived in first
% i(k-fa— o) 4 o a-i(k-ra— oy d) quantization are appropriate in the limit of tight conﬁne_:ment
(B e Tay.L : ). (A10) of the atoms, when the overlap between atoms at different
sites can be ignored.
Vt)= X —d& o (€xom € ) (o €90 + oy e 190 In second quantization, the atomic wave functigfr)
b.k'.€ can be expanded in terms of Wannier functions:

X (@ €K e e ay, e I o), D)= Dynich,n(r—T7) (BD)
r= i r—ri).
(All) ‘ﬁ < an¢vrl 1

When we substitute the expansions above into(B§) and Here v=e,g denotes the internal state of the atams the
perform the trace, the only nonzero terms will be those asband index, and labels the lattice sites . To lowest order,
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we assume that only the harmonic oscillator ground-state .

wave function is relevant. The atomic Hamiltonian is then He=—> (biebng dre(r—ri)[d-E(r)]¢g(r—r))
given in second quantization by b
52 +bi-rgbjej drgg(r—ri)[d-E(r)]ee(r—ry) |, (B3
m—i—U(r)-l—E,,

Ha:z bITVbJVJ dr¢v(r_ri)

vij

where
X ¢, (r=rj). (B2) E(1)=2 &y e  etH.c. (B4)
k,e

In the limit of tight confinement, the overlap integrals for  Again, in the limit of tight confinement, the overlap integrals
#] can be ignored, leading back to the atomic Hamiltonianfor i +j can be ignored, and furthermore the tefifr) can

used in first quantization. be replaced withE(r;). In this limit this Hamiltonian is
In second quantization, the electric dipole Hamiltonian isequivalent to the electric dipole Hamiltonian used in first
given by quantization.
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