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Evaluation of heating effects on atoms trapped in an optical trap
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We solve a stochastic master equation based on the theory of SawarfiT. A. Savard, K. M. O’Hara, and
J. E. Thomas, Phys. Rev. B6, R1095(1997)] for heating arising from fluctuations in the trapping laser
intensity. We compare with recent experiments oféfeal. [J. Ye, D. W. Vernooy, and H. J. Kimble, Phys.
Rev. Lett.83, 4987(1999], and find good agreement with the experimental measurements of the distribution
of trap occupancy times. The major cause of trap loss arises from the broadening of the energy distribution of
the trapped atom, rather than the mean heating rate, which is a very much smaller effect.

PACS numbgs): 42.50.Ct, 32.80.Pj, 32.80.Lg, 42,50.Lc

In a far-off-resonance red-detuned trap, the effective poAs shown in[1], this constant is equal to theean heating

tential of the trapped atom can be written rate, defined as the rate of increase of the level nunipeo-
portional to the energyof the atom in the trap, i.e.,
V(x)=—ial&x)[%, ()
d{n)

where « is the atomic polarizability and(x) is the slowly T:F6<n>' @
varying field amplitudd 1,2]. Following[1], the heating can
be modeled using a Hamiltonian for a trapped atom of masi should be noted, however, that this heating rate arises as
M of the form the difference R.,. ,—Rn_2.n, in which the quadratic
terms cancel. Ifn is significantly different from zero—
perhaps about 50 if8]—the positive and negative contribu-
tions to the heating rate will both be very much larger than
the heating rate itself. Thus the result of the heating process
which leads to transition probabilities between trap levels ofill be principally to spread the distribution over the energy

2

p

H=om

+iMw?[1+e(t)]x?, 2)

the form levels, superimposed on a much slower increase in the aver-
age energy according to E¢7). In fact, the principal time
thzr constant for the growth o, the standard deviation af, is
Rns2-n=75 Se(20y)(n+1£1)(n*1). 3 3rJe2.

The principal effect of the heating in the experimenf3)f

is to expel the atom from the trap, and in general this will

occur not as a result of the increase of the average energy,

but rather as a result of the rapid spreading of the width of

2 (o the distribution, so that the upper part spreads into untrapped

S(w)= —J drcogwr){e(t)e(t+7)). (4) levels.
TJo The three-dimensional trap used B] was sinusoidal lon-

gitudinally and had a Gaussian form radially. Approximating

From these transition probabilities, in follows that the time-poth of these by harmonic fluctuation traps, it was found by

dependent probabllltP(n) that asingle atomis in thenth measuring the fluctuation spectrum that
level of the trap under the influence of the fluctuation field

satisfies the stochastic master equation 1/1~r€adia|% 830 ms, ®)

In these equationg(t) is a fluctuating quantity, whose spec-
trum is

axial__
P(n)=%{(n+2)(n+1)P(n+2)+n(n—1)P(n—2) 1I7~23 ms. ©)
We may safely neglect the much slower radial heating, and
treat the trap as one dimensional. The trap depth corresponds
to some 100 levels, so we will model the escape process by
truncating the master equation to the first 100 levels—once
5 2 the atom leaves this range it is assumed not to return. The
I'=mvS(2vy). (6)  equation is easy to solve. As an initial condition, we assume
the atom is evenly distributed between the levisls and
Np+1, with 0<Ny<100. The results of a simulation with
*Present address: JILA, University of Colorado and National In-Ng=45 are shown in Fig. 1. The very rapid spreading of the
stitute of Standards and Technology, Boulder, CO 80309-0440. probability distribution from its initially sharply peaked form

—[n(n=1)+(n+2)(n+1)]P(n)} (5)

with the rate constant
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FIG. 1. Evolution of the probability distributioR(n). (a) Plotted on a short time scale, it can be seen that the heating spreads the initial
sharp distribution in less than 2 ms to cover nearly the full height of the tbamver the full time scale of the experiment losses continue
at a steady rate.The heating rate used i§ #/1/1'®%=23 ms.

is very clear. In fact very little difference results if a less provided the cooling time is sufficiently smaller than the
sharply peaked initial distribution is used, even for a width ofheating time, one should be able to ensure that the atom
about 20 levels. The probability that the atom remains in theemains trapped. We can model cooling by use of a standard
trap is plotted in Fig. @), and this fits the experimental data master equation coupling to a heat bath, such &4Jirwhich
remarkably well. However, the result is not exponential,would give an additional contribution to the stochastic mas-
though there is a strong similarity. Points to note are thder equation5):

following. (1) From Fig. 1 and Fig. 2 it can be seen that a

population arounah=0 is rapidly produced, and this decays . _

very slowly, because the relevant transition probabilities are ~ P(N)|co0=I'cool (N+1)[(n+1)P(n+1)—nP(n)]

very small. That this is not observed in practice may be the —

result of the existence of other heating mechanis@sThe +N[nP(n—1)=(n+1)P(n)]}. (10
heating ratel’, does correctly give the time scale of the

heating process, even though the de‘?‘"s of the heating PR this equation the effective temperature of the heat bath is
cess are not themselves well summarized by (£g.

To counter this heating effect one can conceive of intro-détérmined by the mean excitatidhthat the bath acting by

ducing some kind of laser cooling. One would expect thaftSelf would produce in the trap, anHle, is the inverse
cooling time. Adding this cooling term to the heating from

0.1

1.0 « 100 Eqg. (5), we see in Fig. 3 that the cooling very rapidly coun-
oy 09 g % b) | teracts the heating. However, in Fig. 4 we note that even
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FIG. 2. (a) Solid line: Computed probability for the atom to

remain trapped when the initial mean excitation is the 45th level— w7 Thunei(fos)

heating rate as in Fig. 1 Points: experimental data ff@mdashed

line: exponential fit to data(b) Solid line: mean excitation of an FIG. 3. Evolution of the probability distributioR(n) with both
atom remaining in the trap; dashed line: standard deviation of théeating and cooling. The heating rate used iféi:llll"fx'a'
excitation. =23 ms, and the cooling rate I§,,,=2 ms.
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1 ., 100 cooling to a certain residual temperature, and at any nonzero
8 0.9 g 90 ] temperature there will always be some probability of escap-
2 a) S b) ing from the trap, even in the absence of the heating effect.
= . . 3 . .
%0'8 £ 80 ] Increasing ., at fixed N (i.e., fixed temperatujeis
‘é 071 g 70 equivalent to reducing the time scale of the dynamic pro-
£ 06 \ b 0 cesses involved. Once the cooling is fast enough to over-
g : o g whelm the heating, any further increase will simply speed up
£05 ’\\ 5 50 the residual process of trap loss. The only way to get more
£ 04 2 40 effective confinement is then to reduce the temperature to
§ .\.\ T which one cools. With this model of cooling and with
0.3 A El 30 =10, one finds that the best confinement is obtained with
0.2 \.\ Z2 1T o1 ms, although this is only marginally better than
01 > § ol the case of T/ o,~2 ms shown in the figures.
g | Note that N=10 corresponds to a temperaturg
O e = Yo o @ e =240 uK, or twice the Doppler cooling limit for cesium.
Time (ms) Time (ms) Indeed, in this trap the zero point energy is roughly AK,

which is achievable using polarization gradient cooling.

FIG. 4. (a) Solid line: computed probability with both heating In conclusion one should bear in mind that the model of a

and cooling for the atom to remain trapped when the initial meany \,ca1aq harmonic trap is very crude. In the case considered
excitation is the 45th level—heating and cooling rates as in Fig. 3

Points: experimental data froh3]; dashed line: exponential fit to
data.(b) Solid line: mean excitation of an atom remaining in the
trap; dashed line: standard deviation of the excitation when bot
heating and cooling are present.

with quite strong cooling, corresponding tol'}4,~2 ms,

h

here the noise is of the order of 20% of the signal, which
means that the validity of the perturbation theoretic calcula-
tion used by[1] to derive the transition probabiliti€8) will

also be marginal at best. However, the only realistic alterna-
tives to this very simple picture would involve extensive
numerical work, such as direct simulation of a stochastic
differential equation, or detailed computations of spectra and

the probability of remaining in the trap after 60 ms is only \atrix elements for the appropriate potential.
90%. By solving the equations using only the cooling part

(10), it can be verified that most of the loss is in fact a
residual effect of the heating.
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