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Electron-initiated chemistry in polyatomic molecules

Thesis directed by Prof. Chris H. Greene

We develop techniques to describe theoretically the process of electron collision

with a polyatomic molecule and the interplay of many degrees of freedom in the evo-

lution of the complex. In particular, we characterize resonant processes involving large

molecules, believed to be important in radiation damage to nucleic acids. We also

examine the electronic resonances in the DNA and RNA bases, and in the backbone

constituents. Dissociative recombination reactions, in which a polyatomic ion recom-

bines with an electron and quickly dissociates, are also considered. We elaborate a

framework to describe the reaction mechanism and the role of the Rydberg states in

the recombination, show results for HCO+ and compare them with experimental data

in order to resolve some of the existing controversies for this reaction.



iv

Acknowledgements

The research work presented here is the result of a few years of my time, but also

of the collaboration and efforts of many other people. I would like to acknowledge first

of all my advisor Chris Greene, whom besides being a great scientist is a great person,

and has been able to deal with me also at the beginning when I produced graphs very

sparingly. He is also one of the few physicists I know that is not repelled by molecules

of more than two atoms. Thanks also to Steve Leone for pointing me, when I arrived

at JILA and I was TAing for him, towards Chris’ group.

Throughout these years I have collaborated successfully with many people. I

would like to thank in particular Robin Santra, from whom I learned a great deal about

quantum chemistry and a lot of other stuff during his stay at JILA. Also my collaborators

in the dissociative recombination project: Åsa Larson, Viatcheslav Kokoouline and
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Chapter 1

Introduction

It is an exciting time to work in the field of electronic collisions. This area of

research has undergone a major change over the last ten years, mainly due to experi-

mental breakthroughs that have opened the field to the exploration of complex chemical

processes, both in the gas phase and in condensed phases. Electron-driven processes

are in fact fundamental in many areas, from radiation damage to living tissue [24],

to plasma etching and processing of semiconductors, lighting applications (and plasma

TVs), scanning tunneling microscope (STM) [171] induced chemistry, chemistry of the

atmosphere and interstellar clouds [125].

As it is possible to see, many of these processes are quite far from an electronic

collision with a simple molecule in the gas phase, since they happen in complex environ-

ments like plasmas or condensed phases or biological cell environments. Nevertheless,

the electron-molecule interaction drives all of them and its understanding is absolutely

fundamental to developing a correct description of the process.

Traditionally the electron collision community has focused its efforts on an ex-

tremely narrow slice of this pie, that is to say gas phase processes involving small

molecules (many diatomics) or atoms. Now, these are still interesting processes, but

the wealth of possibilities that are rapidly opening up call for a broader spectrum of
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investigation, and we will try to undertake this effort from a theory standpoint for a

few of the areas cited above.

For the understanding of complex processes it is, again, fundamental to have the

support of a theoretical description that can do what experiment often cannot, namely

separate different contributions and find out which is the most important, in other words

figuring out the mechanism. Unfortunately, this is a very hard task, in the sense that

performing calculations involving continua interacting with large molecules is very much

at the cutting-edge both of current theoretical approaches and of computational power.

Moreover, the numerous advances in the very closely related field of quantum chemistry

that deals with bound states, are very slowly being implemented in this field. In other

words, there is not yet a “continuum Gaussian”, referring to the famous suite [150] of

ab initio quantum chemistry programs for bound states. Some groups, however, are

expending significant effort in this direction, see Refs. [126, 136, 149, 206]. Since there

is no “silver bullet”, in most cases targeted approaches have to be applied to get the

main physics of the process, even if they are somewhat coarse grained.

An entirely different set of problems is presented by the interaction of the metastable

electron-molecule complex with its surrounding environment, in particular solvents (see

Ref. [55] for a review on electron-initiated chemistry in water) and matrices in condensed

environments and solids. In cluster environments (see for example studies of electron

attachment to CO2 clusters recently carried out [46, 177]) the continuum electron in-

teraction with the solvent could also lead to interesting cage effects for the electrons as

it happens for molecules [197]. This can lead to a vast array of effects (negative ion

stabilization, resonant interactions, fast energy transfers) whose exploration has just

started.
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The experimental advances that have made possible the exploration of these new

exciting areas of research are deserving of some comment. In the text we will talk

frequently about storage ring experiments, see Ref. [105] for example, which allow the

study of collisions between electrons and charged molecules in a controlled environment,

and at very high energy resolution. These will be referred to in the dissociative recom-

bination part of this thesis. Also thin film techniques [24] have allowed the study of

processes that occur in condensed phase, often coupled with the precision and control

that is possible using an STM (scanning tunneling microscopy) [171] to study processes

at the atomic scale. In dissociative processes, COLTRIMS (cold target recoil ion mo-

mentum spectroscopy) and other momentum imaging techniques [103] have provided

a more detailed picture of the Coulomb breakup of a system. The new and rapidly

evolving field of high harmonic generation (HHG) from molecules and more generally

the topic of ultrafast intense laser pulses that interact with molecules, have led to new

techniques (like “orbital imaging” [86]) and the intriguing possibility of following the

electronic dynamics (say, in a chemical reaction) as the nuclei move in a pump-probe

experiment [13]. Molecular electronics is another fascinating subject of topical interest,

where techniques used in electron scattering theory can be applied [38].

Many processes are possible, both during and after the period when an electron

interacts with a molecule, and it is not possible to offer a comprehensive treatment of all

of them. We will concentrate mainly on gas phase processes, even though many of our

results will have relations to condensed phase experimental results. In the gas phase an

electronic collision can produce elastic and inelastic scattering, vibrational or rotational

excitation, and then dissociation (processes of dissociative attachment or recombination,

depending on whether the target is a neutral or an ion), electron-impact ionization (so-
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called e-2e processes), and energy transfers between different degrees of freedom which

are extremely effective because unencumbered by selection rules as in photoabsorption.

For example it is possible through electronic collisions to activate species that are not

reactive as singlets but will be highly reactive in a triplet state. It is also possible

to reach many dissociative states, giving these collisions a great energy efficiency in

transferring energy to other degrees of freedom of the molecule, such as vibrations, also

considering that the colliding electron is indistinguishable from the target electrons and

thus will strongly couple to them.

We will focus here on some of these processes; our final goal is to treat electron

scattering from a general polyatomic molecule and to describe processes that so far

theory has not been able to tackle. Ch. 2 starts with a general introduction to electron

scattering theory and illustrates the approximations contained in our methods [191, 192]

and the other techniques by which we treat electronic dynamics. Then we will apply

this description to many systems in Ch. 4 to test its capabilities and we will show its

predictive power [192]. In particular we will then concentrate on the role of electronic

resonances in radiation damage to nucleic acids in Ch. 5. This problem is important in

view of its medical applications and it has raised a great deal of interest among both

theorists [17] and experimentalists [2, 66, 152, 164]. Many groups around the world are

working on explaining how low energy electrons below the DNA ionization threshold

can lead to one or more strand breaks in the double helix structure of the nucleic

acid, with obvious nefarious consequences such as mutations. We will try to give some

contribution to this effort. Some of the material in Chapters 2 and 4 has been published

in Ref. [192], whereas the majority of the material in Ch. 5 has been published in Refs.

[194, 195] Another part of this thesis deals with dissociative recombination processes,
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important in the description of the chemistry of interstellar clouds and in the elaboration

of star formation models (see Ref. [125] and references therein). We will formulate our

theoretical description in Ch. 3 and discuss corresponding results in Ch. 6 for the HCO+

ion, which we have chosen for its abundance in interstellar clouds. Recombination of

polyatomic ions is a very complicated process to treat since it involves a coupling of

many electronic and vibrational degrees of freedom, and, since ions are involved as target

states, the treatment of an infinite number of neutral molecule Rydberg states. Few such

calculations have been performed to date, and we will show how our results [104, 130]

compare with experiments in merged beams [144] and storage rings [56]. Rydberg states

are highly excited states of atoms or molecules, in which the external electron roams far

from the core and it looks a lot like a continuum electron, we will examine techniques

to deal with the dynamics of these states such as quantum defect theory (QDT). We

will show how Rydberg states can be important and even determinant in some DR

reactions. We will also talk about symmetry-distortion effects such as Jahn-Teller [9]

and Renner-Teller [155], vibronic couplings and conical intersections, and how they can

provide a preferential pathway to fast dissociation. Some of the material in Chapters 3

and 6 has been published in Refs. [104, 130].

We will also consider, whenever possible, the outlook on new processes, the possi-

ble continuation of this work and the application of the techniques we developed here to

look at a variety of processes in clusters, strong laser field, and more complex biological

environments.

Atomic units (see Ref. [181]) will be used throughout this thesis, except where

otherwise specified.



Chapter 2

Methods: Electron scattering

This chapter describes all the methods we use to tackle the electronic dynam-

ics of a molecular system plus an external interacting electron. After a brief general

introduction to electron-molecule scattering theory, Sec. 2.2 describes an electron scat-

tering approach that will be applied to large molecular systems like the DNA bases in

Ch. 5 and all the approximations that are contained in this framework. The following

sections describe the methods we have employed for dealing with small molecules, also

taking into account their vibrational degrees of freedom, like ab initio quantum chem-

istry calculations (Sec. 2.4.1) for Rydberg states and the R-matrix UK code of Sec.

2.4.2. Finally a brief account of quantum defect theory (QDT) ideas that have been

used to treat the long-range dynamics of the electron-molecule interaction problem will

be shown in Sec. 2.5, and the treatment of the electrostatic multipolar interaction at

long range by various methods will be described.
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2.1 Scattering theory

The interaction of an electron with a polyatomic molecule is modeled by the full

Hamiltonian of the compound system:

Ĥ = −1

2

∑

i

~∇2
ri
− 1

2

∑

α

~∇2
Rα

Mα
−
∑

i,α

Zα

| ~ri − ~Rα |
+
∑

α>β

ZαZβ

| ~Rα − ~Rβ |
+
∑

j>l

1

| ~rj − ~rl |
. (2.1)

This operator contains both the nuclear and electronic degrees of freedom, indicated

respectively with Greek and Latin indices. We will indicate in the following as “target”

electrons the N bound electrons present in the molecule or molecular ion, while the

scattered electron will be added to form an N +1 electrons compound system. Here we

deal with the electronic problem alone, within the Born-Oppenheimer (BO) approxima-

tion, namely freezing the nuclei in some definite configuration (usually the equilibrium

configuration) while solving for the electronic wavefunction. The treatment of vibra-

tions can be carried out by repeating the electronic calculations for different values of

the nuclear positions, followed by vibrational averaging or a vibrational frame transfor-

mation description. [47, 77]. Vibrational dynamics will be considered in more detail in

Chapters 3 and 6 where we will show also how to include non-BO effects [95, 104].

In principle, even considering just the electronic degrees of freedom the problem is

still a very complicated many-body interaction. The scattered electron is indistinguish-

able from the target electrons inside the molecule and it can in principle electronically

excite the molecule. For this reason different approximations will be required to make

the description of different processes feasible.

The final wavefunction of the system will have to obey scattering boundary con-

ditions for the escaping electron, therefore at large distance from the molecule it should

look like an incident plane wave plus a spherical scattered wave, in order to be able
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to apply the usual formulas to calculate cross sections and scattering amplitudes, as

described in many quantum mechanics textbooks, see for example Ref. [165]. This can

be done by matching to a long-range analytical form, as we will see in Sec. 2.5.

At this point a comparison of the electron collision problem and the more tradi-

tional bound state problem is opportune. The continuum problem is more complicated

because of the scattering boundary conditions that have to be imposed on the wave-

functions, but in principle the two are very similar many body problems. The quantum

chemistry community has made tremendous advances in the past 20 years (coupled clus-

ter theory, DFT, linear scaling methods and so on, see Ref. [181] for an introduction

to the subject), and some of these are only now starting to be applied to the collision

problem. It will be auspicious for the future to foster a closer collaboration between

these two areas of research, especially as the interest in continuum processes involving

large biomolecules and nanostructures continues to strengthen.

2.2 Approximations

The starting point of the approximation procedure is to develop an ansatz for

the wavefunction of the total system. One of the simplest and most used methods is a

close coupling expansion [10], in which the N + 1 electron wavefunction is expanded in

eigenstates of the target multiplied by an unknown function for the scattering electron.

Since usually the electronic excitations of the target are limited to the first few excited

states, these expansions can be kept reasonably small, usually limited to a number

of electronic target states of 10 or fewer. The unknown function that multiplies the

target wavefunctions is a continuum orbital for the scattered electron. These terms

in the expansion only represent channels that are open (this is not always true, e. g.
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in quantum defect theory (MQDT) as we will see in Sec. 2.5), allowing one electron

to escape to infinity. To describe closed channels another sum, this time over square

integrable functions (L2 functions) will have to be added to the wavefunction ansatz.

The close-coupling concept leads to a trial variational wavefunction that depends

parametrically on the nuclear coordinates, and is an antisymmetrized product of the

target and scattering electron wavefunctions:

Ψγ = A
∑

γ′

Φγ′(x1...xN , R)φ0,γ′(x) +
∑

j

χj(x, x1...xN , R) (2.2)

where x represents the spatial (~r) and spin (σ) coordinates of the scattering electron,

x1...xN are the coordinates of the target electrons, and R the nuclear coordinates. In Eq.

2.2, γ represents the set of quantum numbers that fully describe the state of the system,

and the sum over γ′ allows for different configurations of the compound system (target

+ scattered electron) to contribute. The second sum represents the antisymmetrized

square integrable terms, which are also called polarization and correlation functions,

because they allow in some sense a relaxation of the target electronic density under the

action of the incoming electron, whereas the first sum would keep the target electrons

strictly confined to their bound state basis set. In principle, the configuration state

functions (CSF) that correspond to the Φ and χ in Eq. 2.2 contain spin degrees of

freedom, and the total wavefunction has to be antisymmetric. Since we will be mostly

dealing with closed-shell molecules the total spin state will be a singlet and we only

write explicitly the spatial degrees of freedom. In the following, integrals imply a trace

over the spin degrees of freedom, where appropriate. In the remainder of this thesis the

xi spatial and spin coordinates in Eq. 2.2 will be replaced by the spatial coordinates ~ri.

If only the ground state configuration γ ′ in this sum is retained, the approximation
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made is called static exchange. We can obtain the static exchange equation for the

scattered electron multiplying the Schrödinger equation from the left by the target

wavefunction and integrating over the variables of the bound electrons:

∫

d~r1...d ~rNΦ(~r1... ~rN )(Ĥ − E)AΦ(~r1... ~rN )φ0(~r) (2.3)

This is valid for any form of the target wavefunction. In particular we consider a

configuration-interaction (CI) type form:

Φ(~r1... ~rN ) =
∑

i

ciχi(~r1... ~rN ) (2.4)

where ci are the CI coefficients and the χi is a Slater determinant. For closed shell

target molecules, we can simplify this equation considerably since the scattering orbital

will be forced to be orthogonal to the target orbitals for the Pauli exclusion principle.

We then obtain

(−1

2
~∇2 + Vs − E)φ0(~r) =

∑

i,j

cicj

N
∑

k=1

φki(~r)

∫

d~r′
φ∗kj(

~r′)φ0(~r′)

| ~r − ~r′ |
(2.5)

where the φj (j ≥ 1) are the target molecular orbitals of a closed-shell molecule. The

electrostatic potential Vs is the averaged Coulomb interaction of the scattered electron

with all the other electrons and the nuclei

Vs(~r) =
∑

i,j

cicj

N
∑

k=1

∫

d~r′
φ∗ki(

~r′)φkj(~r′)

| ~r − ~r′ |
−
∑

α

Zα

| ~r − ~Rα |
. (2.6)

The term on the right hand side of Eq. 2.5 is referred to as the exchange potential.

So far, we have presented the equations for static exchange calculations, which

means complete neglect of correlations. We will see that, when we use a polarization

potential, that term will contain a short range cutoff that can be interpreted as mim-

icking a correlation term. We deem it more appropriate to present here uncorrelated



11

equations, since this simplifies the derivation of the approximations that have been im-

plemented here, and also because we never perform a CI calculation on the target +

scattered electron system. For this reason it would not be pertinent to present fully

correlated equations. Furthermore, it is possible to see that the static potential (and

also the exchange potential in LDA approximation) depends only on the electron den-

sity, which allows us to treat the target molecule at a correlated level without changing

the formalism, since this only amounts to changing the Hartree-Fock electron density

to a correlated one. We will discuss the effect of this change in section 2.2.3. The meth-

ods we develop here have been published in Refs. [191, 192, 194] and the associated

computer codes are available through the CPC library [1].

2.2.1 R-matrix method

The R-matrix method is a well-established tool for problems where the continuum

portion of the spectrum of a Hamiltonian must be treated. In its usual implementation,

it involves diagonalization of the (Bloch-modified) Hamiltonian operator in a box subject

to some fixed boundary condition obeyed by the basis orbitals. The R-matrix box

partitions the space into two regions. There is an internal reaction zone, within which

all the short-range interactions are confined, and an external zone, where instead either

no potential is present or else there is a long range Coulomb or dipole potential (or

both), and the behavior of the solutions of the Schrödinger equation is very simple. In

some studies, other long-range multipole potentials are included in the external zone.

[12, 45] We use the R-matrix method in the eigenchannel form [74]. In this case we seek

those stationary states for which the logarithmic derivative of the wavefunction at the

surface of the R-matrix box is constant at every point. Refs. [48, 72, 109] derive a new
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variational principle,

b ≡ −∂log (rΨβ)

∂r
= 2

∫

V Ψ∗(E − Ĥ − L̂)ΨdV
∫

V Ψ∗δ(r − r0)ΨdV
, (2.7)

for the logarithmic derivative of the wavefunction, starting from the Rayleigh-Ritz vari-

ational principle for the energy. If Ψ is discretized in some basis set inside a spherical

box, within which all the short range dynamics is localized, this results in a generalized

eigenvalue problem for b:

Γ~C = 2(EO −H − L) ~C = Λ ~Cb (2.8)

where Λ is the overlap of the basis functions calculated on the surface of the R-matrix

box and L̂ is the Bloch operator,defined as

L̂ =
1

2
δ(r − r0)

∂

∂r
r, (2.9)

O is the volume overlap of the basis set and r0 is the radius of the box. The eigenvector

~C represents the expansion coefficients of the basis set used. Both Γ and Λ are defined

in appendix A for the finite element basis set used in this work. It is possible to partition

the basis functions in two subspaces, closed and open, depending on whether their value

at the surface of the box is zero or nonzero [74]. This allows us to reduce the burden of

the solution of Eq. 2.8 to the easier task of solving a much smaller eigenvalue problem

of type

Ω ~Co = (Γoo − ΓocΓ
−1
cc Γco) ~Co = Λoo

~Cob (2.10)

in the open functions subspace, in addition to the large auxiliary system of equations:

Γcc
~Cc = −Γco

~Co (2.11)
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where the subscripts indicate the matrix blocks. At the boundary of the R-matrix box

Ψ is matched to an external solution depending on the long range tail of the potential

(Bessel functions for neutral molecules, Coulomb functions for molecular ions). This

allows us to calculate the reaction matrix K, from which the scattering matrix is derived

as

S =
1 + iK

1− iK (2.12)

Scattering cross sections can then be calculated in the standard manner. One difference

from the usual treatment performed in quantum mechanics textbooks [165] for spher-

ically symmetric potentials, will be in this case the fact that we want to average over

the molecular orientations. From the scattering matrix S, the total (elastic) integrated

scattering cross section can be calculated as [41]:

σ =
π

2E

∑

lm,l′m′

| δll′δmm′ − Slm,l′m′ |2 (2.13)

where E is the energy of the incident electron and the S matrix indices are angular

channels, since here we do not include any excited target states [41]. A similar treatment

is possible in the case one wants to derive differential cross sections, and we can calculate

them using this approach employing formulas 46-47 of Ref. [41], one example is given

in Fig. 4.5.

2.2.2 Finite elements

The essence of the finite element method is the use of a basis set that is defined

over small local regions. By this we mean that each basis function is nonzero only

within a small region, and it has a simple polynomial form. By using many “sectors”

or “elements” (the volume over which the local basis function is defined) though, it is
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possible to reproduce very complex features of the solutions to the differential equation

of interest. An introduction to these basis sets and their practical implementation can

be seen in Refs. [19, 21]. We discretize Ψ using finite element polynomials in all three

dimensions. The basis set is a direct product of 4 cubic Hermite polynomials defined

locally in each sector for each dimension. The use of a spherical coordinate grid, in

r, θ, φ makes the boundaries of the sectors simple and the three-dimensional integrals

(the main bottleneck of these calculations) faster to calculate. The grid is represented

in Fig. 2.1.

The finite element basis set is composed of piecewise polynomials, which provides

advantages over a global basis representation. In particular one can treat potentials and

wavefunctions of complicated form by simply reducing the size of the elements in which

the polynomials are defined, in those areas where fine features arise. In our case the

basis functions are third order Hermite polynomials, which allow us to achieve function

and derivative continuity, while still permitting a simpler implementation compared

to higher order polynomials. Each polynomial is defined in a hexahedral sector (a

cube in the rescaled variables used for the evaluation of the integrals), and since the

wavefunction is discretized in terms of finite elements in all three dimensions, the basis

set is a direct product of 4 polynomials in each dimension per sector, which means 64

basis functions are defined in each sector.

In finite element analysis (FEA) the polynomials are matched with the ones in

neighboring sectors to ensure functional and derivative continuity (and mixed derivative

continuity also, in multidimensional FEA). Each sector has 8 physical nodes (at the

edges of the cube) and the basis functions defined in the sector have coefficients (to be

determined by the solution of the Schrödinger equation) that represent the value of the
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wavefunction, or its derivatives, at the nodal point. In the language of finite element

analysis, a node is the vertex of one of the sectors into which the three-dimensional space

is divided. The matching at the boundary of each sector is imposed when assembling

the global Hamiltonian matrix from the local ones. The global index of functions that

correspond to the same node and quantity (e. g. derivative) in neighboring sectors has

to be the same. Hence their matrix elements have to be summed together. Details of

the procedure are given in Appendix A.

2.2.3 Potential and DFT

Using an approach derived from Refs. [42, 139], we approximate the exchange

integral (that is nonlocal), by a local form using free electron gas (FEG) orbitals [93],

i.e. plane waves, for the target molecule and using the first order Born approximation

φ0 = Nei
~k·~r (2.14)

for the scattered electron. The arbitrary normalization constant N is unimportant and

it disappears as soon as we express the exchange functional as a product of a local

exchange potential times the scattered wave. After these substitutions are made, it is

possible to evaluate the integral on the right hand side of Eq. 2.5 analytically, obtaining

a local potential of the form

Vex(~r) = − 2

π
kFF (η), (2.15)

whereas the Fermi momentum kF (the momentum of the electron that is at the top of

the Fermi sea in a free electron gas) is:

kF (~r) = [3π2ρ(~r)]1/3. (2.16)
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Figure 2.1: From this two dimensional cut in the radius r and the polar angle θ of the

finite element grid (for a CO2 target), the finer mesh is apparent near the oxygen nuclei

localized at r = 2.19 a.u. and θ = 0 and π respectively, while the carbon is located at

the center of the grid (r = 0). A drawback of this type of separable grid in spherical

coordinates is that it is more fine than necessary at 1.5 < r < 3 and 0.3 < θ < 2.8

radians. From Ref. [192].
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The other functions present in Eq. 2.15 are

F (η) =
1

2
+

1− η2

4η
log

∣

∣

∣

∣

1 + η

1− η

∣

∣

∣

∣

(2.17)

η =
k

kF
, (2.18)

where k is the modulus of the momentum of the scattered electron. It should be noticed

that the exchange potential in Eq. 2.15 is energy dependent.

Many functionals of this form exist [139], with minor differences in the expres-

sion for k, the scattering electron wavenumber. The functional we have used most

successfully is the Hara exchange [81] where

k =
√

2(E + I) + k2
F (2.19)

and I is the ionization energy of the molecule while E is the energy of the incident

electron. This emerges from the assumption that the scattered electron and the electron

in the highest energy bound state (the Fermi electron, which has momentum kF ) move

in the same potential field; Vex then depends only on ~r, through the electron density

ρ(~r), as a local potential, and on the energy, through the functional dependence of the

momentum k as approximated in Eq. 2.19.

We have also experimented with other functional forms of the exchange interaction

(still based on a FEG approximation). One in particular is the Slater exchange [173],

derived by averaging the function F (η) over the momenta of all the electrons up to the

Fermi level, which has often been used to calculate bound states in atoms and molecules.

However the results using Slater exchange are unsatisfactory for continuum scattering

states, presumably owing to the neglect of the energy dependence in this model.

Since our main goal is to treat low energy scattering processes (0-10 eV) we

linearize the energy dependence of the functional in Eq. 2.17, in order to calculate the
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exchange potential matrix elements at all energies at once. For a molecule like CO2, the

matrix element calculation requires around 2 hours on an Alpha 500 Mhz workstation.

The next step is the solution of the linear system and the determination of the scattering

observables, which requires approximately 15 minutes per energy desired, for a basis set

size of 33000. This step is trivially parallelizable, of course.

We have recently added to our computer code the capability to use a parameter-

free correlation-polarization potential [35, 62], based on density functional theory (DFT)

ideas. As shown in Ref. [102] the polarization-correlation contribution is physically

related to the distortion-relaxation effect on the molecule generated by the incoming

electron. This is extremely important for an accurate description of the scattering

process. The long range part of this potential is a simple multipole expansion, of which

we retain only the induced dipole polarization terms:

Vpol = − 1

2r4
[α0 + α2P2(cos θ)] (2.20)

where α0 and α2 are the totally symmetric and nontotally symmetric components of

the polarizability tensor, and are calculated ab initio using electronic structure codes.

While the quadrupole term in the polarizability tensor has 5 components, we never

resort to its full form, since we have verified numerically that the second term in the

polarization potential (α2 = 3αzz−Tr(α)) is already not very important, and we omit it

altogether when calculating scattering from larger molecules. To extract the molecular

electron density, gradient, Laplacian, and the electrostatic potential needed to construct

the scattering potentials, we use GAUSSIAN 98 [150], but MOLPRO [203] has the

same capabilities and exploits the same file formats, as does PC-GAMESS [71]. The

latter is also freely available.
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In the volume where the electronic density of the target is not negligible, this

potential is nonlocal. The interaction can be approximated again as a local potential,

different forms of which have been suggested in the literature. The one we use is based on

DFT (specifically on the LYP potential of Ref. [107]) and it has yielded reliable results in

the work of Gianturco and coworkers [117]. This form makes use of the electron density,

its gradient and Laplacian, which have to be calculated for each target molecule. The

short and long range potentials are matched unambiguously at the innermost crossing

point, whose radius is dependent on the angles.

A derivation of this short-range correlation-polarization potential can be sketched

along the lines of Refs. [35, 62, 107]. We start by choosing a particular form for the

correlated wavefunction for an N-electron system. Taking xi to denote both the spin

(σi) and spatial (~ri) coordinates of the electron, this reads:

Φ(x1...xN ) = ΦHF (x1...xN )
N
∏

i<j

[1− φ(~ri, ~rj)] (2.21)

where

φ(~ri, ~rj) = e−β2r2

[1−Θ(R)(1 + r/2)] (2.22)

is a correlation function that obeys the cusp condition at the coalescence point. Here

R = 1
2 | ~ri + ~rj |, and r =| ~ri − ~rj |. β = qρ1/3 can be related to the excluded volume

(see Eq. 5 of Ref. [62]) and q has to be determined. The form chosen for the correlation

function determines

P2(~r1, ~r2, ~r′1, ~r′2) = PHF
2 (~r1, ~r2, ~r′1, ~r′2)[1− φ(~r1, ~r2)− φ(~r′1, ~r′2)− φ(~r1, ~r2)φ(~r′1, ~r′2)]

(2.23)

for the second-order (or two-electron) density matrix traced over spin, where PHF
2 is

the second-order Hartree-Fock density matrix. Making now the approximation that
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P1(~r1, ~r′1) = PHF
1 (~r1, ~r′1) for the first order (or one-electron) density matrix, the corre-

lation energy is derived as

Ec =
1

2

∫

PHF
2 (~r1, ~r2)[φ(~r1, ~r2)

2 − 2φ(~r1, ~r2)]
1

r12
dr1dr2 (2.24)

and Θ becomes a function only of β (see Ref.[35]). The correlation energy is finally

recovered by expanding PHF
2 (~r1, ~r2) to second order in the interparticle coordinate. At

this point though, the correlation energy involves a gradient of PHF
2 (~r1, ~r2). Through

some further work, Lee Yang and Parr [107] recovered a final expression that is only

a function of the one-electron density, and therefore more akin to the spirit of DFT.

Essentially the steps required involve first expressing the second-order Hartree-Fock

density matrix in terms of the first order one (see Eq. 4 of Ref. [107]) and secondly

expressing the gradient in terms of the Hartree-Fock local kinetic energy. This finally

gives an expression like Eq. 10 in Ref. [107]. At this point, to obtain the correlation

potentials we use, it is necessary to perform a functional derivative of the correlation

energy with respect to the electron density:

Vc =
∂

∂ρ
Ec = −a(F ′ρ+ F )− abCFρ

5/3(G′ρ+
8

3
G)

−ab
4

[G′′ρ | ∇ρ |2 +G′(3 | ∇ρ |2 +2ρ∇2ρ) + 4G∇2ρ]

−ab
72

[3G′′ρ | ∇ρ |2 +G′(5 | ∇ρ |2 +6ρ∇2ρ) + 4G∇2ρ] (2.25)

F = (1 + dρ−1/3)−1

G = F−5/3ecρ
−1/3

(2.26)

CF =
3

10
(3π2)2/3

for closed shell molecules, these expressions are identical to the ones in Ref. [62] and are

shown here for completeness. The parameters a, b, c, d are chosen by a fitting procedure
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to the helium atom, and were shown to be effective in predicting energy correlations

for atoms and molecules [35, 107]. Note that it is possible to include rigorously the

polarization-correlation physics in an effective potential approach as in Ref. [128].

All the information needed to construct the local potential described in Eqs. 2.25-

2.27 can be extracted from standard ab initio quantum chemistry codes; in this work

we have used GAUSSIAN 98. The electrostatic potential and the electron density

(needed to construct the exchange functional) for the target molecule are calculated on

a uniform cubic grid at a CI (singles and doubles) level for the molecules presented here.

The difference in using an electrostatic potential and density calculated at the RHF level

or at the CI level for CO2 at its equilibrium geometry amounts roughly to a difference

of 10% in the calculated eigenphase sum and overall magnitude of the elastic cross

sections. These calculations usually require a minimal amount of time, of the order

of ten minutes per nuclear geometry for CO2 on the aforementioned computational

platform. The potentials are then interpolated on the three-dimensional quadrature

grid using fifth order splines. We avoid interpolating over the nuclear singularities by

premultiplying the potential at each grid point by the product of the distances of the

point from all the atoms, then performing the interpolation over this quantity that does

not possess Coulomb singularities any longer.

2.3 Photoionization

The relationship between electron scattering and photoionization is a close one

[41]. The scattering wavefunction relative to a photoionization process is essentially the

time-reverse of the one for the scattering of an electron with a positive ion [74]. Thus

it is useful to examine the resonant structures of the electron with the ionic state, since
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Figure 2.2: The three terms of the potential for a N2 molecule. The exchange potential

is large only at the nuclei (at r = −1.094 and r = 1.094 a.u. in the equilibrium

configuration of the molecule) where the static potential is singular, so Vex is always

much smaller than Vs. On the other hand the polarization potential becomes important

in the outer zone, where the electron density of the molecule goes to zero. From Ref.

[192].
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photoionization allows to distinguish between different initial wavefunction symmetries.

In the independent electron approximation, the photon extracts the electron from just

a single Hartree-Fock orbital, the initial state. The relevant matrix element for the

photon absorption from a molecule is:

M0,f =< ψf | eik·r ε̂ · ~∇ | ψ0 >, (2.27)

where ψf is the final state. In our case the final state will have only partial wave

indices, since our scattering calculation is done at the static exchange level. For optical

transitions, the dipole approximation can be used, leading to dipole matrix elements:

d
(−)
0,l′m′ =< ψ

(−)
l′m′ | ε̂ · ~r | ψ0 >, (2.28)

using the length form of the dipole operator, where ε̂ is the polarization of the incident

photon, ψ0 the initial wavefunction (the orbital from which the electron is ionized), and

ψ
(−)
l′m′ the final state of the continuum electron. This is formed from R-matrix eigenstates

ψl′m′ using

ψ(−) = ψ(I − iJ)−1, (2.29)

where I and J are matrices generated from the Wronskians of the solutions inside and

outside the R-matrix box, as described in Eqs. 2-31 and 2.41 of Ref. [74], generating a

wavefunction with incoming wave boundary conditions:

ψ
(−)
l′m′ =

∑

lm

Ylm(θ, φ)(
1

i
√

2
f+

l δll′δmm′ − 1

i
√

2
f−l S

†
lm,l′m′), (2.30)

where f± are incoming and outgoing wave solutions (exponential functions with unit

coefficient), respectively, and S† is the hermitian conjugate of the scattering matrix.

The total cross section can be easily calculated from the d
(−)
0l′m′ matrix elements by



24

performing a rotational average. This simplifies after expressing the dipole operator as

ε̂ · ~r =
∑

mγ

4π

3
rY1mγ (θ, φ)Y ∗

1mγ
(θ′, φ′). (2.31)

where the first spherical harmonic refers to the vector ~r, while the second refers to the

polarization vector in the body frame, and mγ gives the projection of the polarization

vector on the molecular z axis. After angular integration, the final cross section is:

σ = N
4πω

3

∑

l′m′

d
(−)
0,l′m′d

(−)∗
0,l′m′ (2.32)

where N is the number of degenerate electrons that can be knocked out by the photon.

For example, N = 4 for a fully occupied π orbital in CO2. The cross section output

from the code has to be multiplied by the orbital occupation number. As an alternative

to Eq. 2.28, the velocity form of the dipole matrix element,

d
(−)
0,l′m′ =

1

ω
< ψ

(−)
l′m′ | ε̂ · ~∇ | ψ0 >, (2.33)

can be used in the code, although this will be slower because of the need to differentiate

many continuum wavefunctions. In fact, in the case of many initial wavefunctions, it

is too expensive to store all of their gradients, so the final wavefunctions have to be

differentiated at each energy point.

Notice that in photoionization of a closed-shell molecule, the construction of our

exchange potential will not be strictly correct, since we only derived our exchange

functional for closed shell molecules and the resulting ion is a doublet. The final error

made in this case will however be quite small, due to the dominance of the electrostatic

ionic potential everywhere in space.

The calculation of dipole matrix elements for a returning electron recolliding with

a molecule, therefore with boundary conditions opposite to photoionization, is useful also
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in the three step model [113] calculation of high harmonic generation (HHG) spectra [36],

that are generated by femtosecond and sub-femtosecond pulses. This area of research is

growing at a very rapid pace and interesting applications to map the electronic dynamics

of molecules undergoing chemical reactions have already been published [13]. This is

ripe for a future application of the methods we are developing here.

2.4 Other methods

In the work included in this thesis, there are many different kinds of processes

that we are trying to model, and they will require a number of different approaches. The

accuracy needed in calculations for small molecules is much higher than for the large

DNA bases, where the approximate treatment we have just discussed is good enough,

since more accurate calculations are at present too large to perform. In the following

sections a description of the other methods that have been used in this work to calculate

scattering quantities will be given and the different schemes will be compared to assess

when they should be used and what their weaknesses are. To develop methods that

can accurately solve the electron-molecule scattering problem is a serious job in itself,

and the approaches and programs we describe have been developed by large teams of

scientists over the past twenty or so years.

2.4.1 Ab initio methods

A possible alternative route to calculate quantum defect parameters, for scattering

of an electron from an ion, is to use bound state quantum chemistry programs, which

allow very large configuration interaction (CI) expansions to be used, and therefore high

accuracy for the first few low-lying excited states of the N + 1 electron system [132].
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We have used this approach to calculate Rydberg state Born-Oppenheimer surfaces

and K-matrices relevant for HCO+ dissociative recombination calculations [104], i.e. by

calculating the first few Rydberg states (up to n = 4) and then neglecting the energy

dependence of the higher state eigenquantum defects.

The positive side of this approach is the high precision it is possible to reach

using very large configuration spaces (of the order of a million). On the other hand, this

procedure is limited by two factors: the higher lying excited states will be less and less

converged (and therefore the Rydberg states above, say, n = 4 will be incorrect) and

the scattering quantities that are of interest here (K-matrices through equation 3.1) will

have to be obtained through a fitting procedure, which can be both cumbersome and

nonunique. Clearly, above the ionization threshold this approach cannot be used, since

there would be a variational collapse of the states onto the ionic surface energies, and

an incorrect description of the resonances, due to the bound state boundary conditions

imposed that cannot represent the continuum correctly. This approach will be used in

the dissociative recombination calculations of Chapters 3 and 6.

2.4.2 Rmatrix-UK

Small molecules often need more accuracy than we are able to provide with the

methods just outlined. For this purpose we have used a different approach that involves

the R-matrix UK polyatomic codes developed by J. Tennyson and coworkers [135, 136].

The main difference with the approach we have described so far is that the solution

of the inner region is a truly many-particle problem, developed starting from quantum

chemistry configuration interaction (CI) software. Within the limit of the basis sets

used, these codes can give an exact solution to the electron interaction with the many
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electrons present in the molecule, at least in principle.

The calculations are usually done in this case starting from a Hartree-Fock mean

field description of the target molecule, followed by a CI step to get better target

wavefunctions. Many target states might be needed if electronic excitations are con-

sidered. The next step involves adding an electron to the molecule and diagonalizing

the full Hamiltonian, including the interaction of the scattering electron with the target

molecule. A wavefunction of the form:

ψk =
∑

ij

φi(x1...xN )uij(xN+1)aijk +
∑

i

χi(x1...xN )bik (2.34)

is assumed, where φi(x1...xN ) are target CI configuration state functions, uij(xN+1) are

continuum wavefunctions, while χi(x1...xN ) are L2 functions, a and b are the variational

coefficients. This is essentially a close coupling expansion with polarization/correlation

configurations that allow us to describe the added electron in more compact configu-

rations inside the target virtual orbital space, in a sense allowing the target to relax

under the influence of the scattered electron, much as our model polarization potential

2.2.3 does. This wavefunction form goes beyond the static exchange approximation in

that it allows electronic excitation of the target. We use this approach to calculate

potential energy surfaces and K-matrices for dissociative recombination calculations.

The limitation of this approach is one of size, in that when the number of electrons

in the scattering problem becomes large the scaling of CI calculations (even with in-

clusion of just single and double excitations) goes like N 6, where N is the number of

single-electron basis functions, and is proportional to the number of electrons. Already

a simple HF calculation scales like N 4. This unfavorable scaling prevents this approach

from being extended to carry out accurate calculations for molecules with more than
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about 10 atoms, especially if what is of interest is the effect of bond breaking on the

continuum states. Homolytic bond breaking (in which each of the fragments retains

a bonding electron) inherently requires more than one reference configuration, since

the Hartree-Fock wavefunction dissociates incorrectly in this case, and in general many

configurations will be needed for an accurate description of the process.

Two other methods that are based on the same philosophy of using a full many-

electron description of the electron-molecule interaction, and which are competitive with

the Rmatrix-UK code. These are the Schwinger variational approach of McKoy and co-

workers [205] and the Kohn variational code of McCurdy-Rescigno and coworkers [156],

which share roughly the same advantages and limitations as the code we just described.

For the future, promising methods that use a DFT-based description of the inter-

action, using more accurate functionals than we have at present [148], which importantly

eliminate the local density approximation, are being developed and applied to scattering

problems [198]. The scaling of these methods is much better than wavefunction meth-

ods, and they might be the only way to treat interactions of a continuum electron with

very large targets in the future, to sufficient accuracy. Much as in bound-state quan-

tum chemistry calculations, the success of DFT calculations could prove critical for

expanding the range of systems that can be treated, especially for new and extremely

interesting applications to biomolecules [24].

2.5 QDT and long range interactions

The nature of the electron scattering problem is such that we can devise two

zones in configuration space that have distinct properties. In the short range zone, the

problem is essentially many body in nature, whereas the long range zone effectively



29

reduces to a one-body problem of scattering from a potential. When the outer electron

is outside the area where the target electron density is confined, there is no nonlocal

exchange interaction. The first zone is the most complicated to treat, and we have

seen how R-matrix techniques for example can be used for that purpose. The outer

zone instead has a feature that is very important: at sufficiently large distances, one

can solve for scattering of a particle in the long range potential and get an analytical

form of the wavefunction. The computational cost of solving the Schrödinger equation

out to very large distances is thus reduced, and equally importantly, it factors out

analytically from the S-matrix the long-range part of the phase shift. This key idea

allows us to obtain quantities like S-matrices, phase shifts, time-delays, etc., which

depend only on the short-range potential, and therefore are much less energy dependent

than the ones that also include the long-range phase accumulation. This can in turn save

much computation time when dealing with processes for which the scale of the energy

dependence of the short-range part of the S-matrix is much weaker than for the long-

range part. In the treatment of electron collisions with rotating/vibrating molecules

this concept is useful, since the energy scales of the different degrees of freedom are so

different, as we will see in Ch.3. This is one of the fundamental ideas of quantum defect

theory (QDT), which will be important in the following, especially when we will deal

with dissociative recombination reactions.

QDT is a tool that allows to tackle a class of problems that are essentially in-

tractable with any other method, for example the coupling of many degrees of freedom

with the infinite number of Born-Oppenheimer potential energy surfaces that arise in

scattering from a positive molecular ion. It is conceptually very simple, but in the lit-

erature [74, 75, 77, 169] it has been usually obscured by complexities associated with a
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large number of parameters, basis pairs and so on.

The key ideas are essentially three. The first one we mentioned already is the

division of the scattering electron coordinate space into two areas, short range and long

range. The long range part can be treated analytically and effectively removed from the

S-matrix to make it a smooth quantity. The second idea is that the boundary conditions

on closed channels should be imposed as late as possible in the course of a calculations,

again in order to obtain quantities that are smooth in energy, since the sharp energy

dependence at ionization thresholds has been eliminated. The third idea is that there

is a correspondence between the phase shift at positive energy and the parameter that

identifies the position of a bound state (the effective quantum number), at negative

energy. For Coulomb systems that automatically possess high lying Rydberg bound

states this is easy to see in that the bound states will look more and more like the ionic

state to which they converge plus a loosely bound electron. In the case of single channel

problems, their energies will be given by the Rydberg formula

Un,i,Λ( ~Q) = U+
i ( ~Q)− 1

2(n− µi,Λ( ~Q))2
(2.35)

where ~Q represents all the vibrational coordinates. In the case of multichannel problems

the quantization condition Eq. 4.5 has to be applied to determine the position of the

bound states. The interaction of the electron with the ionic core in these very extended

and high energy weakly bound states will be more and more similar to that of a free,

positive energy electron. In Eq. 2.35, n is the principal quantum number, i is the

index of the ionic electronic state, while Λ is the projection of the electronic angular

momentum on the molecular symmetry axis and µiΛ( ~Q) is the quantum defect for that

geometry and molecular symmetry. Λ is a good quantum number for linear molecules,



31

and we will use it in HCO+ to label states in bent geometries as well, even though the

classification will be approximate. A derivation that shows that the quantum defect in

formula 2.35 can be seen as a low-energy electron scattering phase shift can be found in

Sec. IIB of Ref. [74]. An important consequence of treating the bound-state physics as

a scattering process is that we can use the S-matrix to determine bound-state positions,

when the problem is multichannel in nature:

(S†
cc − e2iβ)B = 0 (2.36)

and the roots of the determinantal equation will give the Rydberg energies. In this

equation S†
cc is the part of the S-matrix relative to the closed channels (in which frag-

mentation all the way to the asymptotic region is energetically forbidden), β is a diagonal

matrix of long range phase parameters [74, 75]. Note also that all channels are closed

when the energy level is truly bound. In an energy range where open channels are also

present, see Eq. 3.10. It is important to restate that QDT has to do with the long-range

part of the scattering process, and cannot give by itself the short-range quantities which

are needed to complete the modeling of the interaction. These must be calculated by

either ab initio bound state quantum chemistry calculations or R-matrix (or similar

approaches) for scattering processes. Both these avenues will be explored in Ch. 3.

2.5.1 External potentials

Many external potentials have been treated from a QDT standpoint: Coulomb,

dipole [75], Coulomb plus dipole [180], polarization [199] and dispersion forces in atom-

atom scattering [27]. Here we will be mostly concerned with Coulomb and dipole poten-

tials. The long range form of the wave function will be always some linear combination
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of a base pair consisting of a regular (at the origin) and an irregular solution of the

Schrödinger equation in the pure long range potential. Since a linear second order dif-

ferential equation has two linearly-independent solutions, any solution can be expressed

as linear combinations of those two. We will call these functions f and g respectively,

without specifying their precise functional form, which will vary with the external po-

tential. In the case of zero long-range potential, the external solutions are the familiar

spherical Bessel functions.

Given these two functions, matching at the boundary of the internal region with

the internal R-matrix of Sec. 2.2.1 generates the K-matrix of Eq. 2.12 in the following

way:

K =
f − f ′R
g − g′K (2.37)

here f, g, f ′, g′ are diagonal matrices of the matching functions and their derivatives

at the matching point, as described in Sec. IID of Ref.[74]. In the following we will

always assume that only one electron at a time can be in the external region, since the

energy will always lie below the threshold for double escape and we will not consider

such processes further. In electron scattering, the threshold for double escape is the first

ionization threshold, which can be as low as 10 eV in some of the neutral molecules we

consider in this thesis. We neglect the double escape process nonetheless throughout

this work.



33

2.5.2 Coulomb potential

In the case of a Coulomb potential, the wavefunction at long range for the external

electron will be a combination of Coulomb functions [169]

ψl′m′ =
1

r

∑

lm

Ylm(θ, φ)[fl(r)δll′δmm′ − glm(r)Klm,l′m′ ] (2.38)

this form of the wavefunction is said to obey K-matrix boundary conditions. The

functions fl and gl are energy normalized regular and irregular Coulomb functions, that

behave like sin(kr + ln r
k + η) and − cos(kr + ln r

k + η) for r → ∞, where η is the long

range Coulomb phase shift (see Eq. 2.39 in Ref.[74]). It is important to notice that the

full wavefunction for the system will be a Slater determinant of the wavefunctions in Eq.

2.38. Alternatively, the wavefunction 2.38 can be reorganized in terms of the S-matrix

solutions, using a complex linear combination of fl and gl, or in the eigenchannel form

involving eigenstates of the K-matrix, showing more effectively the short range phase

shift µα that is not incorporated in the Coulomb functions:

ψα =
1

r

∑

lm

Ylm(θ, φ)Ulm,α[fl(r) sinπµα − gl(r) cosπµα] (2.39)

This phase shift µα is termed the eigenquantum defect.

At negative energy, in the bound state region, the form of the wavefunction is ef-

fectively unchanged, what varies is the asymptotic form of the Coulomb wavefunctions,

which now behave as decaying and growing exponentials. Of course the exponentially

growing part is unphysical, but the growth is killed when the correct boundary condi-

tions are imposed at the end of the calculation. All of this makes this long range form

of the wavefunction very convenient and flexible. Another base pair that appears in the

following is (f0, g0), which are analytic functions of the energy and will be important
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at very low negative energies since, for ν < l, (f, g) are complex. The transformation

between these two pairs of solutions is linear and it is defined in Eqs. 2.15a and b of

Ref. [74], the long range parameters of the transformation can be found in Ref. [170]

where (f, g) are called (s,−c) and (f 0, g0) are called (f,−g).

2.5.3 Dipole physics

Since many of the molecules we consider have large electric dipole moments, there

is a need to consider the long range effect of the dipole field on the scattered electron.

Two possible options might be considered, either extending the boundary of the R-

matrix box far out to a region where the dipole potential is very small, which would be

extremely time-consuming for our calculations, or matching to outer region functions

adapted to the dipole interaction. We choose this second route and, since in the region

where only the dipole potential is dominant the Schrödinger equation is

−1

2

d2

dr2
− E +

1

2
(l2 − 2D cos θ)ΩN = N(N + 1)ΩN (2.40)

following the example of Clark [33], we define the matrix of the operator:

(l2 − 2D cos θ)ΩN = N(N + 1)ΩN (2.41)

where l is the angular momentum operator, θ is the angle between the incoming electron

and the dipole direction, D is the dipole moment, N(N + 1) and ΩN are eigenvalues

and eigenfunctions. We expand ΩN in a basis of spherical harmonics to diagonalize the

system in Eq. 2.41. The order of the spherical Bessel functions that are matched in the

outer region will be now N (not an integer, in general) rather than the usual orbital

angular momentum quantum number l. Since the dipole moments of the molecules
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in question are very large, the dipole plus centrifugal potential can become attractive

for the first few channels which may thus have a complex N . In such cases we define

N = −1/2 + iβ and the matching functions will become [33]:

j̄N (kr) =

√

π

2r

1

sinh 1
2πβ

Im(Jiβ(kr)) (2.42)

n̄N (kr) = −
√

π

2r

1

cosh 1
2πβ

Re(Jiβ(kr)) (2.43)

where Jiβ is a cylindrical Bessel function. This allows us to keep the functions in Eq.

2.42 always real, which therefore gives real K-matrices.

It should be mentioned, however, that at extremely low energies these functions

oscillate rapidly in energy as sin(β ln kr), giving rise to K-matrices that are not smooth

functions of energy near threshold. Defining the base pair as in Ref. [75] solves the

problem, but since we are not interested in energies below about 0.5 eV usually, the

functions in Eqs. 2.42-2.43 will be sufficient.

After the matching is carried out, an analytic propagation procedure (see Eq.

8-16 of Ref. [33]) is used to get the scattering wavefunctions at a large radius. This is

important since then the scattering observables, phase shifts and cross sections, must be

expressed in terms of spherical Bessel functions of integer order, not the dipole-adapted

ones in Eqs. 2.42-2.43.

Other multipole contributions outside the R-matrix box must be described in a

different way, specifically with a propagation or perturbation method. We have tested

an R-matrix propagation approach [15, 127] to include the quadrupole contribution.

For the DNA components this contribution has been seen as very small, and therefore

it has been neglected in the final results, while it has been included in some of the

UK-R-matrix results we have obtained for HCO+.
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The dipole plus centrifugal potential is attractive if the value of the dipole moment

is larger than a critical value (Dc=1.625 Debye for a nonrotating dipole). In this case

the dipole interaction can bind the electron all by itself. In general, when rotation is

included, the critical value of the dipole moment to have a bound state predominantly in

the dipole field is around [88] 2-2.5 D and the number of dipole-bound states is finite. In

the case of uracil [43, 164, 176], such a dipole-bound state exists at roughly 0.1 eV below

the neutral ground state energy, at the equilibrium geometry of the target molecule.

2.5.4 Perturbation theory

The multipolar potential outside the R-matrix box can also be seen as a pertur-

bation, since it is small enough usually that this approximation will be accurate. To

this extent, an approach based on a Green function has been developed [73, 175]. We

consider the partitioning of the Hamiltonian into a main part and a perturbation

Ĥ = Ĥ0 + V (2.44)

and we use a solution obeying K-matrix boundary conditions to Ĥ0 of the type:

M(r) = f0(r)− g0(r)K0 (2.45)

where all the quantities are matrices and in particular f0 and g0 are diagonal matrices of

unperturbed long-range functions and K0 is the unperturbed K-matrix. We can define

the Green function for the system to be:

(Ĥ0 − EI)G(r, r′) = −δ(r − r′)I (2.46)

where I is the identity matrix, then the solution of the full Hamiltonian will involve an

integral over G and V .
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To calculate the Green function, we can start from a form of the type

G(r, r′) = P (r)QT (r′)A for r < r′ (2.47)

G(r, r′) = Q(r)P T (r′)B for r > r′ (2.48)

where P and Q are two sets of linearly-independent solutions of the equation. Then

we have to impose continuity at r = r′ and derivative discontinuity of −2µI at the

same point, where µ is the reduced mass, which will be unity in our case. Once these

requirements are met, we end up with:

G−(r, r′) = −2µP (r)[W (Q,P )]−1QT (r′) (2.49)

where W (Q,P ) is the Wronskian of the solutions, the advanced Green function will look

like the transpose of the previous expression. Now, for the unperturbed problem

P (r) = (f0(r)− g0(r)K0)(I +K2
0 )−1/2 (2.50)

Q(r) = (f0(r)K0 + g0(r))(I +K2
0 )−1/2 (2.51)

the Wronskian will be, after some algebra:

W (P,Q) =
2µ

π
I (2.52)

and the solution will formally be:

M(r) = P (r) +

∫ ∞

0
G(r, r′)V (r′)M(r′) (2.53)

and to first order

M(r) = P (r) +

∫ ∞

0
G(r, r′)V (r′)P (r′). (2.54)
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Now, we substitute in 2.54 the Green function 2.48, and P,Q from Eq. 2.51. Upon

introducing the integrals

Iff =

∫ ∞

r0

f0(r
′)V (r′)f0(r

′)dr′ (2.55)

Ifg =

∫ ∞

r0

f0(r
′)V (r′)g0(r

′)dr′ (2.56)

Igg =

∫ ∞

r0

g0(r
′)V (r′)g0(r

′)dr′, (2.57)

the perturbed K-matrix will be:

Kpert = AB−1 (2.58)

where

A = K0 − π(Iff −K0Igf − IfgK0 +K0IggK0)

B = I + πK0(Iff −K0Igf − IfgK0 +K0IggK0 (2.59)

when the perturbing potential vanishes we recover the unperturbed form. The advantage

of this form of the K-matrix over, for example, the treatment in Ref. [12] is that the

poles are shifted with respect to the unperturbed poles. We will show in Ch. 4 how well

this method works, compared to an R-matrix propagation, for positive and negative

energies, for a complicated system like an electron in the field of HCO+.



Chapter 3

Methods: vibrations, rotations and dissociative recombination

This chapter describes the methods we employ to treat vibrational motion and

nuclear dynamics in general. Particular attention is paid to dissociative recombination

reactions (in this chapter and Ch. 6). Sec. 3.2 shows how we obtain the electronic

parameters adopted in the calculations, and it describes the different representations

(adiabatic/diabatic) of the electronic states and their use. Symmetry-distortion effects,

such as Jahn-Teller and Renner-Teller, are considered, as well as the way they can accel-

erate the dissociative recombination (DR) rate. A brief survey of frame transformation

techniques is given in Sec. 3.3, while our treatment of the molecular dissociation is

shown in Sec. 3.4. Our formulation can be adapted in principle to any kind of molecule,

but some specific choices (especially the vibrational coordinates and the form of the

model K-matrix) are tailored for HCO+, which is the system we have studied in detail.

3.1 Introduction

The dissociative recombination (DR) of small molecular ions that collide with

electrons plays an important role in interstellar diffuse and dense clouds, see Ref. [53]

for a recent review on theory and experiment in this field. It is well known that these

clouds constitute building material for new stars. The importance of DR cross sections
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as parameters in star formation models, for such astrophysically relevant ions as H+
3

and HCO+, is one of the reasons why DR has been extensively studied in laboratory

experiments [105]. For diatomic molecules the process is well understood and described

theoretically [65, 89]. Until recently [94, 95, 143] though, theory was unable to model

the DR process in triatomic ions, except in cases where a neutral dissociative state

crossed the ionic Born-Oppenheimer surface in the Franck-Condon region, generating

a rapid rate [143]. In triatomics, a key complication is that multiple vibrational and

rotational degrees of freedom must generally be taken into account. Beyond the greater

computational burden of treating more dimensions quantum mechanically, the addition

of these new degrees of freedom can also lead to new conceptual issues, related to the

degeneracy of vibrational or rovibrational levels in certain triatomic ions (e.g., in both

H+
3 and HCO+). This can cause an intrinsic instability of the corresponding neutral

molecules that forces them to distort away from the symmetric geometry.

Consider an incident electron that interacts with a closed-shell triatomic ion hav-

ing a degenerate vibrational mode. If the symmetry group Γ of the resulting neutral

complex has at least one degenerate irreducible representation, the electronic partial

wave components with angular momentum l > 0 typically contain at least one such rep-

resentation, whereby the corresponding electronic states of the neutral molecule are de-

generate in the clamped-nuclei approximation. Due to the Jahn-Teller theorem [9, 115],

this degenerate electronic state strongly interacts with a degenerate vibrational state of

the Γ group. If the molecule is nonlinear, the interaction leads to the Jahn-Teller effect,

a conical intersection, in which the two states have an off-diagonal coupling which is

linear in the distortion coordinate. If the molecule is linear, the off-diagonal coupling

of lowest order is quadratic, giving rise to a Renner-Teller [126] (glancing) intersection.
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It has been well established in the literature that these distortion effects are a general

characteristic of potential energy surfaces for polyatomic molecules, and taking them

into account has explained many spectra and fast reaction rates. Conical intersections

[20, 208] can generate a “funnel” effect that leads to rapid passage of a wavepacket

from the upper surface to the lower surface, thus providing a preferred pathway for the

reaction to occur.

In electron-induced reactions, electron capture can be followed by dissociation or

autoionization of the recombined system. Since the degenerate electronic state causes

the instability of the symmetric configuration, the recombined molecule quickly distorts

away from the symmetry point to remove the degeneracy, after which the autoioniza-

tion channel typically becomes energetically closed, and the molecule eventually finds

a pathway along which it can dissociate (if there is an electronic state of the molecule

which is open for dissociation). In a system for which no direct crossing of a neutral

dissociative state with the ground state of the ion is present, this mechanism can be-

come dominant, and it can still produce large DR cross sections. This is expected to be

particularly true for molecules containing hydrogen. A schematic illustration of these

two cases is shown in Fig. 3.1.

Recently Kokoouline and Greene [95] have demonstrated this occurs in H+
3 + e−

collisions. For HCO+, a closed-shell linear ion in its ground state, the picture is similar.

The lowest doubly-degenerate vibrational E states are coupled to the electronic states

E1(npπ) of the neutral system through the Renner-Teller interaction, resulting in a large

probability for recombination.

Although the Renner-Teller coupling is well known, electron-molecule collisions

where the coupling is present have not yet been studied until recently. This is possibly
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due to the complexity of the problem because the molecule must be at least triatomic so

that one has to treat three or four degrees of freedom simultaneously. In a recent study

[126] McCurdy et al. have made an important step in understanding the role of Renner-

Teller physics in collisions between the electron and the CO2 molecule. The authors have

employed a time-dependent framework to describe the nuclear motion of the negative

ion CO−
2 formed during the collision. The nuclei move in the two-component 2A1 and

2B1 electronic complex potential corresponding to the doubly-degenerate 2Πu molecular

state at linear configuration. The two components are coupled by the Renner-Teller

interaction.

3.2 Ab initio surfaces

To treat the electronic degrees of freedom and the Rydberg state dynamics we

work in the framework of multichannel quantum defect theory (MQDT). This allows

us to treat Rydberg states of arbitrarily high principal quantum number, provided we

can extract a few geometry-dependent quantum defect parameters from accurate ab

initio quantum chemistry or scattering calculations. In our model we use a further

simplification, imposing the energy independence of the quantum defects, a statement

that we will show to be accurate, except possibly for the very lowest (n = 2 for HCO+)

states, which have considerable valence character.

In MQDT the information regarding the potential energy surfaces of Rydberg

states is expressed in a compact and convenient fashion using an effective K-matrix.

This can be derived from the Lippmann-Schwinger equation [141]

− 1

π
K = V − 1

π
V

1

E −H0

K (3.1)
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Figure 3.1: Schematic representation of direct and indirect DR processes. For direct
processes a crossing of the ion (black curve) ground state and the neutral dissociative
state (in red) leads to quick dissociation. For an indirect mechanism, in an adiabatic
picture, the neutral dissociative state lies below the ionic potential and cannot lead to
direct dissociation, since there is no classically-allowed Condon point for capture. The
electron can be captured into a Rydberg state (dashed green curve) converging to an
excited vibrational threshold (full green curve) and, through subsequent decay through
the Rydberg manifold and additional vibrational excitation, it can find a dissociative
pathway and give a high DR rate.
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where V is a matrix that represents the electronic interaction between the electron and

the ion, H0 is the ionic Hamiltonian. We can approach the solution of this equation

perturbatively, and in the case in which K can be considered energy independent, as in

the present case, it is sufficient to stop the perturbative expansion at first order, leading

to

− 1

π
Ki,j =< ψi | V | ψj > +O(V 2) (3.2)

where i, j are two different electronic states. This matrix is usually multiplied by -π in

order to agree with the usual reaction matrix of MQDT [95]. Therefore the K-matrix

corresponds to the matrix of diabatic (potential) couplings. It is possible to extract such

quantities by fitting the adiabatic (Born-Oppenheimer) potential energy surfaces of the

Rydberg states to a model K-matrix with off-diagonal couplings. It is important to

have a diabatic description of the electronic states because when a conical (or Renner-

Teller) intersection is present the different potential energy curves have a true crossing.

In an adiabatic representation the couplings would be infinite, since in a Landau-Zener

picture [101] the couplings are inversely proportional to the difference of the potentials

between the two states. In a diabatic representation the couplings remain finite at every

point.

The electronic dynamics is tackled calculating the Rydberg potential energy sur-

faces with quantum chemistry codes, and then fitting them to a model K-matrix to

be used in a QDT calculation. Details of the procedure can be found in Sec. 6.2.1.

Some new results for HCO Rydberg states potential energy surfaces, achieved using a

Green function method, can be found in Ref. [49], they compare very well with our

calculations.
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Figure 3.2: HCO+ ground state ionic and HCO ab initio potential energy curves as a
function of (a) CH stretch at the equilibrium rCO = 2.0877 a.u. and θ = 180 degrees and
(b) bending at the equilibrium distances for CO and CH (rCH = 2.0 a.u.). The filled
symbols indicate MRCI potential energy curves of HCO states of A′ symmetry, while
open symbols are states of A” symmetry. The corresponding potential energy curves
obtained using Koopmans’ theorem are shown as solid and dashed lines respectively.
From Ref. [104].
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We have performed two calculations of DR in HCO+, which we will call Model 1

and 2, that are described in detail in this chapter. The results are shown in Ch. 6. The

main difference between the two models is the treatment of the Renner-Teller couplings,

which are not included in Model 1, whereas they are present in Model 2.

We assume that the incident electron is initially captured into one of the neutral

Rydberg states, which can be approximately characterized by the principal quantum

number n, the orbital angular momentum l, and its projection on the molecular axis

λ. In our model we have included only the npπ−1,npπ+1, npσ, nsσ and ndσ states.

The symbols ±1 imply two opposite-sense electronic angular momenta associated with

the different signs of λ. Linear combinations of the nπ±1 states give states npπ′ and

npπ′′, symmetric and antisymmetric with respect to reflection in the plane containing

the molecular axis. The other three states are symmetric. These states were established

in Ref. [104] to be the most important for DR, since they exhibit the largest dependence

on the vibrational coordinates.

In the first model we have fitted our ab initio electronic surfaces to a K-matrix

having the following structure:

K(Q) =





































Ksσ,sσ Ksσ,pσ Ksσ,dσ 0 0

Kpσ,sσ Kpσ,pσ Kpσ,dσ 0 0

Kdσ,sσ Kdσ,pσ Kdσ,dσ 0 0

0 0 0 Kπ−1,π−1 0

0 0 0 0 Kπ+1,π+1





































, (3.3)

where Q represents all the vibrational coordinates.

The important characteristic of this model K-matrix is the absence of Renner-

Teller coupling, which implies that the π-block is diagonal, while the sigma block is fully



47

coupled. Renner-Teller coupling was initially omitted because of the observed nature of

the Rydberg states surfaces as a function of the bending angle, shown in Fig. 3.2. In

particular it appeared to suggest that the Renner-Teller splitting was large for n = 2

states, but very small for all other Rydberg states. The higher Rydberg states are

responsible for the capture of the electron in the DR process, therefore Renner-Teller

coupling was thought to be uninfluential for the reaction rate. The fitting procedure is

described in Sec. 6.2.1.

3.3 Frame transformation and adiabatic methods

The frame transformation technique, which has similarities to the adiabatic nu-

clei approximation (also called Chase [31] or infinite-order sudden approximation [147])

assumes that the timescales for electronic motion and vibrational/rotational motion are

very different, as in the Born-Oppenheimer approximation. This would seem at first

not to hold for very high Rydberg states, where the Rydberg electron is so slow that its

motion has a period similar to a molecular vibration or longer. In fact, this approxima-

tion holds up very well for Coulomb systems no matter how high the principal quantum

number n is. This is because the Rydberg state has an elliptic “orbit”, therefore even

for very high n the electron spends a large amount of time outside the ion core, and

very little time inside. Effectively the speed with which the electron passes through

the core is almost energy independent, due to the large Coulomb acceleration that the

electron receives close to the ionic core, which is always much larger than the Rydberg

state energy. For neutral systems this does not happen, and indeed close to threshold

the frame transformation treatment is less accurate. See, however, Ref. [76] for e-N2

scattering.
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We treat the nuclear dynamics in a two-step adiabatic framework, using Jacobi

coordinates. This two step process is dictated by the need to calculate many vibrational

states for the ion, which a full three dimensional calculation (which we have carried out

anyway to check our results) would not have allowed. The coordinates are chosen to

mimic as much as possible the normal modes of the molecule, since this improves the

adiabaticity of the curves, probably because the couplings between the modes are min-

imal. We had initially tried to represent this ion using hyperspherical coordinates, but

the simple adiabatic picture failed completely. In H+
3 [95] the hyperspherical coordi-

nates are similar to the normal modes and the adiabatic approximation holds well. The

variable R represents the CH distance, while R is the distance between the oxygen atom

and the center of mass of the other two, which is very close to the CO distance. the

angle θ is the acute angle between these two vectors:

R = rCH

r =
mCrCO +mHrOH

mC +mH
. (3.4)

The Hamiltonian in Jacobi coordinates for J 6= 0 reads [188]

HV = − h̄

µ1R2

∂

∂R
(R2 ∂

∂R
)− h̄

µ2r2
∂

∂r
(r2

∂

∂r
)− h̄

2
(

1

µ1R2
+

1

µ2r2
)

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) (3.5)

HV R =
1

2
[

1

µ1R2
(J2

x + J2
y ) + (

cot2 θ

µ1R2
+

csc2 θ

µ2r2
)J2

x +
cot θ

µ1R2
(JxJz + JzJx)

+
h̄

i

1

µ1R2
(
∂

∂θ
+

cot θ

2
)Jy] (3.6)

where Jx, Jy, Jz are the Cartesian components of the total angular momentum operator.

The need to include J 6= 0 states, even in the absence of rotational dynamics, is due

to the fact that for a linear molecule the odd quanta of the bending vibrations are
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present only for odd J . This means that considering only states arising from a J = 0

calculation would lead to neglecting the lowest vibrational excited state (0110), the

quantum numbers are illustrated in Tab. 3.1. In the calculations we include only J = 0

and J = 1 and neglect the rotational spacing.

We use a spline basis [11] to carry out the target vibrational calculations in all

three dimensions, first solving the two dimensional r − θ problem and then carrying

out the R-dependent calculation on the adiabatic curves obtained in the first stage.

A schematic illustration of the molecule with the Jacobi coordinates we use and the

adiabatic vibrational curves as a function of rCH is given in Fig. 3.3.

The vibronic K-matrix is obtained through a two-step frame transformation. The

first step consists in taking the overlap of the electronic K-matrix with the adiabatic

CO-bending wavefunctions

KΛνrνϑ,Λ′ν′
rν′

ϑ
(RCH) =

〈

φνr,νϑ
|KΛ,Λ′(Q)|φν′

∇
,ν′

ϑ

〉

. (3.7)

In practice this integral is done on the quantum defect matrix, µ = π−1 tan−1K, since

the K-matrix has poles.

3.4 Siegert states

In this first study, we have used Siegert (outgoing-wave) boundary conditions

[80, 189, 190] in the C-H degree of freedom. This allows the description of outgoing

dissociative flux, i.e. predissociation. If outgoing wave boundary conditions are im-

posed at a finite distance, which is possible for finite range potentials (or for long-range

potentials as suggested in Ref. [162]), one can use an L2 (square-integrable) basis set to

represent the Siegert states. Using these boundary conditions, a quadratic eigenvalue
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Figure 3.3: Top: Jacobi coordinates used to model HCO+ vibrational dynamics, R is
the adiabatic coordinate and it is coincident with rCH . Bottom: adiabatic vibrational
curves as functions of the rCH adiabatic coordinate. The figure represents the 40 lowest
eigenvalues of the adiabatic Hamiltonian.
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problem in k, the wave vector

(H − ikL− k2O)~c = 0 (3.8)

is recovered, where L is the matrix of the Bloch operator, and O is the overlap of the

basis functions. Eq. 3.8 can be solved iteratively. It can also be dealt with in one step

by solving an eigenvalue problem of dimension twice the dimension of the basis space

[190]. The second step in the frame transformation is then to use the Siegert states

(φνR) to calculate the full S-matrix

SΛνrνϑνR,Λ′ν′
rν′

ϑ
ν′

R
=
〈

φνR |SΛνrνϑ,Λ′ν′
rν′

ϑ
|φν′

R

〉

. (3.9)

The channel elimination procedure [74], in which physical (exponentially decaying)

boundary conditions are imposed in the closed channels is then applied. If we arrange

the full S-matrix in open and closed channel partitions, we have [74]:

Sphys = Soo − Soc(Scc − e−2iβ)−1Sco (3.10)

and we obtain the physical S-matrix (Sphys) of dimension No × No where No is the

number of open channels [74]. The matrix β in Eq. 3.10 is diagonal with elements

βj = π/
√

2(E − Ej) and it represents the Coulomb long-range phase parameter; E is

the total energy, and Ej is the threshold of the j−th channel. When the Siegert states

are used, the physical S-matrix will not be unitary and the difference from unitarity will

be related to the DR cross section

σ(Eel) =
π

2E

(

1−
No
∑

i=1

Sphys
i,i′ (E)S†phys

i′,i (E)

)

, (3.11)

where Eel = E − Ei. This nonunitarity stems from the fact that the outgoing flux,

which will be lost, is assumed to go exclusively into dissociative channels, which are
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not included explicitly in the S-matrix. Notice that, following the definition of the

Siegert states, their orthogonality relation involves a surface term, and therefore the

frame transformation performed in Eq. 3.9 will have a similar surface term as in Eq. 6

of Ref. [80]. The results for this model are shown in Sec. 6.2.

3.5 Model Hamiltonian including the Renner-Teller coupling

Since the results obtained with the previous model K-matrix have not been sat-

isfactory, we have built a new treatment that has as a focal point the inclusion of the

Renner-Teller coupling. We also freeze the CO degree of freedom, and we include many

vibrational angular momenta, instead of the two included in our previous treatment.

The starting point of the present theoretical approach is the molecular Hamiltonian H

of HCO, which we represent as H = Hion +Te +Hint , where Hion is the ionic Hamilto-

nian, Te is the kinetic energy of the incident electron, and Hint describes the electron-ion

interactions. We assume that the ion is in its ground electronic state. Hion and Hint

depend on the four internuclear coordinates Q = {RCH , RCO, θ, ϕ}, where RCH and

RCO are the C-H and C-O internuclear distances, θ is the bending angle, which is zero

for linear configurations. The electronic energies are independent of the angle ϕ, which

represents the azimuthal orientation of the bending.

As in Model 1 we consider 5 electronic states. Therefore, Hint + Te assumes

a block-diagonal form with an infinite number of 5 × 5 blocks corresponding to n =

2, 3, · · · ,∞, in addition to the continuum. In the derivation of the model we assume

that there are no couplings between manifolds with different principal quantum numbers;

later, the MQDT treatment will relax this constraint.

Since the only off-diagonal couplings included in our analysis are those among
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the three np states, for simplicity we specify only these states in the formulas below.

The np sub-block of Hint + Te in the basis of the npπ−1, npσ and npπ+1 states

has the form [98]

Hint(Q) =



















Eπ δeiϕ γe2iϕ

δe−iϕ Eσ δeiϕ

γe−2iϕ δe−iϕ Eπ



















, (3.12)

where Eσ and Eπ are the electronic energies of the npσ and npπ±1 states at the linear

ionic configuration; δ and γ are the real, non-Born-Oppenheimer coupling elements. We

denote both the (nπ − nπ) and (nπ − nσ) couplings as Renner-Teller (RT) couplings,

whereas in some previous studies, only the former is denoted by this term. The cou-

plings δ and γ depend on RCH , RCO, and θ. The diagonalization of [Te +Hint](Q) is

accomplished by the unitary transformation matrix U [98]:

U =
1√
2



















eiϕ eiϕw− eiϕw+

0
√

2w+ −
√

2w−

−e−iϕ e−iϕw− e−iϕw+



















, (3.13)

with the abbreviations

w± =
√

(1±∆/w)/2; ∆ = (Eσ − Eπ − γ)/2;

w =
√

∆2 + 2δ2 . (3.14)

When diagonalized, the Hamiltonian becomes

U †[Hint + Te]U = diag{Vπ′′ ,Vσ,Vπ′} , (3.15)

where

Vπ′′ = Eπ − γ , Vσ = (Eσ + Eπ + γ)/2 + w ,

Vπ′ = (Eσ + Eπ + γ)/2− w. (3.16)
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The adiabatic potential energy surfaces Vπ′,π′′,σ(Q) are known from ab initio calculations

(see Ref. [104] for a detailed description). From Eq. (3.16) we obtain

γ = Eπ − Vπ′′ , w = (Vσ − Vπ′)/2 . (3.17)

Therefore, the matrices U in Eq. (3.13) and Hint in Eq. (3.12) are obtained from

Vπ′,π′′,σ(Q).

3.6 Reaction matrix and O’Malley formalism for the DR cross

section

Again here we employ multichannel quantum defect theory, and the first step is to

construct the reaction matrixK. First we introduce the diagonal quantum defect matrix

µ, whose nonvanishing elements µi are related to the diagonal element of the potential

surface by Vi = −1/[2(n − µi)
2], where i is the electronic state index. Therefore, the

diagonal form of the reaction matrix is directly obtained from the ab initio calculation.

The coupling δ in Eq. 3.12 is linear in θ for small θ. Correspondingly, the

splitting between adiabatic electronic energies Vπ′′ and Vπ′ is quadratic with respect to

θ, and, therefore, the splitting between quantum defects µπ′′ and µπ′ is also quadratic.

This can be seen in Fig. 3.4, where µπ′′ is almost constant because it has a different

symmetry and is unchanged due to the Renner-Teller effect. The quantum defect µπ′

is approximately quadratic due to the Renner-Teller effect until θ ≈ 50o, beyond which

the linear approximation for δ(θ) is not adequate. In a preliminary calculation we used

such a linear dependence of δ(θ), because we have found that we can use Eqs. 3.13, 3.14,

3.15, 3.16, and 3.17 and fit the model Hamiltonian accurately to the ab initio energies

without the additional approximation of linearity of δ(θ). The result of the preliminary
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Figure 3.4: The eigenquantum defects of the electronic states included in the present
study as functions of the bending angle θ for fixed RCH = 2.0 a.u. and RCO = 2.0877
a.u. Labeling the states with electronic momentum projection λ is an approximation
and for large values of θ it is not appropriate. However, the four sσ, pσ, dσ, and pπ ′

states are always uncoupled from pπ′′ states for nonlinear geometries. In the absence
of the non-diagonal matrix elements in Eq. 3.12 the pπ′ and pπ′′ states would have the
same quantum defects. The Renner-Teller parameters are completely determined by
the geometry dependence of pπ and pσ defects (Eq. 3.17). From Ref. [130].
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calculation is consistent with the present calculation using the accurate fit to the ab

initio energies.

The next step is to bring the reaction matrix into the representation of the Hamil-

tonian of Eq. 3.12. Since the transformation matrix U is known from Eq. 3.15, the K

matrix in that representation reads

K = U tan(πµ)U † . (3.18)

The matrices µ̂, Hint + Te, K, U are diagonal for the nsσ and ndσ states. We used

quantum defects from Ref. [104] with n = 4 for nsσ and n = 3 for the other states.

Figure 3.4 gives the quantum defects as functions of θ, with RCH and RCO fixed at the

ionic equilibrium values.

Once the reaction matrix Ki,i′ is obtained, the DR treatment is along the lines

of Refs. [94] with the following differences. We choose here the RCH distance as the

dissociative adiabatic coordinate. This assumption is justified because experimentally

the H+CO channel is largely dominant at low energies. It has been long known that the

CH+O channel is endothermic by 0.17 eV and could have an energy barrier, while the

OH product is not observed (see Ref. [144] and references therein). Recently, branching

ratios have been measured [57] for the DCO+ dissociative recombination, confirming

that the D+CO channel is by far the dominant, with a dissociation branching ratio of

0.88. We keep the RCO distance frozen at its ionic equilibrium value. This assumption

was made to simplify the treatment but it could result in an underestimation of the DR

cross section. In order to account for the CO vibration one might use the hyperspherical

coordinates similar to Ref. [104], or else normal mode coordinates as in McCurdy et al.

[126]. Although the CO bond is frozen, the Renner-Teller coupling physics is included
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Figure 3.5: Several adiabatic potential curves for the HCO+ ion are shown as functions
of the RCH distance for different projections mϕ of the vibrational angular momentum.
The curves of the same color correspond to the vibrational states with the same quantum
number mϕ but different L. The energies of the lowest vibrational states with mϕ = 0
and mϕ = ±1 are shown by two horizontal lines. From Ref. [130].
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in our model; we show below that it does increase the DR cross section significantly.

We will briefly address below the possible influence of the CO vibration.

Consequently, for every RCH distance we calculate matrix elements of the “large”

reaction matrix K(RCH)

Kj,j′(RCH) = 〈Φmϕ,L|Ki,i′(Q)|Φm′
ϕ,L′〉θ,ϕ, (3.19)

where Φmϕ,L(RCH ; θ, ϕ) are vibrational wavefunctions of HCO+ parametrically depen-

dent on RCH , while RCO is frozen. They are eigenfunctions of Hion with eigenvalues

U+
mϕ,L(RCH). Each index j in K can be represented as {i,mϕ, L}, where mϕ specifies

the projection of the vibrational angular momentum on the molecular axis, while the

index L distinguishes different vibrational states with the same mϕ. The rotation of the

whole molecule is not considered. Fig. 3.5 shows the vibrational eigenenergies U+
mϕ,L as

a function of RCH .

It is informative to compare the ionic vibrational energies obtained in our simpli-

fied approach with the exact calculation accounting for all four vibrational coordinates

[154]. We cannot compare the absolute values of the energies because the CO stretch

is frozen, however, we can compare the energies of a few vibrational levels {v1v
l
2, v3}

with respect to the energy E = 0 of the ground vibrational level {0000}. Table 3.1

compares the vibrational energies obtained in this study with accurate results from Ref.

[154]. The overall errors of the present calculated vibrational levels are about 12 %

or less. Since the vibrational wave function error can thus be deduced to be of order

√
0.12 ≈ 0.35, whereby a conservative estimate of the error in our calculations of the

final cross section would be of order 70%.

The matrix K(RCH) is used to obtain the potential curves Ua(RCH) of HCO
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{v1v
l
2, v3} Present calculation Puzzarini et al.[154]

1000 2933 3090.40
0110 740 830.7
0200 1460 1641.14
0310 2200 2458.9
0400 2925 3256.94

Table 3.1: The table compares the accuracy of the vibrational energies obtained in the
present study that neglects CO vibrations with the “exact” calculation from Ref. [154].
v1 indicates CH stretching, v2 is the bending quantum number, v3 is CO stretching and
l the is vibrational angular momentum. Since the CO bond is frozen, we don’t provide
energies for excited v3 modes. The overall energy error is about 12 %, which translates
into an error of about 35 % for the vibrational wave functions. The energies are given
in cm−1. From Ref. [130].
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as described in Ref. [94]. The curves in general have non-zero autoionization widths

Γa(RCH).

The potential curves Ua(RCH) and their autoionization widths Γa(RCH) are then

used to calculate the DR cross section. The cross section is calculated in a manner

similar to the procedure described in Refs. [94], with some adaptations. Specifically,

we start from Eq. (5.19) of Ref. [142] for the cross section of the process of dissociative

attachment of the electron to a neutral molecule, which applies equally to the disso-

ciative recombination process considered here. The resulting approximation adapted to

this situation reads (see Eq.6 of Ref.[94]):

σDA =
2π2

k2
o

Γa(RCH)

|U ′(RCH)| |χ
+
o (RCH)|2e−ρ(E). (3.20)

Here e−ρ(E) ≤ 1 describes the survival probability, which could be less than unity if

the system has a substantial probability to autoionize before it dissociates; ko is the

asymptotic wave number of the electron incident on vibrational level o of the target

molecule. The distance RCH is a dissociation coordinate understood to be evaluated

at the Condon point, which depends on the total energy as well as the initial target

vibrational level o; χ+
o (RCH) is the initial vibrational wave function of the ion. The

above formula is appropriate for the capture into a resonant potential curve that is

energetically open for direct adiabatic dissociation. If the corresponding resonant state

is closed, i.e. bound with respect to dissociation, it requires modification. To this end,

we adapt Eq. (4.2) of Bardsley [16] to our present situation involving indirect DR. The

indirect process proceeds via capture into a bound (typically Rydberg) state, which

eventually predissociates. For a case involving a single incident electron partial wave

(e.g. pπ′, for definiteness) and a single ionic target state, the fixed-nuclei autoionization
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width of the resonance potential curve will be denoted Γa(RCH). Once the vibrational

motion in the resonance potential is quantized into a vibrational resonance level, with

radial wavefunctions χres(RCH), it should be remembered that only a subset o of the

target vibrational levels v will be energetically open, at any given total energy E. Each

resulting quantized resonance acquires a partial autoionization width Γa,o′ into an open

vibrational channel o′, which is given approximately by

Γa,o′ = |
∫ ∞

0
χ+

o′(RCH)
√

Γa(RCH)χres(RCH)dRCH |2 . (3.21)

The sum of these is then the total resonance autoionization width (within this ap-

proximation, neglecting Rydberg level perturbations of the MQDT type, which could

sometimes produce complex, non-isolated resonances),

Γa,tot =
∑

o′

Γa,o′ (3.22)

while the total linewidth Γ of this quantized resonance also includes its predissociation

partial linewidth, Γd: Γ = Γd +Γa,tot. In this notation, the contribution to the total DR

cross section will be the following, if only the ground vibrational level o of the target is

populated:

σres(E) =
2π2

k2
o

1

2π

Γa,oΓd

(E − Eres)2 + 1
4Γ2

. (3.23)

Our model does not account for vibrational motion along the CO bond and,

therefore, positions of resonances cannot be compared directly with the experiment.

Moreover, the resolution in the available experiments is usually not sufficient to resolve

individual resonances. This suggests that we should average the cross section over

energy. Each energetically-closed ionic bound vibrational state c generates a Rydberg

series of resonances εnc , numbered with the effective principal quantum number nc. The
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cross section averaged over the energy interval between two resonances with energies

E = εn and εn+1 is given by

〈σ(E)〉 =
1

∆n + ∆n+1

∫ E+∆n+1

E−∆n

σ(E′)dE′ , ∆n+1 =
εn+1 − E

2
. (3.24)

Extending the limits of the integral to infinity, one can easily obtain the following:

〈σ〉 ≈ 2π2

k2
o

(
Γa,oΓd

Γ∆
) (3.25)

where the ∆ = ∆n + ∆n+1 ≈ 1/n3
c . Note that the quantity in parentheses here ap-

proaches a constant at sufficiently high effective principal quantum numbers nc in the

relevant closed channel c, because each partial and total width in the parentheses of this

formula should become proportional to ∆ in this limit. The total cross section is then

calculated by summing up the average contribution from all Rydberg states (a sum over

closed ionic channels). In the limit where Γd >> Γa,tot, this gives

〈σ〉 =
2π2

k2
o

∑

c

|〈χres(RCH)|
√

Γa(RCH)|χ+
o (RCH)〉|2n3

c . (3.26)

The projection M = mϕ + λ of the total angular momentum on the molecular

axis O–C is a conserved quantity in our model. We calculate all the resonances and the

cross section for all allowed values of M . Since we are considering only sσ, pσ, dσ, pπ ′, π′′

quantum defects and the initial ion is in its ground state mϕ = 0, the only possible

values of M for the final state are 0 and ±1. Resonance energies and widths are of

course dependent only on |M |. Finally, we obtain for the cross section:

〈σtotal〉 = 〈σM=0〉+ 2〈σM=1〉 . (3.27)

The results from this model are shown in Sec. 6.3.



Chapter 4

Results: electron scattering, small molecules

4.1 Introduction

The approach developed in sections 2.2-2.3 is now tested in calculations of elec-

tron scattering by N2 and CO2, classic benchmarks in this field [120, 139, 156], because

their elastic cross sections exhibit striking features that can be challenging to repro-

duce. These first results were published in Ref. [192]. We have moved to larger target

molecules, specifically SF6, XeF6 and C60 fullerene (which is not presented here), to

understand how well our approach scales for these large systems. These results are in

sections 4.3.2-4.4.2. Photoionization calculations are described in Sec. 4.4.

4.2 Computational Details

Three-dimensional integrals are expensive to calculate in general so it is highly

desirable to minimize the time spent in their calculation. For the sectors that do not

contain a nucleus it is possible to use just 4 Gauss-Legendre points of integration in each

coordinate, since doubling the number of points changes the calculated eigenphase shifts

by only about 10−6 radians, while increasing the computation time by approximately an

order of magnitude. Particular caution has to be observed when integrating over sectors
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that contain a nucleus. We have found it important in general to have a finite element

vertex on each Coulomb singularity, in order to obtain correct results, and to use more

integration points. In these sectors we use 20 integration points in each dimension since

we found that the convergence of the phase shifts in this case is, as in the previous case,

about 10−6. It is important also to provide sector boundaries near the K-shell radius for

each atom in the molecule, since close to the nucleus the wavefunction varies rapidly. A

fine grid is needed to represent the wavefunction oscillations near the nuclei, otherwise

the phase shifts for the lowest, penetrating partial waves will be unconverged.

The sparse structure of the finite element matrices (see Fig. 4.1) can be exploited

with great advantage from the beginning. No matter how the grid is defined, each basis

function has matrix elements with at most 216 functions. This allows us to know the

sparsity pattern of the matrix Γ in Eq. 2.8 (which we show again here for convenience)

Γ~C = 2(EO −H − L) ~C = Λ ~Cb (4.1)

in advance and store just the nonzero elements, with a reduction in memory cost of

approximately two orders of magnitude. This economy is crucial to allow us to perform

three dimensional calculations in the first place.

The dimension N of the eigensystem in Eq. 2.8 is, for CO2, of the order of

40000, whereas for the open subspace it is only 100 or less. N increases rapidly with

the complexity and spatial extension of the molecular potential, but the sparsity of the

matrices is high (about 0.5% full for N ∼ 40000 ), and it increases with the dimension of

the system. To solve the linear system in Eq. 2.11 we use direct sparse LU factorization

solvers (SuperLU [87] at the beginning, now more extensively the Pardiso [168] solver).

We have tried in the past to use iterative methods, such as biconjugate gradient [68]
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, with different preconditioners to speed up the solution of the linear system. The

one we have found to work best has been an incomplete Choleski factorization, which

reduces drastically the number of iterations with respect to a diagonal preconditioner,

the Γ matrix in Eq. 2.11 is not, in fact, diagonally dominant. Iterative methods are

slower than direct factorization: in the tests we have performed normally the direct

method is faster by an order of magnitude, but they are convenient if there are memory

limitations. Since the factorization of a sparse matrix does not preserve the sparsity

pattern, the factorized matrices present storage problems, since a fill-in factor of around

10-15 is common for these systems. We have decided to not use iterative methods since

our linear system is often ill-conditioned and in these cases reaching convergence is very

difficult, while direct methods always achieve the correct solution. This code therefore

needs a large amount of memory for large target calculations, for which we have used

Opteron 64-bit workstations with great success.

4.3 Results

In the first few calculations we show here, also published in Ref. [192], we have

used an adjustable parameter in the polarization potential of Eq. 2.20, which here is

used both at short and long distances:

Vpol = − 1

2r4
[α0 + α2P2(cos θ)][1− e−( r

rc
)6 ]. (4.2)

It is appropriate to carry out the expansion up to these first two terms, and neglect

the rest of the dipole polarizability tensor, since the target molecules for which this

potential is used are either linear or approximately so. Here rc is a distance parameter

comparable to the range of the target charge distribution. When high accuracy is
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Figure 4.1: Structure of the finite element matrix Γ for a small test case of dimension
900. Notice the great sparsity of the matrix, which increases with the dimension of the
matrix. From Ref. [192].
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needed for resonance positions in some applications, rc can be determined empirically

[139] to reproduce the energies of one or more resonances of interest. In the calculations

for N2, CO2 and HeH we used this simple adjustable potential instead of the more

sophisticated and ab initio DFT potential described in section 2.2.3. This allows a

tuning of the resonant features, if needed for particular purposes, but it is detrimental

of the predictive power of the approach. In the calculations of Sec. 4.3.2 and following,

we use the DFT polarization potential.

The strong and narrow Πg resonance at 2.4 eV in N2 is reproduced in our calcula-

tions at the right energy, provided we use a physically reasonable cutoff radius rc = 2.8

a.u. for the polarization potential. In Fig. 4.2 are shown the results. Other theoretical

studies of this resonance, definitely one of the most studied in electron-molecule scat-

tering, can be found in Refs. [85, 137, 202], where exact treatments of exchange are

performed. The resonance is reproduced also at the static exchange level (without using

a long range polarization potential), but at an energy of 5.4 eV.

For CO2 the main feature in the total elastic cross section is a Πu resonance at 3.8

eV. To reproduce it at the correct energy we have to tune the polarization cutoff radius

to 2.4 a.u.. This feature is present also at the static exchange level, at 8 eV. It should be

noticed that in calculations made using an exact form of static exchange this resonance

lies at 6 eV [63, 118, 134, 156]. The polarization dependence becomes much more pro-

nounced than in N2, as one expects from the larger spatial extension, the larger number

of electrons and the greater asymmetry of this molecule. The scattering cross section

for this system is shown in Fig. 4.3 . Fig. 2.2 shows how the polarization potential of

N2 is appreciable just outside the region where the main part of the electronic density is

located. Therefore the value of the cutoff radius for the polarizability potential, which
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is the only adjustable parameter in the model, is reasonable. The results are always in

good agreement with previous theory, as shown in the figures.

The present calculations have been performed for the molecular targets only at

their equilibrium distances. Vibrational effects tend to broaden these resonances in

experimental elastic scattering cross sections, and they also give rise to more structured

resonance peaks, which are not considered in this work.

The values of the polarizabilities used in these calculations are [139] α0 = 11.89a3
0

and α2 = 4.19a3
0 for N2 and [102] α0 = 17.9a3

0, α2 = 9.19a3
0 for CO2. It should

be pointed out that accurate static polarizability coefficients α0 and α2 in Eq. 2.20

can also be extracted from ab initio calculations, although to get the correct values,

extremely diffuse basis sets have to be used. Generally, the low-lying shape resonances

present in these small molecules are spatially highly localized, which allows the radius

of the R-matrix box to be kept small, around 8 to 14 a.u. for the present calculations.

In the case of the third neutral molecule that we present here, ethylene, the

situation is more complicated. Since the target is now nonlinear it is more difficult to

describe in a discrete basis set and it is more expensive computationally to calculate

the scattering cross section. Nevertheless we are able to reproduce the features of the

elastic cross section for this molecule. We find good agreement with the energies of the

resonances and with the overall cross section magnitude, compared with previous theory

and also experimental data, although the vibrational effects again tend to broaden the

resonance peak.

It should be noticed parenthetically that if we neglect exchange altogether in

calculations for all of the molecules presented here, the cross sections are qualitatively

wrong, with resonances far lower in energy than the experimental ones and in the wrong
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symmetry channels. This is due to the fact that some of the target electrons are not

bound anymore in the resulting potential without exchange, because the static potential

is not attractive enough. For example, in electron scattering from N2 the Πg resonance

at 2.4 eV is recovered at 5.4 eV for a static exchange calculation in our model potential.

Using only the static potential, there will be a Σg resonance around 2 eV, which is due

to the σu electrons of the target being above the ionization threshold. The exchange

potential is basically an attractive potential (local in our model), so adding it to the

static potential produces the correct number of bound states for the target; consequently

the scattering resonances are generated by capture of the electron in truly unoccupied

molecular orbitals of the target. A more systematic study of the behavior of the cross

sections, when different parts of the potential are neglected altogether, can be found in

Ref. [102].

4.3.1 Quantum defect calculations

It has been shown [186] that use of a local density approximation can often be

effective in calculating molecular quantum defects, for bound or scattering states, for

small closed-shell target molecules. It is possible to calculate quantum defects from a

scattering calculation carried out near zero energy. The key step is to diagonalize the

K-matrix

Kii′ =
∑

α

Uiα tanπµαU
T
αi′ (4.3)

and then utilize the relationship between the quantum defect and the scattering phase

shift [74, 169],

δα = πµα. (4.4)
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Figure 4.2: The integrated elastic cross section versus energy for electron-N2 scatter-
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Accordingly, quantum defects can be extracted from electron-scattering calculations at

positive or negative energies if energy-dependence of the parameters is investigated.

These quantum defects can then be used to determine the Born-Oppenheimer potential

energy curves of the Rydberg states converging to the various ionization thresholds

through the Rydberg formula, Eq. 2.35. These potential energy curves can then be

exploited through MQDT techniques, to extract dynamical information to model, for

example, dissociative recombination [95], as we show in Ch. 3. Here we show an example

of how well this approach works for a simple diatomic molecule.

We compare our results to the work of Sarpal and Tennyson [163] which made no

approximation about the nature of the electron-molecule potential, and the agreement

is generally very good. The quantum defects represented in Fig. 4.7 are the most

important ones, partial waves (l > 2) having very small phase shifts at the low energies

considered here. In electron scattering from an ionic target we must account for the

fact that heteronuclear target molecules like HeH+ have a dipole moment, so we must

transform from the center of mass frame to a new frame defined by the center of charge

(the proton in this case), which allows us to match to simple Coulomb functions at the

boundary of the box. Otherwise multipole potentials have to be included in the external

region.

4.3.2 XeF6

The xenon fluorides are among the few stable molecules formed by this noble gas.

XeF6 has a structure that can be seen as a distorted octahedron [28]. The distortion

is commonly ascribed to the lone pair of electrons that remains on the xenon atom,

after it has formed 6 bonds with the fluorine atoms. Since this system includes a heavy
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atom, it is hard to treat with more sophisticated methods because of the large number of

electrons and consequently the large basis set requirements. Our approach instead scales

roughly the same way as for SF6. Notice that relativistic effects could be significant in

Xe, see for example Ref. [28], but we neglect them altogether.

For convenience, and because there are no experimental data to compare to for

this system, we have distorted the molecule back to octahedral geometry. The elastic

cross section results are shown in Fig. 4.8. The resonant structures are similar to SF6,

since the two molecules have similar electronic structure and, in this case at least, the

same geometry.

The distortion of the octahedral cage could lead to interesting effects on the

resonances that might be worth exploring in the future. Many highly coordinated

compounds show “cage” effects [39] in their electronic structures and interactions with

continuum electrons. Molecules like C60, which have an internal cavity and therefore a

potential energy barrier in the motion of an electron between the internal and the exter-

nal regions, can trap electrons in this kind of resonance. A detailed study could uncover

interesting properties. In cluster environments, caging effects have been measured for

heavy particles, for example in photoionization of negative ions in a CO2 cluster [146].

Likewise these effects could be pronounced for an electron as well, leading to a sensible

modification of single-molecule shape resonances. Through the trapping of an electron

inside the cage, it might be possible to extend the lifetime of the diffuse anionic states,

while the continuum electron scatters off the cluster cage. These phenomena will be

reserved for future studies using the same approaches adopted here for single molecules.

A spatial map of the wavefunction, calculated as described in Sec. 5.1.3, for the

lowest energy resonance is shown in Fig. 4.9, as a cut through the x − z plane of the
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molecule, which shows clearly the positions of the Xe nucleus at the center and the four

fluorine atoms in the plane around it, with the areas of greater electron density shown

in blue and yellow.

4.4 Photoionization

In photoionization studies, it is possible to detect resonances of the ion that

couple to different initial states by ionizing different electrons in the molecule, something

that cannot be done in scattering experiments. We have studied two molecules in

particular, CO2 and SF6, described in detail below. All the cross sections are multiplied

by the number of degenerate electrons of that symmetry, as described in Sec. 2.3.

Here, as in the previous electron scattering studies, we assume a fixed geometry for the

molecule, namely the equilibrium geometry, and neglect vibrational effects altogether.

This leads to resonances that are sharper than in experimental data, where the effect

of vibrational averaging is important. The cross sections are summed over the different

possible molecular orientations, as shown in Ref. [41]. The purpose of these calculations

is to show their feasibility and predictive power within our approach, detailed analysis

of the spectra and their resonances have been discussed previously in the literature and

will not be examined in depth here.

4.4.1 CO2

We have tested our photoionization approach first for CO2, and our results are

in Fig. 4.10. The ground electronic state of CO2 is 1Σg and therefore when an electron

is extracted, in the single electron approximation, from a molecular orbital, the sym-

metry of the residual molecular ion will be the same as that of the orbital the ionized
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electron occupied in the target molecule. The curves in Fig. 4.10 are labeled accord-

ingly. Comparing with the results of Ref. [119] we see quite good agreement, although

the resonance position is shifted about 0.8eV lower, due to the different description of

exchange in the two models, and also the fact that our calculations include polarization.

It is possible to see that the σu resonance at a kinetic energy of 21.8 eV couples to the

gerade initial orbitals but not to the πu orbital, since the dipole matrix element is zero

in that case by symmetry. A detailed analysis of CO2 photoionization can be found in

Ref. [119].

4.4.2 SF6

In the case of SF6 we have also done both a scattering and photoionization study.

The scattering cross section for e+SF6 is shown in Fig. 4.11 and it compares favorably

with a more sophisticated theoretical model [59] and experimental data [91], both for

the overall magnitude and for the resonance position, which are as usual somewhat

shifted to higher energies with respect to experiment. The photoionization study is, at

the moment, preliminary, but it nevertheless reproduces correctly many of the features

present in experiment and other theoretical studies [207]. Our results are shown in Fig.

4.12. The main differences between our results and Ref. [207] are the sharp high energy

(20 eV kinetic energy of the electron) resonances in the 5t1u and 4t1u channels, which

probably will be smeared out to a larger final width by vibrations. These resonances are

prominently featured in the calculations of Ref. [112] as well, where a model potential

similar to ours is used, suggesting that this is a model-dependent feature. SF6 has 70

electrons and 35 filled molecular orbitals, therefore here we show data for the 7 orbital

groups highest in energy. The ionization energies of these orbitals are reported in Ref.
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[207]. Probably the most evident feature is the low-energy t2g resonance in the ungerade

channels, which reproduces other literature results [207, 112]. A more detailed analysis

of this spectrum can be found in Ref. [207].

4.5 HCO+ Rmatrix-UK calculations

As a first example of results for the electronic degrees of freedom that we can

extract from the R-matrix UK package to use subsequently in DR dynamics calculations,

we have performed a scattering calculation with HCO+ as a target. The results that we

show in Fig. 4.13 represent the quantum defect parameters at positive energy, obtained

near threshold (0.01 eV), as a function of the CH stretching and bending coordinates

respectively. The calculations were performed using a basis set from Ref. [185] and 4

target states: two singlets and two triplets, the lowest in energy.

Around a bending angle of 30 degrees a state crosses the threshold and interferes

with the π states, this is a Rydberg state relative to an excited electronic threshold.

Notice also the Renner-Teller splitting of the two π states, which at this energy is quite

small, as opposed to the large splittings present in the n = 2 Rydberg states shown in

Fig. 3.2. The π states are not exactly degenerate at linear geometry because our orbital

basis for the CI does not include all the orbitals obtained in a HF calculation of the

target. If the CI included all the orbitals, the degeneracy would be exact, as we have

tested, but the configuration space would become very large, and many of those high

energy orbitals are not needed to gain an accurate description of the scattering process

at the low energies we are interested in here. Our quantum defect results compare

favorably with those taken from bound state calculations of Ref. [49] using a Green

function approach and the ones we calculated with MRCI methods, shown in Sec. 6.2.1
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and Ref. [104].

4.5.1 Perturbation results

As a test of the perturbative approach developed in Sec. 2.5.4 we perform calcu-

lations on scattering of an electron from HCO+, at negative energies, to map out the

quantum defect parameters. When the appropriate quantization condition is applied

det[K + tan(πβ)] = 0, (4.5)

with β as in Eq. 3.10, the geometry-dependent quantum defects will determine the

positions of the Rydberg states. HCO+ has an electric dipole moment and also a strong

quadrupole moment, therefore it is necessary to consider these contributions outside the

R-matrix radius to obtain correct observables.

The R-matrix calculations we use to test this approach have been performed

with R0=10a0 and only 1 target state, for the rest they are similar to what described

in the previous section, the geometry of the molecule is taken to be the ground state

equilibrium linear configuration. The highest partial wave included is a g-wave. In Fig.

4.14 a comparison is shown between different methods of dealing with the multipoles:

by perturbation theory as described in Sec. 2.5.4 (blue dots) with integrals going up to

Rf=100a0, by R-matrix propagation [15, 127] (green dots) up to Rf=65a0 and neglecting

them altogether (red dots). The agreement between the simple perturbative approach

and the propagation is very good down to -0.015 a.u. Below this energy, the effect of

strongly closed channels is visible in the abrupt oscillations of the quantum defects,

which are smooth throughout the energy range shown in the figure when the multipoles

are omitted. The energy at which the effect of the closed channels starts to be strong is
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a function of Rf , in general the higher this value the higher the energy at which these

effects are visible. We would like to point out that using the perturbative approach

developed in Ref. [12] the results obtained are very similar, except that strong oscillatory

behaviors result at very negative energies.

In general it is not possible, in a system as complex as the one we have considered,

to obtain quantum defect parameters that are smooth in an energy range that extends

from threshold down to very negative energies with a single method. Both perturbation

and propagation will at some point be affected by the strongly closed channels. Even if

the closed channels are treated as such by channel elimination, Eq. 3.10, they still affect

the remaining quantum defects as sharp avoided crossings at the closed channel energy.

It is probably a better solution, especially in the case of polar molecules, to separate

the very negative energy part of the spectrum and treat it in a different fashion.
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Chapter 5

Results: electron scattering, DNA bases

5.1 Introduction

In recent years, increasing importance has been associated with electron-induced

chemical processes in biological environments, especially in relation to radiation damage

to nucleic acids (DNA and RNA). These processes are initiated by the interaction of

ionizing radiation with living tissue, generating possibly mutagenic and carcinogenic

byproducts. A wide variety of subsequent ionization, excitation and energy transfer

processes can generate possibly mutagenic and carcinogenic byproducts, which can affect

many molecular species in the complex cell environment.

The important work of Sanche and coworkers [24, 111, 159] has shown that dam-

age to nucleic acids from ionizing radiation [140] (single and double strand breaks in

particular) can be generated through a mechanism involving low energy electron at-

tachment to the nucleic acid and subsequent bond breaking due to energy transfer to

a vibrational mode of the temporary anion formed in the electron capture step. The

ionizing radiation produces high energy primary electrons (with energies of the order

of a keV), which in turn, through electron-impact ionization, produce many low energy

secondary electrons. In the electron-impact ionization process, the scattered electron
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loses part of its kinetic energy, while another electron is ejected, with energy much

lower than the first one. It has been shown that the secondary electrons have an energy

distribution concentrated between 0 and 20 eV [34]. A schematic representation of the

radiation damage process is shown in Fig. 5.1.

If the electron energy is higher than the ionization threshold for DNA (between

7.85 and 9.4 eV, as measured for the DNA bases [114]), then the nucleic acid can be

ionized and damage produced through the subsequent rearrangement and dissociation

of the cation [54]. If the electron energy is lower, damage can still be generated through

a negative ion-mediated mechanism, that starts with the capture of the electron in a

molecular resonance, followed by a transfer of energy and electron density into a weak

bond that subsequently ruptures. Beyond this generally accepted framework, there are

many controversial issues, such as the locus of the initial capture site, [24] the evolution

of the anion produced and which bond actually ruptures.[17, 210]

In the past few years many studies have been devoted to understanding the mech-

anisms triggered by the low-energy electrons, including especially their capability to

cause strand breaks [5, 17, 78, 121, 164]. A first general feature on which there is wide

agreement is that the electron capture is mainly due to the DNA and RNA bases. These

molecules have extended aromatic systems, whereby there are numerous low-lying un-

occupied π∗ orbitals into which an electron can be captured. The capture often occurs

into a shape resonance, a temporary anion, in the range of energies between 0 and 15 eV,

where experiments have found signatures of electron-induced damage to nucleic acids.

The simplest of these bases are thymine, cytosine, uracil (pyrimidines, mono-

cyclic) and adenine and guanine (purines, bicyclic and generally larger than pyrim-

idines). Their structures are shown in Fig. 5.2. In this chapter we will present theoret-
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Figure 5.1: Schematics of the DNA damage from low energy electrons: highly energetic
ionizing radiation (in red) impacts a molecule in the cell (water in this case) extracting
keV primary electrons (in blue), which in turn extract low energy secondary electrons
(in black) through electron-impact ionization. These impact DNA and are captured by
the bases (shown in the inset is a uridine nucleotide, it will be replaced by thymidine in
DNA), then an energy transfer through the sugar (in green) breaks a bond and generates
a strand break. The B-DNA structure is taken from Ref. [83].
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ical predictions of cross sections and of even greater relevance, collisional time delays,

for elastic electron scattering from these large molecules. Determination of the loca-

tion, width, and electronic structure of resonances for a single target molecule is an

important step towards understanding and possibly modeling the complex dynamics of

DNA, which consists of multiple components. Specifically, besides the bases, there are

also the sugar backbone, the phosphates, and the solvation water [22], that probably

plays a major role in stabilizing the temporary anions [70, 176]. No previous theoretical

or experimental study of low-energy electron scattering from all of the DNA and RNA

bases is available for comparison (although a study at intermediate energy has been

carried out recently [140]), but our method has proven its reliability in the study of

small molecules [192] and more extended systems like C60, SF6 and XeF6, as we have

shown in Sec. 4.3.2 and 4.4.2.

Much experimental work also has been carried out on dissociative electron attach-

ment from the DNA bases [2, 66, 121], to understand what fragments are generated.

We will discuss the possible connections with measured dissociation branching ratios

that we can infer from the examination of the spatial shape and nodal surfaces of the

resonant wavefunctions.

5.1.1 Elastic cross sections

To our knowledge there are no available experimental data or calculations of low

energy electron scattering from the complete set of DNA bases. A study of electron

attachment has been presented in Ref. [5] and the resonance positions are clearly

marked. Compared to these results, our calculations show resonances shifted typically

by about 2 eV higher in energy, but the energy spacing of the resonances is comparable
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Figure 5.2: Ground state equilibrium structures of the molecules considered in this
section The red atoms are oxygens, the orange circles represent carbons, the blue atoms
are nitrogens while the small circles are hydrogens. From Ref. [194].
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Figure 5.3: Blowup of the resonant wavefunction surface for uracil at 2.4 eV (Fig. 5) near
an oxygen atom. This surface is a cut through the plane containing the nuclei, shown
in the region of the oxygen atom attached to C2. The dots are the actual grid points of
our calculation, while the coarsely spaced grid is a linear interpolation of the resonant
wavefunction (eigenstate of Eq. 5.1) and the finely spaced grid that shows a cusp is the
K-shell orbital of oxygen, here represented to show how our grid is designed around the
nuclei. The colorbar on the right side refers only to the resonant wavefunction, while
the K-shell orbital is colored just to make it more visible. The K-shell orbital is shifted
upward by 0.04 to make it more clearly visible, therefore its base is not a nodal surface.
From Ref. [194].



96

to what is observed in the experiment. Moreover the relative values of the widths of

successive resonances resemble the measured widths. There is also a theoretical study at

intermediate energies [140], and calculations of electron scattering from uracil [60, 70];

in the following we compare these results to ours.

We have already mentioned that the heterocyclic DNA bases have many low-lying

unoccupied orbitals, so it is not surprising that their elastic cross sections for electron

scattering exhibit many shape resonances. These can be viewed as a capture of the

scattering electron into one of these antibonding orbitals to form a short lived negative

ion state [40, 116].

Since all these molecules have, in their equilibrium configuration, only one symme-

try element - reflection through the molecular plane - we will characterize the resonances

as being of σ type (no node in the plane) or π type (when they have instead a node in

the plane) rather than using the A′ and A′′ labels as is customary for the Cs group.

5.1.2 Positions and widths of resonances

A general comparison of partial elastic cross sections for all five of these molecules

is shown in Fig. 5.4, while in the following we give a more detailed description and

compare with information available in the literature. Also, a plot of total time-delays

(see also Sec. 5.1.3 for details) is provided in Fig. 5.5 to show the resonances in more

detail.

Since we are dealing with polar molecules, use of the fixed-nuclei approximation

as it stands makes the partial wave expansion of the forward scattering amplitude di-

vergent. Due to the long-range nature of the dipole interaction, in fact, all partial waves

would contribute to the scattering process, causing an infinite differential cross section
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in the forward direction and therefore infinite integral cross sections. There is a method,

extensively discussed in the literature [32, 61], to deal with this problem by means of

a Born closure formula, which yields a finite integral cross section once molecular ro-

tations are included. We will not pursue this further, since existing experiments are

not likely to deal with such detailed rotational structures. Therefore our cross sections

and time-delays include only up to lmax = 10 and omit all higher partial waves. The

correction would be proportional to the dipole moment and inversely proportional to

the smallest rotational spacing. For the DNA bases the dipole moment is large, while

the rotational spacing is small. Therefore the correction can be quite large especially at

very low energy. The correction would thus tend to mask the resonant structures, which

are the most interesting observables and which have been measured in experiments. All

of the calculated cross sections grow rapidly when the incident electron energy decreases

below 1 eV, which is a signature of the role played by the dipole field in pulling in the

electron and which is very common in electron scattering from polar molecules [5, 69].

A comparison of our resonance patterns with the electron transmission spec-

troscopy (ETS) data of Burrow and coworkers [5, 164] can be found in Figs. 5.6-5.8,

for a comparison of energies, widths and spacing. All of the resonances obtained in our

calculations are listed in Table 5.1.

5.1.2.1 Uracil

In the cross section of uracil we find 3 resonances, at 1.3 eV (of width 0.2 eV),

at 3.5 (0.6 eV wide) and a very broad resonance at 6.3 eV. The resonance at 1.3 eV

is dominated by the l = 3 partial wave (50%) and has contributions from l = 1 (35%)

and l = 2 (11%). at 3.5 eV the main partial wave is d (66%), at 6.3 eV f-wave is the
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Molecule Energy (eV) Width (eV) Partial wave

Uracil 1.3 0.2 3 (50%)
3.5 0.6 2 (66%)
6.3 0.9 3 (64%)

Thymine 1.5 0.3 3 (53%)
3.8 0.6 2 (62%)
6.8 1.0 3 (61%)

Cytosine 1.6 0.3 3 (51%)
4.0 0.7 2 (68%)
8.1 0.8 3 (63%)

Adenine 2.4 0.2 2 (65%)
3.2 0.2 2 (62%)
4.4 0.3 3 (51%)
9.0 0.5 5 (53%)

Guanine 2.4 0.2 2 (46%)
3.8 0.25 2 (44%)
4.8 0.35 4 (38%)
8.9 0.6 5 (33%)
12.0 1.0 4,5 (both 23%)

Table 5.1: Energies, widths and largest partial waves (and percentages) of the resonances
discussed in the text for the DNA and RNA bases. From Ref. [194].
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dominant contribution (64%).

In the work of Gianturco et al. (see Ref. [60]) three π∗ resonances are found at

energies of 2.2, 3.5 and 6.5 eV. The second and third π∗ resonances from that work

fall at lower energies than ours, a somewhat surprising discrepancy since the theoretical

models are very similar.

The contribution of the dipole field at distances larger than 12 Bohr is neglected

in Ref. [60], but we have noticed that this influences only the overall magnitude of the

cross sections (roughly an increase of 20% at very low energy, that is reduced to about

5% around 10eV), the dipole physics only weakly affects the resonance positions and

widths.

Resonances are measured in Ref. [5] to occur at 0.3, 1.5 and 3.8 eV. They are all

assigned as π resonances [164], so our results should be shifted by about 1.1 eV down,

whereas the spacing between the resonances is larger than experiment. The relative

resonance widths are similar to Ref. [164], in that the first resonance is very narrow,

the second broader and the third very broad, a comparison is shown in Fig. 5.6, where

an integration of the experimental data has been performed to show more clearly the

resonance positions and widths.

5.1.2.2 Cytosine

For cytosine we find 3 main resonances, a very sharp one at 1.7 eV (width 0.3 eV),

then at 4.0 eV (width 0.7 eV) and a third at 8.1 eV (width 0.8 eV). The dominant an-

gular momentum character of the resonances is the same as for the three corresponding

resonances of uracil. Comparing the resonance positions with the experimental data of

Ref. [5] we see the same general trend already observed with uracil, namely an overall
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shift higher than experiment of all resonances by about 1.4 eV. Interestingly, the first

two resonances are measured to occur at an energy lower than in uracil, a trend that is

not verified in our calculations. However the third resonance is at a much larger energy

than in uracil and thymine, which also happens in the experiments.

5.1.2.3 Thymine

The scattering cross section for thymine is closely similar to uracil, which is not

surprising in view of their close structural similarities, this applies to both the magni-

tude and the position of the resonances, which are slightly shifted to higher energies.

Specifically, we find resonances at 1.5 eV (width 0.3 eV) at 3.8 eV (width 0.6 eV) and

at 6.8 eV (width 1 eV).

5.1.2.4 Adenine

The electron scattering spectrum for adenine presents many resonances, as ex-

pected due to the complexity of the target structure. Also very interesting is the fact

that the cross section drops sharply at energies below 2 eV, a behavior opposite to that

found for the other molecules, if we do not consider the dipole physics outside the R-

matrix box, whereas a zero-energy peak appears in the full calculation, a possible sign

of a dipole bound state right below threshold.

The first resonance occurs at 2.4 eV (width 0.2 eV), the second at 3.2 eV (sharp,

width 0.2 eV), then another centered at 4.4 eV (0.3 eV wide), while at 9 eV we have a

broader resonance of width 0.5 eV. The dominant partial wave of the first two resonances

is l = 2 (65% and 62% respectively). The third resonance is l = 3 at 51% and l = 4

at 33% The resonance at 9 eV is dominantly l = 5 (53%) with an l = 3 contribution
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(22%).

Compared to experiment we have a shift of all resonances roughly 1.5 eV higher,

as in guanine, in this case the spacings are correct (about 1 eV between the first three

resonances, while the fourth falls too high in energy and it is not measured in experi-

ment). Also the experimental widths of the first three resonances are very similar, as

in our data. A comparison with the data of Ref. [5] is shown in Fig. 5.7.

5.1.2.5 Guanine

For guanine we find 4 resonances: at 2.4 eV (width 0.2 eV), at 3.8 eV (width

0.25eV), a third at 4.8 eV (width 0.35 eV), then at 8.9 eV (width 0.6 eV) and a broad

resonance around 12 eV. Each of the first three resonances has strong contributions

from d, f, and g-waves. At 2.4 eV the contributions are 46% for l = 2 and 37% for l = 3,

for the second resonance l = 2 is 44% while l = 4 is 32%, the third is 38% of l = 4

character and 35% of l = 3. The resonance at 8.9 eV is 33% h-wave, 28% f-wave and

20% g-wave. At 12 eV the composition is: l = 4 and l = 5 equally at 23%, while l = 6

contributes a further 13%.

Comparison to experimental data (see Fig. 5.8) shows again a shift of 1.5 eV

overall, while the resonance spacing is well reproduced, and the second and third reso-

nances fall at higher energies with respect to adenine, as in our calculations. Also the

widths seem close to experiment.

5.1.3 Resonance molecular structures

From the shapes and nodal structures of the resonant states it is possible to

attempt a discussion of the dissociation patterns observed experimentally, if we consider
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the resonant states as being precursors for dissociative states. Caution must be used,

though, in drawing conclusions from this analysis, because this involves a certain degree

of speculation. In fact, to establish once and for all the dissociation patterns of these

complicated systems, scattering calculations at many different geometries would have

to be carried out, and the nuclear dynamics should be included, At present this is

computationally too expensive to contemplate. The first two resonances observed for

uracil are shown in Fig. 5.9. The quantity plotted is a projection on the molecular plane

of the eigenvector corresponding to the maximum eigenvalue of the time-delay matrix

[74]

Q = iS
dS†
dE

, (5.1)

where S is the scattering matrix. At the energy where the time delay of the resonance

is a maximum, this eigenvector constitutes the dominant contribution to the resonant

structure, since it corresponds to the partial wave that experiences the maximum time

delay in the scattering process. For sufficiently narrow resonances one eigenvalue is

always dominant, making the resonance analysis much easier. The eigenvectors of the

time-delay matrix are complex, so we adopt a phase factor such that the highest peak of

the wavefunction is a purely real number. We then find that the resonance wavefunction

is real everywhere, to a good approximation (the imaginary part is about 10−6 smaller

than the value of the real part), and we plot only the real part. We analyze in detail

only the cases of uracil and adenine, the other pyrimidines being very similar to the

former and guanine to the latter.

The nodal patterns for uracil are very similar to the ones showed in Ref. [60],

which is not surprising since the approximations made in that work are similar to ours,
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as already discussed, therefore we show only the first two resonances. Incidentally, we

notice the close resemblance of these resonant wavefunctions to the first virtual orbitals

of uracil from a HF calculation performed with a small basis set (6-31G*), see for

example Fig. 5.10. In Ref. [60] also a very low σ∗ resonance is found at 0.012 eV. Our

cross section grows substantially at low energy. If we plot the eigenstate corresponding

to the largest eigenvalue of the time-delay matrix (as described in Sec. 5.1.3), as in Fig.

5.9, corresponding to this low energy range, it looks similar to Fig. 5 in Ref. [60], with

the main differences being that in our wavefunction the N3-H bond has a node, there

is a large excess charge on N3 and on the oxygen attached to C4, while another nodal

surface cuts diagonally from C2 to C5. This state anyway does not appear to be so

relevant in the experimental data [164], where mainly the π∗ resonances are detected.

We can also see that there is accumulation of electronic density (the peaks of

the wavefunction) on the ring structure, and that many of the ring bonds have nodal

surfaces cutting through them, so capture in these resonant states can be reasonably

thought as leading to a fragmentation of the molecule in which the aromatic ring is bro-

ken. Experimental dissociation patterns are illustrated for Br-uracil in Ref. [2], where

evidence for breaking of the ring structure lies in the peaks at 1.6 and 3.5 eV produced

by (OCN)− and other fragments. These fragments can be generated by capture into

shape resonances, appearing in our calculations at 1.3, 3.5 and 6.3 eV respectively. In

particular there is a nodal surface in the 3.5 eV resonance that encloses the C4-N3 bond,

which could generate a CN− fragment.

Since our calculations do not take into account core-excited states or vibrations,

our results do not include any Feshbach resonant structures. These appear to cause at

least some of the patterns observed in experiment, as in the case of uracil, [164] and they
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will presumably constitute the dominant trapping pathways for energies higher than 7

eV, where the number of electronic Feshbach resonances starts to become very large, as

shown in Fig. 5.13.

In the case of uracil, we looked carefully for a σ∗ resonance that might be similar

to the state shown in Fig. 3 of Ref. [164] around 3 eV at equilibrium geometry,

a dissociative state most likely responsible for N1-H bond cleavage. The Ref. [164]

calculation was performed by scaling Hartree-Fock continuum orbital energies, so no

information about the width was provided. Such a state, taking into account an expected

shift of 1-2 eV upward in our calculations, should have appeared at around 5-6 eV, and it

was not found. This is probably due to the fact that this resonance is extremely broad,

since it is also not seen even in experiment [164]. Moreover in calculations carried

out using complex absorbing potentials, in connection with Green’s function methods

[160, 51], for similar systems (like benzene [50]), analogous σ resonances were extremely

hard to detect. They became narrower (around 1eV width at equilibrium) only when

the relevant hydrogen was substituted with a heavy atom like chlorine; this was also

demonstrated experimentally in the case of Cl-uracil in Ref. [164].

For adenine there is less experimental information available to compare. In Ref.

[66] it is stated that the dominant breakup channel for low energy (0-4eV) electron

attachment leads to hydrogen atom loss, and very prominent resonant structures are

present in the range 1 to 3 eV. Looking at the resonance wavefunction maps in Fig.

5.11-5.12 we can see that there is no significant buildup of electronic density on any of

the hydrogens, consistently with the fact that the negative charge stays on the molecular

frame, and therefore there is no H− formation.

The first few unoccupied molecular orbitals that can be obtained from a Hartree-
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Figure 5.10: Uracil: structure of the virtual orbital associated to the resonance at 1.3
eV. The energy of this virtual orbital is 3.42 eV when using a 6-31G** basis set. The
orientation of the molecule is the same as in the previous plots. The black and white
lobes correspond to opposite signs. It is possible to notice the node in the molecular
plane that makes this a π∗ orbital. From Ref. [194].
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Fock calculation for adenine, as in the case of uracil, are extremely similar in their nodal

structures to our resonant wavefunctions, so these shape resonances can be viewed quite

reasonably as the trapping of the scattered electron in a virtual orbital.

Most of the C-C and C-N bonds have nodal surfaces passing through them, This

might suggest that other channels that involve the breakup of C-C and C-N bonds could

also be available at these energies, although probably they are less important than the

hydrogen loss products.

5.1.4 Uracil - Rmatrix UK

We have studied uracil in particular with the more accurate R-matrix UK code,

described in Sec. 2.4.2. The aim of this study was to determine potential energy curves

as a function of the N1H bond stretching coordinate, since in a study by Burrow et al.

[164] it has been suggested that this coordinate can lead to dissociation of the hydrogen

in a simple one-dimensional picture, without the need to consider couplings with out-

of-plane motion or other normal modes.

We first have performed a simple calculation for the equilibrium geometry, shown

in Fig. 5.13 using the 4 lowest states of the target (two singlets and two triplets) in

the close coupling expansion and a 6-31G** basis set. The CI used here is forcibly very

limited, with only 8 electrons allowed to move, therefore we know that the dissociation

limit will not be well described. The polarization that we allow for the target is also

somewhat limited, therefore these results will be relatively similar to static exchange

calculations. The results we obtain for the resonance positions are similar to our previous

static exchange plus polarization calculations, see also the discussion in Sec. 5.3. In

this case we can separate the different symmetry contributions in A′ (symmetric with
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respect to the molecular plane) and A′′ (antisymmetric), therefore it is possible to show

easily how the resonant structures are all in the A′′ (or π) channel. It is also possible to

evince from the data that the first three π∗ resonances are shape resonances, while the

others are Feshbach type resonances. According to the results of a simple Hartree-Fock

calculation, in Ref. [164] it was stated that a dissociative σ∗ resonant curve should

be present at low energy. Performing scattering calculations we found no indication

of this resonance, which means that its width is extremely broad (>1eV), as stated

previously. The results as a function of the N1H stretch, shown in Fig. 5.14, are similar

to the curves in Ref. [164], in that the π∗ resonances are parallel to the neutral ground

state. The position of the σ∗ resonance, though, cannot be determined. A resonant

state becomes bound roughly at the same position predicted by the HF calculations,

and this is probably the σ∗ state predicted in Ref. [164]. The behavior of the bound

part of this curve is incorrect, and a larger configuration space (we used roughly 10000

configurations in the scattering calculation) will be needed to get a quantitative result

for these potential curves. Qualitatively though, our results confirm the predictions of

Ref. [164], with the exception that a direct capture in the resonant state is not possible,

so the dissociation has to happen either through a coupling with the dipole bound

state (of the same symmetry) through vibrational Feshbach resonances, or through an

out-of-plane motion that couples it to the π∗ resonances.

5.2 DNA backbone

In this section (see also Ref. [195]), we analyze the behavior of the other subunits

in the macromolecule, with the aim of investigating the electron interaction with the

moieties that constitute the sugar-phosphate backbone, and verify whether they could
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play a role in the electron capture stage of the radiation damage process. In any case, it

has been shown [153] that low energy electrons can damage the DNA sugar, deoxyribose

(2-deoxy-D-ribose), and this interaction could be important in the cell environment. To

model the sugar, we use tetrahydrofuran (THF, whose formula is C4H8O), which is

similar to deoxyribose, except that the latter has -OH groups attached to the C1 and

C3 and a CH2OH side chain attached to the C4 (the latter two substituents are linked

to a phosphate group in the DNA molecule, while the former is linked to a base), they

are substituted here by hydrogens. We use THF instead of deoxyribose because in DNA

the OH groups are fundamentally modified by the phosphate and base that are attached

to it (in fact the one attached to the C1 disappears altogether), so we think that the

solution would be either to consider a whole nucleotide or use THF, which mimics

only the ring structure and is less affected by the rest. Another reason for this choice

is that a recent study on dissociative electron attachment (DEA) from all the DNA

components [6] has measured the average gas-phase DEA cross section from the bases

as being very similar to the cross section per base for supercoiled DNA measured in Ref.

[25]. This implies that the DEA cross sections for the sugar and phosphate groups are

much smaller than those of the bases, which is what happens in the case of THF, but

not for a hydroxy-substituted THF, where the DEA cross section is larger than for the

bases. This suggests that THF could be a better molecule to model the sugar moiety in

DNA. The structures of these compounds are represented schematically in Fig. 5.15. In

practice, the DNA backbone can be thought of approximately as constituted by THF

molecules to which the bases are attached, linked together by phosphate groups.

For the phosphate there are no previous results available for comparison, but

for THF recently there have been both new experimental [131, 209] and theoretical [23]
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results, with which we will compare our calculations. We will also attempt a comparison

of the resonant wavefunctions to virtual orbitals from a Hartree-Fock calculation, in

order to gain some more insights into the capture process and its possible consequences

on the anion evolution. The conclusions suggested by this analysis lead us to draw a

possible link between our calculations and experimental data on dissociative electron

attachment.

5.3 Results: THF

In Fig. 5.16 our results are compared to the low-resolution experimental data

of Zecca et al. [209] and the theoretical results of Bouchiha et al., [23] obtained like

ours without performing a Born closure to consider the effect of the dipole field on the

higher partial waves. We also plot the data in the form of a time-delay, [194] to make

the resonance position and width more evident. The total time-delay is the sum of the

eigenvalues of the hermitian matrix Q of Eq. 5.1. In Fig. 5.16 we also plot the resonant

channels, particular eigenvalues of the time-delay matrix that are larger than the others

and show a Lorentzian behavior that sets them apart from the rest. We rescaled the

total time-delay by dividing it by a factor, to show more easily everything in the same

graph.

The order of magnitude of our cross section is not different from the results of Ref.

[23], also calculated without Born closure. Since our calculations do not include excited

states of the target, we will not be able to detect core-excited resonances (these were

included in the calculations of Ref. [23]). The experimental total cross section contains

also rotational and vibrational excitations and electronically inelastic channels, therefore

it is to be expected to be larger than the elastic cross section. Our calculated elastic cross
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Figure 5.15: Top: Three dimensional structures of phosphoric acid and tetrahydrofuran.
The small circles are hydrogen atoms. Bottom: Schematic structures of cyclopentane
(1), THF (2), and the DNA sugar deoxyribose (3), that show the similarities between
these compounds. The hydrogen atoms that fill the carbon valences are not shown.
From Ref. [195].
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sections lie instead above the experimental total cross sections of Ref. [209], and this is

partly due to the approximate nature of our model. The comparison with experiment is

difficult due to the effect of higher partial waves (with l > 10). The Born correction has

been calculated in Ref. [23], and the cross section becomes higher than experiment, so

we would expect a similar effect for our data. Due to the low resolution, the experimental

results below 5 eV are (in the words of the authors) to be considered only indicative.

The resonant structure that appears around 8.6 eV in our results looks similar to the

analogous experimental feature, also taking into account that our model usually predicts

resonances about 1-2 eV higher than their experimental position, as verified for the DNA

bases [194] and also for molecules like carbon dioxide, benzene and SF6 [193], because

of the approximations adopted. This is due mostly to the adoption of a local exchange

model, since for example, in a system like CO2 [63, 102] this approximation causes a

resonance shift of around 2 eV or so for model static-exchange, compared to all-electron

static-exchange calculations, that is not possible to compensate with the polarization-

correlation potential, which indeed shifts the resonance by a similar amount for this

molecule (2.7 eV compared to 2 eV) with respect to correct polarization. Also the

model polarization is approximate, but the model exchange constitutes the largest error

in our calculations. Indeed, if we perform a purely static-exchange calculation (see Fig.

5.16) the position of the resonance (maximum of the time-delay) is at 11.2eV, 2.6 eV

higher than the result including polarization, and it is composed of three overlapping

resonances. For what we said above about the shifts generated by the model potential

with respect to exact exchange, this resonance should be around 9 eV in an all-electron

calculation; hence it should probably have been visible in the calculations of Ref. [23]

that go up to 10 eV in energy. When polarization-correlation is added, this resonance
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energy should fall below 10eV, and thus be clearly visible in the data of Ref. [23].

From the fact that our resonances are shifted too high in energy one might have

thought that the widths would turn out to be larger than the experimental ones. We

have verified in the past for many systems [193, 194] that our calculated widths are

comparable to their correct values.

In fact no resonance was found in this energy range (0-10 eV) in the other pub-

lished theoretical study [23]. Through a Lorentzian fit, we predict a width of about 2.3

eV for this resonance. At the static-exchange level, the resonance has a larger width,

of about 3.0 eV. A higher energy resonance is found at 14.1 eV and it is even broader

(about 2.5 eV). The partial wave contributions are mainly l = 4 (with a contribution of

70%) for the lower energy resonance, while for the higher energy resonance the largest

are l = 5 (50%) and l = 3 (30%, as can be seen in Tab. 5.1). The partial wave de-

composition will depend somewhat on the choice of the expansion center. We always

perform the decomposition around the center of mass of the molecule, which seems a

reasonable choice. The exception is the calculation of HeH+ quantum defects in Sec.

4.3.1, where the center of charge was instead used.

To better understand the reason for the difference between our results and the

ones in Ref. [23] and to make sure that our results are consistent with other known

results, we have first of all performed a time-delay analysis [74, 174] of our scattering

data, shown on the bottom of Fig. 5.16. This has allowed us to establish the presence

of three superimposed resonances, two of which peak at 8.1 eV (with one significantly

more intense than the other) while the third peaks around 9eV, and its intensity falls

between the other two. Due to the large width of these resonances, the weakest of the

channels in Fig. 5.16 has a time-delay eigenvalue which is not much larger than the
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nonresonant eigenvalues.

An existing calculation for cyclopropane [37] (C3H6) shows that this cycloalkane

has a cross section with a similar resonant structure at 6 eV. It is superimposed on a

broader resonance at higher energy and other nonresonant contributions that give a very

wide plateau, although in this case the first feature is not a composite resonance. The

symmetry of the cyclopropane resonance in Ref. [37] is even with respect to the plane

of the three carbon atoms, and the same occurs in THF, in the sense that although this

compound is not planar, our resonance structures do not change sign above and below

the ring bonds. It is plausible then that due to its larger frame and density of virtual

orbitals, THF is able of supporting more quasi-degenerate resonant states at a similar

energy.

Since there are no other existing experimental data on THF, we have performed

calculations for cyclopentane (C5H10), which is very similar to THF except that here

the oxygen atom is substituted with a -CH2- group. For this molecule, experimental

data [92] show a broad shape resonance at 8eV. The similarity of the two molecules

suggests that many features of the cross section will be analogous. The results are

compared to THF in Fig. 5.17. The cross section closely resembles that of THF, with a

triple resonance superimposed on a broad higher energy resonance centered around 14

eV, which produces a wide plateau. The electron scattering cross sections for alkanes

and cycloalkanes of different sizes have very similar behaviors, [92, 178] namely the

same resonant structures and a magnitude dependent on the number of carbon atoms.

Our evidence thus suggests that THF, being very similar to a cycloalkane, shares these

common features, as suggested also in Ref. [209]. Also the cross section for cyclopentane

is, in our calculations, larger than in THF, a trend that seems to be confirmed by the
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experimental data [178, 209]. The cyclopentane cross section peak is roughly 48 Å2

which is close to the experimental value [92] for the total cross section. Recent theoretical

calculations [196], performed on a THF molecule distorted to achieve a planar geometry

for the furanose ring, show results similar to ours, with a double shape resonance in a

similar energy range.

As in Ref. [194] we attempt to correlate the spatial shape of the resonant wave-

function with the Hartree-Fock virtual orbitals obtained with a small (6-31G**) basis

set. In this case the analysis is complicated by the fact that the molecules are not planar,

so a projection on a two-dimensional surface would not pass through all the nuclei and,

since the resonance is wide, different contributions mix and overlap. However, we have

established that the resonant wavefunction at its peak resembles closely a virtual orbital

with energy of 7 eV (orbital 23). At higher energy (around 9.5 eV, when the second

resonant contribution becomes dominant), the resonance spatial structure appears sim-

ilar to an orbital of 11 eV of energy (orbital 31). We show this in Fig. 5.18. Since there

is a great degree of resonance overlap, the relationship of the resonant wavefunctions

to the virtual orbitals we show becomes even clearer when observing the other virtual

orbitals, because they are actually very different from our wavefunctions.

Recently, dissociative electron attachment (DEA) cross sections have been mea-

sured [6] for all the DNA subunits. These cross sections display two prominent reso-

nances at 6 and 8 eV, of width around 1 eV each for THF, which could correlate with

the calculated shape resonance, although clearly much complicated vibrational dynam-

ics happens between electron capture and dissociation that we do not take into account

here, and in the results of Ref. [23] there are electronically inelastic resonances in this

energy region which could lead to similar outcomes in DEA.
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Figure 5.18: (Left: Time delay eigenfunctions for THF on resonance at 8eV (top, where
the widely-spaced dotted curve (labeled “2”) in Fig. 5.16 is dominant) and 9.5eV
(bottom, where instead the dashed curve (labeled “1”) in Fig. 5.16 dominates). A slice
of the three dimensional eigenfunctions is shown, on the plane that contains OC1C4,
while C3 is above the plane and C2 below. The red and yellow contours identify positive
areas, while the blue are negative areas of the real part of the wavefunction. Right:
virtual orbitals for energies around 7 (top) and 11 eV (bottom) from HF at the 6-31G**
level. The full lines identify positive areas and the broken lines negative areas. The
correspondence between the two top plots with each other and between two bottom
plots is very pronounced, allowing us to identify the two main contributions to the
resonance. Although the molecule is not planar this projection is much easier to read
than the three dimensional structures. From Ref. [195].
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Several electron-energy-loss (EEL) studies of THF [26, 108] and cyclopentane [7]

have been performed, and some attempts have been made at assigning the resonances,

also in relation to the position of the excited states from absorption spectroscopy. In Ref.

[26] a gas-phase EEL peak for THF at 6.6 eV is assigned as a core-excited resonance with

a parent ion of Rydberg character, centered on the oxygen atom. A similar experimental

peak in cyclopentane in Ref. [7] is assigned as a shape resonance, on the basis of

a molecular orbital argument, with the electron wavefunction distributed around the

whole ring. Our calculations seem to agree with this second assignment, for two reasons:

first, the resonance is very similar in character in THF and cyclopentane (see Fig. 5.17),

and therefore it seems implausible that it derives from excitations on the oxygen; second,

the resonant wavefunctions in Fig. 5.18 are found to be delocalized over the entire ring

as had been speculated in Ref. [7] for cyclopentane. At higher energies core-excited

contributions are most likely predominant, as was suggested in Ref. [108].

It is difficult to attempt a prediction of what the evolution of the resonances

found in elastic scattering could be, when the nuclear dynamics is included. At present

this incorporation of nuclear motion would be computationally prohibitive, but a first

analysis can be attempted by inspecting our calculated results. From the spatial struc-

tures of the resonant wavefunctions it seems likely that the resonances could initiate a

break-up of the ring, because of the presence of many nodal surfaces cutting through

the ring bonds. For example, the experimental DEA cross sections for deoxyribose in

Ref. [153] exhibit a peak at around 6 eV for production of the anion C3H5O
−
3 , which

could be generated by a resonant structure that shows a node cutting through the ring

from C3 to C1, similar to the top left plot in Fig. 5.18, given that deoxyribose has

side groups attached to C4 and C3 that could lead to production of the aforementioned
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Molecule Energy (eV) Width (eV) Partial wave

THF 8.6 2.3 4 (70%)
14.1 2.5 5 (50%)

H3PO4 7.7 2.0 4 (42%)
12.5 1.5 4 (41%)

Table 5.2: Energies, widths and largest partial waves of the resonances discussed in the
text for the DNA backbone components. From Ref. [195].

anion.

5.4 Results: H3PO4

In the case of phosphoric acid there are no available theoretical or experimental

data to compare with, and consequently our analysis of the results will be somewhat

more limited. The cross sections show two prominent resonances, one at 7.7 eV and

the other at 12.5 eV, with respective widths 2.0 eV and 1.5 eV. The main partial wave

contributions are l = 4 and l = 3 at 40% and 30% respectively for both resonances,

as stated in Tab. 5.2. At low energies there is a sharp rise in cross section due to

the dipole moment. Cross section and total time delay are illustrated in Fig. 5.19.

It is difficult to say why the second resonance is narrower than the first, since this is

somewhat counterintuitive. We will limit ourselves to pointing out that in a complicated

polyatomic molecule, shape resonance widths depend not only on the total energy, but

also the size of the probability density near the escape regions in the multidimensional

potential. It is possible, therefore, that a higher-energy resonance could be narrower

than one at lower energy. Resonances broader at lower energy than the higher energy

ones can be seen, for example, in C60 fullerene [117, 206].

In Ref. [6] the DEA cross section has been measured for trimethylphosphate

(PO4(CH3)3), and it displays a very wide and prominent resonant structure at 7.5 eV,
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to which our 7.7 eV resonance could correlate. No branching ratio has been measured for

this compound. The structure of phosphoric acid presents three identical -OH groups

and therefore the resonances will show structures with a similar probability for the

scattering electron to end up in each of these groups, making for complicated spatial

profiles, which in the end have not proven to be very illuminating. For these reasons we

will not attempt here an analysis of the spatial structure of the resonances.

As in THF, the shape resonances are quite broad, so the anions will be relatively

short lived, and probably they will autoionize back (possibly with vibrational excitation)

before having the possibility to trigger a breakup or energy transfer to another DNA

subunit. However, the presence of water, a structural component in biological DNA,

can act to stabilize the anions, and probably will significantly influence the lifetimes

of these resonances in the cell nucleus since the backbone is in closer contact with the

surrounding environment, compared to the bases that lie inside the double helix.

5.5 Outlook

The next aspect of the DNA radiation problem we want to explore is the coherent

interaction of DNA subunits and their effect on the electron scattering/capture process.

This can be accomplished in a multiple scattering framework (see e.g. Refs. [29, 41])

using the scattering data we gathered for the single components of the macromolecule,

and it is currently under way in collaboration with Profs. L. Sanche and L. Caron at

the University of Sherbrooke.
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Figure 5.19: e-H3PO4 partial cross section (top) and time-delay analysis (bottom).
Calculations again involve partial waves up to l=10 and the dipole physics outside the
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Chapter 6

Results: dissociative recombination

6.1 Introduction

In dissociative recombination, we have studied extensively the HCO+ molecule,

which is interesting for many reasons. In particular, it is an important astrochemical

species, the ion is linear and therefore the neutral exhibits Renner-Teller coupling, it

possesses conical intersections, the reaction mechanism is controversial and previous

theoretical calculations of the rate coefficient are orders of magnitude lower than the

experimental values. We illustrate these points more extensively below.

The HCO+ molecular ion is one of the key ions in the chemistry of interstellar

clouds. The major destruction channel of this ion is believed to be dissociative recombi-

nation (DR) by low-energy electrons. Therefore it is crucial to study electron collisions

with HCO+ ions. Numerous experimental studies have been carried out on this reac-

tion using different techniques, such as stationary afterglows [110], flowing afterglows

[3, 4, 106], a merged beam study [144] and, very recently, a storage ring experiment [56].

The thermal rate coefficient at 300 K is found in several studies to be about 2.0·10−7

cm3s−1 [106]. Its temperature dependence is stronger than the T−0.5 dependence usually

found when DR is driven by the direct mechanism where an excited neutral diabatic
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state is crossing the ionic ground state close to its minimum. Therefore it has been

proposed that there is no direct mechanism for DR of HCO+ and instead the process

is driven by electron capture into ro-vibrationally excited Rydberg states [110]. The

temperature dependence of the DR rate has been measured in Ref. [144] as T−1.2,

which should be viewed as schematic, since it is not consistent with the known analyt-

ical threshold behavior. The DR cross section has been measured in the two ion-beam

experiments [56, 144]. The cross section measured by Le Padellec et al. [144] is up to

an order of magnitude smaller than that measured by Geppert et al. [56]. Absorption

measurements [4], and recently the storage ring experiment [56], have shown a complete

dominance of dissociation into H+CO. It has been long known that the CH+O channel

is endothermic by 0.17 eV and could have an energy barrier, while the OH product is not

observed (see Ref. [144] and references therein). Recently, branching ratios have been

measured [57] for the DCO+ dissociative recombination, confirming that the D+CO

channel is by far the dominant one, with a ratio of 0.88.

Relevant in this context is also the series of experimental publications on autoion-

ization of HCO Rydberg states carried out by Grant et al. [122, 123, 124, 157, 211],

with which we will compare some of our results.

The DR mechanism of HCO+ is controversial. Even though the temperature

dependence of the DR rate suggests an indirect mechanism, the two existing theoretical

studies predict different pathways. Kraemer and Hazi [99, 100] carried out complete

active space SCF (CASSCF) calculations at linear geometry on the ground state of

HCO+ and some of the excited states of HCO relevant for DR. No indications were found

of a neutral state crossing the ionic ground state near the minimum. However, in the

studies by Talbi et al. [184] carried out at linear geometry, a direct mechanism for DR of
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HCO+ was proposed on the basis of multi-reference configuration interaction (MRCI)

calculations with localized orbitals. Using a diabatization procedure, the adiabatic

potential curves generated a repulsive neutral state crossing the ionic ground state

near the minimum. This diabatization procedure seems questionable, as discussed for

example in Ref. [18] where instead a multi-step mechanism has been proposed, in which

the electron capture and dissociation proceed through a series of ∆v = 1 transitions

between Rydberg states of HCO.

One of the main goals of this study is to establish the reaction mechanism. To

do this, accurate quantum chemistry calculations of both valence and Rydberg states

of HCO have been performed. The Renner-Teller effect is strong in the ground (X̃ 2A′)

and first excited (Ã 2A′′) states of HCO [67], so we need to assess its importance for

the electron capture and predissociation in DR, as the similar Jahn-Teller effect was

found to be crucial in DR of H+
3 [94, 95]. Also this system shows a conical intersection

[185], which in many molecules can provide a fast route towards the reaction products.

Its influence on the dissociative recombination process needs to be understood as well.

Conical intersections are understood now to be frequently occurring [208] rather than

exceptions.

6.2 Model 1: no Renner-Teller couplings

This section illustrates the results obtained for this reaction using Model 1 as

described in Sec. 3.2-3.4. The description of the ab initio results for the electronic

potential energy surfaces is identical for the two models.
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6.2.1 Ab initio surfaces

To calculate the potential energy surfaces of HCO+ and HCO we used the MOL-

PRO program package [203]. In order to calculate all the Rydberg states desired, a basis

set with enough diffuse basis functions is necessary. We started with the aug-cc-VPTZ

basis set [44] to which we added diffuse s-, p- and d- functions manually. For each

new diffuse function, the exponent was decreased by a factor of 2.5 for the s- and p-

functions, and by a factor of 3.0 for the d- functions. From Koopmans’ theorem [181]

we know that the virtual molecular orbitals of the HCO+ ion with negative energies

will approximately describe the Rydberg orbitals of the neutral HCO molecule. We

therefore added diffuse functions to the basis set until the desired Rydberg states were

converged. In the final calculation, we added up to 9s functions, 9p functions and 5d

functions. From the orbital energies, we concluded that up to 12 Rydberg states of A′

symmetry and 6 Rydberg states of A′′ symmetry were converged. Then we calculated

the potential energy surface of the ion, the 8 lowest states of A′ symmetry and the 4

lowest states of A′′ symmetry by starting with a HF calculation of the ion followed by

a MRCI calculation. The advantage of starting with a HF calculation of the ion even

when the neutral is studied, is that then we know, according to Koopmans’ theorem,

that the MOs will be suitable for describing the Rydberg states. The calculation may

not be ideal for the valence states. The CI wavefunction is represented in a space of 4000

internal configurations and more than 1.2 million external configurations consisting of

single and double excitations of the reference wavefunctions. We used the same active

space for the calculations of the ion and neutral and therefore we believe that the rela-

tive energy between the charged and neutral states will be correct and the calculations
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will be balanced. We need to calculate the potential energy surfaces as functions of all

three internal coordinates (rCH , rCO and θ, the bending angle) and this would be very

time-consuming using the MRCI method. We therefore once again employed Koop-

mans’ theorem and approximated the energies of the Rydberg states using the ionic

energy calculated with the MRCI method plus the orbital energy of the corresponding

Rydberg state.

Since the orbital energies are negative, the Rydberg potential energy surfaces will

fall at a lower energy than the ion potential. In this approach we neglect the correlation

between the Rydberg electron and the ion core. The correlations among the electrons

sitting on the ion are included since we use the correlated MRCI potential for the ion.

Comparing the potential energy surfaces calculated using the MRCI method against

those obtained from Koopmans’ theorem, the MRCI results were lower in energy because

they incorporate more electron correlation. Fig. 6.1 shows the calculated potential

energy surfaces of HCO+ and HCO at linear (θ=180 degrees) and bent (θ=150 degrees)

geometries and rCO = 2.0877 a0. The squares are the energies calculated with the MRCI

method and the lines are from the approximation using Koopmans’ theorem.

The ion is the curve with black squares. The filled squares (solid lines) are states

of A′ symmetry, while open squares (dotted lines) are states of A′′ symmetry. Notice

that there is no curve-crossing of a repulsive neutral state with the ionic ground state

close to its minimum. The first excited neutral repulsive state crosses the ionic ground

state roughly 2 eV above threshold, at an rCH distance of roughly 4 a0, well outside the

region important for DR at the low energies that are of interest here, therefore we have

neglected it in the following. The repulsive state is of Σ symmetry at linear geometry

and lies below the ionic curve at all rCH distances. We therefore conclude that DR of
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HCO+ is driven by an indirect mechanism whose initial step is electron capture into the

Rydberg states. The effective quantum numbers are then calculated from the Rydberg

formula, Eq. 2.35.

The agreement between the quantum defects calculated using the neutral MRCI

potentials and Koopmans’ theorem is remarkably good. We see that the states show

Rydberg character (the effective quantum numbers in one series differ by 1) at least at

small CH distances. Notice that some effective quantum numbers are close to 3.0. These

are assumed to be d-states with almost zero quantum defects. The effective quantum

numbers for linear and bent geometries are also shown in Fig. 6.1.

The next step was to fit the ion potential. The rCH and rCO dependencies were

fit to Morse functions, and linear functions were used to fit the rCH dependence of the

Morse potential parameters. The ion-potential was fitted between 1.0 a0 ≤ rCH ≤ 10.0

a0, 90 degrees ≤ θ ≤ 180 degrees and for five rCO distances (1.7877, 1.9, 2.0877, 2.3877

and 2.55 a0). Then the quantum defects were fit to a model in which the σ levels have

off-diagonal couplings, while the π part of the matrix is diagonal ( Sec. 3.2). For the

diagonal elements a fourth-order Taylor expansion was used, whereas the couplings were

assumed to have a Gaussian form.

6.2.2 Vibrational dynamics

To calculate the vibrational frequencies of the HCO+ ion, we have used the po-

tential energy surface calculated by Palmieri et al. [154], since this was better suited to

describe the ground state of the ion than the one we calculated. This is because our

ab initio calculations are optimized for the Rydberg states energies, not just for the

ground state surface. The difference between the two calculations is not very large, as
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Figure 6.1: Potential energy curves (bottom) and quantum defects (top) for HCO. The
dots are MRCI calculations, while the lines are calculated using Koopmans’ theorem
for the Rydberg states. The black line in the potential plots is the ground state of the
ion. The solid lines and filled dots represent A’ states, whereas the dashed lines and
empty dots are A” states. The left side of the figure has been calculated at a fixed angle
θ = 180 degrees (equilibrium value for the ion), while the right side has θ = 150 degrees.
In both cases rCO is fixed at its equilibrium value of 2.0877 a0
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Table 6.1: Comparison of vibrational frequencies (in cm−1) for vibrational transitions in
HCO+, calculated using the Palmieri ionic potential surface [154]. The second column
reports values from Ref. [154], while the third is an adiabatic calculation and the fourth
is a full three-dimensional diagonalization. The last column shows the frequencies ob-
tained in an adiabatic framework using the potential we calculated, which we have used
only for the Rydberg states in this work and not to obtain ionic vibrational frequencies,
since the Palmieri potential was better suited for this purpose.

(νCH , νθ, νCO) νPalmieri νAdiabatic ν3D νAdiab. Larson potential

020 1641 1630 1629 1739
001 2182 2195 2189 2299
100 3090 2930 3082 3150
040 3256 3188 3238 3460
021 3822 4087 3815 4044
002 4345 4514 4363 4678
120 4679 4658

is shown in Tab. 6.1 where also a comparison between the adiabatic model and full

three-dimensional calculations is shown. Since the coordinates mimic quite closely the

normal modes of the molecules, the nonadiabatic couplings are limited and the adiabatic

frequencies are largely correct for the lowest vibrational states.

As was mentioned in Ch. 3 we use Jacobi coordinates for the vibrational dynam-

ics, and we only consider one fragmentation channel, due to the H+CO channel being

largely dominant, as stated in Sec. 6.1.

6.2.3 Autoionization widths

To test the wave functions and quantum defects used in the present study we

compare calculated autoionization widths with the measurements of Grant et al. [122,

123, 124, 157, 211] using high resolution double-resonance spectroscopy, as a function of

the vibrational normal modes CO stretching and bending [123]. The vibrational wave

functions for the C-H stretch have either zero boundary conditions on the left (box
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Table 6.2: Calculated energies and widths of the autoionizing HCO resonances. Here n
is the approximate principal quantum number and (νCH , νθ, νCO) is the ionic vibrational
mode of the resonance. Γbox is the width calculated using box-states, while ΓSiegert is
calculated using Siegert states. The widths measured by Grant et al. [123] are displayed
as Γexp. From Ref. [104].

Energy (H) n (νCH , νθ, νCO) Γbox (cm−1) ΓSiegert (cm−1) Γexp (cm−1)

8.65·10−5 6 (1,0,0) 1 3 -
3.13·10−3 7 (1,0,0) 3 6 -
2.12·10−4 7 (0,0,1) 0.08 2 10
2.30·10−3 8 (0,0,1) 0.026 1 8
6.50·10−3 12 (1,0,0) 0.018 0.7 2.5
2.30·10−4 12 (0,1,0) 0.013 0.6 1.5
7.53·10−4 13 (0,1,0) 0.012 0.45 1.25

states, which describe only autoionization processes) or Siegert boundary conditions

(the Siegert states described above, which allow for escaping flux due to predissociation).

The resulting widths are displayed in Table 6.2. The measured widths are up to an order

of magnitude larger than the calculated widths. The widths calculated using Siegert

states are also an order of magnitude larger than those calculated with box states.

This seems to indicate that predissociation is a determining factor in the autoionization

dynamics. Notice also that the largest autoionization widths we calculate are for the

CH stretch, for which no experimental data are available. For the other two normal

modes the widths are comparable between each other (larger for CO stretching than

bending, similarly to experiment), but they are very sensitive to predissociation, while

this is true to a lesser extent for the CH stretching mode.

6.2.4 Electron scattering and cross section

In this first calculation, which includes no Renner-Teller coupling, we have used

the Siegert states method (Sec. 3.4) for calculating the DR cross section. The results
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are converged when we include 40 adiabatic states and 9 C-H Siegert states for each

adiabatic potential. To converge these states, we need about 40 grid points in r and ϑ

and 100 points for R. The resulting DR cross section is shown in Fig. 6.2.

It should be noted that the calculated cross section is overall smaller than the

cross section measured by Le Padellec et al. [144], especially for E ∼ 0.01 eV where the

theoretical cross section drops several orders of magnitude. We have tried to estimate the

effect of nonadiabatic couplings on the DR rate, using the complex absorbing potential

[161] and complex scaling [133] methods. In both cases the effects have turned out to

be quite small, therefore the adiabatic approximation is quite good for this system.

6.3 Model 2: inclusion of Renner-Teller couplings

In this section we show results for Model 2, described in Sec. 3.5-3.6. The

main differences with respect to the previous model are the inclusion of Renner-Teller

couplings, freezing of CO motion, and a different method to calculate the DR cross

section.

We have calculated DR cross sections for two different initial vibrational states

χ+
v (RCH) of the ion: the ground state v = 0 (which can be viewed as {0000}) and the

first excited state v = 1 (which can be viewed as {0110}) whose energies are represented

in Fig. 3.5 with horizontal dotted lines. The energy difference between the two states

is about 0.1 eV. Figure 6.3 shows the two cross sections with dot-dashed (v = 0) and

dashed (v = 1) lines. Fig. 6.3 shows that the DR cross section depends strongly on

the initial vibrational state. A similarly strong dependence has also been observed in

experiments with other molecular ions. Assuming that the initial experimental vibra-

tional state distribution is in thermodynamic equilibrium, it is necessary to average the
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Figure 6.2: Dissociative recombination cross section obtained with the Siegert states
method, using the model with no Renner-Teller couplings. Calculated (full line) and
measured (circles) [144] cross sections for DR of HCO+. To compare with the measured
cross section, the calculated cross section has been convoluted with a 1 meV (dotted
line) and 3 meV (dashed line) Gaussian energy distribution, this smoothes a large part
of the Rydberg resonances that are not seen in experiment, since the resolution is too
low. Here we do not consider rotational structure, which would increase the number of
resonances. From Ref. [104].
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Figure 6.3: The figure shows the present theoretical DR cross section (dashed and dot-
dashed lines) for HCO+ as a function of the incident energy E. The initial vibrational
state is the ionic ground state for the dot-dashed curve and the first excited state for
the dashed curve. The experimental [144] (cross symbols) and previous theoretical [104]
(thin solid line) cross sections are also shown for comparison. The theoretical curves
include the averaging over the electron energy distribution according to the procedure
described by Eq. (2) of Ref. [96] with ∆E⊥ = ∆E|| = 3 meV. From Ref. [130].
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cross section over the thermal distribution to compare with the experiment. The first

excited vibrational state has vibrational symmetry different from the ground state. The

vibrational angular momenta for the states are mϕ = 1 and 0. Thus, the deexcitation

process may be too slow to reach equilibrium, resulting in a vibrational temperature

that is higher than the electron temperature (300K in the experiment of Ref. [144] ).

The vibrational temperature in the experiment of Le Padellec et al. [144] is not known.

If it was in equilibrium with the electron temperature at 300K, the contribution from

the excited vibrational states would be small. But for a larger vibrational temperature,

for example 1000 K, the averaged cross section would be about a factor of 1.5 larger than

the cross section for the ground vibrational state in Fig. 6.3. The fact that in several

different experiments the measured DR rate ranges over values from 0.65 − 3 × 10−7

cm3/s at 300 K (see Ref. [3, 56, 106, 110, 158] and Fig. 6.4 below) might conceivably

derive from differences in the initial vibrational populations. Determination of the ac-

tual experimental vibrational distribution and/or controlling it in HCO+ could be an

important step in understanding DR in small polyatomic ions.

The present theoretical DR cross section is approximately a factor of 2 smaller

than the experimental data. Assuming that this reflects a limitation of the present the-

oretical description, this might derive from our approximation that freezes the CO bond

length. However, the expected error of order 70% caused by our adiabatic approxima-

tion in the RCH coordinate should also be kept in mind when assessing the implications

of this discrepancy. Still, if the CO bond is allowed to vibrate, which makes the ion more

floppy, the probabilities of capturing and predissociation will presumably be increased.

Quantitatively, releasing the CO bond increases the density of HCO resonance states

that can be populated in the electron-ion collision and, correspondingly, the sum in Eq.
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3.26 is expected to increase.

In afterglow plasma experiments, the measured observable is the DR rate constant

thermally averaged over the kinetic energy distribution of colliding electrons and ions,

α(kT ) =< vσ >, where v is the velocity of the electron, is obtained from the DR

cross section shown in Fig. 6.3 according to Eq. (7) of Ref. [94]. The resulting

theoretical rates (thermally averaged over the electron energies, for each of the two initial

vibrational states) are shown in Fig. (6.4) and compared with available experimental

measurements.

Although the theoretical DR cross section is still smaller by a factor of 2 than

the experimental results of Le Padellec et al. [144], we find that inclusion of Renner-

Teller coupling significantly increases the theoretical DR cross section. The previous

theoretical study by Larson et al. [104] that omitted Renner-Teller coupling, but which

did account for the CO bond vibrations, gave a DR cross section significantly smaller

than the present result. This is evidence for the important role of Renner-Teller coupling

in the HCO+ DR process.

Since the Born-Oppenheimer potential surfaces are the same for HCO (HCO+)

and DCO (DCO+) we did a similar calculation for DR in DCO+. The resulting DR

cross sections for the ground and first excited vibrational level are very similar to the

ones presented in Fig. 6.3 but smaller by a factor of 1.5. A similar dependence of the

DR rate on the isotopologue masses was found in theory and experiment for the H+
3 ,

H2D
+, D2H

+, and D+
3 ions [97]. Notice that the lifetime of the first excited vibrational

state of DCO+ is supposed to be very long, of the order of some ms [204], therefore it

is even more important in this case to control the initial vibrational population.
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Figure 6.4: Theoretical and experimental DR thermal rates for HCO+. The dot-dashed
and dashed lines are the theoretical rates obtained for the ground and first excited
vibrational states of the ion. The experimental rate (solid line) is obtained from the
experimental cross section, Ref. [144]. The results from a number of other experiments
with HCO+ [3, 56, 106, 110, 158] are also shown. From Ref. [130].
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6.3.1 Estimation of the effect of autoionization and CO vibration on the

cross section

We should mention some approximations made in the present study that can

affect the theoretical DR cross section. First, our treatment has not accounted for

the possible autoionization after the electron is captured by the ion, before the neutral

molecule has time to predissociate: in Eq. (3.20), the survival probability e−ρ(E) was

set to be 1. The inclusion of autoionization decreases the calculated DR cross section.

The effect of autoionization on the DR cross section can be estimated as follows. Figure

6.5 shows the calculated resonance curves Ua(RCH) as described above and in Ref. [94].

Above the lowest ionic curve each of these potential curves has in general a non-zero

width Γa(RCH), which represents the adiabatic autoionization rate. If there is more

than one open ionic channel |j〉 for a given Ua(RCH), the neutral molecule can decay

into the i-th channel with a partial width Γ
(i)
a (RCH), where

∑

i Γ
(i)
a (RCH) = Γa(RCH).

Once the electron is captured, the system can evolve into two competing pathways:

resulting in either autoionization or dissociation. The relative probabilities per unit of

time for the two processes provide an estimate for the survival probability e−ρ(E).

The largest partial autoionization widths are in general the widths of the reso-

nance curves Ua(RCH) belonging to Rydberg series associated with a few nearest closed

ionic channels. Such resonance curves are very similar in shape to their parent ion

potential curves, when the principal quantum number n is high. Consequently, in the

energy range of interest, these curves Ua(RCH) are closed with respect to adiabatic dis-

sociation. The dissociation can occur only through coupling to true dissociative states

(i.e. the process denoted as predissociation in molecular spectroscopy). The predisso-
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Figure 6.5: Resonance potential curves Ua(RCH) of the neutral molecule states having
magnetic quantum number M = 1. The potential curves were calculated in the energy
range where at least one electron-ion channel U+

i (RCH) (for the given RCH) is open.
Thus, the lower bound of the calculated curves corresponds to the ground potential curve
U+

0,0(RCH) of the ion. The potential curves of the ion are also shown by dashed thick
lines (see also Fig. 3.5). The Rydberg series are crowded just below the ionic potential
curves. For clarity, visible gaps between the Rydberg series and the ionic curves have
been intentionally introduced artificially, to show the behavior of the resonance curves
belonging to higher ionic channels. The horizontal line represents the energy of the
ground vibrational level. From Ref. [130].
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RCH a.u. Energy (eV) α (a.u.) ∆F (a.u.) ∆E(a.u.) Pa′,a

2.056 0.112 1.18× 10−5 0.0041 0.0059 0.9× 10−4

2.11 0.144 2.9× 10−5 0.0111 0.0047 2× 10−4

1.93 0.34 4.0× 10−5 0.0036 1-37×10−4 14− 83× 10−4

2.02 0.283 1.0× 10−5 0.0022 1-37×10−4 1.2− 7.2× 10−4

Table 6.3: The table demonstrates Landau-Zener parameters and probabilities for typ-
ical avoided crossings. The first two examples correspond to avoided crossings situated
deeply below the energy of the ground vibrational level. The third and fourth examples
correspond to energies around and above the ground vibrational level. Thus, ∆E could
be very different for the last two examples giving different probabilities. In general, for
any total energy of the system there are always some avoided crossings with small ∆E
at the corresponding turning points. From Ref. [130].

ciation probability can be estimated using the Landau-Zener model. When the neutral

molecule is vibrating along the Ua(RCH) curve, every time it passes through an avoided

crossing with another curve Ua′(RCH), it can jump to the corresponding state |a′〉 via

an adiabatic transition. We view such an adiabatic transition as the pathway to pre-

dissociation. The probability for adiabatic passage through an avoided crossing is given

by the Landau-Zener formula [101]

Pa′,a = 1− exp

(

−2πα2

∆F

√

m

2∆E

)

≈ 2πα2

∆F

√

m

2∆E
(6.1)

where α is the non-diagonal coupling element between diabatic states, i.e. the states that

would cross if the coupling was absent. Numerically, α is equal to half of the adiabatic

potential curve splitting at the avoided crossing. ∆F is the absolute difference in slopes

(net classical force) between crossing diabatic potential curves, ∆E is the classical kinetic

energy at the avoided crossing, m is the reduced mass of the system. The resonance

curves shown in Fig. 6.5 demonstrate numerous avoided crossings.

Table 6.3 indicates the order of magnitude of the parameters in Eq. 6.1. This

table shows two examples of avoided crossings that lie well below the energy at which
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the electron can be captured. At such large values of ∆E, the Landau-Zener probability

is very small ( 10−4) and depends only weakly on the electron energy. The other two

examples are taken from the region around the left turning point where the velocity

of motion can be small or large depending on the energy of the electron. In cases like

this, we calculated the probability Pa′,a for a range of values of the kinetic energy ∆E.

There are many such avoided crossings near left turning points and comparatively few

at right turning points.

During half (τ1/2) of an oscillation period, the system goes through nc avoided

crossings. We estimate that nc is about 10 for a typical resonance curve. Therefore, the

total predissociation probability Pd is somewhere in the range 0.001-0.01. In the above

estimation of the predissociation probability we have assumed that only two states

interact at each avoided crossing. However, in reality many of the avoided crossing

cannot be considered as strictly two-state ones: three or more states |a〉 can participate.

The autoionization probability Pion during time τ1/2 is Pion ∼ τ1/2Γ, where Γ is

the total autoionization width. The largest Γ is about 10−5 a.u., τ1/2 ∼ π/ω, where

ω/2 is the frequency of oscillations in the ground vibrational level, h̄ω/2 = 0.007 a.u.

Thus, Pion ∼ πΓ/ω ≈ 0.002. This is presumably an upper bound on the autoionization

probability.

As one can see, the autoionization probability could be competitive with pre-

dissociation in our model if we take the smallest ratio Pd/Pion ∼ 0.5, but it is more

likely that the ratio is of the order of 2-3 and therefore, more favorable to predissoci-

ation. In the previous theoretical study of DR in H+
3 [94], the ratio was significantly

larger. An important difference with the H+
3 study is the two degrees of freedom taken

into account when adiabatic potentials U+
i were calculated. As a result, the density of
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Figure 6.6: A part of the spectrum of Fig. 6.5 showing the interval of RCH corresponding
to the left turning point of the vibrational motion. For convenience, the energy of the
ground ionic curve U+

0,0(RCH) was subtracted from all the data. In the figure, curves
with positive and small negative slopes correspond to Rydberg states converging to the
nearest ionic thresholds. The probability to capture the electron tends to be high for
such states, diminishing however at high principal quantum numbers as n−3

c . From Ref.
[130].
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resonance curves was much higher (factor 20-40). The main contribution to the high

density of resonance curves was from the states with small principal quantum number

corresponding to highly excited ionic channels. This increased significantly the proba-

bility of predissociation. In fact, in the case of HCO, the vibrating CO bond should also

increase the density of steep resonance curves in Figs. 6.5 and 6.6. This is because if

the vibration along CO is quantized, each of the curves shown in Fig. 3.5 will produce

a series of additional ionic curves with different CO quanta. Therefore, the number of

ionic potentials will be larger and, correspondingly, the density of resonance curves and

avoided crossings in Figs. 6.5 and 6.6 will be increased too. This should increase the

DR cross section (more states to be captured to) and the ratio Pd/Pion (more avoided

crossings).

Another approximation is that the n = 2 Rydberg states have dissociative char-

acter and are poorly described by this model. However, we believe that the dominant

DR pathways are triggered by an initial capture into higher Rydberg states, rather than

being directly captured into n = 2 states.

6.3.2 Comparison with our previous theoretical study

In our previous theoretical study of DR in HCO+, published in Ref. [104], the

Renner-Teller coupling was not taken into account because it appeared to have a small

effect on the potential surfaces of excited molecular states of the HCO molecule. How-

ever, Renner-Teller coupling involves degenerate π states and therefore should play an

important role in electron-ion scattering especially when pπ and pσ molecular poten-

tials approach closely to each other. Although Renner-Teller coupling was not included

in the previous study, some nonadiabatic effects were considered there. The quantum
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defects µ(Q) for sσ, pσ, dσ states obtained from ab initio calculation demonstrate sharp

variations at some configurations Q of the three HCO nuclei. Therefore, instead of us-

ing the three adiabatic defects µ(Q), a numerical diabatization procedure was applied

to give a Q-dependent 3x3 matrix µ(d)(Q) of quantum defects. The Q dependence of

the matrix is weaker and the matrix has more information about nonadiabatic effects

than the diagonal matrix µ(Q). On the other hand the nonadiabatic effects represented

by non-diagonal elements of µ(Q) might have a smaller effect on the dynamics of the

electron compared to the nonadiabatic couplings involving degenerate π states. Indeed,

the DR cross section obtained in the previous study [104] is much smaller than the cross

section of the present treatment. To verify that the increase in the DR cross section is

indeed due to the Renner-Teller coupling, we artificially set the non-diagonal elements

in the Hamiltonian of Eq. 3.12 to zero and calculated again the cross section for M = 0.

The resulting DR cross section is about a factor of three smaller than the cross section

shown in Fig. 6.3 and on average it is close to the result of the previous study. It is

worth mentioning that the calculation of Ref. [104] accounts for all three vibrational

degrees of freedom but the very high vibrational levels that generate the steep Rydberg

n = 2 curves in Fig. 6.5 (which have large widths and therefore lead to an increase

in the capture probability) were omitted; these two effects would tend to balance each

other, and might give roughly the same cross section as in the present study when off-

diagonal couplings are switched off. We speculate that if the CO bond vibration was

included in the present treatment the effect of the Renner-Teller coupling would likely

be even more pronounced. To summarize our discussion of this point, we conclude that

the Renner-Teller effect appears to be the most important nonadiabatic coupling in the

dissociative recombination of HCO+.
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The theoretical cross section obtained in this study is inversely-proportional to

the incident energy below 0.1 eV (see Fig. 6.3). Above 0.1 eV the cross section falls

more rapidly with increasing energy. This is caused by the fact that at 0.1 eV an

additional ionic channel becomes open. That ionic channel is responsible for the large

probability to capture the electron. Above that ionization threshold, the density of

Rydberg states (in which capture can occur) is much lower, as can be seen from Fig.

6.5, and therefore the capture probability drops. Moreover, resonance states above that

ionization threshold have another competing decay channel for autoionization, which

steals flux away from the DR observable. For the ground vibrational level {000v3} (dot-

dashed line in Fig. 6.3 ), that additional open channel is {011v3}, for the first excited

level there are two nearby levels: {020v3} and {022v3}. A similar behavior of the cross

section was observed in DR of H+
3 [94, 95]: the cross section drops down once a new

ionic channel becomes open. The cross section from the previous theoretical study of

HCO+ (the solid line in Fig. 6.3) does not show that behavior. It behaves smoothly

as the energy crosses the new ionization threshold. This is because the Renner-Teller

effect was not accounted for: hence transitions of the type {000v3} ←→ {011v3} are

forbidden by the different symmetries of those vibrational states.

Another difference with the previous study is the manner in which the final cross

section is calculated. In Ref. [104], the scattering matrix Si,i′ for electron-ion collisions

was explicitly calculated, but only in the electron-ion subset of channel space with no

channel indices explicitly referring to dissociation. All of the channels |i〉 are vibronic

states. However, some of the channels |i〉 are open for dissociation, and as a result, the

Si,i′ matrix is not completely unitary. The defect from unitarity was used to calculate

the dissociative flux and the corresponding DR cross section. The resulting cross section
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from this method has a rich structure with many Rydberg series of resonances. The

cross section was then averaged over an appropriate thermal distribution of electron

energies. The averaged cross section still has a number of resonances that are not seen

in the comparatively low resolution experiment. In the present paper we have employed

a different averaging procedure, as was discussed above. This procedure gives a very

smooth curve for the cross section.

6.4 Outlook

The framework we have developed for dissociative recombination reactions for

small molecules is quite general and applicable to a wide variety of targets. It is definitely

possible to improve upon these calculations, especially in the calculation of electronic

parameters like Rydberg state potential energy surfaces and couplings. To this end we

are currently working at calculating these quantities from R-matrix calculations, which

will also allow a better understanding of the problem and avoid the ambiguities related

to the choice of the model for the fit, which have plagued us at the beginning of the

HCO+ study.



Chapter 7

Summary

This thesis has dealt with the theoretical description of various chemical processes

triggered by electrons in polyatomic molecules. As we have pointed out, the different

reaction environments require different approaches. We have developed, in Ch. 2, a

framework that, though approximate, enabled us to make inroads in the problem of

scattering of an electron from a general polyatomic molecule in Ch. 4 and to give some

insight on the problem of radiation damage to DNA (see Ch. 5), of interest to the

biomedical community. In Chapters 4 and 5 we have shown how our approach is able

to determine scattering observables for a wide variety of large polyatomic molecules,

including CO2, SF6, the DNA bases, and tetrahydrofuran, many of which have not

been tackled before by theory because they are so large.

In the part of this thesis that deals with dissociative recombination reactions,

we have first developed a theoretical framework that is quite robust and able to deal

with general small molecules in Ch. 3. Through the use of ab initio calculations, R-

matrix methods, and then quantum defect theory (QDT) we deal with the vibronic

interactions that arise in triatomics subject to conical intersections or Renner-Teller

effect. This approach is then applied to DR of the molecular ion HCO+ in Ch. 6

and the results are encouragingly close to available experimental data, although due to
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the complication of including many degrees of freedom some have been frozen and the

results can certainly be further improved.

Whenever possible we have given an outlook on the future developments that

could arise from this work, for example on the description of high harmonic generation

from molecules, which is well under way.
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Appendix A

Finite element matrices

Starting from Eq. 2.8 we define the matrices Γ and Λ in our finite element

basis by transforming first to spherical coordinates (the box is spherical and the grid is

also defined in spherical coordinates), and then to rescaled coordinates, which are the

variables of the local polynomials. In the rescaled variables each sector is transformed

to a cube, in which the range of each variable is from 0 to 1. The basis set is composed

of cubic Hermite polynomials in each dimension. In the rescaled coordinates system

they are:

ψ0
1(ξ) = 1− 3ξ2 + 2ξ3 (A.1)

ψ0
2(ξ) = ξ(ξ − 1)2 (A.2)

ψ1
1(ξ) = ξ2(3− 2ξ) (A.3)

ψ1
2(ξ) = ξ2(ξ − 1). (A.4)

The wavefunction inside each sector can therefore be expanded as

u(ξ1, ξ2, ξ3) =
∑

i,j,k,l,m,n

ψl
i(ξ1)ψ

m
j (ξ2)ψ

n
k (ξ3)C

(lmn)
node (A.5)

where i, j, k can be 1 if the polynomial has nonzero value at some node or 2 if it has

nonzero derivative, whereas l, m, n can assume values of 0 if that node is the first for
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Figure A.1: Top: finite element basis functions from Eqs. A.1-A.4, the four polynomials
are plotted in the same order as in the text. Bottom: nodal structure for one cubic sector
in the rescaled variables.
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the variable of the polynomial in the sector or 1 if it is the last; ξi are the local rescaled

variables . The nodal structure of each element is represented in Fig. A.1, together

with the basis functions. The coefficients C
(lmn)
node are the values of the wavefunction and

its derivatives at the node, and they are to be determined solving Eq. 2.8. If we define

ak,p = xk,p,i+1 − xk,p,i (A.6)

xk,p = ak,p ξk + xk,p,i (A.7)

where k indexes the spherical coordinates and p the sectors in which they are defined,

xk,p,i and xk,p,i+1 are the initial and final points for the variable xk in sector p, the

expressions for the matrices become:

Γij =

∫

[

3
∑

k=1

F (xk)

akak

∂ui

∂ξk

∂uj

∂ξk
+ 2ui(U − E)uj

]

araθaφr
2 sin2 θdξ1dξ2dξ3 (A.8)

Λmn =

∫

Y ∗
lm(θ, φ)Yl′m′(θ, φ) sin θ dθ dφ = δll′δmm′ (A.9)

where F (xk) is a spherical coordinates scale factor, and it is 1 if xk = r and 1/r2 and

1/(r2 sin2 θ) for θ and φ respectively. Imposing function and derivative continuity for

u(ξ1, ξ2, ξ3) amounts to require that the indices of the same node across neighboring

sectors be the same. This in turn leads to having to perform a sum of the integrals in

Eq. A.8 when evaluating the matrix element at a node, across all sectors that share

that node. The continuity conditions we apply are very similar to the ones in Eqs. 1.16,

1.18 of Ref. [21], but adapted to a three dimensional case.
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