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Culhane, Michael P. P. (Ph.D., Astrophysics)

Measurements of the Power Spectrum and Redshift Distortions of the Las Campanas Redshift

Survey

Thesis directed by Professor Andrew Hamilton

I present a new method for extracting power spectra from galaxy redshift surveys called

the pair weight compression method. I then apply the method to determine the redshift power

spectrum of the Las Campanas Redshift Survey (LCRS). The measured redshift power spectrum

has the same shape as that found by Lin et al. (1996b) but is a factor of 2 smaller. Upon

expanding the method to include linear redshift distortions, the method is able to measure real

space power spectra and�. � � 
0:6
m =b where� is the linear redshift distortion parameter,
m

is the cosmological density of matter andb is the linear galaxy to mass “bias factor.” Applying

the method to LCRS yields a real space power spectrum that is very similar to the redshift space

power spectrum. The measured value of� � :55+:35
�:30 is larger than, but consistent with, a

previous measurement by Matsubara et al. (2000).
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Chapter 1

Introduction

1.1 Constraining the Universe

Human beings have always been fascinated by the subject of how we got to where we

are and how we will get to where we are going – not just the history of human events, but also

the history of the world and the universe. On the largest scales and longest time-scales this is

the subject of cosmology. Many of the cosmological questions have been answered in a general

way. However, there are many questions which are (seemingly) open. Specifically, the history

of the universe is beginning to be generally agreed upon. It seems that the universe began, some

13 � 2 billion years ago, much smaller, denser, and hotter than today. The present data also

suggest that the expansion of the universe will not only continue indefinitely but could also

accelerate.

Many lines of research have come together to bring this picture into focus, including

the study of galaxy redshift surveys. To understand the relevance of galaxy redshift surveys, it

is instructive to look at the the parameters that describe the universe and how they have been

measured.

1.1.1 Parameters

Maybe the most interesting parameter to the lay-person is the ultimate fate of the uni-

verse. An expanding universe can have two ultimate conclusions. The first is a forever expand-

ing and cooling universe. The second possibility is that the mass in the universe is sufficient
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to cause the expansion to end and the universe to collapse upon itself. The parameters of chief

importance in determining the fate of the universe are the omegas:
�, 
m. The omegas are

ratios of the density of a particular type of matter to the critical density:


a =
�a
�crit

: (1.1)

The critical density is that density which gives an exactly flat universe. The sum of the omegas

gives the shape of the universe. If the sum is greater than one, the universe is closed. If the sum,

is less than one the universe is open. The universe will continue to expand indefinitely if
�

is positive and
m is not significantly greater than 1 or if
� = 0 and
m < 1 (Carroll et al.,

1992).

In addition to knowing the end result, many people are interested in how long the universe

has been around. The parameter of primary importance in the question of the age of the universe

is the Hubble constant (H0). The Hubble constant is a measure of how fast the universe is

expanding. The age of the universe is given by

tuniverse =
1

H0
f(
m;
�): (1.2)

The functionf is of order unity.

Once the age of the universe and the ultimate fate of the universe are known, other

cosmological parameters become interesting. For example,
b, the amount of baryons in the

universe is interesting. A significant fraction of the matter in the universe is invisible, or dark.

Also one would like to know what fraction of that matter is normal matter and what fraction is

non-baryonic dark matter.

Studies of the universe may also yield information about the formation of galaxies. It

is clear that gravity plays the largest role in galaxy formation; however, it is not clear when

galaxies form and how sensitive galaxy formation is to the local environment. It is also not

clear how large the “local environment” is.

Power Spectra
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The power spectrum of matter density fluctuations (Pk) is one of the most important

measurable quantities. The theory of how the power spectrum relates to the other (perhaps

more interesting) parameters is quite sophisticated (Eisenstein and Hu, 1999). It allows one to

measure several basic parameters (e.g.,
m,
b,
�,H0, etc.) from measurements of the power.

1.1.2 Progress on Measuring the Parameters

Before setting out to measure any parameter of the universe, it is important to note which

parameters have already been constrained and by which methods.

Big Bang Nucleosynthesis

Big Bang nucleosynthesis is the study of which elements are produced and in what

amounts from the nuclear reactions that take place in the first few minutes of the universe.

The fractions of baryons in each of the light elements (H, D,3He,4He and7Li) are sensitive to

the density of baryonic matter. Current results have uncertainties in the measurement of
bh
2

at the 10 per cent level (e.g.,Tytler et al., 2000) at
bh
2 = 0:019 � 0:0024 (h is the Hubble

constant in units of100 km/s/Mpc). These estimates have tightened considerably in the last

few years. Maybe more importantly, there are no aspects of the theory that are discrepant with

observational measurements. Big Bang nucleosynthesis is one of the success stories of modern

cosmology.

Type 1a Supernovae

In the last 2 to 3 years, the study of type 1a supernovae has yielded some of the most

interesting results. Type 1a supernovae are a useful measure for cosmologists because they are

believed to be extremely uniform. This means that the physics between local and more distant

type 1a supernovae are the same. This allows the distance to the supernova to be measured

accurately. The redshift of the object can also be measured. Having the redshift and distance to

several objects allows measurements ofH0 and a combination of
� and
m. Both teams trying
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to measure the combination of omegas concluded that
� 6= 0 (Riess et al., 1998; Perlmutter

et al., 1999). In his review, Riess (2000) concludes that the supernova evidence does not yet

compel us to accept an accelerating universe (
� > 
m=2); however, the accelerating universe

is the most likely solution.

Galaxy Clusters

Galaxy clusters can be used to measure
m. The method is to measure the mass-to-light

ratio (M=L) and the background luminosity density (j) at the same redshift. This allows


m =
M

L
�

j

�crit
: (1.3)

Measurements of this kind (e.g.,Carlberg et al., 1998) yield
m � 0:2 with errors at the 20 per

cent level. There are two interesting points to be made about this result. First of all, it implies

that a majority of the matter in the universe is non-baryonic. Second, it suggests that the density

in matter is significantly lower than the critical density.

Also using galaxy clusters to probe cosmological quantities Donahue et al. (1998) ob-

served cluster MS 1054-0321 and calculated that the probability that
m = 1 is less than a few

�10�5.

Cosmic Microwave Background

Measurements of the cosmic microwave background (CMB) are likely to answer most

of the current cosmological questions definitively. The CMB is a great place to make a clean

measurement of the power spectrum. The fluctuations in the CMB are small enough to be

thoroughly treated in a linear approximation; most of the foreground contamination is small

or at least removable (Tegmark et al., 2000); and the Gaussian nature of the fluctuations allows

them to be completely characterized by their angular spectrum (Hu, 2000). The upcoming MAP

and Planck missions should yield power spectra with sufficient resolution to measure all of the

omegas,H0 and several other parameters to the accuracy of a few percent (Bond et al., 1997).

A glimpse of this future was afforded to us by the BOOMERANG results. de Bernardis et al.
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(2000) gives the results of the BOOMERANG experiment. The BOOMERANG experiment

measured approximately 18000 pixels 14 arc-minutes in size in four frequencies. The resulting

maps were then analyzed and an angular power spectrum was calculated. Their result was

that 0:88 < 
0 < 1:12 with 95 per cent confidence. Their best fit to the power spectrum

had parameters(
b;
m;
�; ns; h) = (0:05; 0:31; 0:75; 0:95; 0:70). Already the CMB has

constrained the universe to be (nearly) flat. Expect much more to come.

Galaxy Redshift Surveys

After seeing what other methods for measuring the parameters have done, and will do

soon, it is important to ask what galaxy redshift surveys can contribute. Galaxy redshift surveys

are also used to measure power spectra. Unfortunately, the results are not as clean as those of the

CMB. The measurement one would like is that of the matter power spectrum. Galaxy redshift

surveys only yield the galaxy-galaxy power spectrum. On large scales, these power spectra

differ by the square of the bias parameter (b). On small scales, non-linearities cause more

complicated departures from the matter power spectrum. Redshift surveys are also complicated

by redshift distortions. Because the radial distance to an object is measured by the redshift

rather than a “true” distance, local “peculiar” velocities cause errors in the distance to galaxies.

At linear scales, the amplitude of redshift distortions, however, can be used as a measure of the

quantity�. � is a function of the omega divided by the bias parameter:

� �
1

b

�
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7
m +


�

70

�
1 +


m

2

��
(1.4)

(e.g.,Lahav et al., 1991).

The information extracted from the galaxy survey can be used in two ways. One way

would be to make an independent measurement of the parameters. The second way is to use

the parameters measured by some other technique to measure the bias parameter on all scales.

The advantage that the galaxy survey has over, say, the CMB is that the power spectrum can be

measured on smaller scales. However, particularly on the smallest scales, non-linearities make
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parameter extraction difficult. However, using the measurements to constrain the non-linear

models will yield information about how galaxies form and cluster.

1.2 Pair Weight Compression Method

This thesis focuses on the use of a new method, the pair weight compression method,

to extract the power spectrum and measure� from galaxy surveys. The advantage of the pair

weight compression method is that it is able to give accurate weights to each galaxy pair and

accurate error bars to the results, even in the presence of redshift distortions, non-linearities and

difficult data sets.

Currently favored extraction methods fall into one of two categories: the brute force

methods and the classical methods. Brute force methods are the methods of choice when deal-

ing with the largest scales (scales where the fluctuations can be treated as Gaussian). On the

smallest scales, brute force techniques are too computationally expensive. Furthermore, with

non-Gaussian fluctuations brute force techniques fail.

On the other hand, at small scales classical methods work the best. Classical methods

rely on the selection function (expected density of galaxies contained within the catalog at a

given location given the selection criteria of the survey) being slowly varying over the range of

the measurement. This means that on the largest scales, classical methods are no longer ideal.

Depending on the observational procedures for a given catalog, there may be a region

where both brute force and classical methods work well or there may be a region where neither

technique works well at all. The pair weight method works on all size scales. Therefore, the

pair weight method looks like the ideal method.

However, the pair weight method has serious disadvantages. The biggest problem with

the pair weight method is that it is computationally expensive even for simple catalogs. Either of

the other types of extraction method, if viable, will probably be less computationally expensive

than is the pair weight method. This means that the pair weight method is likely to be the

method of choice only in situations where the catalog or the prior model is complicated. In this
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thesis we chose the Las Campanas Redshift Survey as an example of a catalog which has the

property of being complicated enough that both brute force methods and classical methods will

have a difficult time in extracting the relevant parameters (Matsubara et al., 2000).



Chapter 2

Description of the Pair Weight Method with no Redshift Distortions

The prospect of large, well-controlled redshift surveys such as the Two-Degree Field

Survey (2dF) and the Sloan Digital Sky Survey (SDSS) and their potential for constraining

cosmological parameters (Peacock 1997; Eisenstein et al. 1999) has motivated an increasing

level of sophistication in the measurement of galaxy power spectra.

In recent years two approaches to measuring power spectra from galaxy surveys have

come to the fore (Tegmark et al., 1998). The first is the ‘brute-force’ method, the linear maxi-

mum likelihood method pioneered by Fisher et al. (1994) and Heavens and Taylor (1995). The

second is the ‘classical’ method (Feldman et al., 1994, hereafter FKP; Hamilton 2000). The two

methods are complementary to each other, each performing best where the other method does

the worst: the brute-force method works best at large scales, while the classical method works

best at smaller scales.

Both brute-force and classical methods lay claim to being ‘optimal’ provided that cer-

tain assumptions are true. The defining assumption of the brute-force method is that density

fluctuations are Gaussian. Thus the brute-force method is the method of choice at the largest,

linear scales, where fluctuations may well be Gaussian. The brute force method has been ap-

plied to theIRAS1.2 Jy survey by Heavens and Taylor (1995) and Ballinger et al. (1995), to the

IRASPoint Source Catalogue redshift (PSCz) survey by Tadros et al. (1999), and to the Updated

Zwicky Catalog (UZC) by Padmanabhan et al. (2000).

The defining assumption of the classical method is that the selection function�n(r) of a
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survey, the probability of selecting a galaxy at positionr into the survey, is ‘slowly varying’.

The classical method is good to the extent that position and wavelength of the fluctuation can

be measured simultaneously. In quantum mechanics, this is the condition for a system to be

classical – hence the designation. The classical method is optimal for measuring power at

wavelengths much less than any characteristic scale of the survey, such as the scale over which

the selection function varies.

The classical method was introduced by Feldman et al. (1994) for the case of Gaussian

fluctuations. However, the method can be generalized into the nonlinear regime (Hamilton

2000). In this chapter the expression ‘classical’ refers, in general, to the nonlinear generalization

of the FKP method.

While the brute-force method should be optimal at the largest scales of a survey, and the

classical method should be optimal at the smallest scales, it can happen that both methods are

suboptimal at intermediate scales. In the Las Campanas Redshift Survey (LCRS), for example,

the width of each of the six1:5Æ slices is� 7:5h�1Mpc at the median depth� 300h�1Mpc

of the survey. Density fluctuations at this wavelength are neither fully linear nor much smaller

than the scale of the survey.

The brute-force and classical estimators of the power spectrum remain unbiased (or at

least asymptotically unbiased) even where they are suboptimal (Tegmark et al., 1997; Hamilton

2000). In other words, the estimators are valid estimators of the power spectrum, being biased

neither high nor low, even if they are not the best estimators. However, both methods yield in-

correct error bars on the power spectrum in regimes where their assumptions fail. For example,

at nonlinear scales the brute-force method grossly underestimates the variance in the estimated

power spectrum, by a factor� 1 + � where� is the correlation function. Thus, in general, it is

necessary to resort to some additional procedure to compute reliable error bars. For example,

error bars can be estimated from ensembles ofN -body simulations (e.g.,Fisher et al., 1993), or

empirically from the level of fluctuations observed in the data (Maddox et al., 1990; Hamilton,

1993).
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The purpose of the present chapter is to explore a new method for constructing a near-

optimal estimator of the power spectrum. The method goes beyond the classical approximation,

but is not restricted to linear, Gaussian fluctuations. Among other things, the method is designed

to yield correct error bars on the power spectrum.

Recall that in the original linear FKP approximation, the power spectrumPk at wavenum-

berk is measured by weighting overdensities in pairsij of volume elements at positionsri and

rj with a pair weighting of the form

Wij =
�ni�nj

(1 + �niPk)(1 + �njPk)
(2.1)

where�ni � �n(ri) is the selection function at positionri. The idea of the present chapter is

to admit not just a single pair weighting, as in the classical FKP method, but rather several

pair weightings, judiciously chosen. In effect, the power spectrum is ‘compressed’ (Tegmark

et al., 1997) into several measurements of it using different pair weightings; the several mea-

surements of the power spectrum are then combined using their Fisher matrix. The procedure is

at least somewhat familiar. For example, Fisher et al. (1993), FKP, and Sutherland et al. (1999)

present measurements of the power spectrum using not one but several different pair weight-

ings. (In the last two papers, the pair-weightings were linear FKP pair-weightings of the form

of equation [2.1], with the quantityPk in the denominator treated as an adjustable constant).

The present method goes a step further by combining estimates from different pair-weightings,

using their Fisher matrix.

Using the Fisher matrix to merge estimates of the power spectrum takes into account

the covariance between the estimates and automatically yields the best possible combination of

the estimates. In principle, an optimal measurement of the power spectrum could be obtained

in the limit of many estimates of power spectra derived from a large number of different pair

weightings. In practice, numerics limit the number of pair weightings that can be handled to

only a few. Still, even just two sets of pair weightings is better than a single pair weighting.

For simplicity, and to facilitate comparison with other methods, the present chapter is
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limited to the case of Gaussian fluctuations without redshift distortions. We include redshift

distortions in later chapters and hope to include non-linearity in future work.

There is a parallel between the approach proposed in the pair weight method and the

linear brute-force method for Gaussian fluctuations. In the linear brute-force method, the data

in a galaxy survey, the overdensitiesÆi in many volume elementsi, are compressed into a

set of linearly weighted modeŝxa � WaiÆi. To retain as much information as possible, the

number of modes should be as large as possible; but numerical tractability limits the number

of modes to several�103 or possibly several�104. The game is then to craft the modes so as

to cram the largest amount of information about parameters of interest (e.g.,the amplitudePk

of the power spectrum at several linear wavenumbersk, and the redshift distortion parameter

� � 
0:6=b) into the smallest number of modes (Heavens and Taylor 1995; Tegmark et al. 1997;

Padmanabhan et al. 2000). Here, the data are compressed, instead, into a set of quadratically

weighted modeŝXa = WaijÆiÆj . The game is similar: try to choose the pair windowsWaij so

as to cram the largest amount of information into the smallest number of pair modes.

One advantage of a quadratic weighting method is that, unlike the linear brute-force

method, it is not limited to Gaussian fluctuations. Thus if a nonlinear prior is used (which,

however, is not done in this work), then the quadratic weighting method will yield reliable error

bars on the nonlinear power spectrum; whereas the linear weighting method will underestimate

the true error bars in the nonlinear regime. A disadvantage of the quadratic weighting method is

that it is numerically much more involved to compute the Fisher matrix of a set of pair weighted

modes, so that in practice only a handful of pair modes can be computed. The situation is

not hopeless, however, because a single pair weighting – the linear FKP pair weighting, equa-

tion (2.1) – probably already contains a large fraction of the information of interest (Heavens

et al., 2000). Adding just one additional pair window is guaranteed to increase the information

content of the estimate and to reduce the error bars correspondingly. The gain should be greater

in surveys with more complicated selection functions, such as the LCRS.

We describe the pair weight compression method in section 2.1. In section 2.2 we de-



12

scribe how we actually go about calculating the matrices necessary to obtain the measurements.

Section 2.3 compares the Fisher matrices for IRAS 1.2 Jy and LCRS using the classical method

and the pair weight compression method. In section 2.4 we discuss the method, our results, and

possible applications.

2.1 Pair Weight Compression

We introduce here, in subsection 2.1.2, the pair weight compression scheme for measur-

ing the power spectrum from a galaxy survey. We begin by reviewing, in subsection 2.1.1, the

linear compression scheme (Tegmark et al., 1997), which is the basis of the standard ‘brute-

force’ procedure.

2.1.1 Linear Weights

The data contained in a galaxy survey are the valuesni of the galaxy number density in

each of the infinitely many infinitesimal volume elementsdVi of the survey. To the extent that

the selection function�ni is known or can be measured with negligible uncertainty (Binggeli

et al., 1988; Willmer, 1997; Tresse, 1999), the data can be taken to be the overdensitiesÆi �

(ni � �ni)=�ni.

Suppose that these overdensities are compressed into a set of mode amplitudesx̂a (the

hat signifies an estimated quantity, distinguishing it from a prior quantity) by weighting the

overdensities with a linear weighting functionWai

x̂a �WaiÆi (2.2)

(repeated Latin indices in eq. [2.2] and hereafter signify implicit integration over the volume

element, soWaiÆi =
R
Wa(r)Æ(r)dV ; see section 2 of Hamilton, 2000 for an exposition). The

covariance of the modes is

Cab � hx̂ax̂bi =WaihÆiÆjiWbj (2.3)
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whereÆiÆj is the expected covariance function of the survey, which is a sum of a signal term,

the cosmic correlation function�(rij), and a noise term, commonly taken to be dominated by

Poisson sampling noise

hÆiÆji = ��B�ij + �n�1(ri)Æij (2.4)

the correlation function with respect to the linear combination of individual parameters��.

Any linear combination of Gaussian fields is Gaussian, so if the overdensity fieldÆi

is Gaussian – the defining assumption of the linear method – then the mode amplitudes,x̂a

will also form a multivariate Gaussian. Gaussian fields have the advantage that the likelihood

function can be written down explicitly:

L =
1

jCj1=2
exp

�
�
1

2
x̂aC

�1
ab x̂b

�
: (2.5)

The maximum likelihood estimatê� of the parameters is given by the vanishing of the derivative

of lnL with respect to the parameters:

@(lnL)

@��
=

1

2

�
C�1ab Cbc;� C

�1
cd (x̂dx̂a � Cda)

�
(2.6)

@(lnL)

@��

����
�=�̂

= 0 : (2.7)

If the parameters�a are the values of power spectrum at many different wavenumbers

ka, then the covarianceCab depends linearly on the parameters

Cab =
@Cab

@��
�� +Nab: (2.8)

The maximum likelihood estimator̂�� of the power spectrum is then

�̂� = F�1�� C
�1
ab Cbc;� C

�1
cd x̂ax̂d (2.9)

whereF�� is the Fisher matrix of the parameters��

F�� � C�1ab Cbc;� C
�1
cd Cda;� : (2.10)
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Equations (2.9) and (2.10) provide the best (maximum likelihood) estimate of the power

spectrum�� that can be deduced from the given set of modes:a. If the modes formed a

complete set (which would require infinitely many modes), then the estimator would be optimal.

However, computational tractability limits the number of modes that can be treated to several

�103 or possibly several�104. Thus, a key part of the brute-force method is to try to choose the

modes to contain as much information as possible about the parameters of interest, the values

of the power spectrum at large, linear scales. This can be achieved by crafting the modes wisely

(Heavens and Taylor, 1995) and perhaps also by performing some kind of Karhunen-Lo`eve

(signal-to-noise) compression (Vogeley and Szalay, 1996; Tegmark et al., 1997; Tegmark et al.,

1998; Padmanabhan et al., 2000).

2.1.2 Pair Weight Method

In the pair weight scheme, the overdensities are compressed instead into a set of pair-

weighted modes

X̂a �WaijÆiÆj : (2.11)

This seems like a natural thing to do since, after all, the power spectrum is itself an expectation

value of a covariance of overdensities. Indeed, the traditional way to measure the power spec-

trum is based on equation (2.11) with just a single pair weightingWaij , suitably normalized

(that is, one estimateŝ�� = W�ijÆiÆj , the shot noise being removed by excluding the contri-

bution of self-pairs of galaxies to the estimator). Commonly, some variant of the linear FKP

pair-weighting, equation (2.1) is adopted.

The expectation value of the amplitudêXa of the pair mode is

hX̂ai � Xa =WaijCij =WaijB�ij�� +WaijÆB(rij)�n
�1(ri): (2.12)

The covariance is

h�X̂a�X̂bi =Waijh�Cij�CkliWbkl �WaijhCijkliWbkl � Kab: (2.13)
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In a sufficiently large survey, the central limit theorem implies that the estimatorX̂a will

be Gaussianly distributed about its expectation value. This is true irrespective of whether the

underlying density field is Gaussian or not. In practice, surveys typically do contain enough

information thatX̂a will be near Gaussian at all but the largest scales, where the linear brute-

force method is the method of choice. We assume therefore thatX̂a are Gaussianly distributed,

so that the likelihood function is

L /
1

jKj1=2
exp

�
�
1

2
(X̂a �WaijB�ij��)K

�1
ab (X̂b �WbklB�kl��)

�
: (2.14)

Take the derivative of� lnL with respect to�� and set the result to zero to find the

estimate of�� given the set of pair weights in the model.

@(� lnL)

@��
=

1

2
K�1

dc Kdc;� �

1

2
(X̂a � ��B�ijWija)K

�1
ac Kcd;�K

�1
db (X̂b �Wbkl��B�kl)�

WaijB�ijK
�1
ab (Xb �Wbkl)��(rkl)B�kl: (2.15)

Take the first two terms and rewrite them as

1

2
K�1

ac Kcd;�K
�1
db [Kba� (X̂b �Wbkl��(rkl)B�kl)(X̂a � ��(rij)B�ijWija)

i
: (2.16)

In order to perform the full maximum likelihood calculation these terms must be calculated

explicitly. Bond et al. (1998) show that it is possible to carefully include the contribution from

these terms. However, Tegmark et al. (1997) shows that the estimator is asymptotically unbiased

even if it is suboptimal. In the minimum variance case, the derivatives ofK are set to zero and

these terms vanish. In the remainder of this thesis, we take the minimum variance solution

rather than the full maximum likelihood solution. This leaves:

�WaijB�ijK
�1
ab (X̂b �Wbkl�̂�(rkl)B�kl) = 0: (2.17)

Rearrange this equation and replaceX̂b with WbklÆkÆl to get:

B�ijWaijK
�1
ab WbklB�kl�̂� = B�ijWaijK

�1
ab WbklÆkÆl: (2.18)
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Define a new matrix (the Fisher matrix)M :

M�� � B�ijWaijK
�1
ab WbklB�kl: (2.19)

In order to get the final estimate of��, multiply both sides of equation (2.18) by the inverse of

M . The final result is

�̂� =M�1
��B�ijWaijK

�1
ab WbklÆkÆl: (2.20)

This gives us a complete method for calculating�̂� using the multiple pair weightsWaij .

We can see that we no longer have to invert theC matrix directly. On the other hand, we must

make sure that the computation of the matrixK is feasible. If we assume Gaussian fluctuations

then

hCijkli � CikCjl + CilCjk: (2.21)

The matrixK, Equation 2.13, can then be rewritten as:

Kab � 2WaijCikCjlWbkl: (2.22)

It is not necessary to make this particular approximation. However, we do need a prior estimate

for hCijkli.

In principle, the pair weighting method can save computation time over a brute force

technique, particularly for size scales significantly smaller than the size of the catalog. For

example, doubling the resolution in the pair weight method takes four times as much computing

capacity, instead of the� 2�9 (based on the computing cost of matrix inversion which is ann3

process) times for a brute force method. (The computation ofK is the slowest part, and on

average each matrix element takes the same amount of time. Doubling the resolution requires

four times as many matrix elements.) The down sides are that the creation of the matrixK loses

information if the choice of pair weights is not complete, and the matrixK can also be quite

computationally expensive. The matrixM can be used as the Fisher information matrix.

M�� � B�ijWaijK
�1
ab WbklB�kl = B�ijWaijW

�1
amnFmnopW

�1
bopWbklB�kl (2.23)
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whereFmnop is the Fisher matrix with respect to parameters
P

� ��B�mn and
P

� ��B�op. To

the extent that the choice of windows is a complete set

WaijW
�1
amn � ÆimÆjn: (2.24)

This means that by applying the chain rule and noting that@Cij

@��
= B�ij

M�� � B�ijFijklB�kl = F�� : (2.25)

This means that we can compare the pair weight method to another method by comparing the

resulting Fisher matrices. In the case of the pair weight method we will insertM in place ofF .

If M is identical to the Fisher matrix as computed by an exact method then we know that the

pair weight method loses no information. We will see in the next section that the difficulty in

the pair weight method lies in the computation ofK.

2.2 Calculation of the Pair Weight Fisher Matrix

Equation (2.25) says that the matrixM is equivalent to the Fisher matrix. Calculating

M requires the matricesKab andB�ijWaij. This section discusses the method of calcula-

tion for Kab since it is by far the more difficult of the two. The calculation ofK requires a

10-dimensional integral (equation 2.22), to be performed. (Each of the four volume elements

contributes 3 dimensions and each window functionWaij andWbkl involves a delta function

which effectively removes a dimension.) for each pair of valuesa andb. There are two serious

complications: the volume elements are linked by the correlation function of the separation of

two pairs of two elements (this makes it impossible to reduce the 10-dimensional integral to a

product of smaller integrals) and the lack of full-sky coverage. (This removes possible symme-

tries making analytical progress difficult). We therefore proceed by Monte Carlo techniques.

2.2.1 Nonuniform Monte Carlo Integration of K

Monte Carlo integration is a technique by which one integrates by randomly selecting

points within the range of integration and computing the average value of the integrand (as
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well as the average of the integrand squared) over those points. For a good introduction to the

subject, seeNumerical Recipes(Press et al., 1986). Monte Carlo integration relies on the idea

that

Z
�dr = ��

Z
dr (2.26)

for the average��. We can then approximate

�� �
1

n

nX
i=1

�(ri) (2.27)

where the valuesri are randomly chosen to be within the range of the integral. The accuracy

to which the integral can be calculated depends on how well the average of the points selected

represents the true average. Use the average of the integrand squared to estimate the accuracy

of the calculation:

��� �

"
1
n

P
n �

2(ri)� ��2

n

# 1

2

: (2.28)

There are two ways to improve the accuracy of the Monte Carlo integration. First, choose

more points (increasen). As the number of points increases, the average tends towards the

true average. Second, we would like� to be as close to constant as possible within the range

of integration (so that�2 is very nearly��2 for all points) thereby decreasing the numerator in

equation (2.28). To do this, change the variable of integration to smooth out�. For example,

suppose that� = r2(1 + �(r)), wherej�j <� 1, and the integral runs fromr = 0 to r = 2.

Change the integration variable fromr to u whereu = r3.

Z 2

0
�(r)dr =

1

3

Z 8

0
(1 + �(u

1

3 ))du: (2.29)

By changing the variable fromr to u, the integrand becomes very nearly constant. This is

the equivalent to putting many points in the regions where the integrand is highest and down-

weighting the contribution from each of the points in this region. In order to maintain the

accuracy of the integral, lower the probability of choosing a point in a low density region and
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correspondingly raise the weight given to that point. By smoothing out the contributions from

each point, the integral can be calculated to the same accuracy with fewer points.

Kab is a whole matrix of integrals (a andb are matrix indices), so they need to be cal-

culated quickly. To this end, choose integration variables to smooth out the entire integral.

Fortunately, for the integralK, this is possible. Equation (2.28) says that the values of� that

increase��� the most are the largest absolute values. Even though the integral is quite compli-

cated, it is not hard to see which configurations of the four volume elements contribute the most

to the integral. First of all, the correlation function is largest when the two volume elements are

close to one another, so choose the volume elements in such a way that close pairs (within the

volume foursomes) are more likely than more distant pairs. Secondly, the selection function and

the chosen window functions vary with distance to the observer. Choosing the volume elements

according to the window functions smoothes out the integrand. When the integrand is near zero

or exactly zero (outside of the catalog), it contributes relatively little to the error. This only

slows down the integral if a high fraction of foursomes has an element outside of the catalog.

2.2.2 Step-by-Step Process of Selecting a Galaxy Foursome

To see how the Monte Carlo integration works, it makes sense to look at the process

of selecting one galaxy foursome. Equation 2.22 shows the integral that is being performed

by Monte Carlo techniques. Each of the indicies which us summed over can be thought of as

the location of a galaxy. Because there are four summation indicies, each location (in twelve-

dimensional space with two separations fixed) can be thought of as a galaxy foursome. Figure

2.1 shows one such galaxy foursome for the case of IRAS.

The biggest goal in selecting one of the random variables is to make sure that the se-

lection takes into account everything known about the integral up to that point. This allows

the most effective reduction of the largest peaks. Obviously, the first step is to choose the first

galaxy. At this point, use the angular mask to make sure that the galaxy will be within the cat-

alog or at least has a good chance of being within the catalog. For a catalog like IRAS 1.2-Jy,



20

Figure 2.1: A stick figure representation of a galaxy foursome for IRAS.

the angular mask is not a significant issue since more than 90 percent of the sky is within the

catalog.

On the other hand, for a catalog like LCRS (less than one steradian of sky coverage),

choosing the angular position carefully greatly speeds up the calculation. In LCRS, choose the

angular position to lie in one of the six slices in such a way that equal angular areas get equal

weight. Figure (2.2) shows the LCRS angular mask. Each square represents one observing

area. The fraction of galaxies for which redshifts were obtained is shown by the darkness of the

square. (If all galaxies have redshifts then the square is black.) Cross-hatched areas are from
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Figure 2.2: The angular selection function for LCRS. The grayscale shows the fraction of galax-
ies within the region for which redshifts are included. (Black is 100 per cent and white is zero.)
Areas which are cross-hatched are from the 50-fiber instrument whereas solid regions are from
the 112-fiber instrument.

the first stage of the catalog where 50 redshifts could be obtained simultaneously. Solid squares

are from the second stage where 112 redshifts could be taken simultaneously. The dashed lines

represent the outer boundaries of the slices. If the galaxy is within one of the slices, it has a

very high probability (again over 90 percent) of being in the catalog. Because the slices are not

complete, make sure the actual angular position is, in fact, within the catalog. If it is not, then

give this galaxy foursome zero weight and move on to the next galaxy foursome. Now go about

choosing the radial position of the first galaxy. Make sure that the radial position reflects the

chosen window for the matrix element in question. To do this, fit the window function (times

the volume at that radius) with a series of power laws. This allows rapid computation of the

randomly selected radial position, while at the same time smoothing out the radial peaks. In

fact, the distribution of probabilities and the corresponding weights for the radial position of the

first galaxy can be precomputed.

In selecting the second galaxy, take into account not only the information about the

catalog as a whole but also the position of the first galaxy. The information about the first galaxy

is important because one product of the integrand is the correlation function at the separation

between galaxies one and two. This means that the integrand is, in general, higher if galaxies
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one and two are close together. To eliminate the peaks, increase the probability that these two

galaxies are close together and decrease the probability that they are far apart. First select the

radial component of the galaxy. Rather than just using the power law fits to the window function,

modify the power laws such that the region near the radial component of the first galaxy is more

likely to be selected for the second galaxy as well. In other words, increase the power of the

power laws for regions smaller thanr1 and decrease the power of the power laws for regions

greater thanr1.

After choosing the radial position, the strategy for choosing the angular position is dif-

ferent for IRAS than it is for LCRS due to the nature of their angular masks. In the case of

IRAS, calculate the correlation function for a series of points for given test angles (�12) be-

tween galaxy one and galaxy two. Then fit a series of power laws to the absolute values of

the correlation function. (Don’t allow any of these points to drop below a lower boundary for

two reasons. First, the correlation function can go through zero and negative values can cause

problems. Second, giving one section too little probability can cause a new peak to form when

a point within this improbable region is chosen due to its large up-weighting.) Then choose the

angle between galaxies one and two using these power laws as the probability. The azimuthal

angle is chosen with all angles receiving equal probability.

For LCRS, choose the slice and then the location within that slice. Choose the slice with

the probabilities given by the angular area of the slice times the maximum of the correlation

function with the galaxy in that slice. Chose the latitude within that slice uniformly. (The slices

are only1:5Æ thick so there is not too much variation over the slice.) The longitudinal angle is

found by evaluating the correlation function as if the galaxy were at a few locations along the

slice. Then, apportion the probability to locations according to the corresponding values of the

correlation function. Again, check that the particular angular position of the galaxy is within

the valid portion of the catalog.

The third and fourth galaxies are connected to the first two galaxies by the fixed lengths

r23 andr14. Therefore, only two angles are necessary to define the location of each of these
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Figure 2.3: Top: definition of� for LCRS. Bottom: depiction of possible choices of� for a
given value of�.

galaxies. Define these two angles as�23 and�23. �23 is the latitudinal angle with its north pole

pointing directly toward the center from galaxy two. For IRAS, the contribution to the integral

is normally highest if�23 is low. This is because the selection function is highest closest to the

center. Calculate the selection function for various values of�23 and weight the probabilities by

these values. Then choose�23 with uniform probability.

The situation for LCRS is substantially different. Due to the observing strategy, the

selection function is not guaranteed to be larger closer to the center. Therefore, select�23

uniformly. Figure (2.3) shows a particular value for�23 in the top panel. Use the positions of

the slices to guarantee that the value of�23 will place the galaxy within one of the slices in the

survey (as shown in the bottom panel of Figure 2.3). Once the angular position of galaxy three

is known, check to see that it is within the survey. If it is not, (or if no value of�23 is within the

survey), give this galaxy foursome zero weight and move on to the next foursome.

In the case of the IRAS survey, there are two competing goals in choosing the location

of the final galaxy. Positions close to the observer have large selection functions, while at the

same time, positions close to galaxy three maximize the correlation function. For simplicity,

choose to do one or the other based on the relative importance of the two. If the closest possible

separation for galaxies three and four is less than twenty times (empirically the best trade-off)
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the smallest possible distance to galaxy four (from the observer), then try to get galaxy four close

to galaxy three, as shown in Figure (2.1). Otherwise, try to get it close to the observer. In either

case, set up the coordinates such that�34 is zero when it minimizes the relevant distance. Then,

follow the same procedure for choosing�34 as for�23. Once again�34 is chosen uniformly.

For LCRS, the selection function is not always decreasing with radius. Therefore, always

try to get galaxies three and four close together. The mathematics are simplest if�14 = 0 points

directly away from the center. Again, use Figure (2.3) to see how this location is chosen.

First, compare the value of the correlation function at the minimum attainable distance to the

correlation functions at�14 = 0 and�14 = �. If it is significantly larger (more than a factor of

3 or so), then calculate the location of intermediate values (approximately factors of the square

root of 10) of the correlation function. Then choose�14 by the probabilities given by a power

law fit to these values and locations. If the variation of the correlation is small, choose�14

uniformly. To calculate�14, first determine which values of�14 lie in one of the slices. Then

multiply the length within each slice by the value of the correlation function at the minimum

separation available in that slice. This is possible because the minimum separation in the slice

will be at one of the ends of the slice or at the minimum separation possible given�14. Use

this value to be the probability of choosing this slice. Once the slice is determined, compare

the highest value of the correlation function within the slice to the lowest value. If the highest

value is more than three times as high as the lowest, compute the positions along the slice of the

predetermined values of the correlation function. (If it is not, again use a uniform distribution.)

Once again, fit a power law to the determined values and locations and call this the probability

distribution (this time for�14). Once the calculation of the position of galaxy four is complete,

determine whether or not galaxy four is within the catalog.

If all of the galaxies are within the catalog, then compute the value of the integrand at that

set of positions. In particular, take the product of the correlation functions of the separations (r14

andr23), the window functions, and the accumulated renormalizations due to the non-uniform

probability functions for each variable. Then add this to the running total. Continue choosing
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galaxy foursomes until the statistical error is below the error limit, at which point the value of

the integral is the running total divided by the number of foursomes (including foursomes which

were not in the catalog) times the 10-dimensional volume of the integral. This, of course, gives

the value of the signal-signal portions of the matrixK. To find the full value of the matrix add

into the matrix the components due to the delta functions (the 7-dimensional and 5-dimensional

components). Then use this matrix in our calculation of the Fisher matrix.

2.3 Comparison of Fisher Matrices

By comparing the Fisher matrices calculated by two different methods, one can compare

the relative accuracies of the two methods in measuring a particular set of parameters. In par-

ticular, in this section we compare the Fisher matrix as calculated by the pair weight method

to an accepted method, the classical approximation, for the parametersP (k). This will allow a

comparison of the two methods to see whether or not the more complicated pair weight method

is also the more accurate method. In particular, we would like to know which circumstances

demand the pair weight method and which can be addressed by the more easily computed clas-

sical method. Note that in this comparison we are comparing the Fisher matrices of Gaussian

models with no redshift distortions.

2.3.1 Classical Method Versus Pair Weight Method for IRAS 1.2Jy

The IRAS 1.2 Jy redshift survey is nearly all-sky. This means that the classical approx-

imation should work very well. This makes it a good choice for comparison between the pair

weight method and the classical method. To generate the Fisher matrices, we need to make

assumptions about the prior prediction of the power spectrum (or, equivalently, about the corre-

lation function). Our power spectrum was generated by the methods described in Eisenstein and

Hu (1999) withh = 0:65, 
� = 0:7, 
b = 0:3, n = 1, andT = 2:73 K. For this comparison,

we use a Fisher matrix calculated as described in Hamilton (1997) for the classical method. For
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the pair weight method, we use one window at each separation. The window is given by

W�ij =
�ni�njÆ(r� � jri � rj j)

(1 + 4�J3��ni)(1 + 4�J3��nj)
(2.30)

where

J3� =

Z r�

0
r2�(r)dr: (2.31)

We expect this window to reflect the information content because we are counting equal vol-

umes in regions where the distribution is well sampled and equal numbers where it is sparsely

sampled.

To compare the information contained within the Fisher matrix, we would like to find

statistically independent variables and find the amount of information about each of these vari-

ables contained within the data set. Hamilton and Tegmark (2000a) describes a number of ways

to decorrelate the data. In this paper we will use the Fisher matrix divided by the prior value

of the power spectrum at the particulark (the fractional Fisher matrix) rather than the Fisher

matrix itself.

G�� �
h
��1� h��̂���̂�i�

�1
�

i�1
= ��F����: (2.32)

This is so that the fractional error is the error in question rather than the absolute error. This

means that the region where� is large will not be over-represented in regions where� is small.

To decorrelate this matrix, measure the parameters which are the rows (normalized to unit sum)

of the square-root of this matrix. This ensures that these parameters will be decorrelated with

eigenvalue equal to the unnormalized sum of the row squared (
hP

i F
1=2
ij

i2
). Compare two

quantities between the two matrices. The first is addressed in Figure 2.4. This Figure shows

a set of normalized rows of the square-root of the Fisher matrices. (Solid is the pair weight

method and dashed is the classical method.) These are the actual parameters that we will mea-

sure. Notice two things about this Figure. First, the parameters have narrow peaks centered

on the wavelength in question. This means that the decorrelated parameter does a good job of

measuring the value of the power spectrum at a particulark. Second, notice that the peak of the
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Figure 2.4: Normalized rows of the square-root of the Fisher matrix. Solid lines are for the pair
weight method and dashed are for the classical method.

parameter is higher for the pair weight method than it is for the classical method. This is due

to the fact that the pair weight method has values off the diagonal which are negative. These

negative values are likely to be caused by errors in the calculation of the Fisher matrix rather

than actual regions of negative information. Because the Fisher matrix is used in the calculation

of the parameters from the data as well as to estimate the accuracy of the calculation, errors

in the calculation of the Fisher matrix will reduce the accuracy with which the parameters in

question can be measured.

Figure 2.5 depicts the amount of information contained within the IRAS catalog in the

decorrelated band-powers. The classical method extracts as much (or more) information about

the parameters on all scales as does the pair weight compression method with one window per

separation. This is not too surprising due to the fact that the IRAS catalog is nearly all-sky.

This means that the classical approximation should be very nearly valid. This also means that
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Figure 2.5: Information contained within decorrelated parameters. Thek index gives the
wavenumber of the location of the peak of the parameter. The solid line is for the pair weight
method and the dashed line is for the classical method.

for a catalog such as IRAS, one should strongly consider using the simpler classical method

on the small to moderate scales. On the largest scales, one should use one of the brute-force

techniques. These techniques should eliminate the approximation used in the classical method

while still being feasible.

2.3.2 Classical Method Versus Pair Weight Method for LCRS

The Las Campanas Redshift Survey (Shectman et al., 1996) allows us to compare the pair

weight method to the classical method in a situation where we expect the classical approxima-

tion to break down. LCRS has 327 fields approximately1:5Æ � 1:5Æ contained within 6 slices.

In each of these fields up to 112 redshifts were taken. Due to the limitations of the observing

procedure, each field has its own selection function. (The selection function depends upon the

fraction of galaxies in the field that have redshifts. This fraction varies from field to field.) This
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means that the largest length scale over which the catalog does not vary is1:5Æ (� 7:5h�1 Mpc

at the median depth of the survey). On scales larger than this the classical approximation should

lose some of the available information. The complications of the LCRS catalog also make many

of the brute force calculations difficult, though not impossible.

In addition to probing a region where the classical method should be inadequate, we

wanted to investigate the benefits of using more than one window at each separation. Using

more than one set of windows, should enable the extraction of more information than with

only one set. We would like to know whether the additional information contained within the

additional windows is enough to justify the computing cost. The windows we used for this are

the same as those defined in equation 2.30 with four different choices ofJ3�. The four windows

have

J 03� = 0; J3�=10; J3�; 10J3� (2.33)

respectively. We chose these windows to make sure that the information contained within one

window was sufficiently different from the next.

Once again, our power spectrum was generated by the methods described in Eisenstein

and Hu (1999) withh = 0:65, � = 0:7, 
b = 0:3, n = 1, andT = 2:73 K. For the classical

approximation, we again use a Fisher matrix calculated as described in Hamilton (1997). The

plots of the information contained within the Fisher matrices in this section have been calculated

in the same way as those of the previous section. Because the differences between the pair

weight method and the classical method should be largest on scales larger than� 7:5h�1 Mpc

and because the difference between one window and four should be apparent on all scales, we

have only calculated a31� 31 matrix of separations.

In Figure 2.6 is the information contained within all four sets of windows (the solid line)

and the information contained within each set of windows individually. It is clear that adding

windows does, in fact, allow for the extraction more information. However, notice that the

information contained within the best set of windows (this happens to be the third window,



30

Figure 2.6: Information contained within decorrelated parameters for the pair weight method.
The k index gives the wavenumber of the location of the peak of the parameter. The solid
line contains information from all four sets of windows. The four other lines contain only the
information from one of the sets of windows.

with Ĵ3� = J3�) contains no less than half of the information on all scales (as compared to

the complete set of four windows). This Figure shows that this window actually contains more

information on the smaller scales. This window does not actually contain more information but

rather the errors in the method of calculation yield slightly inaccurate results. Also note that the

fourth window (Ĵ3� = 10J3�) appears to contain the second most information of all the sets of

windows. However, after eliminating this set of windows from the calculation, the remaining

three sets of windows contain almost exactly the same amount of information as do all four sets

together. The information extracted by window four has already been extracted by the first three

windows (primarily window three).

Figure 2.7 shows the information contained within the classical approximation as com-

pared to the pair weight method. This plot shows that on the very largest scales (smallk) the
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Figure 2.7: Information contained within decorrelated parameters. Thek index gives the
wavenumber of the location of the peak of the parameter. The solid line contains information
from all four sets of windows for the pair weight method. The dot-dashed line is the information
contained within the best single window for the pair weight method. The dashed line shows the
information contained within the classical method.

pair weight method contains several times as much information as does the classical method.

On smaller scales, the difference becomes less. On the smallest scales the classical method does

retain more information than does this pair weight method. There are two causes for this. One

cause is aliasing in the FFT used to go from real space to Fourier space. We found (in Chapter

4) that the latter portion of the matrices are contaminated to some degree by aliasing. Second,

when the calculation is extended to include smaller scales, it does a better job of retaining the

information on larger scales as well. This is particularly important for elements near the edge of

the matrix. To obtain the best measurements of the power spectrum on these scales one would

have to extend the Fisher matrix calculation to smaller scales.

The decorrelated band-powers, for which the information is calculated, are shown in

Figure 2.8. Once again the parameters are narrow about the peak. Also, notice that the classical
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Figure 2.8: Normalized rows of the square-root of the Fisher matrix. Solid lines are for the pair
weight method and dashed are for the classical method.

method parameters are very similar to the pair weight parameters. The main difference between

the two is that the errors in the calculation of the pair weight Fisher matrix once again causes

regions where the square root of the Fisher matrix is negative. This means that the errors in

the calculation of the Fisher matrix is causing us to measure the parameters with weights which

are not the best choice and to measure them with less accuracy than would be possible if the

integrals of the matrix elements could be done exactly. Notice that, in the case for LCRS, the

errors in the pair weight calculation mainly affect the smallest and largest scales measured while

not greatly affecting the intermediate scales.

For the LCRS catalog, the pair weight method provides a more accurate measurement for

the largest scales than does the classical method. Unfortunately, with only our31 � 31 matrix

of data points we are unable to say for sure where the classical method becomes comparable to

the pair weight method.
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2.4 Discussion and Conclusions

We introduced a pair weight compression technique for measuring the power spectra

from galaxy catalogs. This method requires the calculation of a matrix of ten-dimensional

integrals. Because galaxy surveys tend to be less than all-sky, we found that the integrals cannot

be performed analytically or by traditional numerical techniques. We discussed a Monte Carlo

technique for computing these integrals. The advantage of the Monte Carlo technique is that

the integrals can be performed even when the catalog’s selection function is very complex (as is

the case for LCRS). We then applied the technique to the IRAS 1.2 Jy redshift catalog and the

LCRS.

We found that for the IRAS 1.2 Jy survey, the classical method would produce (slightly)

smaller error bars than would the pair-weight method, if we use just one window per separation.

Both methods are able to measure narrowly peaked decorrelated band-powers. Although the

pair weight method works for a nearly all sky survey like IRAS, it is clear that the simplicity of

the classical method makes it the preferred method of calculation.

For LCRS, we found that even using only one window per separation, the pair weight

method produces error bars considerably smaller (as much as a factor of three smaller) than

those of the classical method. When we used four (or the three best), windows per separation

the information retained was even greater. Due to the computational expense of calculating the

additional windows, it is not clear whether one should use one or more window per separation.

Clearly, if computational expense is not an issue, one should use many windows.

Throughout the chapter we have assumed that the overdensities are linear and that red-

shift distortions are negligible. We know that both of these assumptions are not accurate in our

universe. Under these simplified circumstances, we saw that the pair weight method is a viable

method. For surveys with complicated selection functions, the pair weight method might well

be the preferred method. It will be interesting to see whether the pair weight method remains a

quality method when we relax the assumptions of linearity and small distortions.



Chapter 3

Application of the Pair Weight Method to the Las Campanas Redshift Survey

with no Redshift Distortions

The power spectrum of matter in the universe can be used to measure the relevant pa-

rameters of models of the universe (e.g.,Eisenstein et al., 1999). Because galaxies are easily

visible, it is common to use galaxies as a tracer for the underlying density field. It has been

shown (Scherrer and Weinberg, 1998; Cole et al., 1988) that if galaxy formation is a local phe-

nomenon, then the galaxy power spectrum on large scales is different from the mass power

spectrum by a multiplicative constant (at least in the linear regime; Mann et al., 1998). This

constant is the bias factor. Because of the expected similarities between the galaxy power spec-

trum and the mass power spectrum, it is not surprising that power spectra have been taken for

all of the larger galaxy surveys.

Despite the wealth of measurements, the power spectrum on large scales is not yet well

determined. Part of the problem lies in the fact that the redshift surveys have different selection

criteria. For example, it is commonly thought (Peacock, 1997) that galaxies selected in the

infrared may have a bias factor that is lower than those selected in the optical. Another problem

is that the amount of data in each catalog still produces large (tens of percent) errors in the

measurement of the power spectrum at any given wavenumber.

The Las Campanas Redshift Survey is one of the larger publicly available redshift sur-

veys. The observational procedure maximized the number of galaxy redshifts given the tele-

scope time available to the team. Although this maximization of the telescope time means
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that the analysis will yield the highest possible number of galaxy redshifts, optimizing for the

number of galaxy redshifts makes the analysis of the survey more difficult. Each of the 327

observing fields has a different covering factor. That is, one field may have redshifts for 85

percent of the galaxies where the next field over has redshifts for 65 percent of the galaxies.

In addition to this, the catalog is 6 slices each having a width of1:5Æ. This means that it is

similar to 6 two-dimensional slices. This is a problem for analyses that rely on the measured

wavelength to fit comfortably within the catalog (in any direction). These characteristics make

the Las Campanas Redshift Survey difficult for traditional methods, yet an ideal catalog with

which to test the pair weight compression method.

In chapter 2, we described a method for extracting the power spectrum from a redshift

galaxy catalog. The pair weight compression method assigns weights to each galaxy pair within

the catalog based on the selection function (the number of galaxies within the catalog divided

by the true number of galaxies) of the catalog and the parameters that one wishes to measure.

The method requires that the selection function of galaxies to known for each position in the

catalog. It does not require that the selection function have any particular properties (like be-

ing an angular selection function times a radial selection function). This means that the pair

weight compression method should assign weights to the individual galaxy pairs to maximize

the information extracted from the galaxy survey (given the limitation of the number of window

functions available in the calculation). The LCRS certainly meets all requirements for the pair

weight compression method.

In section 3.1 we discuss the modifications to the catalog that were made to make the

analysis as accurate as possible. Section 3.2 describes the mathematics necessary to extract

the power spectrum from the catalog using the pair weight method. In section 3.3 we extract

the power spectrum from the LCRS. We then compare the results to power spectra from other

works. We conclude in section 3.4
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Figure 3.1: Top panel is the number of galaxies per logarithmic bin in the full Las Campanas
Redshift Survey. The bottom panel shows the ratio of the number of galaxies in the full LCRS
to the expected number based on the integrated selection function. The dashed line shows the
ratio based on the total number of galaxies in the cut range divided by the number of galaxies
found by integrating the selection function over the cut range.

3.1 Preparation of Catalog

The Las Campanas Redshift Survey (hereafter LCRS) of Shectman et al. (1996) contains

23720 galaxy redshifts stretching from� 10h�1 Mpc to � 800h�1 Mpc with the range of

75h�1 Mpc to 475h�1 Mpc being reasonably well sampled. Lin et al. (1996a) calculate the

selection function of this well sampled region. The number of galaxies per logarithmic bin is

shown in the top panel of Figure 3.1. In the lower panel is the ratio of the number of galaxies per
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logarithmic bin to the expected number (using the selection function code generously provided

by Huan Lin). This shows that the number of galaxies is well fit by the selection function in the

region beyond75h�1 Mpc.

In order to perform the calculations, we take two catalogs from the LCRS. The first is all

23720 galaxies, while the second is the 21996 galaxies between75h�1 Mpc and475h�1 Mpc.

The lower cutoff is due to the fact that the selection function does not adequately describe the

catalog below75h�1 Mpc. The upper cut is because the catalog is rather sparse beyond this

cut. This means that the statistics are not all that good. This means that the region beyond

475h�1 Mpc should not provide too much additional information.

3.2 Calculation of Power Spectrum

In chapter 2, we described how to extract the power spectrum from a galaxy survey using

the pair weight compression method. The final result was that the estimate of�� where� is the

index of the separation is given by:

�̂� =M�1
��B�ijWaijK

�1
ab WbklÆkÆl: (3.1)

Chapter 2 describes the Monte Carlo Calculation ofM , K, and the productBW in real space.

Notice that equation 3.1 does not indicate the space in which the calculation is performed.

Because all of the data, selection functions, etc. are in real space, perform all calculations in

real space until the final estimate. Then, use an FFT to obtain a Fourier space representation.

3.2.1 Calculation ofWbklÆkÆl

The only computation involved in Equation 3.1 not discussed in Chapter 2 is the calcu-

lation ofWbklÆkÆl. This is the only place in which the actual galaxy catalog data is introduced

into the calculation. For clarity, first look at the full integral:

WbijÆiÆj =

Z
�ni�njÆ(r� � jri � rjj)

(1 + 4�J3��ni)(1 + 4�J3��nj)

ni � �ni
�ni

nj � �nj
�nj

d3rid
3rj (3.2)
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whereni = n(ri). For simplicity of calculation this integral splits into three separate integrals:

WÆÆ =Wss � (Wds +Wsd) +Wdd: (3.3)

Where the subscriptd stands for data and the subscripts stands for smooth.

Wss =

Z
�ni�njÆ(r� � jri � rj j)

(1 + 4�J3��ni)(1 + 4�J3��nj)
d3rid

3rj : (3.4)

This integral is very similar to the integral forWB. The only difference is thatWB has an

additional factor ofÆ(r��jri�rjj). This means that the calculation forWB can be used for the

calculation ofWss and the only modification is in the translation from continuous representation

to discretized representation. When discretized,WB is a diagonal matrix whereasWss is a

vector.

Becausei andj are dummy indices

Wsd +Wds = 2Wds = 2

Z
ni�njÆ(r� � jri � rj j)

(1 + 4�J3��ni)(1 + 4�J3��nj)
d3rid

3rj : (3.5)

The valueni is not a smoothly distributed value but rather a series of delta functions at the

locations of the galaxies. This means that the integral overi becomes a sum over galaxies:

Wsd +Wds = 2
X

galaxies(i)

Z
�njÆ(r� � jri � rjj)

(1 + 4�J3��ni)(1 + 4�J3��nj)
d3rj: (3.6)

So for each galaxy, integrate over the shell centered on the galaxy’s position with radiusr�.

This set of 2-dimensional integrals can be performed by standard numerical techniques. It is

easiest to perform this integral as the sum of integrals on the sub-shells as they intersect each

of the LCRS observing areas. This is the set of integrals which takes the bulk of the computing

time when calculating the termWÆÆ.

The final term is

Wdd =

Z
ninjÆ(r� � jri � rj j)

(1 + 4�J3��ni)(1 + 4�J3��nj)
d3rid

3rj: (3.7)

Once again the valuesni andnj are a series of delta functions at the locations of the galaxies.

So this integral should actually be written

X
galaxies(i)

X
galaxies(j 6=i)

Æ(r� � jri � rj j)

(1 + 4�J3��ni)(1 + 4�J3��nj)
(3.8)
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where the delta function is1 if r� � jri � rjj = 0 and0 otherwise. Because there are essen-

tially no galaxy pairs with exactly separationr�, the calculation must be relaxed somewhat.

In addition to this, the full calculation is using sums over discrete values (�) to approximate

integrals. This means that the galaxy pair should contribute to the integral even if the separation

is not equal to the arbitrary choice of�. To accommodate this, simply apply the contributions

to the two values ofr� which bracketed the actual separation. The fractions (flower andfupper)

apportioned to each integral are reminiscent of linear interpolation:

flower =
rupper � rsep
rupper � rlower

; fupper =
rsep � rlower
rupper � rlower

: (3.9)

This sum can be done exactly as written with a reasonable amount of computing time. In fact,

the sums can be replaced

X
galaxies(i)

X
galaxies(j 6=i)

! 2
X

galaxies(i)

X
galaxies(j>i)

(3.10)

to save half of the computing time.

Because the termsWss andWsd +Wds are, in fact, calculated as true delta functions in

�, it is necessary to reduce the value ofWdd so that it will contain the same volume. The delta

functions mean that the volume is actually a spherical shell (with no width) with area4�r2�. So

multiply by r2� and divide by

Z r�

r��1

(1�
r� � r

r� � r��1
)r2dr +

Z r�+1

r�

(1�
r � r�

r�+1 � r�
)r2dr: (3.11)

This places all of the terms inWÆÆ on the same footing, so they can be added together. With

the calculations from chapter 2, there is now a complete description of the calculation of�̂� in

real space.

3.2.2 Measuring the Power Spectrum

The next step is to put it all together to obtain a measurement of the power spectrum

with error bars. Equation 3.1 gives the measurement of the power spectrum at wavelengthk�
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marginalized over all other possible parameters. SinceM is just the inverse of the covariance

matrix for the parameters��, the error is given by
p
M�1

�� . Although this gives the proper mea-

surement at a particular wavelength (a delta function in width) this is not usually the quantity of

interest. In fact, this quantity is anti-correlated. This means that neighboring points have covari-

ances that are negative. Because neighboring points are expected to have similar values it makes

sense to use a correlated measurement rather than an anti-correlated measurement. Smoothing

over an appropriate window produces smaller error bars at the expense of measuring a region

aroundk� rather than measuring onlyk� itself.

The first smoothing of interest produces what we will call the correlated spectrum. This

is obtained by multiplying equation 3.1 byM
�=
P

�M
� :

�̂correlated� =
1P

�M
�
B
ijWaijK

�1
ab WbklÆkÆl: (3.12)

We must divide by the sum of the row of the Fisher matrix to make sure that the measure-

ment is unbiased. Notice that this smoothes the measurement using the Fisher matrix as the

smoothing function. This will correlate the data over a reasonably small width. This is a nice

representation because it is the measurement that emerges most naturally from the data. Also,

this measurement is nice and smooth. This is because smoothing reduces the error bars because,

instead of using the measurement at just the point of interest, it averages over the surrounding

points as well. In this case, the error bars are given by
p
(M

)=

P
� M
�. If the Fisher matrix

is reasonably sharply peaked, then this representation will yield a valid, unbiased estimate of

the power spectrum. In fact, most analyses use a similar weighting of the data to achieve their

result. It means, however, that the measurements are not independent of one another.

The second smoothing function that produces an interesting result is obtained by using

the square-root of the Fisher matrix as the smoothing function. There are many possible versions

of the square-root. In this paper we diagonalize the Fisher matrix and take the square root of

the Eigenvalues. This measurement is interesting because

h�M
1

2 ��M
1

2 �i = 1 (3.13)
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That is to say that, smoothing with the square root of the Fisher matrix results in measurements

that are uncorrelated. For this reason, we call the result decorrelated.

�̂decorrelated
 =
1P

�M
1=2

�

M�1=2

� B�ijWaijK

�1
ab WbklÆkÆl: (3.14)

The errors on the measurements�̂decorrelated
 are just1=
P

� M
1=2

� .

3.2.3 Correcting for Discrete FFT Errors

The process of using discrete matrices rather than the true continuous values leads to one

other problem. The calculation of the estimates of the power spectrum is actually a calculation

of the Fourier transform of the estimate of the correlation function. Taking the Fourier trans-

form of the discretized version of the prior value of the correlation function should yield the

discretized version of the prior power spectrum. However, performing this calculation actually

yields a power spectrum which is lower (and at the largek end much lower) than the prior

value of the power spectrum. This is because the discrete FFT of the prior power spectrum is

necessarily bumpy. On the other hand, the prior correlation function (obtained using a contin-

uous Fourier transform) is smooth. The power contained within the extra bumps are lost in the

calculation. As the binning becomes finer (as more points are added) the discrepancy becomes

smaller.

Fortunately, the prior value of the correlation function tells us exactly how to correct for

this error. If the measured correlation function is exactly the prior correlation function, then the

measured power spectrum should be exactly the prior power spectrum. This means that in order

to obtain the corrected estimate of the power spectrum, take the uncorrected value of the power

spectrum (before doing any smoothing) and multiply by the ratio of the prior power spectrum

to the FFT of the prior discretized correlation function.

Figure 3.2 shows the results of the correction in both the 31 by 31 matrix and the 63 by

63 matrix. The dashed lines show the estimate for the power spectrum without the correction.

The solid lines show the same results with the appropriate corrections applied. In both cases
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Figure 3.2: Solid lines show the correlated versions of the corrected power spectra. Dotted lines
show the same versions for the uncorrected power spectra. Shaded regions show the expected
(1-�) errors.

the correction is a factor of a few at the largestk probed. Notice that the agreement between

the measured power spectra becomes much better in the corrected version than it was in the

uncorrected version.

3.3 Power Spectra

3.3.1 Power Spectrum of the Full LCRS

Figure 3.3 shows the correlated and decorrelated estimates of the redshift space power

spectrum for the full LCRS catalog. On small scales (largek) the measured power is lower

than that of the prior. On large scales, the measured power is larger than that of the prior.

The correlated version (the solid line) appears to have variations that are within the expected

errors. However, the decorrelated measurement has errors which are larger than expected (i.e.,
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Figure 3.3: Power spectrum of all 23720 LCRS galaxies. The shaded region shows the expected
deviations from the prior power spectrum for the correlated measurements. Diamonds show the
measured decorrelated power for a bin with horizontal and vertical error bars. The horizontal
error bars show the full width at 1/4-maximum. The position of the points is given by the center
of the full width at 1/4-maximum region. Stars also show the measured power for a bin, however
the measured power is negative. The solid line is the positive portion of the correlated power
spectrum measurement. Notice that the scatter between points is much larger than the expected
errors. This is due to the galaxies where the selection function is very small.

neighboring points are separated by much more than the error bars). The scatter is due to the

large contributions from the few galaxies in sparsely sampled locations. Also, the power on the

largest scales is likely to have been enhanced by these low selection function galaxies.

At locations wherek > 0:3h=Mpc�1 the estimates take a large upturn. Hamilton (2000)

found that when taking the fast Fourier transform, the outer portions of a matrix are not always

faithfully represented. It appears that (Figure 3.2) the last few points of the measurement are

systematically too high. This means that when looking at the results, one should take the outer

portions of the matrix less seriously than the middle.
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Figure 3.4: Power spectrum of the cut catalog’s 21996 LCRS galaxies. The lines and symbols
are as described in Figure 3.3. Notice that the error bars are now consistent with the scatter of
the points.

3.3.2 Power Spectrum of the Cut LCRS

By cutting the LCRS at75h�1 Mpc and475h�1 Mpc, only the region which is well

fit (this eliminates the small redshift galaxies) by the Lin et al. (1996a) selection function and

which is well sampled (this eliminates the most distant region) is included in the measurement.

By using only the best region of the catalog, systematic errors (from a mismeasured selection

function where the selection function is too low to be included in the fit to the selection function)

in the measurements will be reduced. The results of this analysis are shown in Figure 3.4.

The correlated power spectrum is positive at all wavelengths. The errors in the measure-

ment of the power spectrum using the cut catalog appear to agree with the expected level of

errors. It is interesting to note that the measured power spectrum agrees rather well with the

prior power spectrum (particularly in shape). The region withk >� :3 h Mpc�1 is likely to be
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inaccurate. This means that both of the negative values measured in the decorrelated power

spectrum occur where it is likely to be affected by aliasing.

The prior value of the power spectrum cannot be completely ruled out by our measure-

ment. First of all, on the largest scales (smallk), redshift distortions will tend to add power to

the measurement. On the very smallest scales (largek), redshift distortions will tend to reduce

the measured power. Although the prior cannot be completely ruled out, it does appear that the

measured power spectrum is steeper than the prior.

There is some evidence that the power spectrum is turning over at about:06 h Mpc�1.

The region with smaller values ofk is likely to be contaminated by the FFT aliasing power

from largerk into the bins with smallerk. In fact, the first few measured points are not plotted

due to severe aliasing problems. Unfortunately, the measurement is too insensitive to make any

definitive statement about the turn-over of the power spectrum.

3.3.3 IRAS 1.2 Jy Power Spectrum

Figure 3.5 shows the measured power spectrum for the IRAS 1.2 Jy survey. Once again,

the line is the pair weight measurement. The line is solid where positive. The diamonds show

the canonical measurement by Fisher et al. (1993) with error bars. The stars show the power

spectrum measured by the combined 1.2 Jy and QDOT surveys as measured by Tadros and

Efstathiou (1995). The pair weight measurement appears to be noisier than expected. This may

be due to errors in the calculation of the Fisher matrix elements. It is clear, however, that the

pair weight measurement is similar to the measurements by Fisher et al. (1993) and Tadros and

Efstathiou (1995).

3.3.4 Tests of the Pair Weight Method

Now that we have a power spectrum measured by the pair weight method, we would like

to know the limitations of the method. The pair weight method can be tested in two additional

ways. The first is to work with a data set with a known power spectrum. The second is to
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Figure 3.5: Power spectrum for IRAS 1.2 Jy catalog. The line is the pair weight measurement.
The line is solid where positive, dotted where switching signs and dot-dashed where negative.
Also shown are measurements by Fisher et al. (1993) (diamonds) and Tadros and Efstathiou
(1995) (stars). Tadros and Efstathiou (1995) results report the power spectrum measured from
the combined 1.2 Jy and QDOT surveys.

work with a prior power spectrum which is not expected to be correct to see if the selected prior

affects the outcome of the measurement.

Mock Catalog with Zero Power

In order to test whether the pair weight method is able to extract the correct power spec-

trum from data with a known power spectrum, we tested it against a mock galaxy catalog. The

mock galaxy catalog was created by randomly selecting galaxies based on the Huan Lin selec-

tion function. This means that the power spectrum (for nonzero values ofk) should be zero.

The results of the analysis using this mock catalog are shown in Figure 3.6. Clearly, the power

measured is much smaller than the prior power spectrum. In fact the measured value in the

correlated power spectrum is approximately equal to the error bar supplied on the prior. This is
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Figure 3.6: Power spectrum as measured from a mock catalog. The mock catalog has the
correct selection function for the entire range of the LCRS. The input power for the catalog is
zero. Here the error bars are constant in the logarithm assuming that the measured power is
approximately equal to the prior power.

what one would expect. However, the measured power is systematically negative. This means

that when the power in a data set is much lower than the prior value, there may be some sort

of imprinting of the prior onto the data. This also says that the pair weight method, due to the

errors associated with the calculation, may not measure zero all that well.

Cut LCRS with Flat Prior

When working with a prior value of the power spectrum it is important to test whether

the prior value biases the calculation in some way. In other words, it is important to know

that the method is measuring the data rather than measuring the prior. To test this, we used a

second prior with a very different shape than that of Eisenstein and Hu (1999). We used a prior

that was uniformly104(h�1Mpc)3. This prior leads to the simplest analysis. This is because the
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Figure 3.7: Power spectrum measured with the 21996 galaxies in the cut LCRS catalog. Again,
the shaded region is the expected errors assuming the flat prior is correct. The data points
(diamonds for positive and stars for negative) show the decorrelated results. The solid line is
the correlated version smoothed with the typical smoothing of�priorM�prior. The dotted line is
the correlated version using just the Fisher matrixM as the smoothing function. The dashed
line is the result from the more realistic prior power spectrum.

Fourier transform of a flat power spectrum is aÆ function. This means that our matrices become

diagonal. The other benefit of the flat prior is that even when discretized the Fourier transform

of the real space correlation function is still a flat power spectrum. This means that there is no

discretization correction. The results from the analysis of the cut LCRS using the flat prior are

shown in Figure 3.7. The measurement is positive and is consistent with the expected errors.

In addition to this, the measured power is similar to that measured with the more realistic prior.

On the largest scales, the flat prior measures a smaller value for the power spectrum. On the

smallest scales, the flat prior measures a slightly larger value for the power spectrum. This is

probably due to power shifting from locations where the power divided by the prior is high to

locations where the power divided by the prior is low. This is because the smoothing function
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Figure 3.8: Power spectra for PSCz, APM and LCRS using different methods. The solid shows
the power spectrum of LCRS measured with the pair weight method using the Eisenstein and
Hu (1999) power spectrum as the prior. The diamonds and the associated error bars are the
power in LCRS measured by Lin et al. (1996b). The squares and associated error bars are the
power measured by Sutherland et al. (1999) from the PSCz. The stars and associated error bars
are the power spectrum measured by Gazta~naga and Baugh (1998) for the APM.

(�priorM�prior where�prior is the discretized version of the prior power spectrum, and thus not

constant) assumes that the measured value of the power spectrum is close to the prior value.

This is clearly false with this outrageous prior power spectrum. To correct this the dotted line

shows the correlated power spectrum usingM as the smoothing function. This reduces the

problem. In fact, the flat prior power spectrum produces a measured power spectrum that is

very similar to that measured by the more realistic power spectrum. This is a good indication

that the prior power spectrum is not biasing the results.
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3.3.5 Comparison of Pair Weight Results to Previous Results

Figure 3.8 shows the comparison of the Lin et al. (1996b) and the correlated measurement

using the pair weight method with the Eisenstein and Hu (1999) prior. Like Lin et al. (1996b)

the pair weight method shows some evidence that the power spectrum turns over at smallk.

Notice that the pair weight method measures smaller power than does Lin et al. (1996b), on

almost all scales. However, by multiplying the result from the pair-weight method by 2, we

obtain the same result as Lin et al. (1996b) over our well-measured region. It is not at all clear

why two analyses should obtain results that are exactly off by a factor of 2.

Also plotted is the measurement of the power in PSCz by Sutherland et al. (1999)

(squares) and the results from the APM by Gazta~naga and Baugh (1998). The pair weight

method measures very nearly the same power in LCRS as Sutherland et al. (1999) does for

PSCz. This result is surprising due to the fact that it is commonly believed that IRAS selected

galaxies will have a smaller bias than optically selected galaxies. However, the APM results are

also from an optically selected survey, and they also appear to agree with the PSCz results. This

may be an indication that the bias factor of optically selected galaxies is not all that different

from that of IRAS selected galaxies.

3.4 Discussion and Conclusions

In this chapter we described how to apply the pair weight method to an actual data set.

We then applied the pair weight method to the Las Campanas Redshift Survey using a selection

function provided by Huan Lin and a�CDM prior power spectrum from Eisenstein and Hu

(1999). The measured power spectrum of the entire LCRS was noisier than expected. Inclusion

of galaxies where the selection function is small (several galaxies are in locations where the

actual selection function is zero) caused errors in the power spectrum.

We then cut the LCRS to include only the region where the selection function fit the data

well. After calculating the power spectrum, we found that the discrete nature of our measure-
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ment introduces errors that can be corrected. The corrected power spectrum calculated with

the cut LCRS appears to be good. The fluctuations in the measurement are consistent with the

expected errors. This measured power spectrum is quite similar to the prior power spectrum.

The measured power spectrum was slightly larger on large scales and slightly smaller on small

scales. It is possible that these differences are due to redshift distortions.

Next, we performed the pair weight calculation with a flat prior power spectrum. The

measured power for the flat prior case is consistent on scales where the calculation should be

accurate with the measurement using the more realistic prior. On the large scales, however,

the flat prior yields lower power. This is due to power shifting from largek to smallk. When

smoothed over a more appropriate window the flat prior result agrees very well with the result

from the more reasonable prior.

Finally the measured power spectrum was compared to other works. The power spectrum

measured from LCRS using the pair weight method was lower than that measured by Lin et al.

(1996b) by a factor of 2. It is not clear what causes this discrepancy in the measurement.

However, our results look nearly identical to the results of Sutherland et al. (1999) from their

analysis of the PSCz survey. This is surprising due to the fact that the PSCz is an IRAS selected

survey which is commonly thought to be less biased than an optical survey. However, the APM,

another optical catalog, has very nearly the same power spectrum (Gazta~naga and Baugh, 1998)

as measured in LCRS by the pair weight method and in the PSCz survey. It appears that optically

selected galaxies and IRAS galaxies may be more similar than is commonly believed.



Chapter 4

Spherical Redshift Distortions

Redshift surveys give a 3-dimensional picture of the galaxy distribution in which the

redshift of a galaxy is taken as a measure of its distance, through Hubble’s law. In addition to

redshift, due to cosmological expansion, galaxies have “peculiar” velocities caused by gravita-

tional (and perhaps other) interactions. This causes distortions in the catalog’s redshift patterns.

Kaiser (1987) pointed out that the distortions have a simple form in Fourier space. He showed

that a wave with amplitudeÆ(k) has an amplification in redshift space of1 + ��2. So

Æs(k) = (1 + ��2)Ær(k): (4.1)

where the superscripts,s andr, refer to redshift and real space respectively (as they will through-

out this chapter). Here� is the cosine of the angle between the line of sight and the wavevector

k. � = f=b is the ratio of the dimensionless linear growth rate (f ) to the linear light-to-mass

bias (b). In the linear regime, peculiar velocities (v) are related to overdensities (Æ) by the

continuity equationr � v + �Æ = 0 (whereH = 1). In standard pressure-less Friedmann

cosmologies, the growth rate is just a function of
,

f � 

4

7
m +


�

70

�
1 +


m

2

�
(4.2)

(Lahav et al., 1991) From equation 4.1 Kaiser concluded that since the Fourier transform of the

correlation function, the power spectrum orP (k) = hÆ(k0); Æ�(k + k0)i is also amplified. In the

plane-parallel limit this becomes:

P s(k) = (1 + ��2)2P r(k): (4.3)
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Simply stated, the plane-parallel approximation is the assumption that the angular separation of

the galaxies is small enough such that their line-of-sight displacements are effectively parallel.

This assumption was applied by many subsequent papers (Lilje and Efstathiou 1989; McGill

1990; Loveday et al. 1992; Hamilton 1992, 1993; Gramann et al. 1994; Bromley 1994; Fry

and Gazta~naga 1994; Fisher et al. 1994; Cole et al. 1994, 1995). In order for the plane parallel

approximation to be close to accurate one must only take into consideration pairs of galaxies

which are separated by a small angle on the sky. Unfortunately, in order to obtain good statistics

(to include the largest number of galaxy pairs), one would like to have this angle be as large as

possible. Also, linear theory of clustering is most accurate in regions with small overdensities:

the largest regions possible. Therefore, methods involving the plane parallel approximation

must strike a compromise between angles which are too large and separations which are not

large enough. For example, Hamilton (1993) and Cole et al. (1994) both took this angle to be

� 50 deg. Cole et al. (1994, fig. 8) show from simulations that the plane parallel approximation

causes errors of about 5 per cent if the analysis is cut off at50Æ.

In reality the distortions are not parallel but rather radially directed towards (or away

from) the observer. A proper treatment of the spherical distortions should be superior to the

plane parallel treatment in several ways. First, the same catalog can provide better statistics

for large wavelengths. Second, larger wavelengths (regions where the linear clustering is more

valid) can be included in the analysis. Finally, the systematic errors introduced by the plane

parallel approximation can be eliminated completely.

Progress on spherical distortions began with Fisher et al. (1994). They expanded the

density field of the 1.2-Jy survey into spherical harmonics, windowing the density in the radial

direction with Gaussian windows at several depths. Heavens and Taylor (1995) expanded the

radial direction in a complete set of spherical waves. Both of these methods required a prior

shape of the power spectrum. Ballinger et al. (1995) allowed the power spectrum to vary in six

bins thereby eliminating the prior assumption of the shape for the power spectrum. Hamilton

and Tegmark (2000b) introduced several improvements, allowing them to measure a full, high
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resolution, power spectrum and also measure� as a function ofk. These brute force techniques

have been used to analyze most of the current available catalogs (e.g., Tadros et al. 1999,

Hamilton and Tegmark 2000). The drawback to brute force techniques are that they require

the assumption of Gaussian fluctuations (not true in the nonlinear regime) and computing costs

constrain the brute force techniques to work on only the largest scales.

Hamilton and Culhane (1996) began working on a method for measuring the power spec-

trum and� using a fully spherically symmetric analysis that had the flexibility to be used in the

nonlinear regime. In particular we derived a spherical distortion operator which when applied

to the undistorted correlation function gives the distorted correlation function:

�s(r12; r1; r2) = Ddist�
r(r12) (4.4)

where

Ddist =

�
1 + �(

@2

@r21
+
�(r1)

r1

@

@r1
)r�21

� �
1 + �(

@2

@r22
+
�(r2)

r2

@

@r2
)r�22

�
(4.5)

Here,

�(r) �
@ ln r2�ns(r)

@ ln r
(4.6)

where�ns(r) is the galaxy selection function in redshift space for the catalog in question. Look-

ing at the distortion operator in equation 4.5 notice that the distortions depend only on� and the

selection function of the catalog. One would like to use the properties of the distortion operator

to find a way to measure� for each catalog. Hamilton and Culhane (1996) outlined a method

for doing exactly that. However, in applying this method we found that some changes must be

made in order to account for the properties of the individual catalog.

4.1 Spherical Shape Functions

In order to measure the real space power spectrum and� from a redshift survey it is

necessary to have a model for the redshift distortions. In the Appendix, it is shown that, in
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linear theory, the redshift space correlation function can be written as

�s(r12) =
X
i

gi(�)Bi(r12; r1; r2)�i(�(r12); ��(r12); ��(r12);
���(r12)) (4.7)

with

�� �
2

r212

Z r12

0
�(r)rdr;

�� �
3

r312

Z r12

0
�(r)r2dr;

��� �
5

r512

Z r12

0
�(r)r4dr: (4.8)

Each of theB’s is a function only of the shape of the triangle formed byr1, r2, andr12. Each

of the measurable quantities

��i(r12) � gi(�)�i(r12) (4.9)

can be separated into a function of the separation (which can be transformed intoP (k)) times

a function only of�. The choice ofB’s and��’s is not unique, however the sum in Equation 4.7

must be correct.

4.1.1 Importance of�

Hamilton and Culhane (1996) assumed that� could be treated as a constant, in particular,

that

Z
�iBj(r12; r1; r2)Bk(r12; r1; r2)d

3r1d
3r2 = �iMj;k (4.10)

for all i; j; k. In practice, the true� does not satisfy this equation. So then the question becomes:

what is the meaning of� in the first place? We can see from the definition that� (Equation 4.6)

measures the distortions caused by selection function of the catalog. Since each catalog has a

different �n(r) each catalog has a different�(r). Ideally, the distortions can be calculated ex-

actly. In the above description of the method� is not specifically mentioned. However, in order

to treat the effect of� properly it must be allowed to vary overr1 or r2. In the method outlined
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above the only functions allowed to vary overr1 andr2 are the shape functions (Bi(r12; r1; r2)).

So in order to treat� properly the shape functions must include�. Notice that the inclusion

of � forces us to use a selection function with no radial jumps (except for when the selection

function goes to zero).

4.1.2 Shape Functions

For our calculations we have chosen the following shape functions:

B0 � 1;

B1 �

�
�(r1)

r1
r12�1 +

�(r2)

r2
r12�2

�
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This choice of shape functions leads to the following expressions for��i:

��0 � (1 +
2

3
� +

1

5
�2)�(r12);

��1 �

�
1

3
� +

1

6
�2
�
��(r12); (4.12)
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; (4.13)

��3 � �2 ��(r12); (4.14)
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2
���(r12)

�
; (4.15)

��5 � �2���(r12); (4.16)

��6 �
�2

6
��(r12): (4.17)

4.2 Generalized Fourier Transform Windows

In Cole et al. (1995), Hamilton (1992) and Hamilton and Culhane (1996) it was stated

that the functions��sl (r12) (wherel = 0; 2; 4) can be transformed into a function of� timesP (k)

using Bessel functions:

P (k) = 4�

Z
�s
0;2;4(r12)j0;2;4(kr12)r

2
12dr12: (4.18)

Unfortunately, in the spherically symmetric case a single Bessel function is not sufficient for

some of the�s
l (r12) (wherel 6= 0; 2; 4). However, there are functions which will serve the same

purpose.

The first thing to notice is that the window overk will not effect �. This means that the

function for ��s needs to be a function of� times the function of the averages of�r(r). This
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is the reason for setting��i = gi(�)�i. In other words, take the functiongi(�) outside of the

windowing integral. Assume that

4�

Z
�s
l (r12)�jl(kr12)r

2
12dr12 =

4�

Z
fl(�(r12); ��(r12); ��(r12);

���(r12))�jl(kr12)r
2
12dr12 = P (k) (4.19)

in order to find�jl(kr12). In this equation�jl(kr12) is the generalized window. In the cases of

(l = 0; 2; 4) �jl(kr12) = 4�iljl(kr12) wherejl(kr12) is the usual spherical Bessel function.

Since this is not true for alli we want to find�jl(kr12) such that:

4�

Z
fl(�(r12); ��(r12); ��(r12);

���(r12))�jl(kr12)r
2
12dr12 =

4�

Z
�(r12)j0(kr12)r

2
12dr12: (4.20)

To find the appropriate windows solve this equation for each value ofl. First, choose functions

fl in such a way to make the calculations of the windows as simple as possible. The above

separation leavesfl; l 6= 0; 2; 4 to be a function of only one of the averages of�r(r12).Z 1

0

�
n

rn12

Z r12

0
rn�1�r(r)dr

�
�jl(kr12)r

2
12dr12 =

Z 1

0
�r(r12)j0(kr12)r

2
12dr12: (4.21)

Now switch the order of integration of the left hand side of equation 4.21:

Z 1

0
nrn�1

�Z 1

r
r2�n12

�jl(kr12)dr12

�
�r(r)dr = 4�

Z 1

0
�r(r12)j0(kr12)r

2
12dr12: (4.22)

Rename the integration variables so that the semi-infinite integrals are over the same variable:

Z 1

0
nsn�1

�Z 1

s
r2�n12

�jl(kr12)dr12

�
�r(s)ds =

Z 1

0
�r(s)j0(ks)s

2ds: (4.23)

One solution, perhaps the most restrictive solution, to this equation is found by equating the

integrands of the two sides of the equation:

nsn�1
�Z 1

s
r2�n12

�jl(kr12)dr12

�
�r(s) = �r(s)j0(ks)s

2: (4.24)

This can be further simplified to

Z 1

s
r2�n12

�jl(kr12)dr12 =
s3�n

n
j0(ks): (4.25)
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To find the new window differentiate equation 4.25 with respect tos. This gives:

�s2�n�jl(ks) = (�ksj1(ks) + (3� n)j0(ks))
s2�n

n
: (4.26)

The final form of the windows for functions of just one of the averages of�r (we have employed

recursion relations for spherical Bessel functions so that only even functions remain) is:

�jl(ks) =
1

n

�
k2s2

3
j0(ks) +

k2s2

3
j2(ks) + (n� 3)j0(ks)

�
: (4.27)

So estimates of��(r) can be transformed into estimates offi(�)�(k).

It turns out that the inverse relation is equally (if not more) important. Fortunately, the

inverse window functions are even easier to calculate. The equation

4�

(2�)3

Z 1

0

~jn(kr12)P (k)k
2dk =

n

rn12

Z r12

0
rn�1�(r)dr (4.28)

needs to be solved for~jn(kr12). However, because

4�

(2�)3

Z 1

0
j0(kr)P (k)k

2dk = �(r) (4.29)

equation 4.28 can be rewritten

4�

(2�)3

Z 1
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~jn(kr12)P (k)k
2dk =

n
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Z r12

0
rn�1

�
4�

(2�)3

Z 1

0
j0(kr)P (k)k

2dk

�
dr (4.30)

or

~jn(kr12) =
n

rn12

Z r12

0
rn�1j0(kr)dr: (4.31)

Now the�’s can be transformed to and fromP (k).

4.3 Pair Weight Compression with Spherical Redshift Distortions

In chapter 2 we showed how to extract power spectra from redshift surveys disregarding

redshift distortions. However, the pair weight compression method becomes more powerful

when redshift distortions are explicitly included. Not only can the real space power spectrum

be extracted, but it can also yield an estimate of�.
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First of all, look at the resulting estimate of�̂
 (Equation 2.20):

�̂
 =M�1

�B�ijWaijK

�1
ab WbklÆkÆl (4.32)

where

M�
 � B�ijWaijK
�1
ab WbklB
kl (4.33)

and

Kab �WaijhCijkliWbkl � 2WaijCikCjlWbkl: (4.34)

No major modifications of these formulae are necessary to explicitly include redshift distortions.

However, the meanings of some of these symbols change.

4.3.1 Shape Functions

The most necessary change comes from the definition ofB. Recall from chapter 2 thatB

comes from taking the derivative ofhÆiÆji with respect to the parameters we wish to measure.

In the case where redshift distortions are ignored, the only parameters of interest were the value

of the power spectrum at various values ofk. Now that redshift distortions are included

hÆiÆji = �ij + �n�1(ri)Æij =
X
�

���B�ij + �n�1(ri)Æij : (4.35)

Now each value of��� (after transforming into Fourier space) gives a measurement of the power

spectrum at a particular wavenumber times some function of�. This means that the informa-

tion aboutPk and�(k) is contained within the parameters���. Of course, one would like to

go straight to measuring the actual values ofPk and� with no intermediate steps. However,

because the data lie in real space, the direct measurement ofPk and� is infeasible. One can,

however, measure the parameters���, transform these parameters into Fourier space, and then

do a maximum likelihood calculation using these parameters (and the associated error bars) to

find the values ofPk and�.
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So differentiating Equation 4.35 with respect to��� yields just the shape functionsB�ij .

Actually, the differentiation occurs at a particular separation so the shape functions also include

a delta function:

@hÆiÆji

@ ���
= Æ(r� � jri � rj j)B�ij : (4.36)

Notice that the subscript� stands for the subscript of the particular shape function at the partic-

ular separation.

4.3.2 Window Functions

At each separation, instead of measuring one parameter, there are now seven parame-

ters to measure. Because there are seven parameters to measure it makes sense to use at least

seven window functions at each separation. In the case of the plane-parallel approximation the

window functions to use were obvious. The three different�’s were orthogonal to one another.

Each window was tuned to measure exactly one of the parameters of interest. This meant that

the data needed to be weighted by the Legendre polynomials of order 0, 2 and 4. In the case

of spherical distortions the parameters are not orthogonal to one another. However, we can still

make an analogous choice of window functions. In other words, use window functions like

those described in chapter 2 weighted by the shape functions. This should be a good choice be-

cause each window function will be picking out a majority of the information about a particular

parameter. Adding additional windows will again raise the amount of information available to

the parameter estimation. However, because the computation is so lengthy as it is, we want to

use the smallest possible number of parameters.

4.3.3 Better Final Parameters

The seven�’s are the natural parameters to measure. However, the physical meaning of

some of the�’s is not so clear. The Fisher matrix representation allows us to take a linear com-

bination of the measured parameters and form a more physically motivated set of parameters.
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To do this notice that

F�1;�2 =
@�1
@�1

F�1;�2
@�2
@�2

(4.37)

and

�i =
@�i
@�j

�j: (4.38)

However, it is common to have� as a function of� rather than the other way around. In

this case, the quantity@�i@�j
is unknown. In fact, if there are fewer values of� than� then�

may be over-determined. This means that the best choice is the one where the values of�, as

determined by�, make the best use of the data.

The best use of the data can be obtained by looking at the log-likelihood function

� lnL =
1

2
(�i � �̂i)F�i�j (�j � �̂j) (4.39)

which can be rewritten in terms of�:

� lnL =
1

2
(�i �

@�i
@�k

�̂k)F�i�j (�j �
@�j
@�l

�̂l): (4.40)

Setting the first derivative of� lnL with respect to�̂ equal to zero gives the best estimate of

�̂:

@(� lnL)

@(�̂k)
= �

@�i
@�k

F�i�j (�j �
@�j
@�l

�̂l) = 0: (4.41)

Rearranging this equation yields:

@�i
@�k

F�i�j�j =
@�i
@�k

F�i�j
@�j
@�l

�̂l: (4.42)

Using equation 4.37 gives:

@�i
@�k

F�i�j�j = F�k�l�̂l: (4.43)

This means that

�i = F�1�i�j

@�k
@�j

F�k�l�l (4.44)
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is the best representation of� given�. Notice that if there are as many values of� as there are

of � then equation 4.44 collapses to the expected:

�i = (
@�j
@�i

)�1�j: (4.45)

Using this formalism, each of the spherical distortion parameters� can be expressed as

a function ofP (k), �P (k) and�2P (k). These are parameters that make more physical sense.

The first is just the galaxy-galaxy power spectrum. The second is the galaxy-velocity power

spectrum. The third is the velocity-velocity power spectrum Hamilton and Tegmark (2000b).

Not only are these more physically motivated, but since we are ultimately trying to measure the

power spectrum and�, this gives us a small number of parameters with which to do a non-linear

�2 fit.

4.3.4 Discreteness Correction

In Chapter 3, we discussed the fact that a discrete representation of the correlation func-

tion can cause errors in the measurement of the power spectrum. This is true for the case with

redshift distortions as well. Upon transforming the prior value of the�’s (using the proper

generalized FFT window) the result should be the prior power spectrum. Unfortunately, for

any realistic prior power spectrum, a discrete FFT of the�’s does not yield exactly the prior

power spectrum. To correct for this, it is necessary to multiply the result of each FFT by the

discreteness correction (�i):

�i(k) =
Pprior(k)P

i �iprior(r)~ji(r)
: (4.46)

This means that, after the correction, if the measurement of� corresponds exactly to the prior

value of� then the measurement ofP (k) will be the prior value of the power spectrum, as

expected.
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4.3.5 Correlation and Decorrelation

As in Chapter 3, the result from equation 4.32 is a measurement of the parameter in

question with no width ink. This result actually anti-correlates neighboring points. That is to

say, the cross-covariance of two neighboring points will be negative. This is not an ideal way

to present the data, particularly because we expect neighboring points to have similar values.

The two ways that are sensible are the correlated and decorrelated versions. The decorrelated

version has the advantage of having each estimate being uncorrelated with any other estimate.

This means that the decorrelated points can be used in a least squares fit as a simple sum of

the deviation from each estimate. For obtaining the best least-squares result, the decorrelated

estimates are clearly the best choice.

The correlated estimates give results which are easy to visually compare one set of results

with another. That is to say, that when using correlated points, the scatter is small enough that

the most likely value of the parameter is easily determined from a graph.

The method for obtaining the correlated and decorrelated estimates were given in Chapter

3. There is one major additional concern when using the redshift distortion analysis. This is

that the decorrelation (correlation) matrix naturally combines some of theP (k) estimate in with

pieces of the�P (k) and the�2P (k) terms. A representative row of the Fisher matrix is shown

in Figure 4.1. In going from the anti-correlated version of the estimates, it would be nice to

avoid entangling one type of estimate with another.

To disentangle the three estimates from one another first defineq̂ (here the hat denotes a

measurement):

hq̂�i = F�
�
 : (4.47)

whereF is just the Fisher matrix and�
 is one of the new parametersP (k), �P (k), or�2P (k).

Notice that the Fisher matrix smoothes over all three parameters over all wavenumbers. To
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Figure 4.1: The rows of the Fisher matrix are one of the smoothing windows. Plotted here
are rows corresponding to theP (k) term (solid) the�P (k) term (dotted) and the�2P (k) term
(dashed). Each row is peaked about the nominal wavelength and contains contributions from
each of the three terms.

explicitly disentangle the three parameters rewrite equation 4.47:

hq̂a(k)i =
X
b

"
h�̂b(k)i

�b(k)

#X
k

Fab(k; k
0)�b(k

0): (4.48)

Notice that the Greek indices have been expanded into Latin indices over the type of parameter

andk the wavenumber. Also the summations are now explicitly included because some of the

following equations are not summed. The term in square brackets is added to form the definition

of Fab:

Fab(k) �
1

�b(k)

X
k

Fab(k; k
0)�b(k

0) (4.49)

with no summation overb. This allows 4.48 to be rewritten

hq̂a(k)i =
X
b

Fab(k)h�̂b(k)i (4.50)

with no summation overk. Now, Fab(k) is a 3 � 3 matrix at each value ofk. To obtain a

measurement of each of the�’s multiply both sides of equation 4.50 by the inverse ofFab(k):

�b(k) =
X
a

F�1ba (k)hq̂a(k)i (4.51)
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Figure 4.2: Representative rows of the correletion matrix. Each line shows the window (one
of the rows ofC) over which one of the parameters has been smoothed to obtain a correlated
estimate. These are the same rows that are plotted in Figure 4.1. TheP (k), �P (k) and�2P (k)
rows are shown by the solid, dotted and dashed lines respectively.

or

�̂b(k) =
X
a

F�1ba (k)q̂a: (4.52)

Equation 4.52 gives the estimate of�b(k) which has an expectation value of the prior

power spectrum at the given wavelength. Furthermore, each of the parameters has no contri-

bution from the others (provided that the true power spectrum is similar in shape to the prior

power spectrum). When starting with the anti-correlated estimate of�̂b (i.e.,F�1ab q̂b), to obtain

the untangled and correlated measurement of� use the band-power window matrixCab:

�̂corra (k) =
X
b

F�1ab (k)
X
c;k0

Fbc(k; k
0)�̂c(k

0) �
X
c;k0

Cac(k; k
0)�̂c(k

0) (4.53)

where

Cac(k; k
0) �

X
b

F�1ab (k)Fbc(k; k
0): (4.54)

Figure 4.2 shows rows of the correlation matrix (C). Notice that each of the parameters

is nicely peaked about the nominal wavenumber within the same type of parameter. Similarly,
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theP (k) term is nicely zero in the other parameters. However, the contributions to the terms

�P (k) and�2P (k) from theP (k) term can be quite large if the power spectrum is not similar

in shape to the prior power spectrum.

To obtain the covariance matrix of the correlated estimates take

h��̂corra (k)��̂corrb (k0)i = Cac(k; k
00)h��̂c(k

00)��̂d(k
000)iCbd(k

0; k000): (4.55)

Next recognize that by the definition of the Fisher matrix

h��̂c(k
00)��̂d(k

000)i = F
�1
cd (k

00; k000); (4.56)

and from the definition ofC (Equation 4.54):

h��̂corra (k)��̂corrb (k0)i = F�1ae (k)Ffe(k; k
0)F�1bf (k0) (4.57)

with implicit summation over each pair of Latin indices and no summation overk or k0.

Notice that if the smoothing matrix is instead defined as (Hamilton and Tegmark, 2000b)

M = F
1=2 (4.58)

then the covariance matrix is then the unit matrix. Here the square-root of a matrix is any matrix

that satisfies:

F =M
>
M: (4.59)

For example, let

ẑ� �M�� �̂� (4.60)

then

h�ẑ��ẑ�i = 1�� (4.61)

where1 is the unit matrix. This allows the estimates to be decorrelated from one another.
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Once again, however, it would be better if the estimate of a particular parameter were

disentangled from the other parameters. To do this, rewrite

hẑa(k)i =
X
b

"
h�̂b(k)i

�b(k)

#X
k

Mab(k; k
0)�b(k

0): (4.62)

So definingM:

Mab(k) �
1

�b(k)

X
k

Mab(k; k
0)�b(k

0) (4.63)

again with no summation overb. This allows 4.62 to be rewritten

hẑa(k)i =
X
b

Mab(k)h�̂b(k)i: (4.64)

Now to disentangle the decorrelated parameters multiply each side by the inverse ofM:

�̂decorr� (k) =M�1
��(k)ẑa(k): (4.65)

Notice that by disentangling the different parameters at each wavenumber the three parameters

at each wavelength are no longer decorrelated from one another. However, all parameters at each

wavenumber remain decorrelated from all parameters at every other wavenumber. Specifically,

h��̂decorra (k)��̂decorrb (k)i =M�1
ac M

�1
bc (4.66)

with summation overc only.

Figure 4.3 shows the representative decorrelated smoothing windows. Notice that in

each case the smoothing window of the relevant parameter is sharply peaked about the nominal

wavenumber. Also the contribution toP (k) from the�P (k) and�2P (k) terms is minimal as

is the contribution to the�P (k) term from the�2P (k) term.

4.4 Information in LCRS

Figure 4.4 shows the information contained within each of the decorrelated parameters.

LCRS has the highest amount of information for the redshift space power spectrum. It is clear
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Figure 4.3: Representative rows of the decorreletion matrix. Each line shows the window (one
of the rows ofD) over which one of the parameters has been smoothed to obtain a decorrelated
estimate. These are the same rows that are plotted in Figure 4.1 and Figure 4.2. TheP (k),
�P (k) and�2P (k) rows are shown by the solid, dotted and dashed lines respectively.

Figure 4.4: Information in the decorrelated parameters. The upper solid line is for the redshift
space power spectrum. The lower solid line is for the real space power spectrum. The dashed
line is for�P (k) and the dotted line is for�2P (k).



70

that this should always be the case. Upon adding additional measured parameters, the informa-

tion per parameter should go down.

In this case the total amount of information appears to be reduced by at least a factor of

two. Clearly, the information has not been apportioned out to the various terms. It appears that

the terms containing� do not contain a large fraction of the information. There has been an

actual leak in the analysis. This is largely due to the inability to measure the covariance between

parameters exactly. The off diagonal elements of the covariance matrix are typically calculated

to about 5 per cent expected errors. This means that if one were able to measure the off-diagonal

elements of the covariance matrix to better precision, the information retained would go up by

as much as a factor of a few.

This Figure also shows that, to get an appreciable amount of signal for the�P (k) term

or the�2P (k) term, one must use coarse gridding.

4.5 Discussion

In this chapter, we discuss the extension of the pair weight method to the case of spherical

redshift distortions. In linear theory, the spherical redshift distortions can be modeled as the

sum of seven shape functions times functions of the correlation function(the�’s) and� (the

g’s). Using the generalized Fourier transform functions, each of the�’s can be transformed into

a measurement of the real space power spectrum. Using the properties of the Fisher matrix the

seven estimates can be combined into three physically meaningful quantities:P (k), �P (k) and

�2P (k).

Using the Las Campanas Redshift Survey, we showed that the estimates ofP (k) can be

disentangled from the estimates of�P (k) and�2P (k). The Fisher matrix, the disentangled

correlated band-powers and the disentangled decorrelated band-powers are all sharply peaked

about the wavenumber of interest. Thus, any smoothing will leave an estimate that is represen-

tative of the nominal wavenumber.

It is clear that the measurement of the real space galaxy-galaxy power spectrum is a
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more difficult measurement than that of the redshift space galaxy-galaxy power spectrum. For

LCRS, using the pair weight compression method, the expected errors for the real galaxy-galaxy

power spectrum are only about a factor of two as large as those for the redshift space power

spectrum.



Chapter 5

Measurements of� and the Power Spectrum from the Las Campanas Redshift

Survey

The Las Campanas Redshift Survey is one of the largest publicly available 3-dimensional

galaxy catalogs. The selection criteria allowed the team to extract the largest number of galaxy

redshifts given their telescope time. Unfortunately, this method of selecting targets makes the

resulting survey more difficult to analyze. Although the catalog has been publicly available for

nearly four years, there are no published real space power spectra. This is remarkable particu-

larly since LCRS is still the publicly available catalog with the largest number of redshifts. By

contrast, the IRAS PSCz catalog has been publicly available for less than a year and there are

two available real-space power spectra (Tadros et al., 1999; Hamilton et al., 2000).

Matsubara et al. (2000) have made the most progress, by publishing an estimate for� (the

amplitude of the redshift distortions),�8 (the amplitude of the power spectrum) and� (a shape

of the power spectrum). This parameterization allows for a partial characterization of the power

spectrum. The parameterization does not reveal how well the data fit the simple model and

may hide interesting features. As the measurements of cosmological parameters (from galaxy

catalogs as well as other sources other sources) become more precise, these features become

more interesting. Particularly interesting is the size scale (k) at which the redshift distortions

become nonlinear.

In chapter 4, I generalized the pair weight compression method to allow the analysis of

redshift distortions and real space power spectra. The generalization calls for measuring (up to)
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seven parameters at each separation

�s(r) =
7X

i=1

��iBi(r1; r2; r12) (5.1)

where�s(r) is the redshift space correlation function, each of the��i’s is a measurable parameter

and each of theBi’s is function of the shape of the triangle formed by a galaxy pair and the

observer. Each��i can be transformed into a measure ofP (k) and�. By properly combining the

transformed��i’s one is able to obtain measurements of, not only the galaxy-galaxy power spec-

trum (P (k)), but also the galaxy-velocity (�P (k)) and the velocity-velocity (�2P (k)) power

spectra. Unfortunately, chapter 4, also said that the measurements of�P (k) and�2P (k) are

too imprecise to be measured without seriously reducing the number of independent estimates.

Here I apply the pair weight method to the Las Campanas Redshift Survey to obtain a real space

power spectrum. Then using this power spectrum as the shape of the true power spectrum, I

perform a least-squares fit to the amplitude of the power spectrum and�.

5.1 Real Space Power Spectrum

Figure 5.1 shows the correlated real space power spectrum as derived by the pair weight

method. The error bars on the real space power spectrum are larger than those for the redshift

space power spectrum. This is to be expected since there are now more parameters to fit with

the same information. The real space power spectrum appears to be similar to the redshift space

counterpart. Due to aliasing at the largek end (see Figure 3.2), and inaccuracy at the lowk

end, the inner half of the points (fromk = :1 � :3) of both curves should be considered to be

the most reliable. The similarity in amplitude of the real space power spectrum and the redshift

space power spectrum would imply a low value of�.

The calculation of this estimate only uses shape functions 0, 2 and 4 as defined in Ap-

pendix A. The inclusion of additional shape functions reduced the quality of the estimate. That

is to say that, not only was the estimate less believable, but the error bars were enlarged. When

calculating the Fisher matrix with Monte Carlo techniques, there are inevitably errors in some
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Figure 5.1: Power spectrum of the cut catalog’s 21996 LCRS galaxies. The solid line shows
where the measured real space power spectrum is positive. The line is dotted where either
end of the segment is negative. The shaded region is the expected error about the prior power
spectrum. The dashed line is the redshift space power spectrum. The diamonds with error bars
is the redshift space power spectrum measured by Lin et al. (1996b).

of the matrix elements. Unfortunately, when the matrices are inverted these errors can dominate

the calculation. In particular, errors in the off diagonal terms involving�0; 2 or 4 and�1; 3; 5 or 6

can contaminate the calculation of the estimates of�0; 2 or 4. It is also true that the scatter in

the measurement using only shape function 0, 2, and 4 is larger than the calculated error. This

can be seen in Figure 5.1. The fluctuations in the correlated power spectrum are larger than the

predicted errors (shaded region) especially at the largek end. This is addressed in the following

section.

5.2 Calculated Errors

The fluctuations in the measurements of neighboring points is empirically larger than the

error bars calculated from the Fisher matrix. It is clear that part of the problem is that high
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covariances between the measurements of two parameters gives a lower measurement of the

error than is reasonable. In addition to this, miscalculation of Fisher matrix elements increases

the problem. We have not yet been able to correct the error bars to reflect the true level of the

errors. In the remainder of this Chapter, we use an empirically calculated, multiplicative factor

to increase the level of the errors. That is to say, we use the relative scatter in the nominal “unit

variance” calculation as the correction factor.

5.3 Measurement of�

Figure 4.4 shows that the amount of information in any one estimate of�P (k) or�2P (k)

is very low. For this reason, to find the best estimate for� it is important to use all the available

information. On the smallest scales, however, nonlinearities may become important. The most

likely result of nonlinear contamination is that the estimate of� would be reduced. This is

because the linear model for redshift distortions squashes structures along the line of sight.

However, on the smallest scales the “fingers of God” clearly stretch structures along the line of

sight. At the same time, however, these bins at largek will also be contaminated by aliasing. For

these reasons, the calculation for the most likely value of� is performed at each wavenumber by

including information cumulatively up to that wavenumber. If nonlinearities become important

then� should drop perceptibly at large wavenumbers.

Figure 5.2 shows the best fit value of� for each wavenumber. In each case, the power

spectrum is assumed to have the shape of the measured correlated power spectrum. The first

six bins of the power spectrum have (unphysical) negative values. The power spectrum in these

bins is not accurately measured. For this reasons, these bins have been ignored for all of the

calculations. In each calculation, the only measured parameters are the amplitude of the power

spectrum and�. As expected, as more data is added to the calculation the variation in the best

measurement is reduced. Figure 5.2 shows no conclusive evidence for entering the nonlinear

regime. This is only slightly surprising since the smallest length scale probed is8h�1Mpc and

the location where one would expect to see nonlinearities is also affected by aliasing.
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Figure 5.2: This Figure shows the1 � � errors and best fit for� using the amplitude of the
correlated power spectrum as the only other free parameter. At each plotted wavenumber, the
fit uses information at smaller wavenumbers only. The stars show the best fit value for� at each
wavenumber.

Figure 5.3 shows the best fit value for the measurement of the amplitude of the correlated

power spectrum. As expected, as more information is added to the calculation the amplitude

of the power spectrum becomes less uncertain and the value tends toward unity. This means

that the best measured amplitude for the decorrelated power spectrum is the same as for the

correlated power spectrum.

At each wavenumber the amplitude and the value of� are highly anti-correlated. Figure

5.4 shows the typical error region in the amplitude-� plane. The marginalized1 � � error in

each parameter is the most extreme value along the1 � � contour. This marginalized error is

the error bar plotted in Figures 5.2 and 5.3.

The final result is that the amplitude of the correlated, real space power spectrum should

be1:� :25 times the curve shown in Figure 5.1 and� � 0:55+:35
�:30. This value is obtained from
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Figure 5.3: This figure shows the best fit amplitude and the1 � � error for the amplitude of
the correlated power spectrum. At each wavenumber, the fit uses only information from smaller
wavenumbers. The only other free parameter is�.

the best overall fit atk = :209hMpc�1. This is a good choice because it uses as much of the

linear information as possible while not being contaminated by aliasing.

5.4 Discussion and Conclusions

The pair weight compression method is able to extract a real space power spectrum and

an estimate of� from LCRS. Unfortunately, only three of the seven shape functions yielded

useful results. In fact, including the additional shape functions provided an estimate that was

clearly incorrect. In order to include information from all seven shape functions it is necessary

to calculate all of the matrix elements in the Fisher matrix to adequate precision. For this calcu-

lation, the monopole-monopole elements were calculated to expected errors of 2.5 percent. The

off-diagonal elements typically had errors of a few percent but routinely there were elements

with errors of tens of percent. Reducing the calculation to only those shape functions which
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Figure 5.4: The1�� error region for the calculation including all wavenumbers up tok = 0:209
h Mpc�1. The star is the best fit value.

are non-zero at small separations, reduced the errors caused by the off-diagonal terms. How-

ever, the scatter in the calculated estimates were still larger than the calculated error bars. As

a result, the real space power spectrum is noisier than the redshift space power spectrum. This

would be true even if the Fisher matrix were calculated exactly because the same information is

now being shared amongst three estimates. The resulting real space power spectrum has similar

shape to the redshift space power spectrum. This is not at all surprising since a majority of the

analysis is on wavenumbers which should not be greatly affected by nonlinearities.

The estimate of� � :55+:35
�:30 is consistent with a flat low matter density universe. In

particular, it is consistent with the estimates from rich clusters (Carlberg et al., 1998) and cosmic

microwave background measurements (de Bernardis et al., 2000). A flat matter dominated

universe is once again ruled out unless the bias factor is rather large. Although the estimate of�

is larger than that of Matsubara et al. (2000) (� = :30� :39) the estimates are consistent within
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the errors.



Chapter 6

Conclusions

6.1 Pair Weight Method

We presented a new method for analyzing galaxy redshift surveys called the pair weight

compression method. This method is able to assign weights to each galaxy pair within the

catalog. It is also able to determine the error bars on each measured parameter. The pair weight

method is completely general. That is to say it works for models that include redshift distortions

and nonlinearities (not included in this work). The pair weight method is able to accomodate

any selection function that has no discrete jumps in the radial direction. The flexibility allows

nearly any catalog to be analyzed using nearly any model.

However, the pair weight compression method is computationally expensive. If a clas-

sical method or brute force method will obtain the same results, then it is a good bet that the

other method will be less computaionally expensive. This means that for scales smaller than

the smallest physical dimension in the catalog, classical methods will be the methods of choice.

If a brute force analysis is possible, then on the largest scales the brute force technique will be

the method of choice. There are situations, however, where neither brute force techniques nor

classical methods will work.

6.2 Las Campanas Redshift Survey

The Las Campanas Redshift Survey is the largest (in terms of number of galaxies) pub-

licly available redshift catalog. It is divided into 327 observing regions. In each observing
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window, redshifts could be taken for up to 112 galaxies (at the same time). This means that the

observing windows were not necessarily complete to the same level. This means that the se-

lection function varies from observing window to observing window. This causes problems for

both the classical method and for brute force techniques. The smallest size scale for the catalog

is then approximately7:5 h�1 Mpc. This means that classical methods will only be effective

for the very smallest (and probably nonlinear) regions. The fact that the selection function is

different from direction to direction makes the brute force route more tricky. This means that

the number of “modes” that a brute force analysis can use is limited. This limits brute force

techniques to only the largest scales as was done by Matsubara et al. (2000). LCRS, however,

can be analyzed using the pair weight method. In fact, LCRS has exactly the kinds of problems

that would force one to use the pair weight method.

6.2.1 Results

Redshift Space Power Spectrum

In Chapter 3, we presented the redshift power spectrum for LCRS. The power spectrum

measured by the pair weight method was nearly a factor of two smaller than that measured

by Lin et al. (1996b). In fact, the power spectrum agreed closely with the measurement of

power from the PSCz (Sutherland et al., 1999) and the AMP measured by Gazta~naga and Baugh

(1998). This came as quite a surprise since is is commonly thought that IRAS selected galax-

ies (PSCz) should be less biased, and thus have a lower galaxy-galaxy power spectrum, than

optically selected galaxies (LCRS).

Real Space Power Spectrum

The real space power spectrum (Figure 5.1) is similar in shape and amplitude to the

redshift space power spectrum. This implies that over the range ofk � :1�:3 nonlinearities and

redshift distortions are small. This would lead to a relatively low estimate of�. Unfortunately,
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the power spectrum is noisier than one would like. This is due to the fact that the information

is now shared amonst more parameters and that additional error is caused by miscalculation of

off-diagonal Fisher matrix elements.

Measurement of�

Using the correlated measurement of the real space power spectrum as the shape of the

power spectrum, we did a least-squares analysis to find the best fit amplitude and value of�. The

calculation yielded an amplitude that was essentially one. This means that the best fit amplitude

is the measured amplitude, as expected. The measurement of� was� � :55+:35
�:30. This result

is consistent with, but slightly higher than, the calculation done by Matsubara et al. (2000).

The hope was that evidence of nonlinearities would arise in this calculation. However, the

measurement of the smallest scales was too contaminated by aliasing of the Fourier transform

to see anything conclusive about nonlinearities.

Possible Improvements With the analysis of the LCRS being the first analysis using

the pair weight method, we made a number of decisions that turned out not to be ideal.

In the analysis, we used linearly spaced bins. This is not the best way to go. Logarith-

mically spaced bins have two clear advantages. The first is that by using the same number of

bins one could cover a much larger portion of the spectrum. The second is that the calculations

of the covariances involving large separations take much longer than calculations which only

involve small separations. Using logarithmicly spaced bins places a higher fraction of the bins

at small scales and thereby speeds the calculations.

The second place for improvement is in the calculation of the selection function. The

selection function routine for this analysis fit the selection function to incomplete gamma func-

tions. It is clear that incomplete gamma functions are not the fastest way to go. This causes the

longest calculations to take several times as long to complete.
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6.3 Conclusion

The pair weight compression method is a viable method of extracting power spectra and

� from galaxy catalogs. The flexibility in the pair weight method allows for even a catalog

with the selection properties of LCRS to be analyzed. The value of� � :55+:35
�:30 extracted from

LCRS is consistent with the analysis done by Matsubara et al. (2000). Unlike the analysis of

Matsubara et al. (2000) the pair weight method was able to extract a real space power spectrum.

The pair weight method is successful in the analysis of the most complicated of catalogs.

It is clear, however, that when the catalog is simpler then the computational overhead of the pair

weight method makes other methods more attractive. For large angle catalogs with uniform

depth, classical methods and brute force methods will be the methods of choice.
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Appendix A

Calculating the Shape Functions

Equation 4.5 shows the relationship between the redshift space correlation function (�s)

and its real space counterpart (�r). For current galaxy catalogs (and those in preparation)�r

is not directly available. Therefore we must find a way to extract� from the properties of�s.

Hamilton (1993) did this by weighting the calculations of� by the Legendre polynomials of�.

To find the equivalent functions for the spherically symmetric case, expand�s and�r into sets

of orthogonal components. This will allow the general functions� to be replaced by specific

functions. Then the distortion operator will operate on a set of specific functions. The results

from the distortion operation can then be added together to yield a final result for the general�.

One can expand in any complete set of functions but the best choice is to find a set

which makes the calculations simplest. The operator@=@ ln r12 j4 commutes with all of the

individual operators contained within the distortion operator (� is the only component of the

distortion operator which does not necessarily commute with@=@ ln r12 j4). Here4 is the

shape of the triangle connecting the observer to the two galaxies in question. Therefore the

logical choice for the expansion is the set of eigenfunctions of@=@ ln r12 j4:

r�
�i!1212 : (A.1)

Therefore, define the quantities�r(!12) and�s(!12):

�s(!12;4) =
1

2�

Z 1

0
�s(r12;4)r
+i!12

12 dr12=r12 j4;

�r(!12) =
1

2�

Z 1

0
�r(r12)r


+i!12
12 dr12=r12 j4 (A.2)
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with the inverse transforms:

�s(r12;4) =

Z 1

�1

�s(!12;4)r�
�i!1212 d!12;

�r(r12) =

Z 1

�1

�r(!12)r
�
�i!12
12 d!12: (A.3)

Now applying the distortion operator on�r(r12) actually applies it to ther�
�i!12 inside the

integral. This gives:

�s(r12) =

Z 1

�1

�r(!12)Ddist

h
r�
�i!1212

i
d!12 =Z 1

�1

�r(!12)
�
1 +A1(�12;4)� +A2(�12;4)�2

�
r�
�i!1212 d!12: (A.4)

Let � = 
 + i!. Now calculate the actual values of eachA.

To calculate the values ofA operate with the distortion operator onr��. First of all, note

that the operators with subscripts1 commute with those with subscripts2. So

A1(�12;4)r�� =

�
(
@2

@r21
+
�(r1)

r1

@

@r1
)r�21 + (

@2

@r22
+
�(r2)

r2

@

@r2
)r�22

�
r��12 (A.5)

and

A2(�12;4)r�� =

�
(
@2

@r21
+
�(r1)

r1

@

@r1
)(
@2

@r22
+
�(r2)

r2

@

@r2
)r�21 r�22

�
r��12 : (A.6)

The first job here is to operate withr�2i on r��12 . Becauser12 is a spherically symmetric

quantity:

r�21 r��12 = r�22 r��12 =

�
1

r212

@

@r12
r212

@

@r12

��1
r��12 : (A.7)

Set this equal to a new variable� and solve for�:

�
1

r212

@

@r12
r212

@

@r12

�
� = r��12 (A.8)

becomes

�
@(r212

@

@r12
)

�
� = r2��12 @r12: (A.9)
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After performing one integration

�
r212

@

@r12

�
� =

r3��12

3� �
: (A.10)

or

@� =
r1��12

3� �
@r12: (A.11)

Performing this integration yields

� =
r2��12

(3� �)(2 � �)
: (A.12)

Note that this equation serves for any� provided that� does not equal2 or 3. This means that

r�21 r��12 = r�22 r��12 =
r2��12

(3� �)(2 � �)
(A.13)

and by considering��0 = 2� �:

r�21 r�22 r��12 =
r4��12

(5� �)(4 � �)(3 � �)(2 � �)
: (A.14)

Now the values forA become

A1(�12;4)r�� =

�
(
@2

@r21
+
�(r1)

r1

@

@r1
) + (

@2

@r22
+
�(r2)

r2

@

@r2
)

�
r2��12

(3� �)(2 � �)
(A.15)

and

A2(�12;4)r�� =�
(
@2

@r21
+
�(r1)

r1

@

@r1
)(
@2

@r22
+
�(r2)

r2

@

@r2
)

�
r4��12

(5� �)(4 � �)(3 � �)(2� �)
: (A.16)

To calculate the results forA1 andA2 start by doing some preliminary calculations. First

define the cosines of the angles in the triangle:

�1 =
r212 + r21 � r22

2r12r1
; �2 =

r212 + r22 � r21
2r12r2

; �12 =
r21 + r22 � r212

2r1r2
: (A.17)

This means that

r12 =
�
r21 + r22 � 2r1r2�12

� 1
2 : (A.18)
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So,

@

@r1
rn12 = nrn�212 (r1 � r2�12) (A.19)

and

@

@r2
rn12 = nrn�212 (r2 � r1�12): (A.20)

Simplify the terms in parentheses by noting

r1 � r2�12 =
2r21r2 � r2(r

2
1 + r22 � r212)

2r1r2
=

r21 � r22 + r212
2r1

= �1r12; (A.21)

and similarly

r2 � r1�12 = �2r12: (A.22)

Another useful equation is

2�1�2�12 + �21 + �22 + �212 = 1: (A.23)

Now divideA1 into two pieces. The first piece has� terms only:

�
�(r1)

r1

@

@r1
+
�(r2)

r2

@

@r2

�
r2��12

(3� �)(2 � �)
: (A.24)

Differentiating gives:

�
�(r1)

r1
r12�1 +

�(r2)

r2
r12�2

�
r��12

3� �
: (A.25)

The second term has no terms with�:

�
@2

@r21
+

@2

@r22

�
r2��12

(3� �)(2� �)
=
�
1� ��21 + 1� ��22

� r��12

3� �
: (A.26)

Later in the calculation, all factors of� will need to be in the denominator. So by noticing that

��

3� �
= 1�

3

3� �
(A.27)



91

A1 can be written:

A1(�;4)r��12 =

"
�(r1)
r1

r12�1 +
�(r2)
r2

r12�2 + 2� 3�21 � 3�22

3� �
+ �21 + �22

#
r��12 : (A.28)

To attack the differentiation necessary forA2 first notice that it can be rewritten:

A2(�;4)r��12 =

�
(
@

@r1
+
�(r1)

r1
)(

@

@r2
+
�(r2)

r2
)
@

@r1

@

@r2

�
r4��12

(5� �)(4 � �)(3 � �)(2� �)
: (A.29)

First differentiating with respect tor2 yields:

A2(�;4)r��12 =

�
(
@

@r1
+
�(r1)

r1
)(

@

@r2
+
�(r2)

r2
)
@

@r1

�
(r2 � r1�12)r

2��
12

(5� �)(3 � �)(2 � �)
: (A.30)

After the second differentiation:

A2(�;4)r��12 =

�
(
@

@r1
+
�(r1)

r1
)(

@

@r2
+
�(r2)

r2
)

�
"

��12r
2��
12

(5� �)(3 � �)(2 � �)
+

(r1 � r2�12)(r2 � r1�12)r
��
12

(5� �)(3� �)

#
: (A.31)

Once again separate out the different terms and calculate them separately to obtain the simplest

looking results. The first term is the term with two factors of�:

�(r1)

r1

�(r2)

r2

"
��12r

2��
12

(5� �)(3 � �)(2 � �)
+

�1�2r
2��
12

(5� �)(3 � �)

#
: (A.32)

The second term has one factor of�:

�
�(r1)

r1

�2�12�2r12 + �1r12 � ��1�
2
2r12

(5� �)(3 � �)
+

�(r2)

r2

�2�12�1r12 + �2r12 � ��21�2r12
(5� �)(3� �)

�
r��12 : (A.33)

The final term contains no factors of�:

@

@r1

"
�2�12(r2 � r1�12)r

��
12

(5� �)(3 � �)
+

(r1 � r2�12)r
��
12

(5� �)(3� �)

�
�(r1 � r2�12)(r2 � r1�12)

2r�2��12

(5� �)(3 � �)

#
=

2�212r
��
12

(5� �)(3 � �)
+

4��12�1�2r
��
12

(5 � �)(3� �)
+

r��12

(5� �)(3 � �)
+

���21r
��
12

(5� �)(3 � �)
+

���22r
��
12

(5� �)(3� �)
+
�(2 + �)�21�

2
2r
��
12

(5� �)(3 � �)
: (A.34)
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Using equation A.23 rewrite this term:

2�212r
��
12

(5� �)(3 � �)
+
�2�(�212 + �21 + �22 � 1)r��12

(5� �)(3 � �)
+

r��12

(5� �)(3� �)
+

���21r
��
12

(5� �)(3 � �)
+

���22r
��
12

(5� �)(3 � �)
+
�(2 + �)�21�

2
2r
��
12

(5� �)(3 � �)
=

2�212(1� �)r��12

(5� �)(3 � �)
+

(1 + 2�)r��12

(5� �)(3� �)
+

�3��21r
��
12

(5� �)(3 � �)
+

�3��22r
��
12

(5� �)(3� �)
+
�(2 + �)�21�

2
2r
��
12

(5� �)(3 � �)
: (A.35)

EachAi(�12;4) can be expressed in functions ofr12,r1 andr2 times functions of 1
n��12

wheren = 2; 3; 5. The factors of� and ther’s in equation (A.4) can be brought out of integral

over! to become:

�s(r12) =
X
j

gj(�)Bj(r12; r1; r2)

Z 1

�1

�r(!12)r
��12
12

nj � �12
d!12: (A.36)

Rearranging the integral in this equation:Z 1

�1

�r(!12)r
��12
12

n� �12
d!12 =

Z 1

�1

�r(!12)

�
1

rn12

Z r12

0
rn��12�1dr

�
d!12; (A.37)

and switching the order of integration:

1

rn12

Z r12

0
rn�1

�Z 1

�1

�r(!)r��12
�
dr =

1

rn12

Z r12

0
rn�1�r(r)dr (A.38)

So the integral can be expressed in an average over�. Let:

�s(r12) =
X
j

gj(�)Bj(r12; r1; r2)�j(�(r12); ��(r12); ��(r12);
���(r12)) (A.39)

with

�� �
2

r212

Z r12

0
�(r)rdr;

�� �
3

r312

Z r12

0
�(r)r2dr;

��� �
5

r512

Z r12

0
�(r)r4dr: (A.40)

Note that in equation A.39 the functionsBj(ri; rj ; rij), gj(�) andfj are not unique. Choose

any set of functions which satisfy equation A.39. Therefore, choose the functions to make the

rest of the analysis as simple and accurate as possible.
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In order to obtain results that tend towards the distant observer approximation, choose

three of the shape functions as:

B0 � 1; (A.41)

B2 �
1

2
[P2(�1) + P2(�2)] ; (A.42)

and

B4 �
1

8
(35�21�

2
2 � 15�21 � 15�22 + 3) (A.43)

where

P2 =
3

2
�2 �

1

2
: (A.44)

Define ��i as the functiongi(�)�i(�(r12); ��(r12); ��(r12);
���(r12)) which corresponds to

shape functionBi. This means that the term with no factors of� contributes�(r12) to ��0. The

terms given byA1 contribute4
3�(�(r12)�

��(r12)) to ��2 and 2
3��(r12) to ��0 leaving

�

3
��(r12)

�
�(r1)

r1
r12�1 +

�(r2)

r2
r12�2

�
: (A.45)

So, define

B1 �

�
�(r1)

r1
r12�1 +

�(r2)

r2
r12�2

�
: (A.46)

This means that the terms ofA1 also contributes�3
��(r12) to ��1.

The terms in equation A.35 will contribute to��4, ��2, and��0. To find the exact contribu-

tions, replace�21�
2
2

�21�
2
2 =

8

35
B4 +

3

7
(�21 + �22)�

3

35
(A.47)
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to get

r��12

(5� �)(3 � �)

�
2�212(1� �) + (1 + 2�)� 3�(�21 + �22)+

�(2 + �)(
8

35
B4 +

3

7
(�21 + �22)�

3

35
)

�
=

r��12

(5� �)(3 � �)

�
2�212(1� �) + (1 +

64

35
� �

3

35
�2)+

(�21 + �22)(
3

7
�2 �

15

7
�) + �(2 + �)

8

35
B4

�
: (A.48)

Now replace�21 + �22 using

�21 + �22 =
4

3
B2 +

2

3
(A.49)

to get

r��12

(5� �)(3 � �)

�
2�212(1� �) + (1 +

64

35
� �

3

35
�2) + (

4

3
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2

3
)(
3

7
�2 �

15

7
�)+
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8

35
B4

�
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r��12
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�
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2

5
� +

1

5
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(
3

7
�2 �

15

7
�)
4

3
B2 + �(2 + �)

8

35
B4

�
: (A.50)

Before continuing, note a few relations:

�(2 + �)

(5� �)(3 � �)
= 1 +

15

2

1

3� �
�

35

2

1

5� �
=) �(r12) +

5

2
��(r12)�

7

2
���(r12); (A.51)

3
7�

2 � 15
7 �

(5� �)(3 � �)
=

3

7
�

9

7

1

3� �
=)

3

7
�(r12)�

3

7
��(r12); (A.52)

1 + 2
5� +

1
5�

2

(5� �)(3� �)
=

1

5
+

2

3� �
�

4

5� �
=)

1

5
�(r12) +

2

3
��(r12)�

4

5
���(r12); (A.53)

and

1� �

(5� �)(3 � �)
= �

1

3� �
+

2

5� �
=) �

1

3
��(r12) +

2

5
���(r12): (A.54)
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The terms of�2 which contain factors of� cannot contribute to the values of��0, ��2, or ��4

because the corresponding shape functions contain no factors of�. This means that

��0 =

�
1 +

2

3
� +

1

5
�2
�
�(r12); (A.55)

��2 =

�
4

3
� +

4

7
�2
� �
�(r12)� ��(r12)

�
; (A.56)

and

��4 =
8

35
�2
�
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This leaves the terms
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and all of the terms with factors of� for some other shape function. Reduce the terms containing

factors of� with
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and
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Notice that the remaining terms contain no factors of�(r12) and that all of the remaining

terms have a factor of�2. The easiest solution to capturing all of the remaining terms is to

define

��3 = �2 ��(r12); (A.62)
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��5 = �2���(r12); (A.63)

and
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6
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These then have the correspondingly complicated shape funcitons:
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Notice that the quantity in curly braces in equation A.65 is exactly the same asB1.

Therefore, remove this term from equation A.65 and say that

��1 = (
�

3
+
�2

6
)��(r12): (A.68)

The final term ofB5 also has the form ofB1. However adding this term to��1 would make the

� term inseparable from the averages of�.

Although the shape functions and resulting��’s are not unique, the above set of functions

is complete and has the desireable property of being seperable into functions of the shape,

functions of� and functions of averages of�r. This set of functions will allow for a complete

description of spherical redshift distortions in the linear regime.



Appendix B

Definitions of Terms and Symbols

To aid in understanding, I have provided a list of important terms with definitions. Fol-

lowing the list of terms is two lists of symbols (one Roman and one Greek) with definitions.

B.1 Terms

brute force: Introduced in Chapter 1. The brute force method, commonly used in analysis of

CMB fluctuations, assumes that the density is Gaussianly distributed. It also assumes

a Gaussian likelihood function. These methods work best on the largest scales: where

the fluctuations are likely to be Gaussian and the computation costs are the least.

classical method: Introduced in Chapter 1. Introduced by Feldman et al. (1994), classical

methods of analyzing redshift surveys require the position and the wavelength of the

fluctuation to be measured simultaneously. It implies a weight scheme that depends

only on the local density. Classical methods work best on size scales that will comfort-

ably fit within the survey.

decorrelation: Introduced in Section 2.3. Decorrelation is the process of creating statistically

uncorrelated parameters. That is to say, recombine a set of parameters in such a way

that the new parameters have covariances of zero. Decorrelation is especially useful if

the data is going to be used in some sort of least-squares fit.

Fisher matrix: Introduced in Chapter 2. The inverse of the full covariance matrix for all
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parameters. The Fisher matrix is generated using a prior guess as to the values of

all measured parameters. If the prior guess is similar to the measured value then the

Fisher matrix describes the amount of information a particular data set has about the

set of measurable parameters.

linear (regime): Introduced in Chapter 2. Refers to size scales which are large enough that

overdensities (or underdensities) are small compared to the mean density. In linear

regime, overdensities grow linearly without change of shape.

non-linear (regime): Introduced in Chapter 2. Refers to size scales where overdensities can

become comparable to or larger than the mean density. The fact that density cannot be-

come negative causes underdense regions to expand and overdense regions to collapse.

pair weight method: Introduced by this thesis. The pair weight method is a general method of

analyzing redshift surveys. The pair weight method weights each pair of overdensities

by a weight that is determined by the survey itself (and the prior power spectrum).

The pair weight method is not limited by the shape or complexity of the survey nor

is it limited to testing models which are Gaussian. The primary limitation of the pair

weight method is the computational expense.

power spectrum: Introduced in Chapter 1. The power spectrum is the covariance, expressed

in Fourier space, of fluctuations. It is a function of wavenumberk. The shape and

amplitude of the power spectrum can be used to measure several cosmological param-

eters.

prior: Introduced in Chapter 2. The prior includes all prior assumptions includinge.g.,ho-

mogeneity and isotropy. In particular, the prior often refers to the prior guess for the

power spectrum.

selection function: Introduced in Chapter 1. The expected number of galaxies at a particular

location given the selection criteria of the survey.
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B.2 Symbols

b: Introduced in the Abstract.b is the linear bias parameter.b is the ratio of galaxy overden-

sities to matter overdensities (Ægal = bÆmass). If b = 1 then galaxies are an unbiased

tracer of the density.

B�ij : Introduced in Section 2.1.2. The shape function. In the case with no redshift distortions

this restricts the separation of parcelsi and j to be r�. In the more general case,

B�ij also includes a shape (contained within the index�) which describes one of the

components of the redshift distortions.

Cab(;�): Introduced in Chapter 2. The covariance of the modesa andb. If there are indices; �

then it is the derivative of the covariance of the modes with respect to the parameter�.

Cab: Introduced in Section 4.3.5. This is the band power matrix which disentanglesP (k)

from �P (k) from �2P (k) and correlates neighboring points within each of the power

spectra.

Cijkl: Introduced in Section 2.1.2. The covariance of the correlation functionsh��ij��kli.

In the most general, non-Gaussian, case this can depend on 3-point terms and 4-point

terms as well as 2-point terms (in the general caseCijkl depends on the locations of

parcelsi, j, k, andl as well as their separations). For most of the Dissertation this is

reduced to the more restricted Gaussian case whereCijkl = CikCjl + CilCjk.

Ddist: Introduced in Chapter 4. This is the distortion operator. It describes the manner in

which overdensities in real space translate into overdensities in redshift space.

Dab: Introduced in Section 4.3.5. This is the band-power matrix which disentanglesP (k)

from �P (k) from �2P (k) and decorrelates neighboring points of each (however, at

eachk the three different power spectra are correlated). Same asC except decorrelated

not correlated.
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f : Introduced in Chapter 1.f(� 
0:6
m ) is the linear growth rate. It is the ratio of the velocity

of a parcel of matter to the comoving distance it has traveled (in Hubble units).

F�� : Introduced in Section 2.1.1. The Fisher matrix. See Tegmark et al. (1997) for a nice

explanation. This is the inverse of the covariance matrix with parameters� and�.

The Fisher matrix is also called the Fisher information matrix because it is a measure

of how much information is contained within the data set about the particular set of

parameters.

F : Introduced in Section 4.3.5. This matrix is used to correlate and disentangle the power

spectra (P (k), �P (k), and�2P (k)).

G�� : Introduced in Section 2.3.1. This is the scaled Fisher matrix. That is to say that it is the

Fisher matrix multiplied by the prior values of�� and��.

h: Introduced in Chapter 1. The Hubble constantH0 in units of100 km s�1Mpc�1.

H0: Introduced in Chapter 1.H0 is the Hubble constant at the present epoch. The Hubble

constant is a measure of the rate of expansion of the universe.

�ji(kr12): Introduced in Chapter 4. The generalized Fourier transform window. These are the

window functions necessary to transform��i(r) to gi(�)P (k). For indices 0, 2, and 4

the generalized window is just the spherical Bessel functionj.

J3�: Introduced in Section 2.3.1. The volume integral of the two-point correlation function out

to radiusr�. In other words, the number of additional galaxies surrounding a galaxy

than would be expected if galaxies were uniformly distributed. This is used as an FKP

constant for the separationr�.

L: Introduced in Section 2.1.1. The likelihood function. The likelihood function is high where

the data fits the model and low where the data does not fit very well.
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�ni: Introduced in Chapter 2. The expected density of galaxies (in the absence of fluctuations)

at locationri. Also referred to as the selection function.

Kab: Introduced in Section 2.1.2. The integral of the covariance of correlation functions

weighted by window functionsa andb.

M�� : Introduced in Chapter 2.1.2. A matrix defined in introducing the Pair Weight method.

It becomes clear thatM is, in fact, the Fisher matrix (F ).

M: Introduced in Section 4.3.5. This matrix is used to disentangle the power spectra (P (k),

�P (k), and�2P (k)) while decorrelating neighboring points of each of the power spec-

tra.

ns: Introduced in Chapter 1. The “tilt” of the power spectrum.

Pk: Introduced in Chapter 1. The power spectrum at wavenumberk.

r: Superscriptr shows a quantity that is in real space.

s: Superscripts shows a quantity that is in redshift space.

W : Introduced in Equation 2.1. A window function. In Equation 2.1 the indices ofWij refer

to the locations of the two positions. Thereafter, the first index (usuallya or b) refers

to the window number. In particular, there may be separate windows for different

separations and, within those windows, there may be different windows for different

shape functions. The following indices (usually some combination ofi, j, k, andl)

refer to locations. In general, the windows are chosen to try to make the best use of the

data.

x̂: Introduced in Chapter 2. A mode amplitude. This is the overdensity weighted by a linear

window function. The hat signifies that it is a measured quantity.
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X̂: Introduced in Chapter 2. A quadratically weighted mode. This is the overdensities weighted

by a quadratic window (one with two indices of location). The hat signifies that it is a

measured quantity.

B.3 Greek Symbols

�: Introduced in Chapter 4. This quantity (� = @ ln r2�n=@ ln r) is 2+ the partial derivative of

the logarithm of the selection function with respect to the logarithm of the distance. It

determines how radial variations of the selection function affects redshift distortions.

�: Introduced in the Abstract.�(= f=b) is the amplitude of the linear redshift distortions.

Æi: Introduced in Chapter 2. The overdensity (of galaxies) at locationri. (If Æi = 1 then that

means the density atri is twice the mean density.)

Æij : Used in Chapter 2. This is a 3-dimensional delta-function.

�: Introduced in Chapter 2. The 2-point correlation function in some space. Ink-space this is

the power spectrum.

�r: Introduced in Chapter 4. This is the correlation function in real space.

�s: Introduced in Chapter 4. This is the correlation function in redshift space.

�̂�: Introduced in Section 2.1.1. The hat indicates that this is a measurement of the

quantity rather than a prior guess of the quantity.

��, ��, and ���: Introduced in Chapter 4. Averages of the two point correlation function

over different functions ofr. These averages become interesting due to redshift

distortions.

��: Introduced in Chapter 4. Measurable quantities in the case of redshift distortions.

Each contains a functiong of � and a�. Each�� can be Fourier transformed into

g(�)P (k) (using the proper generalized Fourier transform window).
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�i: Introduced in Chapter 4. Functions of�, ��, ��, and��� produced by redshift distortions. Each

of the�i’s can be Fourier transformed intoP (k) (using the proper generalized Fourier

transform window).

�a: Introduced in Chapter 1. The density of constituenta.

�crit: Introduced in Chapter 1. The critical density of the Universe. If the sum of the densities

of the sum of all constituents is the critical density then the universe is flat.


a: Introduced in Chapter 1. The ratio�a=�crit of the density of constituenta (�a) to the

critical density�crit.


b: Introduced in Chapter 1. The ratio�b=�crit of the density of baryons to the critical density

�crit.


�: Introduced in Chapter 1. The ratio��=�crit of vacuum energy density to the critical

density�crit.


m: Introduced in the Abstract. The ratio�m=�crit of the density of matter to the critical

density�crit.


