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| present a new method for extracting power spectra from galaxy redshift surveys called
the pair weight compression method. | then apply the method to determine the redshift power
spectrum of the Las Campanas Redshift Survey (LCRS). The measured redshift power spectrum
has the same shape as that found by Lin et al. (1996b) but is a factor of 2 smaller. Upon
expanding the method to include linear redshift distortions, the method is able to measure real
space power spectra apd 8 ~ Q%6 /b whereg is the linear redshift distortion parametéx,,
is the cosmological density of matter ah the linear galaxy to mass “bias factor.” Applying
the method to LCRS yields a real space power spectrum that is very similar to the redshift space
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power spectrum. The measured valuesots .551“;30 is larger than, but consistent with, a

previous measurement by Matsubara et al. (2000).
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Chapter 1

Introduction

1.1 Constraining the Universe

Human beings have always been fascinated by the subject of how we got to where we
are and how we will get to where we are going — not just the history of human events, but also
the history of the world and the universe. On the largest scales and longest time-scales this is
the subject of cosmology. Many of the cosmological questions have been answered in a general
way. However, there are many questions which are (seemingly) open. Specifically, the history
of the universe is beginning to be generally agreed upon. It seems that the universe began, some
13 £ 2 billion years ago, much smaller, denser, and hotter than today. The present data also
suggest that the expansion of the universe will not only continue indefinitely but could also
accelerate.

Many lines of research have come together to bring this picture into focus, including
the study of galaxy redshift surveys. To understand the relevance of galaxy redshift surveys, it
is instructive to look at the the parameters that describe the universe and how they have been

measured.

1.1.1 Parameters

Maybe the most interesting parameter to the lay-person is the ultimate fate of the uni-
verse. An expanding universe can have two ultimate conclusions. The first is a forever expand-

ing and cooling universe. The second possibility is that the mass in the universe is sufficient



to cause the expansion to end and the universe to collapse upon itself. The parameters of chief
importance in determining the fate of the universe are the omégass?,,. The omegas are

ratios of the density of a particular type of matter to the critical density:

Q, =P (1.1)
Pcrit

The critical density is that density which gives an exactly flat universe. The sum of the omegas
gives the shape of the universe. If the sum is greater than one, the universe is closed. If the sum,
is less than one the universe is open. The universe will continue to expand indefinitgly if

is positive and?,,, is not significantly greater than 1 orfif, = 0 and(2,, < 1 (Carroll et al.,

1992).

In addition to knowing the end result, many people are interested in how long the universe
has been around. The parameter of primary importance in the question of the age of the universe
is the Hubble constantH;). The Hubble constant is a measure of how fast the universe is
expanding. The age of the universe is given by

1
tuniverse = Fof(ﬂma QA)- (12)

The functionf is of order unity.

Once the age of the universe and the ultimate fate of the universe are known, other
cosmological parameters become interesting. For exarfiplehe amount of baryons in the
universe is interesting. A significant fraction of the matter in the universe is invisible, or dark.
Also one would like to know what fraction of that matter is normal matter and what fraction is
non-baryonic dark matter.

Studies of the universe may also yield information about the formation of galaxies. It
is clear that gravity plays the largest role in galaxy formation; however, it is not clear when
galaxies form and how sensitive galaxy formation is to the local environment. It is also not

clear how large the “local environment” is.

Power Spectra
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The power spectrum of matter density fluctuatiofs)(is one of the most important
measurable quantities. The theory of how the power spectrum relates to the other (perhaps
more interesting) parameters is quite sophisticated (Eisenstein and Hu, 1999). It allows one to

measure several basic parameterg.(2,,,, 2, Qa, Hy, etc.) from measurements of the power.

1.1.2 Progress on Measuring the Parameters

Before setting out to measure any parameter of the universe, it is important to note which

parameters have already been constrained and by which methods.

Big Bang Nucleosynthesis

Big Bang nucleosynthesis is the study of which elements are produced and in what
amounts from the nuclear reactions that take place in the first few minutes of the universe.
The fractions of baryons in each of the light elements (H} e, *He and’Li) are sensitive to
the density of baryonic matter. Current results have uncertainties in the measurefight of
at the 10 per cent levek(g., Tytler et al., 2000) af2,h> = 0.019 & 0.0024 (h is the Hubble
constant in units of00 km/s/Mpc). These estimates have tightened considerably in the last
few years. Maybe more importantly, there are no aspects of the theory that are discrepant with
observational measurements. Big Bang nucleosynthesis is one of the success stories of modern

cosmology.

Type l1a Supernovae

In the last 2 to 3 years, the study of type la supernovae has yielded some of the most
interesting results. Type la supernovae are a useful measure for cosmologists because they are
believed to be extremely uniform. This means that the physics between local and more distant
type 1a supernovae are the same. This allows the distance to the supernova to be measured
accurately. The redshift of the object can also be measured. Having the redshift and distance to

several objects allows measurementél/gfand a combination d2, and(2,,. Both teams trying
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to measure the combination of omegas concluded(¥att 0 (Riess et al., 1998; Perimutter
et al., 1999). In his review, Riess (2000) concludes that the supernova evidence does not yet
compel us to accept an accelerating univefse & Q,,/2); however, the accelerating universe

is the most likely solution.

Galaxy Clusters

Galaxy clusters can be used to meaduye The method is to measure the mass-to-light
ratio (M /L) and the background luminosity densig) at the same redshift. This allows

M .
Q= — X )
L Perit

(1.3)

Measurements of this kine(g.,Carlberg et al., 1998) yielf,, ~ 0.2 with errors at the 20 per
cent level. There are two interesting points to be made about this result. First of all, it implies
that a majority of the matter in the universe is hon-baryonic. Second, it suggests that the density
in matter is significantly lower than the critical density.

Also using galaxy clusters to probe cosmological quantities Donahue et al. (1998) ob-
served cluster MS 1054-0321 and calculated that the probabilitythat 1 is less than a few

x 1075,

Cosmic Microwave Background

Measurements of the cosmic microwave background (CMB) are likely to answer most
of the current cosmological questions definitively. The CMB is a great place to make a clean
measurement of the power spectrum. The fluctuations in the CMB are small enough to be
thoroughly treated in a linear approximation; most of the foreground contamination is small
or at least removable (Tegmark et al., 2000); and the Gaussian nature of the fluctuations allows
them to be completely characterized by their angular spectrum (Hu, 2000). The upcoming MAP
and Planck missions should yield power spectra with sufficient resolution to measure all of the
omegasH, and several other parameters to the accuracy of a few percent (Bond et al., 1997).

A glimpse of this future was afforded to us by the BOOMERANG results. de Bernardis et al.



(2000) gives the results of the BOOMERANG experiment. The BOOMERANG experiment
measured approximately 18000 pixels 14 arc-minutes in size in four frequencies. The resulting
maps were then analyzed and an angular power spectrum was calculated. Their result was
that 0.88 < Qy < 1.12 with 95 per cent confidence. Their best fit to the power spectrum
had parameter§Q;, Q,,,, Qa,ng, h) = (0.05,0.31,0.75,0.95,0.70). Already the CMB has

constrained the universe to be (nearly) flat. Expect much more to come.

Galaxy Redshift Surveys

After seeing what other methods for measuring the parameters have done, and will do
soon, itis important to ask what galaxy redshift surveys can contribute. Galaxy redshift surveys
are also used to measure power spectra. Unfortunately, the results are not as clean as those of the
CMB. The measurement one would like is that of the matter power spectrum. Galaxy redshift
surveys only yield the galaxy-galaxy power spectrum. On large scales, these power spectra
differ by the square of the bias paramet&). (On small scales, non-linearities cause more
complicated departures from the matter power spectrum. Redshift surveys are also complicated
by redshift distortions. Because the radial distance to an object is measured by the redshift
rather than a “true” distance, local “peculiar” velocities cause errors in the distance to galaxies.
At linear scales, the amplitude of redshift distortions, however, can be used as a measure of the

quantity 5. 8 is a function of the omega divided by the bias parameter:

Lol (), O
By [Qm+ -0 (1+ 5 >] (1.4)

(e.g.,Lahav et al., 1991).

The information extracted from the galaxy survey can be used in two ways. One way
would be to make an independent measurement of the parameters. The second way is to use
the parameters measured by some other technique to measure the bias parameter on all scales.
The advantage that the galaxy survey has over, say, the CMB is that the power spectrum can be

measured on smaller scales. However, particularly on the smallest scales, non-linearities make



parameter extraction difficult. However, using the measurements to constrain the non-linear

models will yield information about how galaxies form and cluster.

1.2 Pair Weight Compression Method

This thesis focuses on the use of a new method, the pair weight compression method,
to extract the power spectrum and measgifeom galaxy surveys. The advantage of the pair
weight compression method is that it is able to give accurate weights to each galaxy pair and
accurate error bars to the results, even in the presence of redshift distortions, non-linearities and
difficult data sets.

Currently favored extraction methods fall into one of two categories: the brute force
methods and the classical methods. Brute force methods are the methods of choice when deal-
ing with the largest scales (scales where the fluctuations can be treated as Gaussian). On the
smallest scales, brute force techniques are too computationally expensive. Furthermore, with
non-Gaussian fluctuations brute force techniques fail.

On the other hand, at small scales classical methods work the best. Classical methods
rely on the selection function (expected density of galaxies contained within the catalog at a
given location given the selection criteria of the survey) being slowly varying over the range of
the measurement. This means that on the largest scales, classical methods are no longer ideal.

Depending on the observational procedures for a given catalog, there may be a region
where both brute force and classical methods work well or there may be a region where neither
technique works well at all. The pair weight method works on all size scales. Therefore, the
pair weight method looks like the ideal method.

However, the pair weight method has serious disadvantages. The biggest problem with
the pair weight method is that it is computationally expensive even for simple catalogs. Either of
the other types of extraction method, if viable, will probably be less computationally expensive
than is the pair weight method. This means that the pair weight method is likely to be the

method of choice only in situations where the catalog or the prior model is complicated. In this



thesis we chose the Las Campanas Redshift Survey as an example of a catalog which has the
property of being complicated enough that both brute force methods and classical methods will

have a difficult time in extracting the relevant parameters (Matsubara et al., 2000).



Chapter 2

Description of the Pair Weight Method with no Redshift Distortions

The prospect of large, well-controlled redshift surveys such as the Two-Degree Field
Survey (2dF) and the Sloan Digital Sky Survey (SDSS) and their potential for constraining
cosmological parameters (Peacock 1997; Eisenstein et al. 1999) has motivated an increasing
level of sophistication in the measurement of galaxy power spectra.

In recent years two approaches to measuring power spectra from galaxy surveys have
come to the fore (Tegmark et al., 1998). The first is the ‘brute-force’ method, the linear maxi-
mum likelihood method pioneered by Fisher et al. (1994) and Heavens and Taylor (1995). The
second is the ‘classical’ method (Feldman et al., 1994, hereafter FKP; Hamilton 2000). The two
methods are complementary to each other, each performing best where the other method does
the worst: the brute-force method works best at large scales, while the classical method works
best at smaller scales.

Both brute-force and classical methods lay claim to being ‘optimal’ provided that cer-
tain assumptions are true. The defining assumption of the brute-force method is that density
fluctuations are Gaussian. Thus the brute-force method is the method of choice at the largest,
linear scales, where fluctuations may well be Gaussian. The brute force method has been ap-
plied to thelRAS1.2 Jy survey by Heavens and Taylor (1995) and Ballinger et al. (1995), to the
IRASPoint Source Catalogue redshift (PSCz) survey by Tadros et al. (1999), and to the Updated
Zwicky Catalog (UZC) by Padmanabhan et al. (2000).

The defining assumption of the classical method is that the selection fundtiprof a



survey, the probability of selecting a galaxy at positioimto the survey, is ‘slowly varying'.

The classical method is good to the extent that position and wavelength of the fluctuation can
be measured simultaneously. In quantum mechanics, this is the condition for a system to be
classical — hence the designation. The classical method is optimal for measuring power at
wavelengths much less than any characteristic scale of the survey, such as the scale over which
the selection function varies.

The classical method was introduced by Feldman et al. (1994) for the case of Gaussian
fluctuations. However, the method can be generalized into the nonlinear regime (Hamilton
2000). In this chapter the expression ‘classical’ refers, in general, to the nonlinear generalization
of the FKP method.

While the brute-force method should be optimal at the largest scales of a survey, and the
classical method should be optimal at the smallest scales, it can happen that both methods are
suboptimal at intermediate scales. In the Las Campanas Redshift Survey (LCRS), for example,
the width of each of the six.5° slices is~ 7.5 h~'Mpc at the median deptk 300 »~'Mpc
of the survey. Density fluctuations at this wavelength are neither fully linear nor much smaller
than the scale of the survey.

The brute-force and classical estimators of the power spectrum remain unbiased (or at
least asymptotically unbiased) even where they are suboptimal (Tegmark et al., 1997; Hamilton
2000). In other words, the estimators are valid estimators of the power spectrum, being biased
neither high nor low, even if they are not the best estimators. However, both methods yield in-
correct error bars on the power spectrum in regimes where their assumptions fail. For example,
at nonlinear scales the brute-force method grossly underestimates the variance in the estimated
power spectrum, by a facter 1 + £ wheref is the correlation function. Thus, in general, it is
necessary to resort to some additional procedure to compute reliable error bars. For example,
error bars can be estimated from ensemble¥ d¢fody simulations€.g.,Fisher et al., 1993), or
empirically from the level of fluctuations observed in the data (Maddox et al., 1990; Hamilton,

1993).
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The purpose of the present chapter is to explore a new method for constructing a near-
optimal estimator of the power spectrum. The method goes beyond the classical approximation,
but is not restricted to linear, Gaussian fluctuations. Among other things, the method is designed
to yield correct error bars on the power spectrum.

Recall that in the original linear FKP approximation, the power specfpat wavenum-
berk is measured by weighting overdensities in pajref volume elements at positioms and
r; with a pair weighting of the form

NN
(1+n;P)(1 + ’flek)

Wi; = (2.1)

wheren; = 7i(r;) is the selection function at positiar). The idea of the present chapter is

to admit not just a single pair weighting, as in the classical FKP method, but rather several
pair weightings, judiciously chosen. In effect, the power spectrum is ‘compressed’ (Tegmark
et al., 1997) into several measurements of it using different pair weightings; the several mea-
surements of the power spectrum are then combined using their Fisher matrix. The procedure is
at least somewhat familiar. For example, Fisher et al. (1993), FKP, and Sutherland et al. (1999)
present measurements of the power spectrum using not one but several different pair weight-
ings. (In the last two papers, the pair-weightings were linear FKP pair-weightings of the form
of equation [2.1], with the quantity?, in the denominator treated as an adjustable constant).
The present method goes a step further by combining estimates from different pair-weightings,
using their Fisher matrix.

Using the Fisher matrix to merge estimates of the power spectrum takes into account
the covariance between the estimates and automatically yields the best possible combination of
the estimates. In principle, an optimal measurement of the power spectrum could be obtained
in the limit of many estimates of power spectra derived from a large number of different pair
weightings. In practice, numerics limit the number of pair weightings that can be handled to
only a few. Still, even just two sets of pair weightings is better than a single pair weighting.

For simplicity, and to facilitate comparison with other methods, the present chapter is
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limited to the case of Gaussian fluctuations without redshift distortions. We include redshift
distortions in later chapters and hope to include non-linearity in future work.

There is a parallel between the approach proposed in the pair weight method and the
linear brute-force method for Gaussian fluctuations. In the linear brute-force method, the data
in a galaxy survey, the overdensitiésin many volume element§ are compressed into a
set of linearly weighted modes, = W,;6;. To retain as much information as possible, the
number of modes should be as large as possible; but numerical tractability limits the number
of modes to severak 103 or possibly severak10*. The game is then to craft the modes so as
to cram the largest amount of information about parameters of intergsithe amplitudeP;
of the power spectrum at several linear wavenumbemsnd the redshift distortion parameter
B =~ QY6 /b) into the smallest number of modes (Heavens and Taylor 1995; Tegmark et al. 1997;
Padmanabhan et al. 2000). Here, the data are compressed, instead, into a set of quadratically
weighted modes(, = Weijdi05. The game is similar: try to choose the pair windos;; so
as to cram the largest amount of information into the smallest number of pair modes.

One advantage of a quadratic weighting method is that, unlike the linear brute-force
method, it is not limited to Gaussian fluctuations. Thus if a nonlinear prior is used (which,
however, is not done in this work), then the quadratic weighting method will yield reliable error
bars on the nonlinear power spectrum; whereas the linear weighting method will underestimate
the true error bars in the nonlinear regime. A disadvantage of the quadratic weighting method is
that it is numerically much more involved to compute the Fisher matrix of a set of pair weighted
modes, so that in practice only a handful of pair modes can be computed. The situation is
not hopeless, however, because a single pair weighting — the linear FKP pair weighting, equa-
tion (2.1) — probably already contains a large fraction of the information of interest (Heavens
et al., 2000). Adding just one additional pair window is guaranteed to increase the information
content of the estimate and to reduce the error bars correspondingly. The gain should be greater
in surveys with more complicated selection functions, such as the LCRS.

We describe the pair weight compression method in section 2.1. In section 2.2 we de-
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scribe how we actually go about calculating the matrices necessary to obtain the measurements.
Section 2.3 compares the Fisher matrices for IRAS 1.2 Jy and LCRS using the classical method
and the pair weight compression method. In section 2.4 we discuss the method, our results, and

possible applications.

2.1 Pair Weight Compression

We introduce here, in subsection 2.1.2, the pair weight compression scheme for measur-
ing the power spectrum from a galaxy survey. We begin by reviewing, in subsection 2.1.1, the
linear compression scheme (Tegmark et al., 1997), which is the basis of the standard ‘brute-

force’ procedure.

2.1.1 Linear Weights

The data contained in a galaxy survey are the valyed the galaxy number density in
each of the infinitely many infinitesimal volume elemedi§ of the survey. To the extent that
the selection functiom; is known or can be measured with negligible uncertainty (Binggeli
et al., 1988; Willmer, 1997; Tresse, 1999), the data can be taken to be the overdénsities
(ng — 7ig) /7.

Suppose that these overdensities are compressed into a set of mode ampljt(tties
hat signifies an estimated quantity, distinguishing it from a prior quantity) by weighting the

overdensities with a linear weighting functid¥i,;
:i‘a = Wai(S,- (22)

(repeated Latin indices in eq. [2.2] and hereafter signify implicit integration over the volume
element, sd¥,;d; = [ W,(r)d(r)dV; see section 2 of Hamilton, 2000 for an exposition). The

covariance of the modes is

Cab = (iai(» = Wai<5i5j>ij (23)
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whered;d; is the expected covariance function of the survey, which is a sum of a signal term,
the cosmic correlation functiof(r;;), and a noise term, commonly taken to be dominated by

Poisson sampling noise
(0;6;) = €aBaij + 17" (1;)6; (2.4)

the correlation function with respect to the linear combination of individual paramgters

Any linear combination of Gaussian fields is Gaussian, so if the overdensitydfield
is Gaussian — the defining assumption of the linear method — then the mode ampligides,
will also form a multivariate Gaussian. Gaussian fields have the advantage that the likelihood

function can be written down explicitly:

1 L. 4.
L= |C’|—1/2 exp [—axaC’ab xb] . (2.5)
The maximum likelihood estimateof the parameters is given by the vanishing of the derivative

of In £ with respect to the parameters:

3%20 = 5 [0 Cronn O (iata — O] 29)

- 0. (2.7)

If the parameterg, are the values of power spectrum at many different wavenumbers

k., then the covarianc€,,;, depends linearly on the parameters

_ 9Cw

Cab 3fa

fa + Nab- (28)
The maximum likelihood estimatday, of the power spectrum is then
o = F 1 Cp' Cherp Cfl aia (2.9)

whereF, s is the Fisher matrix of the parametes

Fop = CylChera Coft Casp - (2.10)
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Equations (2.9) and (2.10) provide the best (maximum likelihood) estimate of the power
spectrum¢,, that can be deduced from the given set of modes:If the modes formed a
complete set (which would require infinitely many modes), then the estimator would be optimal.
However, computational tractability limits the number of modes that can be treated to several
x10? or possibly severak 10*. Thus, a key part of the brute-force method is to try to choose the
modes to contain as much information as possible about the parameters of interest, the values
of the power spectrum at large, linear scales. This can be achieved by crafting the modes wisely
(Heavens and Taylor, 1995) and perhaps also by performing some kind of Karhuees-Lo"
(signal-to-noise) compression (Vogeley and Szalay, 1996; Tegmark et al., 1997; Tegmark et al.,

1998; Padmanabhan et al., 2000).

2.1.2 Pair Weight Method

In the pair weight scheme, the overdensities are compressed instead into a set of pair-

weighted modes
Xa = Waz’j5i5j . (211)

This seems like a natural thing to do since, after all, the power spectrum is itself an expectation
value of a covariance of overdensities. Indeed, the traditional way to measure the power spec-
trum is based on equation (2.11) with just a single pair weighting;, suitably normalized

(that is, one estimates, = Waijd;05, the shot noise being removed by excluding the contri-
bution of self-pairs of galaxies to the estimator). Commonly, some variant of the linear FKP
pair-weighting, equation (2.1) is adopted.

The expectation value of the amplitudg, of the pair mode is
(Xo) = Xy = WaijCij = WaijBaijla + Waijdp(rij)a " (r:). (2.12)
The covariance is

(AX,AXY) = Waii (AC ACK) Wikt = Wi (Cijkn) Wkt = Koap- (2.13)
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In a sufficiently large survey, the central limit theorem implies that the estini&awill
be Gaussianly distributed about its expectation value. This is true irrespective of whether the
underlying density field is Gaussian or not. In practice, surveys typically do contain enough
information thatX, will be near Gaussian at all but the largest scales, where the linear brute-
force method is the method of choice. We assume thereforekthate Gaussianly distributed,
so that the likelihood function is

1

L x —|K|1/2

1 - L
exp _§(Xa - WaijBaijfa)Kabl (Xb — ka;lB,Bklg,B) . (214)

Take the derivative of- In £ with respect tof, and set the result to zero to find the

estimate of,, given the set of pair weights in the model.

d(-InL) 1___,
~ e, = oK Kiea -
1 . B .
§(Xa — €0 BaiiWija) Kyt Kea,o K 3y ( Xy — Wori€sBart) —

WaijBaij K (X — Wok)€a(rk1) Bagi. (2.15)

Take the first two terms and rewrite them as

1. _ . .
§Kacchd,ade1 (Kpa— (X — Wiri€s(rw) Bgrr) (Xa — fa(w)BaijWija)] . (2.16)

In order to perform the full maximum likelihood calculation these terms must be calculated
explicitly. Bond et al. (1998) show that it is possible to carefully include the contribution from
these terms. However, Tegmark et al. (1997) shows that the estimator is asymptotically unbiased
even if it is suboptimal. In the minimum variance case, the derivative$ afe set to zero and

these terms vanish. In the remainder of this thesis, we take the minimum variance solution

rather than the full maximum likelihood solution. This leaves:
Wi Baii K ) (X — Wori€s(r11) Bart) = 0. (2.17)
Rearrange this equation and repldﬁewith Wri056; to get:

BaijWaii K ) Wit Bsri€s = BaijWaii K 3 Wik 01,01 (2.18)
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Define a new matrix (the Fisher matri®):
Maﬂ = BaijWain(;)IkalBﬂkl- (219)

In order to get the final estimate §f, multiply both sides of equation (2.18) by the inverse of

M. The final result is
s = Mﬁ—;BaijWain;blwbklakal. (2.20)

This gives us a complete method for calculatiggusing the multiple pair weightd/,; ;.
We can see that we no longer have to invert€hmatrix directly. On the other hand, we must
make sure that the computation of the mafkixs feasible. If we assume Gaussian fluctuations

then

(Cijr) = Ci.Cji + CyClig.. (2.21)
The matrixK, Equation 2.13, can then be rewritten as:

Ky = 2W,4i Cik Cji Wi - (2.22)

It is not necessary to make this particular approximation. However, we do need a prior estimate
for (C;jki)-

In principle, the pair weighting method can save computation time over a brute force
technique, particularly for size scales significantly smaller than the size of the catalog. For
example, doubling the resolution in the pair weight method takes four times as much computing
capacity, instead of the 2~ (based on the computing cost of matrix inversion which is&n
process) times for a brute force method. (The computatioK” 6$ the slowest part, and on
average each matrix element takes the same amount of time. Doubling the resolution requires
four times as many matrix elements.) The down sides are that the creation of the saisgs
information if the choice of pair weights is not complete, and the mdirigan also be quite

computationally expensive. The matiX can be used as the Fisher information matrix.

Mas = BoijWeii Ky WoBaw = BaijWaijW;rénanopr_O;kalBﬂkl (2.23)
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whereF,,,.p is the Fisher matrix with respect to paramet®rs £, Bamn and) | 5&8Bpop- TO

the extent that the choice of windows is a complete set
WaiiWorsn = im0 (2.24)
This means that by applying the chain rule and noting %%t = Baij

2

This means that we can compare the pair weight method to another method by comparing the
resulting Fisher matrices. In the case of the pair weight method we will ingert place ofF'.

If M is identical to the Fisher matrix as computed by an exact method then we know that the
pair weight method loses no information. We will see in the next section that the difficulty in

the pair weight method lies in the computationfof

2.2 Calculation of the Pair Weight Fisher Matrix

Equation (2.25) says that the matdx is equivalent to the Fisher matrix. Calculating
M requires the matrice&,, and B,;;W,;;. This section discusses the method of calcula-
tion for K, since it is by far the more difficult of the two. The calculation I§frequires a
10-dimensional integral (equation 2.22), to be performed. (Each of the four volume elements
contributes 3 dimensions and each window functi@;; and W, involves a delta function
which effectively removes a dimension.) for each pair of valuesdb. There are two serious
complications: the volume elements are linked by the correlation function of the separation of
two pairs of two elements (this makes it impossible to reduce the 10-dimensional integral to a
product of smaller integrals) and the lack of full-sky coverage. (This removes possible symme-

tries making analytical progress difficult). We therefore proceed by Monte Carlo techniques.

2.2.1 Nonuniform Monte Carlo Integration of K

Monte Carlo integration is a technique by which one integrates by randomly selecting

points within the range of integration and computing the average value of the integrand (as
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well as the average of the integrand squared) over those points. For a good introduction to the
subject, sedlumerical RecipefPress et al., 1986). Monte Carlo integration relies on the idea

that
/ odr = 5 / dr (2.26)
for the average. We can then approximate

pa = plri) (2.27)
1=1

SEES

where the values; are randomly chosen to be within the range of the integral. The accuracy
to which the integral can be calculated depends on how well the average of the points selected
represents the true average. Use the average of the integrand squared to estimate the accuracy

of the calculation:

(2.28)

There are two ways to improve the accuracy of the Monte Carlo integration. First, choose
more points (increase). As the number of points increases, the average tends towards the
true average. Second, we would likgo be as close to constant as possible within the range
of integration (so thap? is very nearlyp? for all points) thereby decreasing the numerator in
equation (2.28). To do this, change the variable of integration to smooth. dettr example,
suppose thap = 72(1 + ¢(r)), where|e| < 1, and the integral runs from = 0 to r = 2.

Change the integration variable frofo v whereu = 3.

/02 p(r)dr = %/08(1 +e(u

By changing the variable from to u, the integrand becomes very nearly constant. This is

W=

))du. (2.29)

the equivalent to putting many points in the regions where the integrand is highest and down-
weighting the contribution from each of the points in this region. In order to maintain the

accuracy of the integral, lower the probability of choosing a point in a low density region and
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correspondingly raise the weight given to that point. By smoothing out the contributions from
each point, the integral can be calculated to the same accuracy with fewer points.

K, is a whole matrix of integralsa(andb are matrix indices), so they need to be cal-
culated quickly. To this end, choose integration variables to smooth out the entire integral.
Fortunately, for the integral(, this is possible. Equation (2.28) says that the values tbfat
increaseAp the most are the largest absolute values. Even though the integral is quite compli-
cated, itis not hard to see which configurations of the four volume elements contribute the most
to the integral. First of all, the correlation function is largest when the two volume elements are
close to one another, so choose the volume elements in such a way that close pairs (within the
volume foursomes) are more likely than more distant pairs. Secondly, the selection function and
the chosen window functions vary with distance to the observer. Choosing the volume elements
according to the window functions smoothes out the integrand. When the integrand is near zero
or exactly zero (outside of the catalog), it contributes relatively little to the error. This only

slows down the integral if a high fraction of foursomes has an element outside of the catalog.

2.2.2 Step-by-Step Process of Selecting a Galaxy Foursome

To see how the Monte Carlo integration works, it makes sense to look at the process
of selecting one galaxy foursome. Equation 2.22 shows the integral that is being performed
by Monte Carlo techniques. Each of the indicies which us summed over can be thought of as
the location of a galaxy. Because there are four summation indicies, each location (in twelve-
dimensional space with two separations fixed) can be thought of as a galaxy foursome. Figure
2.1 shows one such galaxy foursome for the case of IRAS.

The biggest goal in selecting one of the random variables is to make sure that the se-
lection takes into account everything known about the integral up to that point. This allows
the most effective reduction of the largest peaks. Obviously, the first step is to choose the first
galaxy. At this point, use the angular mask to make sure that the galaxy will be within the cat-

alog or at least has a good chance of being within the catalog. For a catalog like IRAS 1.2-Jy,
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Observer

Figure 2.1: A stick figure representation of a galaxy foursome for IRAS.

the angular mask is not a significant issue since more than 90 percent of the sky is within the
catalog.

On the other hand, for a catalog like LCRS (less than one steradian of sky coverage),
choosing the angular position carefully greatly speeds up the calculation. In LCRS, choose the
angular position to lie in one of the six slices in such a way that equal angular areas get equal
weight. Figure (2.2) shows the LCRS angular mask. Each square represents one observing
area. The fraction of galaxies for which redshifts were obtained is shown by the darkness of the

square. (If all galaxies have redshifts then the square is black.) Cross-hatched areas are from



21

" LCRS Angular Selection Function
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Figure 2.2: The angular selection function for LCRS. The grayscale shows the fraction of galax-
ies within the region for which redshifts are included. (Black is 100 per cent and white is zero.)
Areas which are cross-hatched are from the 50-fiber instrument whereas solid regions are from
the 112-fiber instrument.

the first stage of the catalog where 50 redshifts could be obtained simultaneously. Solid squares
are from the second stage where 112 redshifts could be taken simultaneously. The dashed lines
represent the outer boundaries of the slices. If the galaxy is within one of the slices, it has a
very high probability (again over 90 percent) of being in the catalog. Because the slices are not
complete, make sure the actual angular position is, in fact, within the catalog. If it is not, then
give this galaxy foursome zero weight and move on to the next galaxy foursome. Now go about
choosing the radial position of the first galaxy. Make sure that the radial position reflects the
chosen window for the matrix element in question. To do this, fit the window function (times
the volume at that radius) with a series of power laws. This allows rapid computation of the
randomly selected radial position, while at the same time smoothing out the radial peaks. In
fact, the distribution of probabilities and the corresponding weights for the radial position of the
first galaxy can be precomputed.

In selecting the second galaxy, take into account not only the information about the
catalog as a whole but also the position of the first galaxy. The information about the first galaxy
is important because one product of the integrand is the correlation function at the separation

between galaxies one and two. This means that the integrand is, in general, higher if galaxies
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one and two are close together. To eliminate the peaks, increase the probability that these two
galaxies are close together and decrease the probability that they are far apart. First select the
radial component of the galaxy. Rather than just using the power law fits to the window function,
modify the power laws such that the region near the radial component of the first galaxy is more
likely to be selected for the second galaxy as well. In other words, increase the power of the
power laws for regions smaller than and decrease the power of the power laws for regions
greater tham.

After choosing the radial position, the strategy for choosing the angular position is dif-
ferent for IRAS than it is for LCRS due to the nature of their angular masks. In the case of
IRAS, calculate the correlation function for a series of points for given test angjlgshe-
tween galaxy one and galaxy two. Then fit a series of power laws to the absolute values of
the correlation function. (Don't allow any of these points to drop below a lower boundary for
two reasons. First, the correlation function can go through zero and negative values can cause
problems. Second, giving one section too little probability can cause a new peak to form when
a point within this improbable region is chosen due to its large up-weighting.) Then choose the
angle between galaxies one and two using these power laws as the probability. The azimuthal
angle is chosen with all angles receiving equal probability.

For LCRS, choose the slice and then the location within that slice. Choose the slice with
the probabilities given by the angular area of the slice times the maximum of the correlation
function with the galaxy in that slice. Chose the latitude within that slice uniformly. (The slices
are only1.5° thick so there is not too much variation over the slice.) The longitudinal angle is
found by evaluating the correlation function as if the galaxy were at a few locations along the
slice. Then, apportion the probability to locations according to the corresponding values of the
correlation function. Again, check that the particular angular position of the galaxy is within
the valid portion of the catalog.

The third and fourth galaxies are connected to the first two galaxies by the fixed lengths

ro3 andri4. Therefore, only two angles are necessary to define the location of each of these
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Observer

Figure 2.3: Top: definition of for LCRS. Bottom: depiction of possible choices @for a
given value of.

galaxies. Define these two anglesfas and¢os. 63 is the latitudinal angle with its north pole
pointing directly toward the center from galaxy two. For IRAS, the contribution to the integral
is normally highest i#,3 is low. This is because the selection function is highest closest to the
center. Calculate the selection function for various valugspand weight the probabilities by
these values. Then choogeg; with uniform probability.

The situation for LCRS is substantially different. Due to the observing strategy, the
selection function is not guaranteed to be larger closer to the center. Therefore,fsglect
uniformly. Figure (2.3) shows a particular value 35 in the top panel. Use the positions of
the slices to guarantee that the valuebef will place the galaxy within one of the slices in the
survey (as shown in the bottom panel of Figure 2.3). Once the angular position of galaxy three
is known, check to see that it is within the survey. If it is not, (or if no valueégfis within the
survey), give this galaxy foursome zero weight and move on to the next foursome.

In the case of the IRAS survey, there are two competing goals in choosing the location
of the final galaxy. Positions close to the observer have large selection functions, while at the
same time, positions close to galaxy three maximize the correlation function. For simplicity,
choose to do one or the other based on the relative importance of the two. If the closest possible

separation for galaxies three and four is less than twenty times (empirically the best trade-off)
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the smallest possible distance to galaxy four (from the observer), then try to get galaxy four close
to galaxy three, as shown in Figure (2.1). Otherwise, try to get it close to the observer. In either
case, set up the coordinates such thats zero when it minimizes the relevant distance. Then,
follow the same procedure for choosifig, as forfy3. Once agains4 is chosen uniformly.

For LCRS, the selection function is not always decreasing with radius. Therefore, always
try to get galaxies three and four close together. The mathematics are sim@lgstif) points
directly away from the center. Again, use Figure (2.3) to see how this location is chosen.
First, compare the value of the correlation function at the minimum attainable distance to the
correlation functions a4, = 0 andfy4 = «. If it is significantly larger (more than a factor of
3 or s0), then calculate the location of intermediate values (approximately factors of the square
root of 10) of the correlation function. Then chodke by the probabilities given by a power
law fit to these values and locations. If the variation of the correlation is small, clfhgse
uniformly. To calculatep,, first determine which values afy4 lie in one of the slices. Then
multiply the length within each slice by the value of the correlation function at the minimum
separation available in that slice. This is possible because the minimum separation in the slice
will be at one of the ends of the slice or at the minimum separation possible @iyeruse
this value to be the probability of choosing this slice. Once the slice is determined, compare
the highest value of the correlation function within the slice to the lowest value. If the highest
value is more than three times as high as the lowest, compute the positions along the slice of the
predetermined values of the correlation function. (If it is not, again use a uniform distribution.)
Once again, fit a power law to the determined values and locations and call this the probability
distribution (this time forp,4). Once the calculation of the position of galaxy four is complete,
determine whether or not galaxy four is within the catalog.

If all of the galaxies are within the catalog, then compute the value of the integrand at that
set of positions. In particular, take the product of the correlation functions of the separations (
andrs3), the window functions, and the accumulated renormalizations due to the non-uniform

probability functions for each variable. Then add this to the running total. Continue choosing
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galaxy foursomes until the statistical error is below the error limit, at which point the value of
the integral is the running total divided by the number of foursomes (including foursomes which
were not in the catalog) times the 10-dimensional volume of the integral. This, of course, gives
the value of the signal-signal portions of the matkix To find the full value of the matrix add

into the matrix the components due to the delta functions (the 7-dimensional and 5-dimensional

components). Then use this matrix in our calculation of the Fisher matrix.

2.3 Comparison of Fisher Matrices

By comparing the Fisher matrices calculated by two different methods, one can compare
the relative accuracies of the two methods in measuring a particular set of parameters. In par-
ticular, in this section we compare the Fisher matrix as calculated by the pair weight method
to an accepted method, the classical approximation, for the paranitersThis will allow a
comparison of the two methods to see whether or not the more complicated pair weight method
is also the more accurate method. In particular, we would like to know which circumstances
demand the pair weight method and which can be addressed by the more easily computed clas-
sical method. Note that in this comparison we are comparing the Fisher matrices of Gaussian

models with no redshift distortions.

2.3.1  Classical Method Versus Pair Weight Method for IRAS 1.2Jy

The IRAS 1.2 Jy redshift survey is nearly all-sky. This means that the classical approx-
imation should work very well. This makes it a good choice for comparison between the pair
weight method and the classical method. To generate the Fisher matrices, we need to make
assumptions about the prior prediction of the power spectrum (or, equivalently, about the corre-
lation function). Our power spectrum was generated by the methods described in Eisenstein and
Hu (1999) withh = 0.65, 25 = 0.7, 2, = 0.3, n = 1, andT = 2.73 K. For this comparison,

we use a Fisher matrix calculated as described in Hamilton (1997) for the classical method. For
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the pair weight method, we use one window at each separation. The window is given by

ﬁmjd(ra — |I‘i — I‘j|)
(1 + 47rJ3a7_li)(1 + 47TJ3a7_lj)

Waij = (2.30)

where

T = /0 " 2 (r)ar. (2.31)

We expect this window to reflect the information content because we are counting equal vol-
umes in regions where the distribution is well sampled and equal numbers where it is sparsely
sampled.

To compare the information contained within the Fisher matrix, we would like to find
statistically independent variables and find the amount of information about each of these vari-
ables contained within the data set. Hamilton and Tegmark (2000a) describes a number of ways
to decorrelate the data. In this paper we will use the Fisher matrix divided by the prior value
of the power spectrum at the particulathe fractional Fisher matrix) rather than the Fisher

matrix itself.

Gap = 551<AéaAéﬁ>fEI]_l = &aFupés- (2.32)

This is so that the fractional error is the error in question rather than the absolute error. This
means that the region whefas large will not be over-represented in regions wherge small.

To decorrelate this matrix, measure the parameters which are the rows (normalized to unit sum)
of the square-root of this matrix. This ensures that these parameters will be decorrelated with
eigenvalue equal to the unnormalized sum of the row squa{rEq Fz-lj/Q]z). Compare two
guantities between the two matrices. The first is addressed in Figure 2.4. This Figure shows
a set of normalized rows of the square-root of the Fisher matrices. (Solid is the pair weight
method and dashed is the classical method.) These are the actual parameters that we will mea-
sure. Notice two things about this Figure. First, the parameters have narrow peaks centered

on the wavelength in question. This means that the decorrelated parameter does a good job of

measuring the value of the power spectrum at a partiéul&econd, notice that the peak of the
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Figure 2.4: Normalized rows of the square-root of the Fisher matrix. Solid lines are for the pair
weight method and dashed are for the classical method.

parameter is higher for the pair weight method than it is for the classical method. This is due
to the fact that the pair weight method has values off the diagonal which are negative. These
negative values are likely to be caused by errors in the calculation of the Fisher matrix rather
than actual regions of negative information. Because the Fisher matrix is used in the calculation
of the parameters from the data as well as to estimate the accuracy of the calculation, errors
in the calculation of the Fisher matrix will reduce the accuracy with which the parameters in
guestion can be measured.

Figure 2.5 depicts the amount of information contained within the IRAS catalog in the
decorrelated band-powers. The classical method extracts as much (or more) information about
the parameters on all scales as does the pair weight compression method with one window per
separation. This is not too surprising due to the fact that the IRAS catalog is nearly all-sky.

This means that the classical approximation should be very nearly valid. This also means that



28

o
o1

FRKP—, "
_ - /&—Pair Weight

™
O

©
o

Information /Band—Power Window

©
O
[

0.1 0.2 0.3
Wavenumber (k)

Figure 2.5: Information contained within decorrelated parameters. kThnelex gives the
wavenumber of the location of the peak of the parameter. The solid line is for the pair weight
method and the dashed line is for the classical method.

for a catalog such as IRAS, one should strongly consider using the simpler classical method
on the small to moderate scales. On the largest scales, one should use one of the brute-force
techniques. These techniques should eliminate the approximation used in the classical method

while still being feasible.

2.3.2  Classical Method Versus Pair Weight Method for LCRS

The Las Campanas Redshift Survey (Shectman et al., 1996) allows us to compare the pair
weight method to the classical method in a situation where we expect the classical approxima-
tion to break down. LCRS has 327 fields approximately? x 1.5° contained within 6 slices.

In each of these fields up to 112 redshifts were taken. Due to the limitations of the observing
procedure, each field has its own selection function. (The selection function depends upon the

fraction of galaxies in the field that have redshifts. This fraction varies from field to field.) This
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means that the largest length scale over which the catalog does not V&iy/ (s 7.5k Mpc

at the median depth of the survey). On scales larger than this the classical approximation should
lose some of the available information. The complications of the LCRS catalog also make many
of the brute force calculations difficult, though not impossible.

In addition to probing a region where the classical method should be inadequate, we
wanted to investigate the benefits of using more than one window at each separation. Using
more than one set of windows, should enable the extraction of more information than with
only one set. We would like to know whether the additional information contained within the
additional windows is enough to justify the computing cost. The windows we used for this are
the same as those defined in equation 2.30 with four different choickg of he four windows

have
J30 =0, J30/10, J3a, 10.J34 (2.33)

respectively. We chose these windows to make sure that the information contained within one
window was sufficiently different from the next.

Once again, our power spectrum was generated by the methods described in Eisenstein
and Hu (1999) withh = 0.65, A = 0.7, Q, = 0.3, n = 1, andT = 2.73 K. For the classical
approximation, we again use a Fisher matrix calculated as described in Hamilton (1997). The
plots of the information contained within the Fisher matrices in this section have been calculated
in the same way as those of the previous section. Because the differences between the pair
weight method and the classical method should be largest on scales larger T ' Mpc
and because the difference between one window and four should be apparent on all scales, we
have only calculated &1 x 31 matrix of separations.

In Figure 2.6 is the information contained within all four sets of windows (the solid line)
and the information contained within each set of windows individually. It is clear that adding
windows does, in fact, allow for the extraction more information. However, notice that the

information contained within the best set of windows (this happens to be the third window,
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Figure 2.6: Information contained within decorrelated parameters for the pair weight method.
The k index gives the wavenumber of the location of the peak of the parameter. The solid
line contains information from all four sets of windows. The four other lines contain only the
information from one of the sets of windows.

with J3, = J3,) contains no less than half of the information on all scales (as compared to
the complete set of four windows). This Figure shows that this window actually contains more
information on the smaller scales. This window does not actually contain more information but
rather the errors in the method of calculation yield slightly inaccurate results. Also note that the
fourth window (/5, = 10.J5,) appears to contain the second most information of all the sets of
windows. However, after eliminating this set of windows from the calculation, the remaining
three sets of windows contain almost exactly the same amount of information as do all four sets
together. The information extracted by window four has already been extracted by the first three
windows (primarily window three).

Figure 2.7 shows the information contained within the classical approximation as com-

pared to the pair weight method. This plot shows that on the very largest scales Ksithall
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Figure 2.7: Information contained within decorrelated parameters. kThelex gives the
wavenumber of the location of the peak of the parameter. The solid line contains information
from all four sets of windows for the pair weight method. The dot-dashed line is the information
contained within the best single window for the pair weight method. The dashed line shows the
information contained within the classical method.

pair weight method contains several times as much information as does the classical method.
On smaller scales, the difference becomes less. On the smallest scales the classical method does
retain more information than does this pair weight method. There are two causes for this. One
cause is aliasing in the FFT used to go from real space to Fourier space. We found (in Chapter
4) that the latter portion of the matrices are contaminated to some degree by aliasing. Second,
when the calculation is extended to include smaller scales, it does a better job of retaining the
information on larger scales as well. This is particularly important for elements near the edge of
the matrix. To obtain the best measurements of the power spectrum on these scales one would
have to extend the Fisher matrix calculation to smaller scales.

The decorrelated band-powers, for which the information is calculated, are shown in

Figure 2.8. Once again the parameters are narrow about the peak. Also, notice that the classical
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Figure 2.8: Normalized rows of the square-root of the Fisher matrix. Solid lines are for the pair
weight method and dashed are for the classical method.

method parameters are very similar to the pair weight parameters. The main difference between
the two is that the errors in the calculation of the pair weight Fisher matrix once again causes
regions where the square root of the Fisher matrix is negative. This means that the errors in
the calculation of the Fisher matrix is causing us to measure the parameters with weights which
are not the best choice and to measure them with less accuracy than would be possible if the
integrals of the matrix elements could be done exactly. Notice that, in the case for LCRS, the
errors in the pair weight calculation mainly affect the smallest and largest scales measured while
not greatly affecting the intermediate scales.

For the LCRS catalog, the pair weight method provides a more accurate measurement for
the largest scales than does the classical method. Unfortunately, with orly au31 matrix
of data points we are unable to say for sure where the classical method becomes comparable to

the pair weight method.
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2.4 Discussion and Conclusions

We introduced a pair weight compression technique for measuring the power spectra
from galaxy catalogs. This method requires the calculation of a matrix of ten-dimensional
integrals. Because galaxy surveys tend to be less than all-sky, we found that the integrals cannot
be performed analytically or by traditional numerical techniques. We discussed a Monte Carlo
technique for computing these integrals. The advantage of the Monte Carlo technique is that
the integrals can be performed even when the catalog’s selection function is very complex (as is
the case for LCRS). We then applied the technique to the IRAS 1.2 Jy redshift catalog and the
LCRS.

We found that for the IRAS 1.2 Jy survey, the classical method would produce (slightly)
smaller error bars than would the pair-weight method, if we use just one window per separation.
Both methods are able to measure narrowly peaked decorrelated band-powers. Although the
pair weight method works for a nearly all sky survey like IRAS, it is clear that the simplicity of
the classical method makes it the preferred method of calculation.

For LCRS, we found that even using only one window per separation, the pair weight
method produces error bars considerably smaller (as much as a factor of three smaller) than
those of the classical method. When we used four (or the three best), windows per separation
the information retained was even greater. Due to the computational expense of calculating the
additional windows, it is not clear whether one should use one or more window per separation.
Clearly, if computational expense is not an issue, one should use many windows.

Throughout the chapter we have assumed that the overdensities are linear and that red-
shift distortions are negligible. We know that both of these assumptions are not accurate in our
universe. Under these simplified circumstances, we saw that the pair weight method is a viable
method. For surveys with complicated selection functions, the pair weight method might well
be the preferred method. It will be interesting to see whether the pair weight method remains a

guality method when we relax the assumptions of linearity and small distortions.



Chapter 3

Application of the Pair Weight Method to the Las Campanas Redshift Survey

with no Redshift Distortions

The power spectrum of matter in the universe can be used to measure the relevant pa-
rameters of models of the universed.,Eisenstein et al., 1999). Because galaxies are easily
visible, it is common to use galaxies as a tracer for the underlying density field. It has been
shown (Scherrer and Weinberg, 1998; Cole et al., 1988) that if galaxy formation is a local phe-
nomenon, then the galaxy power spectrum on large scales is different from the mass power
spectrum by a multiplicative constant (at least in the linear regime; Mann et al., 1998). This
constant is the bias factor. Because of the expected similarities between the galaxy power spec-
trum and the mass power spectrum, it is not surprising that power spectra have been taken for
all of the larger galaxy surveys.

Despite the wealth of measurements, the power spectrum on large scales is not yet well
determined. Part of the problem lies in the fact that the redshift surveys have different selection
criteria. For example, it is commonly thought (Peacock, 1997) that galaxies selected in the
infrared may have a bias factor that is lower than those selected in the optical. Another problem
is that the amount of data in each catalog still produces large (tens of percent) errors in the
measurement of the power spectrum at any given wavenumber.

The Las Campanas Redshift Survey is one of the larger publicly available redshift sur-
veys. The observational procedure maximized the number of galaxy redshifts given the tele-

scope time available to the team. Although this maximization of the telescope time means
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that the analysis will yield the highest possible number of galaxy redshifts, optimizing for the
number of galaxy redshifts makes the analysis of the survey more difficult. Each of the 327
observing fields has a different covering factor. That is, one field may have redshifts for 85
percent of the galaxies where the next field over has redshifts for 65 percent of the galaxies.
In addition to this, the catalog is 6 slices each having a width.®f. This means that it is
similar to 6 two-dimensional slices. This is a problem for analyses that rely on the measured
wavelength to fit comfortably within the catalog (in any direction). These characteristics make
the Las Campanas Redshift Survey difficult for traditional methods, yet an ideal catalog with
which to test the pair weight compression method.

In chapter 2, we described a method for extracting the power spectrum from a redshift
galaxy catalog. The pair weight compression method assigns weights to each galaxy pair within
the catalog based on the selection function (the number of galaxies within the catalog divided
by the true number of galaxies) of the catalog and the parameters that one wishes to measure.
The method requires that the selection function of galaxies to known for each position in the
catalog. It does not require that the selection function have any particular properties (like be-
ing an angular selection function times a radial selection function). This means that the pair
weight compression method should assign weights to the individual galaxy pairs to maximize
the information extracted from the galaxy survey (given the limitation of the number of window
functions available in the calculation). The LCRS certainly meets all requirements for the pair
weight compression method.

In section 3.1 we discuss the modifications to the catalog that were made to make the
analysis as accurate as possible. Section 3.2 describes the mathematics necessary to extract
the power spectrum from the catalog using the pair weight method. In section 3.3 we extract
the power spectrum from the LCRS. We then compare the results to power spectra from other

works. We conclude in section 3.4
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Figure 3.1: Top panel is the number of galaxies per logarithmic bin in the full Las Campanas
Redshift Survey. The bottom panel shows the ratio of the number of galaxies in the full LCRS
to the expected number based on the integrated selection function. The dashed line shows the
ratio based on the total number of galaxies in the cut range divided by the number of galaxies
found by integrating the selection function over the cut range.

3.1 Preparation of Catalog

The Las Campanas Redshift Survey (hereafter LCRS) of Shectman et al. (1996) contains
23720 galaxy redshifts stretching from 10h~" Mpc to ~ 800~ Mpc with the range of
75h~! Mpc to 475h~! Mpc being reasonably well sampled. Lin et al. (1996a) calculate the
selection function of this well sampled region. The number of galaxies per logarithmic bin is

shown in the top panel of Figure 3.1. In the lower panel is the ratio of the number of galaxies per
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logarithmic bin to the expected number (using the selection function code generously provided
by Huan Lin). This shows that the number of galaxies is well fit by the selection function in the
region beyond’5h ! Mpc.

In order to perform the calculations, we take two catalogs from the LCRS. The first is all
23720 galaxies, while the second is the 21996 galaxies betwgert Mpc and475h~! Mpc.
The lower cutoff is due to the fact that the selection function does not adequately describe the
catalog belowr5h~! Mpc. The upper cut is because the catalog is rather sparse beyond this
cut. This means that the statistics are not all that good. This means that the region beyond

475h~' Mpc should not provide too much additional information.

3.2 Calculation of Power Spectrum

In chapter 2, we described how to extract the power spectrum from a galaxy survey using
the pair weight compression method. The final result was that the estimgtevbiere is the

index of the separation is given by:
€s = ME;BaijWain,ﬁ)lekﬁk@- (3.1)

Chapter 2 describes the Monte Carlo Calculatiodbf K, and the producBW in real space.
Notice that equation 3.1 does not indicate the space in which the calculation is performed.
Because all of the data, selection functions, etc. are in real space, perform all calculations in

real space until the final estimate. Then, use an FFT to obtain a Fourier space representation.

3.2.1 Calculation of Wy;01.9;

The only computation involved in Equation 3.1 not discussed in Chapter 2 is the calcu-
lation of Wy,;0,9;. This is the only place in which the actual galaxy catalog data is introduced

into the calculation. For clarity, first look at the full integral:

ﬁiﬁj5(ra — |I'i - rj|) n; — Ny n; — ’ij d3

Whij0i0; = iy (32
e /(1+47TJ3aﬁi)(1+47rJ3aﬁj) now, G (3.2)
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wheren; = n(r;). For simplicity of calculation this integral splits into three separate integrals:
Ws = Wss — (Was + Wsq) + Wag. (3.3)

Where the subscript stands for data and the subscrigtands for smooth.

niN;0(ro — [ri — 1;) 3, 13
W = d°r;d°r;. 3.4
58 / (1 + 47TJ3a?7Li)(1 + 47TJ3a?7Lj) rid T ( )

This integral is very similar to the integral fo# B. The only difference is that B has an
additional factor o (rs —|r; —r;|). This means that the calculation fiéf B can be used for the
calculation ofi¥,, and the only modification is in the translation from continuous representation
to discretized representation. When discretiZBdB is a diagonal matrix wheredd,, is a
vector.

Becausé andj are dummy indices

nmj(S(ra — |I'Z' — I'j|)
1+ 47TJ3a’fLi)(1 + 47TJ3a’ij)

Wsa + Was = 2Wys = 2/ ( d*rid’r;. (3.5)

The valuen; is not a smoothly distributed value but rather a series of delta functions at the

locations of the galaxies. This means that the integral blsecomes a sum over galaxies:

|rz - r]|) 3
Wi + Wy =2 Ay 50
at+ Wa Z / 1+ 47rJanZ (1 +4nJ3q7;) g 30)

galaxies(7)

So for each galaxy, integrate over the shell centered on the galaxy’s position with radius

This set of 2-dimensional integrals can be performed by standard numerical techniques. It is
easiest to perform this integral as the sum of integrals on the sub-shells as they intersect each
of the LCRS observing areas. This is the set of integrals which takes the bulk of the computing
time when calculating the teriv 60.

The final term is

ninja(ra - |I"i - I'j|) 3 13
Wy = ridr. 3.7
dd / (1 + 47 Jsqns) (L + Andsany) 00 (3.7)

Once again the values; andn; are a series of delta functions at the locations of the galaxies.

So this integral should actually be written

galaxies(i) galaxies(j#i) (1 + 47TJ3ani) (1 + 47TJ3anj)
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where the delta function isif r, — |r; — r;| = 0 and0 otherwise. Because there are essen-
tially no galaxy pairs with exactly separatio, the calculation must be relaxed somewhat.

In addition to this, the full calculation is using sums over discrete valagsd approximate
integrals. This means that the galaxy pair should contribute to the integral even if the separation
is not equal to the arbitrary choice af To accommodate this, simply apply the contributions

to the two values of,, which bracketed the actual separation. The fractigig.d and fupper)

apportioned to each integral are reminiscent of linear interpolation:

Tupper — T'sep

T - T
Jiower = —sep  lower . (39)

) f upper —
Tupper — T'lower Tupper — Tlower

This sum can be done exactly as written with a reasonable amount of computing time. In fact,
the sums can be replaced

> Yoo =2 > > (3.10)

galaxies(i) galaxies(j i) galaxies(i) galaxies(j>i)
to save half of the computing time.

Because the termid’;, andW,,; + W, are, in fact, calculated as true delta functions in
«a, it is necessary to reduce the valueligf, so that it will contain the same volume. The delta
functions mean that the volume is actually a spherical shell (with no width) withianela So

multiply by 2 and divide by

To _ Ta+1 _
/ (1- 2= y2q +/ (1- ——"a yp2qp., (3.11)
Ta—1 T Ta

a " Ta-1 Tat+l — Ta
This places all of the terms iW§6 on the same footing, so they can be added together. With
the calculations from chapter 2, there is now a complete description of the calculaﬁ@ﬁmf

real space.

3.2.2 Measuring the Power Spectrum

The next step is to put it all together to obtain a measurement of the power spectrum

with error bars. Equation 3.1 gives the measurement of the power spectrum at wavélength
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marginalized over all other possible parameters. Sices just the inverse of the covariance
matrix for the parameters,, the error is given bm. Although this gives the proper mea-
surement at a particular wavelength (a delta function in width) this is not usually the quantity of
interest. In fact, this quantity is anti-correlated. This means that neighboring points have covari-
ances that are negative. Because neighboring points are expected to have similar values it makes
sense to use a correlated measurement rather than an anti-correlated measurement. Smoothing
over an appropriate window produces smaller error bars at the expense of measuring a region
aroundk,, rather than measuring onky, itself.

The first smoothing of interest produces what we will call the correlated spectrum. This
is obtained by multiplying equation 3.1 by, 5/ Zﬂ M,g:

ccorrelated __ 1

¢ a Zﬂ Mvﬂ

We must divide by the sum of the row of the Fisher matrix to make sure that the measure-

BiijWaii K 3y WikiSx - (3.12)

ment is unbiased. Notice that this smoothes the measurement using the Fisher matrix as the
smoothing function. This will correlate the data over a reasonably small width. This is a nice
representation because it is the measurement that emerges most naturally from the data. Also,
this measurement is nice and smooth. This is because smoothing reduces the error bars because,
instead of using the measurement at just the point of interest, it averages over the surrounding
points as well. In this case, the error bars are giveR/fiW/,,)/ >_p M. If the Fisher matrix
is reasonably sharply peaked, then this representation will yield a valid, unbiased estimate of
the power spectrum. In fact, most analyses use a similar weighting of the data to achieve their
result. It means, however, that the measurements are not independent of one another.

The second smoothing function that produces an interesting result is obtained by using
the square-root of the Fisher matrix as the smoothing function. There are many possible versions
of the square-root. In this paper we diagonalize the Fisher matrix and take the square root of

the Eigenvalues. This measurement is interesting because

(AMTEAMEE) = 1 (3.13)
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That is to say that, smoothing with the square root of the Fisher matrix results in measurements

that are uncorrelated. For this reason, we call the result decorrelated.

1

A’(yiecorrelated _ 7 M,Y_(J}/QBaij Waz’jK,;,l Wik10k0;1. (314)

2. M

The errors on the measuremegfsorelated are justl/ 3 M%Q.

3.2.3  Correcting for Discrete FFT Errors

The process of using discrete matrices rather than the true continuous values leads to one
other problem. The calculation of the estimates of the power spectrum is actually a calculation
of the Fourier transform of the estimate of the correlation function. Taking the Fourier trans-
form of the discretized version of the prior value of the correlation function should yield the
discretized version of the prior power spectrum. However, performing this calculation actually
yields a power spectrum which is lower (and at the lakgend much lower) than the prior
value of the power spectrum. This is because the discrete FFT of the prior power spectrum is
necessarily bumpy. On the other hand, the prior correlation function (obtained using a contin-
uous Fourier transform) is smooth. The power contained within the extra bumps are lost in the
calculation. As the binning becomes finer (as more points are added) the discrepancy becomes
smaller.

Fortunately, the prior value of the correlation function tells us exactly how to correct for
this error. If the measured correlation function is exactly the prior correlation function, then the
measured power spectrum should be exactly the prior power spectrum. This means that in order
to obtain the corrected estimate of the power spectrum, take the uncorrected value of the power
spectrum (before doing any smoothing) and multiply by the ratio of the prior power spectrum
to the FFT of the prior discretized correlation function.

Figure 3.2 shows the results of the correction in both the 31 by 31 matrix and the 63 by
63 matrix. The dashed lines show the estimate for the power spectrum without the correction.

The solid lines show the same results with the appropriate corrections applied. In both cases
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Figure 3.2: Solid lines show the correlated versions of the corrected power spectra. Dotted lines
show the same versions for the uncorrected power spectra. Shaded regions show the expected
(1-0) errors.

the correction is a factor of a few at the largégprobed. Notice that the agreement between
the measured power spectra becomes much better in the corrected version than it was in the

uncorrected version.

3.3 Power Spectra

3.3.1 Power Spectrum of the Full LCRS

Figure 3.3 shows the correlated and decorrelated estimates of the redshift space power
spectrum for the full LCRS catalog. On small scales (laky¢he measured power is lower
than that of the prior. On large scales, the measured power is larger than that of the prior.
The correlated version (the solid line) appears to have variations that are within the expected

errors. However, the decorrelated measurement has errors which are larger than expected (i.e.,
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Full LCRS Power Spectrum
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Figure 3.3: Power spectrum of all 23720 LCRS galaxies. The shaded region shows the expected
deviations from the prior power spectrum for the correlated measurements. Diamonds show the
measured decorrelated power for a bin with horizontal and vertical error bars. The horizontal
error bars show the full width at 1/4-maximum. The position of the points is given by the center

of the full width at 1/4-maximum region. Stars also show the measured power for a bin, however
the measured power is negative. The solid line is the positive portion of the correlated power
spectrum measurement. Notice that the scatter between points is much larger than the expected
errors. This is due to the galaxies where the selection function is very small.

neighboring points are separated by much more than the error bars). The scatter is due to the
large contributions from the few galaxies in sparsely sampled locations. Also, the power on the
largest scales is likely to have been enhanced by these low selection function galaxies.

At locations wheré: > 0.3h/Mpc~" the estimates take a large upturn. Hamilton (2000)
found that when taking the fast Fourier transform, the outer portions of a matrix are not always
faithfully represented. It appears that (Figure 3.2) the last few points of the measurement are
systematically too high. This means that when looking at the results, one should take the outer

portions of the matrix less seriously than the middle.
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Figure 3.4: Power spectrum of the cut catalog’s 21996 LCRS galaxies. The lines and symbols
are as described in Figure 3.3. Notice that the error bars are now consistent with the scatter of
the points.

3.3.2 Power Spectrum of the Cut LCRS

By cutting the LCRS at5h~! Mpc and475h~" Mpc, only the region which is well
fit (this eliminates the small redshift galaxies) by the Lin et al. (1996a) selection function and
which is well sampled (this eliminates the most distant region) is included in the measurement.
By using only the best region of the catalog, systematic errors (from a mismeasured selection
function where the selection function is too low to be included in the fit to the selection function)
in the measurements will be reduced. The results of this analysis are shown in Figure 3.4.

The correlated power spectrum is positive at all wavelengths. The errors in the measure-
ment of the power spectrum using the cut catalog appear to agree with the expected level of
errors. It is interesting to note that the measured power spectrum agrees rather well with the

prior power spectrum (particularly in shape). The region itk .3 h Mpc™! is likely to be
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inaccurate. This means that both of the negative values measured in the decorrelated power
spectrum occur where it is likely to be affected by aliasing.

The prior value of the power spectrum cannot be completely ruled out by our measure-
ment. First of all, on the largest scales (snigll redshift distortions will tend to add power to
the measurement. On the very smallest scales (lxgedshift distortions will tend to reduce
the measured power. Although the prior cannot be completely ruled out, it does appear that the
measured power spectrum is steeper than the prior.

There is some evidence that the power spectrum is turning over at #isdutMpc!.
The region with smaller values df is likely to be contaminated by the FFT aliasing power
from largerk into the bins with smallek. In fact, the first few measured points are not plotted
due to severe aliasing problems. Unfortunately, the measurement is too insensitive to make any

definitive statement about the turn-over of the power spectrum.

3.3.3 IRAS 1.2 Jy Power Spectrum

Figure 3.5 shows the measured power spectrum for the IRAS 1.2 Jy survey. Once again,
the line is the pair weight measurement. The line is solid where positive. The diamonds show
the canonical measurement by Fisher et al. (1993) with error bars. The stars show the power
spectrum measured by the combined 1.2 Jy and QDOT surveys as measured by Tadros and
Efstathiou (1995). The pair weight measurement appears to be noisier than expected. This may
be due to errors in the calculation of the Fisher matrix elements. It is clear, however, that the
pair weight measurement is similar to the measurements by Fisher et al. (1993) and Tadros and

Efstathiou (1995).

3.3.4  Tests of the Pair Weight Method

Now that we have a power spectrum measured by the pair weight method, we would like
to know the limitations of the method. The pair weight method can be tested in two additional

ways. The first is to work with a data set with a known power spectrum. The second is to
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Figure 3.5: Power spectrum for IRAS 1.2 Jy catalog. The line is the pair weight measurement.

The line is solid where positive, dotted where switching signs and dot-dashed where negative.
Also shown are measurements by Fisher et al. (1993) (diamonds) and Tadros and Efstathiou
(1995) (stars). Tadros and Efstathiou (1995) results report the power spectrum measured from
the combined 1.2 Jy and QDOT surveys.

work with a prior power spectrum which is not expected to be correct to see if the selected prior

affects the outcome of the measurement.

Mock Catalog with Zero Power

In order to test whether the pair weight method is able to extract the correct power spec-
trum from data with a known power spectrum, we tested it against a mock galaxy catalog. The
mock galaxy catalog was created by randomly selecting galaxies based on the Huan Lin selec-
tion function. This means that the power spectrum (for nonzero valug¥ sifould be zero.

The results of the analysis using this mock catalog are shown in Figure 3.6. Clearly, the power
measured is much smaller than the prior power spectrum. In fact the measured value in the

correlated power spectrum is approximately equal to the error bar supplied on the prior. This is
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Figure 3.6: Power spectrum as measured from a mock catalog. The mock catalog has the
correct selection function for the entire range of the LCRS. The input power for the catalog is
zero. Here the error bars are constant in the logarithm assuming that the measured power is

approximately equal to the prior power.

what one would expect. However, the measured power is systematically negative. This means
that when the power in a data set is much lower than the prior value, there may be some sort
of imprinting of the prior onto the data. This also says that the pair weight method, due to the

errors associated with the calculation, may not measure zero all that well.

Cut LCRS with Flat Prior

When working with a prior value of the power spectrum it is important to test whether

the prior value biases the calculation in some way. In other words, it is important to know

that the method is measuring the data rather than measuring the prior. To test this, we used a
second prior with a very different shape than that of Eisenstein and Hu (1999). We used a prior

that was uniformlyl0* (h—'Mpc)?. This prior leads to the simplest analysis. This is because the
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Figure 3.7: Power spectrum measured with the 21996 galaxies in the cut LCRS catalog. Again,
the shaded region is the expected errors assuming the flat prior is correct. The data points
(diamonds for positive and stars for negative) show the decorrelated results. The solid line is
the correlated version smoothed with the typical smoothingy,@f. M¢,rior. The dotted line is

the correlated version using just the Fisher maldxas the smoothing function. The dashed

line is the result from the more realistic prior power spectrum.

Fourier transform of a flat power spectrum i§ function. This means that our matrices become
diagonal. The other benefit of the flat prior is that even when discretized the Fourier transform
of the real space correlation function is still a flat power spectrum. This means that there is no
discretization correction. The results from the analysis of the cut LCRS using the flat prior are
shown in Figure 3.7. The measurement is positive and is consistent with the expected errors.
In addition to this, the measured power is similar to that measured with the more realistic prior.
On the largest scales, the flat prior measures a smaller value for the power spectrum. On the
smallest scales, the flat prior measures a slightly larger value for the power spectrum. This is
probably due to power shifting from locations where the power divided by the prior is high to

locations where the power divided by the prior is low. This is because the smoothing function
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Figure 3.8: Power spectra for PSCz, APM and LCRS using different methods. The solid shows
the power spectrum of LCRS measured with the pair weight method using the Eisenstein and
Hu (1999) power spectrum as the prior. The diamonds and the associated error bars are the
power in LCRS measured by Lin et al. (1996b). The squares and associated error bars are the
power measured by Sutherland et al. (1999) from the PSCz. The stars and associated error bars
are the power spectrum measured by Gaaga and Baugh (1998) for the APM.

((prior M Eprior Whered,rio, is the discretized version of the prior power spectrum, and thus not
constant) assumes that the measured value of the power spectrum is close to the prior value.
This is clearly false with this outrageous prior power spectrum. To correct this the dotted line
shows the correlated power spectrum usiigas the smoothing function. This reduces the
problem. In fact, the flat prior power spectrum produces a measured power spectrum that is
very similar to that measured by the more realistic power spectrum. This is a good indication

that the prior power spectrum is not biasing the results.
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3.3.5  Comparison of Pair Weight Results to Previous Results

Figure 3.8 shows the comparison of the Lin et al. (1996b) and the correlated measurement
using the pair weight method with the Eisenstein and Hu (1999) prior. Like Lin et al. (1996b)
the pair weight method shows some evidence that the power spectrum turns over &t.small
Notice that the pair weight method measures smaller power than does Lin et al. (1996b), on
almost all scales. However, by multiplying the result from the pair-weight method by 2, we
obtain the same result as Lin et al. (1996b) over our well-measured region. It is not at all clear
why two analyses should obtain results that are exactly off by a factor of 2.

Also plotted is the measurement of the power in PSCz by Sutherland et al. (1999)
(squares) and the results from the APM by Gaaga and Baugh (1998). The pair weight
method measures very nearly the same power in LCRS as Sutherland et al. (1999) does for
PSCz. This result is surprising due to the fact that it is commonly believed that IRAS selected
galaxies will have a smaller bias than optically selected galaxies. However, the APM results are
also from an optically selected survey, and they also appear to agree with the PSCz results. This
may be an indication that the bias factor of optically selected galaxies is not all that different

from that of IRAS selected galaxies.

34 Discussion and Conclusions

In this chapter we described how to apply the pair weight method to an actual data set.
We then applied the pair weight method to the Las Campanas Redshift Survey using a selection
function provided by Huan Lin and ACDM prior power spectrum from Eisenstein and Hu
(1999). The measured power spectrum of the entire LCRS was noisier than expected. Inclusion
of galaxies where the selection function is small (several galaxies are in locations where the
actual selection function is zero) caused errors in the power spectrum.

We then cut the LCRS to include only the region where the selection function fit the data

well. After calculating the power spectrum, we found that the discrete nature of our measure-
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ment introduces errors that can be corrected. The corrected power spectrum calculated with
the cut LCRS appears to be good. The fluctuations in the measurement are consistent with the
expected errors. This measured power spectrum is quite similar to the prior power spectrum.

The measured power spectrum was slightly larger on large scales and slightly smaller on small

scales. Itis possible that these differences are due to redshift distortions.

Next, we performed the pair weight calculation with a flat prior power spectrum. The
measured power for the flat prior case is consistent on scales where the calculation should be
accurate with the measurement using the more realistic prior. On the large scales, however,
the flat prior yields lower power. This is due to power shifting from lakge smallk. When
smoothed over a more appropriate window the flat prior result agrees very well with the result
from the more reasonable prior.

Finally the measured power spectrum was compared to other works. The power spectrum
measured from LCRS using the pair weight method was lower than that measured by Lin et al.
(1996b) by a factor of 2. It is not clear what causes this discrepancy in the measurement.
However, our results look nearly identical to the results of Sutherland et al. (1999) from their
analysis of the PSCz survey. This is surprising due to the fact that the PSCz is an IRAS selected
survey which is commonly thought to be less biased than an optical survey. However, the APM,
another optical catalog, has very nearly the same power spectrum {@gatand Baugh, 1998)
as measured in LCRS by the pair weight method and in the PSCz survey. It appears that optically

selected galaxies and IRAS galaxies may be more similar than is commonly believed.



Chapter 4

Spherical Redshift Distortions

Redshift surveys give a 3-dimensional picture of the galaxy distribution in which the
redshift of a galaxy is taken as a measure of its distance, through Hubble’s law. In addition to
redshift, due to cosmological expansion, galaxies have “peculiar” velocities caused by gravita-
tional (and perhaps other) interactions. This causes distortions in the catalog’s redshift patterns.
Kaiser (1987) pointed out that the distortions have a simple form in Fourier space. He showed

that a wave with amplitudé(k) has an amplification in redshift spacelof- 8u2. So
8% (k) = (1 + Bu?)a" (k). (4.1)

where the superscriptsandr, refer to redshift and real space respectively (as they will through-
out this chapter). Herg is the cosine of the angle between the line of sight and the wavevector
k. 8 = f/bis the ratio of the dimensionless linear growth rafg to the linear light-to-mass
bias ¢). In the linear regime, peculiar velocities)(are related to overdensities) (by the
continuity equationV - v + 86 = 0 (where H = 1). In standard pressure-less Friedmann

cosmologies, the growth rate is just a functior{f

N Q.
~ 7
frQh+ =5 (1+ 2) (4.2)

(Lahav et al., 1991) From equation 4.1 Kaiser concluded that since the Fourier transform of the
correlation function, the power spectrumB(k) = (d(k’), 6* (k + k')) is also amplified. In the

plane-parallel limit this becomes:

P(k) = (1 + Bu®)2P' (k). (4.3)
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Simply stated, the plane-parallel approximation is the assumption that the angular separation of
the galaxies is small enough such that their line-of-sight displacements are effectively parallel.
This assumption was applied by many subsequent papers (Lilje and Efstathiou 1989; McGill
1990; Loveday et al. 1992; Hamilton 1992, 1993; Gramann et al. 1994; Bromley 1994; Fry
and Gaztaaga 1994; Fisher et al. 1994; Cole et al. 1994, 1995). In order for the plane parallel
approximation to be close to accurate one must only take into consideration pairs of galaxies
which are separated by a small angle on the sky. Unfortunately, in order to obtain good statistics
(to include the largest number of galaxy pairs), one would like to have this angle be as large as
possible. Also, linear theory of clustering is most accurate in regions with small overdensities:
the largest regions possible. Therefore, methods involving the plane parallel approximation
must strike a compromise between angles which are too large and separations which are not
large enough. For example, Hamilton (1993) and Cole et al. (1994) both took this angle to be
< 50deg. Cole etal. (1994, fig. 8) show from simulations that the plane parallel approximation
causes errors of about 5 per cent if the analysis is cut &fiat

In reality the distortions are not parallel but rather radially directed towards (or away
from) the observer. A proper treatment of the spherical distortions should be superior to the
plane parallel treatment in several ways. First, the same catalog can provide better statistics
for large wavelengths. Second, larger wavelengths (regions where the linear clustering is more
valid) can be included in the analysis. Finally, the systematic errors introduced by the plane
parallel approximation can be eliminated completely.

Progress on spherical distortions began with Fisher et al. (1994). They expanded the
density field of the 1.2-Jy survey into spherical harmonics, windowing the density in the radial
direction with Gaussian windows at several depths. Heavens and Taylor (1995) expanded the
radial direction in a complete set of spherical waves. Both of these methods required a prior
shape of the power spectrum. Ballinger et al. (1995) allowed the power spectrum to vary in six
bins thereby eliminating the prior assumption of the shape for the power spectrum. Hamilton

and Tegmark (2000b) introduced several improvements, allowing them to measure a full, high
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resolution, power spectrum and also meagues a function of. These brute force techniques
have been used to analyze most of the current available cataagsTadros et al. 1999,
Hamilton and Tegmark 2000). The drawback to brute force techniques are that they require
the assumption of Gaussian fluctuations (not true in the nonlinear regime) and computing costs
constrain the brute force techniques to work on only the largest scales.

Hamilton and Culhane (1996) began working on a method for measuring the power spec-
trum andg using a fully spherically symmetric analysis that had the flexibility to be used in the
nonlinear regime. In particular we derived a spherical distortion operator which when applied

to the undistorted correlation function gives the distorted correlation function:

£°(ri2,m1,7m2) = Daist&" (12) (4.4)

where
0% a(r) 0 . o 0% a(ry) 0 . o
Duiss = |1+ B(— + 2 7 14+ 8(L 412 9 4.

dist +5(8r% + 71 arl)vl ] [ +6(8r% + 79 OTQ)VQ (4.5)

Here,
_ Olnr?ns(r)
Gf(']") = 78 ln'r (46)

wheren®(r) is the galaxy selection function in redshift space for the catalog in question. Look-
ing at the distortion operator in equation 4.5 notice that the distortions depend gflgrahthe
selection function of the catalog. One would like to use the properties of the distortion operator
to find a way to measurg for each catalog. Hamilton and Culhane (1996) outlined a method
for doing exactly that. However, in applying this method we found that some changes must be

made in order to account for the properties of the individual catalog.

4.1 Spherical Shape Functions

In order to measure the real space power spectrumgafidm a redshift survey it is

necessary to have a model for the redshift distortions. In the Appendix, it is shown that, in
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linear theory, the redshift space correlation function can be written as

*(r12) Zgz Bi(r12,71,72)Ei(€(r12),£(r12), €(r12), £ (r12)) (4.7)

with

’—‘l\)

/ r)rdr,
12
/ 2d7"

= / )yridr. (4.8)

ey
Il
Hw‘ w 3

Iyl
|||

Each of theB’s is a function only of the shape of the triangle formedrpyrs, andri5. Each

of the measurable quantities

&i(r12) = gi(B)Zi(r12) (4.9)

can be separated into a function of the separation (which can be transformdd injaimes
a function only of3. The choice ofB’s and¢’s is not unique, however the sum in Equation 4.7

must be correct.

4.1.1 Importance ofa

Hamilton and Culhane (1996) assumed thabuld be treated as a constant, in particular,

that
/ OliBj (’)"12, T, ’I“Q)Bk (’)"12, T, ’I“Q)d3’l“1d3’)"2 = aiMj,k (410)

forall4, 7, k. In practice, the true: does not satisfy this equation. So then the question becomes:
what is the meaning af in the first place? We can see from the definition théEquation 4.6)
measures the distortions caused by selection function of the catalog. Since each catalog has a
differentn(r) each catalog has a differea{r). Ideally, the distortions can be calculated ex-

actly. In the above description of the metheds not specifically mentioned. However, in order

to treat the effect ofv properly it must be allowed to vary over or 5. In the method outlined



56

above the only functions allowed to vary overandr, are the shape function®((r2, 71, 2)).

So in order to treaty properly the shape functions must include Notice that the inclusion

of a forces us to use a selection function with no radial jumps (except for when the selection

function goes to zero).

4.1.2

Bs =

B

Shape Functions

B[)E]_,

By = |——rigm +
™

21421 ,

a(r) a(rz)
ro

B, = g [Pa(a) + Papi2),

2 2 lalr)alr r2 1 a(ry)alr r2
220t (r1)a(ra2)pizris 1 (ri)a(re)pipari;
3 3 6 rro 6 r1ro
]_ 0[(’)"1)7“12 Oé(’l“g)’)”lg
Lotz gy o2tz g, )
)
1 |a(r)r «
2 [7( 1 2 piop +
3 A
1
By = S (35ptps — 157 — 1543 +3),

45 4 1alr)a(r)pmardy, 1 a(r)a(r:)piper N
5/127 5 7 3 o 10 o

1 0[(’)"1)7“12 Oé(’l“g)’)”lg
5 [7u1u3+7u%uz +
T T9

For our calculations we have chosen the following shape functions:

(r2)

12
— VA V22 D I

2

0[(’)”2)’)”12

10

™

1 |a(r))r alry)r 1 |a(r))r
5 [7( 1 12#12#2-{—7( 72) 12#1#12] ——[ (r1) 2+

a(r)a(ry)piarty

Bg =
172

2

(4.11)
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This choice of shape functions leads to the following expressions for

fo=(1+ 26+ 2)E0m)

fi= |3+ 5| € @12)
.44, _
o = (55 + 75 ) [€(r12) — €(r12)] (4.13)
& = B2E(r12), (4.14)
&4 = 3%52 E(ri2) + ;5(7"12) - ;E(Tu) ; (4.15)
& = B%E(r12), (4.16)
2
6 = %é(m). (4.17)

4.2 Generalized Fourier Transform Windows

In Cole et al. (1995), Hamilton (1992) and Hamilton and Culhane (1996) it was stated
that the functionéf(rlg) (wherel = 0,2, 4) can be transformed into a function @timesP (k)

using Bessel functions:

P(k}) = 47T/E[S)72’4(T12)j0,2,4(kTIQ)T%ZdTIQ- (418)

Unfortunately, in the spherically symmetric case a single Bessel function is not sufficient for
some of thezj (r12) (wherel # 0,2, 4). However, there are functions which will serve the same
purpose.

The first thing to notice is that the window oviewill not effect 5. This means that the

function for £* needs to be a function ¢ times the function of the averages §f(r). This
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is the reason for setting = ¢;(3)Z;. In other words, take the functio)(3) outside of the
windowing integral. Assume that
477/Ef(rm)jl(krm)rﬁdrlg =
An [ fil€(ri2),€(r12), E(r12), E(r12)) 1 (kri2)riydris = P(k) (4.19)
in order to findj;(kry2). In this equationy;(kr12) is the generalized window. In the cases of

( =0,2,4) j‘l(krlg) = 4mi'j;(kri2) wheres;(kri2) is the usual spherical Bessel function.

Since this is not true for allwe want to findj; (kr12) such that:

Ar | fi(E(r12), E(r12), E(r12), E(r12)) J1(kriz)riadryy =

4%/5%ﬂh%nﬂ@ﬂmz (4.20)

To find the appropriate windows solve this equation for each valuieKifst, choose functions
fi in such a way to make the calculations of the windows as simple as possible. The above

separation leavefy, [ # 0,2, 4 to be a function of only one of the averagestfr2).

[ee] n T12 1 o 2 [ee] 2
/‘L;/7”€mwbﬁmmmmzféwmmmmeu (4.21)
0 0 0

n
712

Now switch the order of integration of the left hand side of equation 4.21:
o0 o0 . o0
/ nr ! [/ T%2njl(k7“12)d7“12:| ¢ (r)dr = 471'/ §r(7‘12)j0(kr12)r%2d7’12. (4.22)
0 r 0
Rename the integration variables so that the semi-infinite integrals are over the same variable:
/ ns" ! [/ T‘%Q_njl(k”l“lg)d’r‘lg] £"(s)ds = / £7(s)jo(ks)s%ds. (4.23)
0 s 0

One solution, perhaps the most restrictive solution, to this equation is found by equating the

integrands of the two sides of the equation:

ns" ! [/OO T%En;l(lﬁmz)dﬁ?] &' (s) = € (s)jo(ks)s>. (4.24)

This can be further simplified to

3—n

o0
—nv S .
/ ria " (kri2)dry = jo(ks). (4.25)
S

n
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To find the new window differentiate equation 4.25 with respect tohis gives:

82771,

—s27(ks) = (—ksji(ks) + (3 — n)jo(ks)) (4.26)

The final form of the windows for functions of just one of the averaged ¢fve have employed

recursion relations for spherical Bessel functions so that only even functions remain) is:
“ 1 (k%s% . k?s? . )
i) = (55 ks) + )+ (0= (k) ) (@.27)

So estimates of, () can be transformed into estimatesfefs)¢ (k).
It turns out that the inverse relation is equally (if not more) important. Fortunately, the

inverse window functions are even easier to calculate. The equation

47r e ~ 2 n r12 n—1
12

needs to be solved f(ﬁl(k’ru). However, because

( 24:)3 /0 " o (kr) P(R)E2dk = £(r) (4.29)

equation 4.28 can be rewritten

an /oo o (ko) P(k)k2dk = — /m n|_dm /Oo o (kr)P(k)k2dk| dr  (4.30)
@) Jy T IR R (CL RN n
or
- _n ri2 —
Jn(krie) = Y " jo(kr)dr. (4.31)
12 JO

Now the='s can be transformed to and frof(k).

4.3 Pair Weight Compression with Spherical Redshift Distortions

In chapter 2 we showed how to extract power spectra from redshift surveys disregarding
redshift distortions. However, the pair weight compression method becomes more powerful
when redshift distortions are explicitly included. Not only can the real space power spectrum

be extracted, but it can also yield an estimatg of
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First of all, look at the resulting estimateé)f (Equation 2.20):

& = Mo BaijWaii K 3y Wi 046y (4.32)
where
Moy = BaijWaij K Wi Bk (4.33)
and
Kab = Waii (Cije) Wikt = 2WaiCi, Cji Wi (4.34)

No major modifications of these formulae are necessary to explicitly include redshift distortions.

However, the meanings of some of these symbols change.

4.3.1 Shape Functions

The most necessary change comes from the definitidh étecall from chapter 2 thd®
comes from taking the derivative ¢§;d;) with respect to the parameters we wish to measure.
In the case where redshift distortions are ignored, the only parameters of interest were the value

of the power spectrum at various valuestofNow that redshift distortions are included
(6;6;) = &ij + 0~ H(r;)dij = Z €aBaij + 17" (r;)035. (4.35)
«

Now each value of,, (after transforming into Fourier space) gives a measurement of the power
spectrum at a particular wavenumber times some functigh afhis means that the informa-

tion aboutP; and S, is contained within the parametefs. Of course, one would like to

go straight to measuring the actual valuesfand S with no intermediate steps. However,
because the data lie in real space, the direct measureméhtasfd 3 is infeasible. One can,
however, measure the parametéxs transform these parameters into Fourier space, and then
do a maximum likelihood calculation using these parameters (and the associated error bars) to

find the values of?, andp.
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So differentiating Equation 4.35 with respectétpyields just the shape functiors,;;.
Actually, the differentiation occurs at a particular separation so the shape functions also include

a delta function:

8(552;5]-) = 6(ra — |ri — rj|)Baij- (4.36)

Notice that the subscript stands for the subscript of the particular shape function at the partic-

ular separation.

4.3.2 Window Functions

At each separation, instead of measuring one parameter, there are now seven parame-
ters to measure. Because there are seven parameters to measure it makes sense to use at least
seven window functions at each separation. In the case of the plane-parallel approximation the
window functions to use were obvious. The three diffef@stwere orthogonal to one another.

Each window was tuned to measure exactly one of the parameters of interest. This meant that
the data needed to be weighted by the Legendre polynomials of order 0, 2 and 4. In the case
of spherical distortions the parameters are not orthogonal to one another. However, we can still
make an analogous choice of window functions. In other words, use window functions like
those described in chapter 2 weighted by the shape functions. This should be a good choice be-
cause each window function will be picking out a majority of the information about a particular
parameter. Adding additional windows will again raise the amount of information available to
the parameter estimation. However, because the computation is so lengthy as it is, we want to

use the smallest possible number of parameters.

4.3.3 Better Final Parameters

The severt's are the natural parameters to measure. However, the physical meaning of
some of theZ's is not so clear. The Fisher matrix representation allows us to take a linear com-

bination of the measured parameters and form a more physically motivated set of parameters.
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To do this notice that

0 0
F91,92 - 8?1 F¢1,¢z 8?2 (4.37)
and
00;

However, it is common to havé as a function of© rather than the other way around. In
this case, the quantitﬁ% is unknown. In fact, if there are fewer values®fthan ® then®
may be over-determined. This means that the best choice is the one where the v&ues of
determined byb, make the best use of the data.

The best use of the data can be obtained by looking at the log-likelihood function

A

1 .
L= (R - @i) g (05— ©5) (4.39)

which can be rewritten in terms 6f

O -
a_ézgl)' (4.40)

Lo ¢z

Setting the first derivative of In £ with respect ta® equal to zero gives the best estimate of

~

O:
I(—=InL)  O¢; 0¢; A
(@) = 96, 0% (®; — 26, 6;) = 0. (4.41)
Rearranging this equation yields:
i i 0¢; ~
Fp0.®5 = =—Fy. 4.42
50, "% = g, T g, O (1.42)
Using equation 4.37 gives:
0p; A
82 Fy,0,®; = Fy,01. (4.43)
This means that
0: = Fyb 2 g, o (4.44)

0:0; 30
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is the best representation ©fgiven ®. Notice that if there are as many valuesas there are

of & then equation 4.44 collapses to the expected:

0,

i = (ao,»

)~ (4.45)

Using this formalism, each of the spherical distortion parameiaran be expressed as
a function of P(k), SP(k) andB?P(k). These are parameters that make more physical sense.
The first is just the galaxy-galaxy power spectrum. The second is the galaxy-velocity power
spectrum. The third is the velocity-velocity power spectrum Hamilton and Tegmark (2000b).
Not only are these more physically motivated, but since we are ultimately trying to measure the
power spectrum ang, this gives us a small number of parameters with which to do a non-linear

X2 fit.

4.3.4 Discreteness Correction

In Chapter 3, we discussed the fact that a discrete representation of the correlation func-
tion can cause errors in the measurement of the power spectrum. This is true for the case with
redshift distortions as well. Upon transforming the prior value of & (using the proper
generalized FFT window) the result should be the prior power spectrum. Unfortunately, for
any realistic prior power spectrum, a discrete FFT of #'g&does not yield exactly the prior
power spectrum. To correct for this, it is necessary to multiply the result of each FFT by the

discreteness correctiog;]:

_ Pprior(k)
Zi Eiprior(r)ji (T)

This means that, after the correction, if the measuremeRtadrresponds exactly to the prior

Gi(k)

(4.46)

value of = then the measurement &f(k) will be the prior value of the power spectrum, as

expected.
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435 Correlation and Decorrelation

As in Chapter 3, the result from equation 4.32 is a measurement of the parameter in
guestion with no width irk. This result actually anti-correlates neighboring points. That is to
say, the cross-covariance of two neighboring points will be negative. This is not an ideal way
to present the data, particularly because we expect neighboring points to have similar values.
The two ways that are sensible are the correlated and decorrelated versions. The decorrelated
version has the advantage of having each estimate being uncorrelated with any other estimate.
This means that the decorrelated points can be used in a least squares fit as a simple sum of
the deviation from each estimate. For obtaining the best least-squares result, the decorrelated
estimates are clearly the best choice.

The correlated estimates give results which are easy to visually compare one set of results
with another. That is to say, that when using correlated points, the scatter is small enough that
the most likely value of the parameter is easily determined from a graph.

The method for obtaining the correlated and decorrelated estimates were given in Chapter
3. There is one major additional concern when using the redshift distortion analysis. This is
that the decorrelation (correlation) matrix naturally combines some d? k¢ estimate in with
pieces of the3 P (k) and the3? P (k) terms. A representative row of the Fisher matrix is shown
in Figure 4.1. In going from the anti-correlated version of the estimates, it would be nice to
avoid entangling one type of estimate with another.

To disentangle the three estimates from one another first dgfimere the hat denotes a

measurement):

(da> = Fa'yg’y- (4-47)

whereF is just the Fisher matrix angl, is one of the new parameter¥k), 3P (k), or 32 P (k).

Notice that the Fisher matrix smoothes over all three parameters over all wavenumbers. To
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Figure 4.1: The rows of the Fisher matrix are one of the smoothing windows. Plotted here
are rows corresponding to tiie(k) term (solid) the3 P(k) term (dotted) and thg? P (k) term
(dashed). Each row is peaked about the nominal wavelength and contains contributions from

each of the three terms.

explicitly disentangle the three parameters rewrite equation 4.47:
X (& (k)
da(k)) = E

Notice that the Greek indices have been expanded into Latin indices over the type of parameter

3 Pk, K)&(K). (4.48)
k

andk the wavenumber. Also the summations are now explicitly included because some of the
following equations are not summed. The term in square brackets is added to form the definition

of Fop:

a

Z bk, K E (K (4.49)
k
with no summation ove¥s. This allows 4.48 to be rewritten
=" Faplk)(&(k)) (4.50)
b

with no summation ovek. Now, F,;(k) is a3 x 3 matrix at each value of. To obtain a

measurement of each of this multiply both sides of equation 4.50 by the inverseff(k):

=" Fp (k)(da(k)) (4.51)
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Figure 4.2: Representative rows of the correletion matrix. Each line shows the window (one
of the rows ofC) over which one of the parameters has been smoothed to obtain a correlated
estimate. These are the same rows that are plotted in Figure 4. (Ehe3P (k) and3?P(k)

rows are shown by the solid, dotted and dashed lines respectively.

or

&k) = Fop' (K)da- (4.52)

Equation 4.52 gives the estimate &{k) which has an expectation value of the prior
power spectrum at the given wavelength. Furthermore, each of the parameters has no contri-
bution from the others (provided that the true power spectrum is similar in shape to the prior
power spectrum). When starting with the anti-correlated estimagg @f., Fg,}q,,), to obtain

the untangled and correlated measuremeigtusfe the band-power window matid,:

(k) =Y Foy (k)Y Foe(k, K)Ee(K) = Caclle, K )Ee(K) (4.53)
b c,k’ c,k’
where
Cac(ky k') = Fol (k) Foe(k, k). (4.54)

b

Figure 4.2 shows rows of the correlation matii®.(Notice that each of the parameters

is nicely peaked about the nominal wavenumber within the same type of parameter. Similarly,
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the P(k) term is nicely zero in the other parameters. However, the contributions to the terms
BP(k) and 2 P(k) from the P(k) term can be quite large if the power spectrum is not similar
in shape to the prior power spectrum.

To obtain the covariance matrix of the correlated estimates take

<A§c0rr(k)Aégorr(kl)> — Cac(ka k”) (Aéc(k”)Aéd(km»de(kl, klll). (455)

a

Next recognize that by the definition of the Fisher matrix
(AL (K" Ada(K")) = F o (K", k"), (4.56)

and from the definition of (Equation 4.54):

~

(AL ()AL () = Fo (k)P o (b, )y () (4.57)

a

with implicit summation over each pair of Latin indices and no summation ek’

Notice that if the smoothing matrix is instead defined as (Hamilton and Tegmark, 2000b)
M = F!/? (4.58)

then the covariance matrix is then the unit matrix. Here the square-root of a matrix is any matrix

that satisfies:

F=M"M. (4.59)
For example, let
20 = Magés (4.60)
then
(AzZoAZg) = 14p (4.61)

wherel is the unit matrix. This allows the estimates to be decorrelated from one another.
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Once again, however, it would be better if the estimate of a particular parameter were

disentangled from the other parameters. To do this, rewrite

@M»{J%%ﬁZMMWWM- (4.62)
b k
So definingM:

1 ! !

again with no summation oveér This allows 4.62 to be rewritten
(Za(k)) = Map(k) (& (K)). (4.64)
b
Now to disentangle the decorrelated parameters multiply each side by the invévge of
£57° (k) = Mga (k) Za (k). (4.65)

Notice that by disentangling the different parameters at each wavenumber the three parameters
at each wavelength are no longer decorrelated from one another. However, all parameters at each

wavenumber remain decorrelated from all parameters at every other wavenumber. Specifically,
(AGI™ (R)AG (k) = Mgl M,,! (4.66)

with summation ovec only.

Figure 4.3 shows the representative decorrelated smoothing windows. Notice that in
each case the smoothing window of the relevant parameter is sharply peaked about the nominal
wavenumber. Also the contribution (k) from the 3P (k) and 52 P(k) terms is minimal as

is the contribution to th@ P (k) term from thes? P(k) term.

4.4 Information in LCRS

Figure 4.4 shows the information contained within each of the decorrelated parameters.

LCRS has the highest amount of information for the redshift space power spectrum. It is clear
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Figure 4.3: Representative rows of the decorreletion matrix. Each line shows the window (one
of the rows ofD) over which one of the parameters has been smoothed to obtain a decorrelated
estimate. These are the same rows that are plotted in Figure 4.1 and Figure 4.2(kThe
BP(k) and3?P(k) rows are shown by the solid, dotted and dashed lines respectively.
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Figure 4.4: Information in the decorrelated parameters. The upper solid line is for the redshift
space power spectrum. The lower solid line is for the real space power spectrum. The dashed
line is for P(k) and the dotted line is fQs2 P (k).
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that this should always be the case. Upon adding additional measured parameters, the informa-
tion per parameter should go down.

In this case the total amount of information appears to be reduced by at least a factor of
two. Clearly, the information has not been apportioned out to the various terms. It appears that
the terms containingd do not contain a large fraction of the information. There has been an
actual leak in the analysis. This is largely due to the inability to measure the covariance between
parameters exactly. The off diagonal elements of the covariance matrix are typically calculated
to about 5 per cent expected errors. This means that if one were able to measure the off-diagonal
elements of the covariance matrix to better precision, the information retained would go up by
as much as a factor of a few.

This Figure also shows that, to get an appreciable amount of signal feiittve) term

or the3? P(k) term, one must use coarse gridding.

45 Discussion

In this chapter, we discuss the extension of the pair weight method to the case of spherical
redshift distortions. In linear theory, the spherical redshift distortions can be modeled as the
sum of seven shape functions times functions of the correlation functioB(heand 8 (the
g's). Using the generalized Fourier transform functions, each dEthean be transformed into
a measurement of the real space power spectrum. Using the properties of the Fisher matrix the
seven estimates can be combined into three physically meaningful quartities:5 P (k) and
B2P(k).

Using the Las Campanas Redshift Survey, we showed that the estimdtég)afan be
disentangled from the estimates @P(k) and 32P(k). The Fisher matrix, the disentangled
correlated band-powers and the disentangled decorrelated band-powers are all sharply peaked
about the wavenumber of interest. Thus, any smoothing will leave an estimate that is represen-
tative of the nominal wavenumber.

It is clear that the measurement of the real space galaxy-galaxy power spectrum is a
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more difficult measurement than that of the redshift space galaxy-galaxy power spectrum. For
LCRS, using the pair weight compression method, the expected errors for the real galaxy-galaxy
power spectrum are only about a factor of two as large as those for the redshift space power

spectrum.



Chapter 5

Measurements of5 and the Power Spectrum from the Las Campanas Redshift

Survey

The Las Campanas Redshift Survey is one of the largest publicly available 3-dimensional
galaxy catalogs. The selection criteria allowed the team to extract the largest number of galaxy
redshifts given their telescope time. Unfortunately, this method of selecting targets makes the
resulting survey more difficult to analyze. Although the catalog has been publicly available for
nearly four years, there are no published real space power spectra. This is remarkable particu-
larly since LCRS is still the publicly available catalog with the largest number of redshifts. By
contrast, the IRAS PSCz catalog has been publicly available for less than a year and there are
two available real-space power spectra (Tadros et al., 1999; Hamilton et al., 2000).

Matsubara et al. (2000) have made the most progress, by publishing an esting(tiéor
amplitude of the redshift distortionsjg (the amplitude of the power spectrum) dnda shape
of the power spectrum). This parameterization allows for a partial characterization of the power
spectrum. The parameterization does not reveal how well the data fit the simple model and
may hide interesting features. As the measurements of cosmological parameters (from galaxy
catalogs as well as other sources other sources) become more precise, these features become
more interesting. Particularly interesting is the size sci)eaf which the redshift distortions
become nonlinear.

In chapter 4, | generalized the pair weight compression method to allow the analysis of

redshift distortions and real space power spectra. The generalization calls for measuring (up to)
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seven parameters at each separation
7
&(r) =Y &iBi(ri,r2,m12) (5.1)
i=1

whereg* (r) is the redshift space correlation function, each ofgfgis a measurable parameter
and each of theB;’s is function of the shape of the triangle formed by a galaxy pair and the
observer. Each; can be transformed into a measureRgk) and3. By properly combining the
transformed;’s one is able to obtain measurements of, not only the galaxy-galaxy power spec-
trum (P(k)), but also the galaxy-velocity3((k)) and the velocity-velocity £ P(k)) power
spectra. Unfortunately, chapter 4, also said that the measuremefif3(bf and 52P(k) are
too imprecise to be measured without seriously reducing the number of independent estimates.
Here | apply the pair weight method to the Las Campanas Redshift Survey to obtain a real space

power spectrum. Then using this power spectrum as the shape of the true power spectrum, |

perform a least-squares fit to the amplitude of the power spectruni.and

5.1 Real Space Power Spectrum

Figure 5.1 shows the correlated real space power spectrum as derived by the pair weight
method. The error bars on the real space power spectrum are larger than those for the redshift
space power spectrum. This is to be expected since there are now more parameters to fit with
the same information. The real space power spectrum appears to be similar to the redshift space
counterpart. Due to aliasing at the largeend (see Figure 3.2), and inaccuracy at the kow
end, the inner half of the points (frofn= .1 — .3) of both curves should be considered to be
the most reliable. The similarity in amplitude of the real space power spectrum and the redshift
space power spectrum would imply a low valuegsof

The calculation of this estimate only uses shape functions 0, 2 and 4 as defined in Ap-
pendix A. The inclusion of additional shape functions reduced the quality of the estimate. That
is to say that, not only was the estimate less believable, but the error bars were enlarged. When

calculating the Fisher matrix with Monte Carlo techniques, there are inevitably errors in some
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Power

10 R

0.1
wavenumber k

Figure 5.1: Power spectrum of the cut catalog’'s 21996 LCRS galaxies. The solid line shows
where the measured real space power spectrum is positive. The line is dotted where either
end of the segment is negative. The shaded region is the expected error about the prior power
spectrum. The dashed line is the redshift space power spectrum. The diamonds with error bars
is the redshift space power spectrum measured by Lin et al. (1996b).

of the matrix elements. Unfortunately, when the matrices are inverted these errors can dominate
the calculation. In particular, errors in the off diagonal terms invoNaRy@ o 4 aNAZE; 3. 5 0r 6

can contaminate the calculation of the estimateS©f ., 4. It is also true that the scatter in

the measurement using only shape function 0, 2, and 4 is larger than the calculated error. This
can be seen in Figure 5.1. The fluctuations in the correlated power spectrum are larger than the
predicted errors (shaded region) especially at the larged. This is addressed in the following

section.

5.2 Calculated Errors

The fluctuations in the measurements of neighboring points is empirically larger than the

error bars calculated from the Fisher matrix. It is clear that part of the problem is that high
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covariances between the measurements of two parameters gives a lower measurement of the
error than is reasonable. In addition to this, miscalculation of Fisher matrix elements increases
the problem. We have not yet been able to correct the error bars to reflect the true level of the
errors. In the remainder of this Chapter, we use an empirically calculated, multiplicative factor

to increase the level of the errors. That is to say, we use the relative scatter in the nominal “unit

variance” calculation as the correction factor.

5.3 Measurement ofs

Figure 4.4 shows that the amount of information in any one estimat&ot) or 32 P (k)
is very low. For this reason, to find the best estimateSfaris important to use all the available
information. On the smallest scales, however, nonlinearities may become important. The most
likely result of nonlinear contamination is that the estimateSaofould be reduced. This is
because the linear model for redshift distortions squashes structures along the line of sight.
However, on the smallest scales the “fingers of God” clearly stretch structures along the line of
sight. At the same time, however, these bins at largdl also be contaminated by aliasing. For
these reasons, the calculation for the most likely valugisfperformed at each wavenumber by
including information cumulatively up to that wavenumber. If nonlinearities become important
theng should drop perceptibly at large wavenumbers.

Figure 5.2 shows the best fit value @f for each wavenumber. In each case, the power
spectrum is assumed to have the shape of the measured correlated power spectrum. The first
six bins of the power spectrum have (unphysical) negative values. The power spectrum in these
bins is not accurately measured. For this reasons, these bins have been ignored for all of the
calculations. In each calculation, the only measured parameters are the amplitude of the power
spectrum ang. As expected, as more data is added to the calculation the variation in the best
measurement is reduced. Figure 5.2 shows no conclusive evidence for entering the nonlinear
regime. This is only slightly surprising since the smallest length scale protséd i8/pc and

the location where one would expect to see nonlinearities is also affected by aliasing.
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5 Using Redshift Space Power Spectrum
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Figure 5.2: This Figure shows tHe— o errors and best fit fof using the amplitude of the
correlated power spectrum as the only other free parameter. At each plotted wavenumber, the
fit uses information at smaller wavenumbers only. The stars show the best fit vafiatfeach
wavenumber.

Figure 5.3 shows the best fit value for the measurement of the amplitude of the correlated
power spectrum. As expected, as more information is added to the calculation the amplitude
of the power spectrum becomes less uncertain and the value tends toward unity. This means
that the best measured amplitude for the decorrelated power spectrum is the same as for the
correlated power spectrum.

At each wavenumber the amplitude and the valug afe highly anti-correlated. Figure
5.4 shows the typical error region in the amplityéigplane. The marginalizetl — o error in
each parameter is the most extreme value along ther contour. This marginalized error is
the error bar plotted in Figures 5.2 and 5.3.

The final result is that the amplitude of the correlated, real space power spectrum should

be1. £ .25 times the curve shown in Figure 5.1 afidv 0.5555. This value is obtained from
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Amplitude of Redshift Space Power Spectrum
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Figure 5.3: This figure shows the best fit amplitude andltheo error for the amplitude of
the correlated power spectrum. At each wavenumber, the fit uses only information from smaller
wavenumbers. The only other free parametét.is

the best overall fit ak = .209xMpc~!. This is a good choice because it uses as much of the

linear information as possible while not being contaminated by aliasing.

5.4 Discussion and Conclusions

The pair weight compression method is able to extract a real space power spectrum and
an estimate of from LCRS. Unfortunately, only three of the seven shape functions yielded
useful results. In fact, including the additional shape functions provided an estimate that was
clearly incorrect. In order to include information from all seven shape functions it is necessary
to calculate all of the matrix elements in the Fisher matrix to adequate precision. For this calcu-
lation, the monopole-monopole elements were calculated to expected errors of 2.5 percent. The
off-diagonal elements typically had errors of a few percent but routinely there were elements

with errors of tens of percent. Reducing the calculation to only those shape functions which
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Figure 5.4: Thd —o error region for the calculation including all wavenumbers up e 0.209
h Mpc!. The star is the best fit value.

are non-zero at small separations, reduced the errors caused by the off-diagonal terms. How-
ever, the scatter in the calculated estimates were still larger than the calculated error bars. As
a result, the real space power spectrum is noisier than the redshift space power spectrum. This
would be true even if the Fisher matrix were calculated exactly because the same information is
now being shared amongst three estimates. The resulting real space power spectrum has similar
shape to the redshift space power spectrum. This is not at all surprising since a majority of the
analysis is on wavenumbers which should not be greatly affected by nonlinearities.

The estimate off ~ .5573> is consistent with a flat low matter density universe. In
particular, it is consistent with the estimates from rich clusters (Carlberg et al., 1998) and cosmic
microwave background measurements (de Bernardis et al., 2000). A flat matter dominated
universe is once again ruled out unless the bias factor is rather large. Although the estithate of

is larger than that of Matsubara et al. (2000} .30 + .39) the estimates are consistent within
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Chapter 6

Conclusions

6.1 Pair Weight Method

We presented a new method for analyzing galaxy redshift surveys called the pair weight
compression method. This method is able to assign weights to each galaxy pair within the
catalog. It is also able to determine the error bars on each measured parameter. The pair weight
method is completely general. That is to say it works for models that include redshift distortions
and nonlinearities (not included in this work). The pair weight method is able to accomodate
any selection function that has no discrete jumps in the radial direction. The flexibility allows
nearly any catalog to be analyzed using nearly any model.

However, the pair weight compression method is computationally expensive. If a clas-
sical method or brute force method will obtain the same results, then it is a good bet that the
other method will be less computaionally expensive. This means that for scales smaller than
the smallest physical dimension in the catalog, classical methods will be the methods of choice.
If a brute force analysis is possible, then on the largest scales the brute force technique will be
the method of choice. There are situations, however, where neither brute force techniques nor

classical methods will work.

6.2 Las Campanas Redshift Survey

The Las Campanas Redshift Survey is the largest (in terms of number of galaxies) pub-

licly available redshift catalog. It is divided into 327 observing regions. In each observing
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window, redshifts could be taken for up to 112 galaxies (at the same time). This means that the
observing windows were not necessarily complete to the same level. This means that the se-
lection function varies from observing window to observing window. This causes problems for
both the classical method and for brute force techniques. The smallest size scale for the catalog
is then approximately.5 h~! Mpc. This means that classical methods will only be effective

for the very smallest (and probably nonlinear) regions. The fact that the selection function is
different from direction to direction makes the brute force route more tricky. This means that
the number of “modes” that a brute force analysis can use is limited. This limits brute force
techniques to only the largest scales as was done by Matsubara et al. (2000). LCRS, however,
can be analyzed using the pair weight method. In fact, LCRS has exactly the kinds of problems

that would force one to use the pair weight method.

6.2.1 Results

Redshift Space Power Spectrum

In Chapter 3, we presented the redshift power spectrum for LCRS. The power spectrum
measured by the pair weight method was nearly a factor of two smaller than that measured
by Lin et al. (1996b). In fact, the power spectrum agreed closely with the measurement of
power from the PSCz (Sutherland et al., 1999) and the AMP measured byi@gatand Baugh
(1998). This came as quite a surprise since is is commonly thought that IRAS selected galax-
ies (PSCz) should be less biased, and thus have a lower galaxy-galaxy power spectrum, than

optically selected galaxies (LCRS).

Real Space Power Spectrum

The real space power spectrum (Figure 5.1) is similar in shape and amplitude to the
redshift space power spectrum. This implies that over the range-0fl — .3 nonlinearities and

redshift distortions are small. This would lead to a relatively low estimate afnfortunately,
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the power spectrum is noisier than one would like. This is due to the fact that the information
is now shared amonst more parameters and that additional error is caused by miscalculation of

off-diagonal Fisher matrix elements.

Measurement of 5

Using the correlated measurement of the real space power spectrum as the shape of the
power spectrum, we did a least-squares analysis to find the best fit amplitude and yalidef
calculation yielded an amplitude that was essentially one. This means that the best fit amplitude
is the measured amplitude, as expected. The measuremgnwvasg 5 ~ .55j§8. This result
is consistent with, but slightly higher than, the calculation done by Matsubara et al. (2000).
The hope was that evidence of nonlinearities would arise in this calculation. However, the
measurement of the smallest scales was too contaminated by aliasing of the Fourier transform

to see anything conclusive about nonlinearities.

Possible Improvements With the analysis of the LCRS being the first analysis using

the pair weight method, we made a number of decisions that turned out not to be ideal.

In the analysis, we used linearly spaced bins. This is not the best way to go. Logarith-
mically spaced bins have two clear advantages. The first is that by using the same number of
bins one could cover a much larger portion of the spectrum. The second is that the calculations
of the covariances involving large separations take much longer than calculations which only
involve small separations. Using logarithmicly spaced bins places a higher fraction of the bins
at small scales and thereby speeds the calculations.

The second place for improvement is in the calculation of the selection function. The
selection function routine for this analysis fit the selection function to incomplete gamma func-
tions. Itis clear that incomplete gamma functions are not the fastest way to go. This causes the

longest calculations to take several times as long to complete.
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6.3 Conclusion

The pair weight compression method is a viable method of extracting power spectra and
B from galaxy catalogs. The flexibility in the pair weight method allows for even a catalog
with the selection properties of LCRS to be analyzed. The valuﬁa:ef.55f;§8 extracted from
LCRS is consistent with the analysis done by Matsubara et al. (2000). Unlike the analysis of
Matsubara et al. (2000) the pair weight method was able to extract a real space power spectrum.

The pair weight method is successful in the analysis of the most complicated of catalogs.
Itis clear, however, that when the catalog is simpler then the computational overhead of the pair
weight method makes other methods more attractive. For large angle catalogs with uniform

depth, classical methods and brute force methods will be the methods of choice.
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Appendix A

Calculating the Shape Functions

Equation 4.5 shows the relationship between the redshift space correlation fugéjion (
and its real space counterpaft), For current galaxy catalogs (and those in preparat{én)
is not directly available. Therefore we must find a way to extfaétom the properties of*.
Hamilton (1993) did this by weighting the calculations{dby the Legendre polynomials pf
To find the equivalent functions for the spherically symmetric case, exffaaddé™ into sets
of orthogonal components. This will allow the general functigrte be replaced by specific
functions. Then the distortion operator will operate on a set of specific functions. The results
from the distortion operation can then be added together to yield a final result for the general
One can expand in any complete set of functions but the best choice is to find a set
which makes the calculations simplest. The operéia? Inr2 | commutes with all of the
individual operators contained within the distortion operatotiq the only component of the
distortion operator which does not necessarily commute wjthlnr, |A). HereA is the
shape of the triangle connecting the observer to the two galaxies in question. Therefore the

logical choice for the expansion is the set of eigenfunction3/éfln o |A:
p T, (A.1)
Therefore, define the quantiti€5(w;2) and{® (wi2):
£ (w2, ) = gf £ (riz, A)rly “dria/ri2 | a,
0

1 o B
£ (wi2) = %/ £ (r1g)r]y 12 dria/r1a | A (A.2)
0
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with the inverse transforms:

*(ri2, A / € (wiz, A)rpy 2 dwra,
"(r12) / £ (wi2)ry 2 dwis. (A.3)
Now applying the distortion operator affi(r12) actually applies it to the-,) “ inside the

integral. This gives:

£ (rie) = /_ £" (w12) Daist, [ng%iwm] dwip =
/ € (wiz) [1+ A1 (2, A)B + Ao (mma, A)B?] iy "2 dwia.  (A4)

Letn = v + iw. Now calculate the actual values of ea¢h
To calculate the values of operate with the distortion operator en”. First of all, note

that the operators with subscripgtsommute with those with subscrips So

82
pa a(r1)
7‘1 &l

0 _9 0% a(ry) 0
37‘1)v1 +(8r%+ 9  Org

Aya, A = [( m] o (AB)

and

2 a(r) 0 0% afry) 0
or? 3—)(W * 0
1 1 1 5 2 T2

Aalz, 277 = ki M L

The first job here is to operate Wiﬁﬁ;2 onr,. Becauseri is a spherically symmetric

quantity:
_ _ 1 0 01"

Vi =V = | iy 7. A7
1 T2 2 T2 [T%Q 8r12T128r12 T2 (A.7)

Set this equal to a new variabfeand solve forp:

1 0 45 0 —n

~ 22 = A.8
|:'f'%2 87’12 12 87"12:| ¢ 12 ( )

becomes

[a( 2 i)] ¢ = ry"0r,. (A.9)

T
12 87’12
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After performing one integration

0 P30
2 _ 12
[ru 37“12] b= p— (A.10)
or
Py
Op = 313 nam. (A.11)
Performing this integration yields
i
p=————. A.12
B-m@-n) 12

Note that this equation serves for approvided that) does not equa? or 3. This means that

2—-n
Vi =Vl =12 (A.13)
1 "12 2 12 (3 . ,’7) (2 . ,’7)
and by considering-n' =2 — n:
iy
V2V, 4, = 12 (A.14)

[ GRS [P TG Jps T

Now the values ford become

o [ elr) 0 9 a(ry) 0 P2y
Mom e = [+ 0+ G+ D gy @9
and
Ag(mag, N)r~" =
> alm) 0 a(rz)i] phm
[(ar% 71 87’1)((97'% ) 67“2 (5_7])(4_7])(3_7])(2_77). (A.lG)

To calculate the results fot; and A, start by doing some preliminary calculations. First

define the cosines of the angles in the triangle:

2 2 2 2 2 2 2 2 2
77— +73 — —
pp= etz Tptr o N T Ty (A17)
2’)"12’)"1 2’)”12’)”2 27’1T2
This means that
22 3
19 = [7“1 +ry — 27‘17“2/1,12] . (A.18)
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So,
0 _
52 =1y ?(r1 — rop12) (A.19)
1
and
_Q_ n o __ n—2 _ 2
Oy 12 = M2 (ro — rip12). (A.20)
T2

Simplify the terms in parentheses by noting

2 2.,.2 .9 2 .2, .9
2rirg —ro(r{ + 13 —1iy) _ 1 — T3 + 71y

T — Tol12 = 5 = = u1ria, (A.21)
179 2T1
and similarly
To — T1j12 = [2T12. (A.22)
Another useful equation is
2 piafing + 147 + 5 + pi = 1. (A.23)

Now divide A; into two pieces. The first piece hagerms only:

a(ry) 0 a(rg) 0 ] 7’%2_77
— — . A.24
[ r1 Or * r2 Ora] (3—1n)(2—1n) ( )
Differentiating gives:
-
[a(rl)T‘mM + a(m)ﬁﬂm] 2 (A.25)
71 T9 3—-ﬂ

The second term has no terms with

0 0 ] 7“%2_77 2 a1 Tig
[ar% 57| GowE—w [1 =y npz) 37 ;

Later in the calculation, all factors gfwill need to be in the denominator. So by noticing that

B (A.27)
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A7 can be written:

—asfll)hz/ﬂ ) 2 - 3u? — 3u3

72
3—n

i |y (A29)

Al (7], A)Tﬁn = [

To attack the differentiation necessary by first notice that it can be rewritten:

)(

0 al), 9 alr) 0 0
(97'1 (& (97'2 79 (97'1 (97'2

Anln, D! = [(

ary
G nE-nG-ne_n &

First differentiating with respect to, yields:

[0 alr)y 9 o(ra)) O (ro — rupu)riy "
As(n, DN)ryy' = |:(8—7“1 + - )(3—7’2 + 7“2 )3—7‘1:| T 17)(212_ I (A.30)

After the second differentiation:

2—n L
—H12To (r1 — rop12)(re — ripi2)rys
[(5 )3 -n)(2-n) D) (A.31)

Once again separate out the different terms and calculate them separately to obtain the simplest

looking results. The first term is the term with two factorsxof

alry) olry) —paryy” gty "
oo [(5—77)(3—17)(2—17)+(5_77)(3_,7)]- (A.32)

The second term has one factorcof

+

[a(rl) —2u12p2712 + P12 — NEIPETI2
! G- -mn)

-2 — nu? _
a(r2) —2p12p1712 + fl2712 TIM1M27“12] F 1 (A33)
T2 G-nB-n)

The final term contains no factors af

: [_2“12(7“2 — )yl | (1= ropna)rly

ory (5-n)(3—n) (5-—m)(3—n)
_n(r = rapz)(re — i)y _
G-n@B-n)
20,1y dnpizp piory ry
G-m@B-n G-7B-n GG-1E-n)
—npiryy B[ ST (Rl LTI T

G-m@-n G-719@8-n€ G-79B-n
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Using equation A.23 rewrite this term:

20317y n —2n(udy + pd + pd — 1)riy n Ty n
5-n(3-n) 5= -n) 5-n(3-n)
—npiryy —npsryy @+ n)piedry

G-mB-n G-m9EB-n7 (GG-nE-n)
2035 (1 — n)ryy (14 2n)r}y
G-mB-n  G-n0E-n)
“Snpiryy L Suwgry L n@ A muiugry
G-mB-n G-mMB-n7 GG-mE-n

EachA,;(m2, ) can be expressed in functionsref,r; andr, times functions ofn—7712

(A.35)

wheren = 2,3,5. The factors ofy and ther’s in equation (A.4) can be brought out of integral

overw to become:

wi2)T]s
*(r12) Zg] 7‘12,7"1,7“2/ 5 12) 7]12 dw12- (A.36)

Rearranging the integral in this equation:

r 00 1 r12
/ Gt wi2 =/ " (w12) [T/ Tnmld?“] dws2, (A.37)
n =112 —o0 12 Jo

and switching the order of integration:

1 T12
— et [ / ¢ (w —’712] dr = — r" e (r)dr (A.38)
12 Jo

19

So the integral can be expressed in an averagefouest:

*(r12) Zg] Bj(r12,71,72)8;(£(r12), £(r12), €(r12), £ (r12)) (A.39)

with

’f’2 0

= 3 T12 9

i= 5 /0 £(r)r2dr,

£= 7% /0 Y eryrtar, (A.40)
12

Note that in equation A.39 the functiods;(r;,;,7;), g;(8) and f; are not unique. Choose
any set of functions which satisfy equation A.39. Therefore, choose the functions to make the

rest of the analysis as simple and accurate as possible.
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In order to obtain results that tend towards the distant observer approximation, choose

three of the shape functions as:

By =1, (A.41)
By = % [Po(p1) + Po(p2)], (A.42)
and
By = (358 — 154 — 1543 +3) (A.43)
where
Py = gﬁ — % (A.44)

Define&; as the functiong; (8)Z;(£(r12), £(r12), €(r12), £(r12)) which corresponds to
shape functiomB;. This means that the term with no factorsm€ontributest (r12) to €. The

terms given byA, contribute3 3(¢(r12) — &(r12)) to & and 2 3¢(r2) to &, leaving

5(7"12) [azl)ﬁzm + alra)

g mm] . (A.45)

So, define

a(rz)

z 7“12,“2] . (A.46)

o\r
B, = [Qmm +
1

This means that the terms df; also contribute§§ (ri2) to €.
The terms in equation A.35 will contribute &, &2, andé,. To find the exact contribu-

tions, replace:? ;2

pi+p3) — oo (A.47)
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to get
T o, (1 =)+ (1 20) — S0+ )+
CRCR)
8 3 3
2 —Bi+=(pi+p3) — )| =
02+ n)(gg Ba+ = (w1 + u3) — 52)
—-n
r ) 64 3 ,
12 92 (1 — 1+ —n——
I pig(1 =) + (14 oen — oen”)+
3, 15 8
(i +p2)(Cn” = —n) +n(2+m)5=Ba| . (A48)
Now replaceu? + 13 using
4 2
M%+M%:§B2+§ (A.49)
to get
—-n
r ) 64 3 , 4 2.3, 15
12 192 (1 — 1+ o — o B+ 2)En" - —
GomE_n |l -m+ 0t =g+ B+ )0 - 5+
8
77(2+77)£B4]:
v [%2(1 —n)+ (14 2n+ 21+
(5—n)(3—-n) 5° 5
3, 15 .4 8
°2_22\ip 2 —Bal. (A
(50" = —n)3gB2 +n(2+n)5-Ba| . (AS0)

Before continuing, note a few relations:

2 15 1 35 1 5 "z
T = L G~ S s €l + 5e) — i), (ASD
3p2 15 3 9 1 3 3
G =7 ry oy = #) — ) (.52)
I+2n+¢n> 1 2 4 1 2 4=
G=mB-n 5 35—y -y 5 Fgin)gtle), (A8

and

L= __! + 2 == —ég(ﬁz) + §:(T12)- (A.54)
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The terms of3? which contain factors ofr cannot contribute to the values &f, &, or &,

because the corresponding shape functions contain no factarsTais means that

€0 = [1 + %B + éﬁ] £(r12), (A.55)
&= [gﬁ + éﬁQ] [£(r12) = €(ri2)] (A.56)
and
6= g5 el + 56 - 50| (A57)
This leaves the terms
26 |~ g€ra) + SE(rin) |ty + 57 360r2) - 300 (A58)

and all of the terms with factors ef for some other shape function. Reduce the terms containing

factors ofa with

1 R U S S SR U SR
G-mB-m2-n) 32-n 23-n 65-9

9

65(7“12) - %5(7"12) +

1

305(r12), (A.59)

1 1. 1 -
G-m@B-n) 23-n 25-7 gf(ru) - Ef(ru), (A.60)

and

1 1=
5-n)(3—-n) T23-n 25-79 - §f(T12) - 55(7’12)- (A.61)

Notice that the remaining terms contain no factorg(ef2) and that all of the remaining
terms have a factor g82. The easiest solution to capturing all of the remaining terms is to

define

&3 = B*E(r12), (A.62)
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& = B2E(r12), (A.63)
and

. By

€6 = Ff(m)- (A.64)

These then have the correspondingly complicated shape funcitons:

2 2 1 a(rl)a(rg),ulgrz 1 a(rl)a(m)ul,ugrz
Ba=—242, +24 = 12, - 12
3 3“12 + 3 + 6 rro + 6 r1ro
1 |a(r)r alry)r 1 |a(r)r a(ro)r
5 (r1) 12#1#%‘+ (r2) 12#%#2] ____[ (r1) 12#12#2‘+ (r2) 12#1#12]
9 3 T2
1
{+E [a(rl)rm p1 + alr2)riz Mz] } , (A.65)
(A T9

4 5 4 1 a(r)alrgmar]y 1 alr)a(ry)pperi

Bs = - -~
5 5:“12 5 30 riry 10 1792 +
1 Ja(r)r a(ry)r 1 |a(r)r a(rz)r
Llatine o, 0tone ) | Lfolre, o ol
2 1 5 ™ r
1
_ L felrdre L alrane 1 66
10 71 2
Be — _a(rl)a(TZ)M12r%2 (A.67)
T1T2

Notice that the quantity in curly braces in equation A.65 is exactly the sanig as

Therefore, remove this term from equation A.65 and say that

2
& = (g + %)5(7“12)- (A.68)

The final term ofB; also has the form aB;. However adding this term t would make the
[ term inseparable from the averages of
Although the shape functions and resultifigare not unique, the above set of functions
is complete and has the desireable property of being seperable into functions of the shape,
functions ofg and functions of averages 6f. This set of functions will allow for a complete

description of spherical redshift distortions in the linear regime.



Appendix B

Definitions of Terms and Symbols

To aid in understanding, | have provided a list of important terms with definitions. Fol-

lowing the list of terms is two lists of symbols (one Roman and one Greek) with definitions.

B.1 Terms

brute force: Introduced in Chapter 1. The brute force method, commonly used in analysis of
CMB fluctuations, assumes that the density is Gaussianly distributed. It also assumes
a Gaussian likelihood function. These methods work best on the largest scales: where

the fluctuations are likely to be Gaussian and the computation costs are the least.

classical method: Introduced in Chapter 1. Introduced by Feldman et al. (1994), classical
methods of analyzing redshift surveys require the position and the wavelength of the
fluctuation to be measured simultaneously. It implies a weight scheme that depends
only on the local density. Classical methods work best on size scales that will comfort-

ably fit within the survey.

decorrelation: Introduced in Section 2.3. Decorrelation is the process of creating statistically
uncorrelated parameters. That is to say, recombine a set of parameters in such a way
that the new parameters have covariances of zero. Decorrelation is especially useful if

the data is going to be used in some sort of least-squares fit.

Fisher matrix: Introduced in Chapter 2. The inverse of the full covariance matrix for all
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parameters. The Fisher matrix is generated using a prior guess as to the values of
all measured parameters. If the prior guess is similar to the measured value then the

Fisher matrix describes the amount of information a particular data set has about the

set of measurable parameters.

linear (regime): Introduced in Chapter 2. Refers to size scales which are large enough that
overdensities (or underdensities) are small compared to the mean density. In linear

regime, overdensities grow linearly without change of shape.

non-linear (regime): Introduced in Chapter 2. Refers to size scales where overdensities can
become comparable to or larger than the mean density. The fact that density cannot be-

come negative causes underdense regions to expand and overdense regions to collapse.

pair weight method: Introduced by this thesis. The pair weight method is a general method of
analyzing redshift surveys. The pair weight method weights each pair of overdensities
by a weight that is determined by the survey itself (and the prior power spectrum).
The pair weight method is not limited by the shape or complexity of the survey nor

is it limited to testing models which are Gaussian. The primary limitation of the pair
weight method is the computational expense.

power spectrum: Introduced in Chapter 1. The power spectrum is the covariance, expressed

in Fourier space, of fluctuations. It is a function of wavenumberThe shape and

amplitude of the power spectrum can be used to measure several cosmological param-

eters.
prior: Introduced in Chapter 2. The prior includes all prior assumptions inclueliggho-
mogeneity and isotropy. In particular, the prior often refers to the prior guess for the

power spectrum.
selection function: Introduced in Chapter 1. The expected number of galaxies at a particular

location given the selection criteria of the survey.
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B.2 Symbols

b: Introduced in the Abstract is the linear bias parametér.is the ratio of galaxy overden-
sities to matter overdensities (| = bimass). If b = 1 then galaxies are an unbiased

tracer of the density.

B.,ij: Introduced in Section 2.1.2. The shape function. In the case with no redshift distortions
this restricts the separation of parcéland j to ber,. In the more general case,
B,;;j also includes a shape (contained within the indgxvhich describes one of the

components of the redshift distortions.

Cap(,a): Introduced in Chapter 2. The covariance of the modesdb. If there are indicesa

then it is the derivative of the covariance of the modes with respect to the parameter

Cap: Introduced in Section 4.3.5. This is the band power matrix which disentaigfles
from BP(k) from 32 P(k) and correlates neighboring points within each of the power

spectra.

Cijri:  Introduced in Section 2.1.2. The covariance of the correlation functioigs; A&y,).
In the most general, non-Gaussian, case this can depend on 3-point terms and 4-point
terms as well as 2-point terms (in the general cdgg, depends on the locations of
parcelsi, j, k, andl as well as their separations). For most of the Dissertation this is

reduced to the more restricted Gaussian case Whegge= C;.Cj; + C Cji.

Dygisi: Introduced in Chapter 4. This is the distortion operator. It describes the manner in

which overdensities in real space translate into overdensities in redshift space.

Du: Introduced in Section 4.3.5. This is the band-power matrix which disentadtfleys
from gP(k) from g?P(k) and decorrelates neighboring points of each (however, at
eachk the three different power spectra are correlated). Sarfeeasept decorrelated

not correlated.
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f: Introduced in Chapter 1f (~ Q%) is the linear growth rate. It is the ratio of the velocity

of a parcel of matter to the comoving distance it has traveled (in Hubble units).

F,s: Introduced in Section 2.1.1. The Fisher matrix. See Tegmark et al. (1997) for a nice
explanation. This is the inverse of the covariance matrix with parametensd 5.
The Fisher matrix is also called the Fisher information matrix because it is a measure
of how much information is contained within the data set about the particular set of

parameters.

F: Introduced in Section 4.3.5. This matrix is used to correlate and disentangle the power

spectra P(k), BP(k), ands2P(k)).

Gop: Introduced in Section 2.3.1. This is the scaled Fisher matrix. That is to say that it is the

Fisher matrix multiplied by the prior values 6f and{g.
h: Introduced in Chapter 1. The Hubble const&ftin units of 100 km s~ Mpc .

Hy: Introduced in Chapter 1H, is the Hubble constant at the present epoch. The Hubble

constant is a measure of the rate of expansion of the universe.

ji(kr12): Introduced in Chapter 4. The generalized Fourier transform window. These are the
window functions necessary to transfoggtr) to g;(3)P (k). For indices 0, 2, and 4

the generalized window is just the spherical Bessel function

J3q: Introduced in Section 2.3.1. The volume integral of the two-point correlation function out
to radiusr,. In other words, the number of additional galaxies surrounding a galaxy
than would be expected if galaxies were uniformly distributed. This is used as an FKP

constant for the separatiof,.

L: Introduced in Section 2.1.1. The likelihood function. The likelihood function is high where

the data fits the model and low where the data does not fit very well.
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7;:  Introduced in Chapter 2. The expected density of galaxies (in the absence of fluctuations)

at locationr;. Also referred to as the selection function.

K,y Introduced in Section 2.1.2. The integral of the covariance of correlation functions

weighted by window functions andb.

M,p: Introduced in Chapter 2.1.2. A matrix defined in introducing the Pair Weight method.

It becomes clear tha¥/ is, in fact, the Fisher matrixK).

M: Introduced in Section 4.3.5. This matrix is used to disentangle the power spB¢ira (
BP(k), andB? P(k)) while decorrelating neighboring points of each of the power spec-

tra.
ns. Introduced in Chapter 1. The “tilt” of the power spectrum.
Py: Introduced in Chapter 1. The power spectrum at wavenurber
" Superscript shows a quantity that is in real space.
5. Superscript shows a quantity that is in redshift space.

W Introduced in Equation 2.1. A window function. In Equation 2.1 the indiced/gfrefer
to the locations of the two positions. Thereafter, the first index (usuadllyb) refers
to the window number. In particular, there may be separate windows for different
separations and, within those windows, there may be different windows for different
shape functions. The following indices (usually some combinatiof) ¢f &, and!)
refer to locations. In general, the windows are chosen to try to make the best use of the

data.

Z: Introduced in Chapter 2. A mode amplitude. This is the overdensity weighted by a linear

window function. The hat signifies that it is a measured quantity.
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X: Introduced in Chapter 2. A quadratically weighted mode. This is the overdensities weighted
by a quadratic window (one with two indices of location). The hat signifies that it is a

measured quantity.

B.3 Greek Symbols

«: Introduced in Chapter 4. This quantity & 9Inr?7/01nr) is 2 + the partial derivative of
the logarithm of the selection function with respect to the logarithm of the distance. It

determines how radial variations of the selection function affects redshift distortions.
B: Introduced in the Abstract3(= f/b) is the amplitude of the linear redshift distortions.

d;: Introduced in Chapter 2. The overdensity (of galaxies) at locatjolf §; = 1 then that

means the density & is twice the mean density.)
d;;: Used in Chapter 2. This is a 3-dimensional delta-function.

& Introduced in Chapter 2. The 2-point correlation function in some spadespace this is

the power spectrum.
&". Introduced in Chapter 4. This is the correlation function in real space.

&% Introduced in Chapter 4. This is the correlation function in redshift space.

.. Introduced in Section 2.1.1. The hat indicates that this is a measurement of the

guantity rather than a prior guess of the quantity.

¢, & and¢:  Introduced in Chapter 4. Averages of the two point correlation function
over different functions of. These averages become interesting due to redshift

distortions.

¢ Introduced in Chapter 4. Measurable quantities in the case of redshift distortions.
Each contains a function of 8 and a=. Eaché can be Fourier transformed into

g(B)P(k) (using the proper generalized Fourier transform window).
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Z;: Introduced in Chapter 4. Functionsgf¢, ¢, andg produced by redshift distortions. Each
of the=;’s can be Fourier transformed inf&( k) (using the proper generalized Fourier

transform window).
pa. Introduced in Chapter 1. The density of constituent

perit:  Introduced in Chapter 1. The critical density of the Universe. If the sum of the densities

of the sum of all constituents is the critical density then the universe is flat.

Q.. Introduced in Chapter 1. The ratjg,/p.rit Of the density of constituent (p,) to the

critical densitypcrit .

: Introduced in Chapter 1. The ratig/p..it Of the density of baryons to the critical density

Pcrit -

Q: Introduced in Chapter 1. The ratj®, /p.it Of vacuum energy density to the critical

densitypcyit .-

Q. Introduced in the Abstract. The ratj@, /p.iy Of the density of matter to the critical

densitypcrit .



