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In the wake of successful experiments in Fermi condensates, experimen-

tal attention is broadening to include resonant interactions in degenerate Bose-

Fermi mixtures. In this thesis we wish to study the equilibrium properties of the

fermionic molecules that can be created in such a mixture.

To this end, we first discuss the two body properties of the system, and

introduce the model Hamiltonian we use to describe the resonant physics, high-

lighting its virtues, as well as its limitations. We then proceed by analyzing the

mean field solution of this model, by studying both the equilibrium problem, and

the non-equilibrium equations of motion, thus developing a powerful language to

discuss the system. We then highlight the limitations of the mean-field approach,

and develop a numerically tractable generalized version of this theory, which is

able to correctly describe the two-body properties of the system in the low-density

limit.

Finally, we study the properties of the system using this generalized mean-

field theory, by first analyzing the two-body scattering matrix in the many-body

environment, assessing its complex poles in order to understand the stability prop-

erties of the Feshbach molecules in the gas. Secondly we solve the equilibrium

equations self-consistently, to study the molecular populations and density distri-

butions at equilibrium, as a function of external bias magnetic field.
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Chapter 1

Introduction

The use of magnetic Feshbach resonances to manipulate the interactions

in ultracold quantum gases has enabled the study of an astounding amount of

physics. Notable examples, include the study of the crossover between BCS

(Bardeen-Cooper-Schrieffer [1]) and BEC (Bose-Einstein Condensate [2, 3]) su-

perfluidity in ultracold Fermi gases [4, 5, 6], and the “Bose Nova” collapse in

Bose gases [7]. Recent experimental developments, [8, 9, 10, 11] have enabled

the creation of an ultracold mixture of bosons and fermions, with an interspecies

Feshbach resonance, opening the ground for what may very well be a new prolific

source of physical insight.

From the theoretical point of view, on the other hand, studies of Bose-

Fermi mixtures to date have been mostly limited to non resonant physics, focusing

mainly on mean field effects in trapped systems [12, 13, 14, 15, 16, 17, 18, 19, 20,

21, 22], phases in optical lattices [23, 24, 25, 26, 27],or equilibrium studies of

homogeneous gases, focusing mainly on phonon induced superfluidity or beyond-

mean-field effects [28, 29, 30, 31, 32, 33, 34]. Pioneering theoretical work on the

resonant gas include [35], whereby a mean-field equilibrium study of the gas is

supplemented with a beyond mean-field analysis of the bosonic depletion, and

[36], where an equilibrium theory is developed using a separable-potentials model.

The aim of this thesis is to develop and solve a mean-field theory describ-
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ing an ultracold atomic Bose-Fermi mixture in the presence of an interspecies

Feshbach resonance. This goal appears innocuous enough at first sight, since

mean-field theories for resonant Bose-Bose [37, 38] and Fermi-Fermi [39, 40, 41]

gases exist, and have studied extensively. In both of these theories, the mean-field

approximation consists of considering the bosonic Feshbach molecules as being

fully condensed, and this greatly simplifies the treatment, since the Hamiltonian

reduces to a standard Bogoliubov-like integrable form [42].

The fundamental difference between these examples and the Bose-Fermi

mixtures is that in the latter the Feshbach molecules are fermions, and therefore

their center of mass momentum must be included explicitly. The most obvious

mean-field approach consists in considering the atomic gas to be fully condensed.

However, as we will see in more detail in the body of the thesis, resonant molecules

are really composed of two bound atoms, which spend their time together vibrating

around their center of mass. It follows that outright omission of the bosonic fluctu-

ations of the atoms, disallows the bosonic constituents to oscillate (i.e. fluctuate)

at all, and therefore this leads to an improper description of the the two-body

physics of the gas.

This thesis is organized as follows. In chapter 2 we lay the groundwork

by briefly introducing the main scattering theory concepts necessary to approach

the problem. We then proceed by describing the low-energy resonance physics

in general terms, and to introduce the main classes of resonances which exist.

An introduction to the physics of magnetic Feshbach resonances in alkali atoms

follows, where we outline in detail the nature of the interatomic interaction using

the language of ultracold scattering physicists.

In chapter 3 we introduce the field theory model used to study these res-

onances, describing in detail the paramerization used, and outlining the exact

solution of this model in the two-body limit. The chapter ends with a test of
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this two-body theory, by comparing the binding and resonance energies predicted

by the model and the virtually-exact analogues obtained from two-body close

coupling calculations.

Chapter 4 introduces the simplest mean-field many-body theory of the gas,

obtained by disregarding all bosonic fluctuations. The solution of the theory is

outlined, and its limitations highlighted. We recognize here that, in spite of these

limitations, mean-field theory gives us a language useful to deal with the problem,

which will persist even beyond the limits of applicability of the theory itself. The

chapter then proceeds to describe a non-equilibrium approach to the problem,

whereby the beyond mean-field HFB equation of motion are shown to reduce to

their mean-field equivalent, highlighting the importance of properly accounting

for the bosonic fluctuations.

Finally in chapter 5 we introduce our generalized mean-field theory, which

is, in short, similar to the mean-field theory described in chapter 4, but with the

notable improvement of using properly renormalized molecules as building blocks,

instead of their bare counterparts. This approach is not trivially described in

the Hamiltonian formalism, where substituting dressed molecules for free ones

would lead to double counting of diagrams. In this chapter we therefore shift

to the Green-function/path-integral language, where this double-counting can be

avoided quite easily. Finally we proceed to the numerical solution of this theory,

and note that for narrow resonances the results are in line with their mean-field

equivalents. This encourages us to develop a simple theory to study the molecular

formation via magnetic-field ramps, and, using an approach based on the Landau-

Zener formalism [43, 44], we derive analytic expressions.

Throughout this thesis, we work with zero temperature gases, in the free

space thermodynamic limit. These are limitations which render the results ob-

tained here hard to directly compare with experimental results. One of the main
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possible future directions of this work should include solving the same problem in

a trap, and generalization to higher temperatures.

This thesis, by its very nature, represents a synthesis of the work of this

author during the last few years. We therefore draw heavily from published work

which resulted from this effort, and in particular [45] and [46].



Chapter 2

Scattering Theory: The Starting Point

The rich physics of the system we intend to study is in large part due

to the exotic nature of the interactions between its various constituents. An

understanding of the two-particle dynamics is therefore paramount to any analysis

which may follow, and it is the aim of this chapter to introduce this physics, by

first providing a general outline of cold collision theory, and in particular resonant

scattering theory, and then describing how Feshbach resonances arise in ultracold

collisions between alkali atoms.

2.1 Fundamental Concepts

The essence of the two-body physics we are interested in is low energy reso-

nant scattering, in general, and magnetic-field Feshbach resonances in alkali gases

in particular. In the following we introduce some of the basic concepts and equa-

tions we will need to talk about these resonances; focusing on interactions between

distinguishible particles, interacting via a central potential. The conventions we

use here are those found in [47].

A prototypical scattering experiment consists of a beam of identical particles

incident upon a target, from which they scatter. The beam is assumed to be de-

scribed as a plane wave of well defined momentum k and from a specific direction,

which we will choose as our ẑ axis. Furthermore the properties of the scattered
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particles are measured far enough away from the target (r → ∞) that interactions

with it no longer influence them. Under these circumstances the wavefunction of

the incident particles can be written, in center of mass coordinates,

ψ(r) =
1

(2π)3/2

[
eikz + f(k, θ)

eikr

r

]
. (2.1)

The first term in this expression represents the incoming plane wave, and the

second term represents the scattered spherical wave, where f(θ) is the amplitude

of the scattered wave, and is therefore known as “scattering amplitude”. The

scattering amplitude contains all the physical information about the scattering

process, and it can be used to calculate any observable. Also we should point out

that the wavefunction is normalized to unity incoming flux.

For central potentials, such as (for the most part) alkali atom collisions, it

is often convenient to separate the angular degrees of freedom by expanding the

wave function in spherical harmonics, or “ partial waves”, whereby the scattering

amplitude can be written as

f(k, θ) =
∑

l

(2l + 1)fl(k)Pl(cosθ), (2.2)

where where Pl is a Legendre polynomial, and fl are the partial-wave amplitudes.

We then expand the incoming plane wave in spherical waves, and take the asymp-

totic form, obtaining

eikz →
∑

l

(2l + 1)Pl(cosθ)

[
eikr − ei(kr−lπ)

2ikr

]
(2.3)

Inserting 2.2 and 2.3 into eq. 2.1, and expanding the incoming plane wave in

spherical waves, we obtain, after some simplifications,

ψ(r) =
1

(2π)3/2

∑

l

Pl(cosθ)

2ik

[
(1 + 2ikfl(k))

eikr

r
− e−i(kr−lπ)

r

]
. (2.4)

From this expression we see that the quantity 1+2ikfl(k, θ) determines the

physics of the scattering, such that if fl → 0 the outgoing wave is identical to
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the incoming wave, and no scattering occurred. Furthermore if we note that the

incoming flux must equal the outgoing flux, then |1+2ikfl(k, θ)|2 = 1, and we can

therefore define a quantity δl(k), such that 1+2ikfl(k, θ) = e2iδl(k), and insert into

eq. 2.4, the effect of the scattering event is therefore to generate a “phase-shift”

δl(k) in the outgoing wave which would vanish, had no scattering occurred.

The quantity

Sl = e2iδl(k) = 1 + 2ikfl(k) (2.5)

is so ubiquitous in scattering theory, that it has been dubbed the “scattering (S-)

matrix”. A close cousin of Sl is the T-matrix, defined as

T =
πi

µk
(S − 1), (2.6)

Where µ is the reduced mass. This quantity will be of fundamental importance

in the many-body treatment, and the definition in eq.2.6 will be much more con-

venient for that purpose which is the reason why we will adopt it.

An observable of particular interest in scattering theory is the scattering

cross section σ, defined as the number of particles scattered per unit time as a

fraction of the number of incident particles per unit area per unit time. From the

discussion above about the role of the scattering amplitude we can readily deduce

σ(k) =
∫

|f(k, θ)|dΩ =
∑

l

4π

k2
(2l + 1)sin2(δl) =

∑

l

4π(2l + 1)|fl(k)|2. (2.7)

It is often useful to define partial cross sections σl so that

σ(k) =
∑

l

σl(k). (2.8)

2.2 Low Energies Collisions and Resonances

The physics of low energy collisions is characterized by the fact that the

great majority of relevant observables can be characterized universally with a
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handful of parameters, by only knowing the features of the long-range physics.

This universality is quite remarkable in its own right, and has the useful side

effect of allowing one to explore the fundamental scattering properties of very

complex systems without the need for sophisticated potential surfaces.

If we could define a length-scale R0 separating short-range and long-range

physics, a collision would be defined as “low energy” if R0 << 1/k, where k is the

collision momentum [48], and 2π/k is the deBroglie wavelength. The use of the

conditional here is due to the fact that in the great majority of physically relevant

systems, potentials generally asymptote to zero, so that a clear cut definition of

R0 is not available. However if the potentials approach zero fast fast enough (we’ll

see shortly what “enough” means), then R0 can be defined heuristically.

In the case of alkali atoms, R0 is generally identified with the van der Waals

length R0 = (µC6/8h̄
2)1/4 [49], where C6 is the parameter defining the perturbative

long-range van der Waals potential −C6/r
6.

2.2.1 Effective Range Expansion

We will begin with the radial Schrödinger equation for the scattering of two

particles (setting h̄ = 1)

u′′l +

(
k2 − 2mV − l(l + 1)

r2

)
ul = 0, (2.9)

where ul is the radial wavefunction, k =
√

2µE is the collision momentum, V is the

interaction potential, and l is the orbital angular momentum quantum number.

Since we here postulate that the energy is low, and 1/k >> R0, we can say

that if r << R0, then k2 << 2mV , and in this region eq. 2.9 reads

u′′l +

(
−2mV − l(l + 1)

r2

)
ul = 0. (2.10)
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On the other hand if r >> 1/k then since 1/k >> R0, and by definition of R0 ,

V → 0, and eq. 2.9 reads

u′′l +

(
k2 − l(l + 1)

r2

)
ul = 0. (2.11)

In this region the solution is readily found to be

Al(cos(δl)jl(kr) + sin(δl)nl(kr)), (2.12)

where j and n are the regular and irregular spherical Bessel functions, δl, is the

scattering phase shift, remarkably the same phase shift described above. This

can be verified by plugging eq. 2.5 into 2.4, and expanding the exponentials in

spherical Bessel functions. Finally Al is an unimportant (at least for the purposes

of this discussion) flux normalization constant.

Near threshold the short-range solution does not depend significantly on

energy, leaving all of the energy dependence in the long-range region. In the

intermediate R0 < r < 1/k region, it turns out that the solution is also energy

independent, provided that V approaches zero faster than 1/r2l+3. This can be

verified by guessing the solution ul = c1r
l+1 + c2r

−l, and checking it by plugging

into eq.2.9. In this regime, r > R0 >> 1, therefore both V ul and k2ul are much

smaller than the other terms, and eq.2.9 becomes

u′′l −
l(l + 1)

r2
ul = 0. (2.13)

Since the solution is virtually energy independent for the range of r’s in

which V acts, then so is the logarithmic derivative Yl = 1/ul
dul

dr
. The scattering

phase shift is in turn found by matching Y with the logarithmic derivative of the

long-range solution (eq. 2.12) at some large distance r = R, obtaining

cot(δl) =
kRn′

l(kR) − Yljl(kR)

kRj′l(kR) − Ylnl(kR)
. (2.14)
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Finally, since the only energy dependence in eq. 2.14 is in k, (and not in

Yl) it is a simple, though tedious, algebraic exercise, using the properties of the

spherical Bessel functions, to show that as k → 0, k2l+1cot(δl) → const., and that

only even powers of k appear in the Taylor expansion of this quantity around zero,

k2l+1 cot(δl) = Fl(k
2) ≈ − 1

al
+

1

2
rlk

2 + ·. (2.15)

In the case of s-wave collisions, (l = 0) the quantities a0 and r0 are known as

“scattering length” and “effective range.”

As we saw in section 2.1, the scattering amplitude is a measure of the

strength of the scattering. A particularly useful form in which to write this

quantity is derived by solving eq. 2.5 for fl in terms of δl, thus obtaining, in

combination with equation 2.15

fl(k) =
1

k cot(δl) − ik
. (2.16)

From this expression we can readily write

fl(k) =
1

k−2lFl(k2) − ik
≈ 1

k−2l(−1/al + rlk2) − ik
. (2.17)

2.2.2 Resonances at Low energy

It is instructive to write the approximate version of equation 2.17, in terms

of the collision energy E = k2/2µ, where µ is the reduced mass. We then obtain

the expression

fl =
1

k

Γk2l+1

(E −Er) − iΓk2l+1
, (2.18)

where we have defined Γ = 1
2rlµ

, and Er = 1
alrlµ

. From equation 2.7, we then get

σl =
4π

k2
(2l + 1)

(Γk2l+1)2

(E −Er)2 + (Γk2l+1)2
. (2.19)

This expression is known as a Breit-Wigner profile, in honor of its discoverers.
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The most remarkable feature of equation 2.19 if that as E → Er, the cross

section is enhanced, and reaches its maximum possible value. Also in this regime

the S-matrix reaches 1, and we say that the systems reaches “unitarity”. We call

this phenomenon a resonance. Furthermore, if the resonance energy Er is large

enough, and Γ is small enough that over the width of the resonance variations in

1/k2l are negligible, then we see that the resonance is Lorentzian in shape, with

full width at half maximum equal to 2Γ, see fig.2.1. We should also note that

the enhancement of the cross-section to unitarity requires that the phase shift

δl = π/2.

To better understand the physics of a resonant state, we turn to equation

2.4, and imagine a scattering event at “negative energy.”(i.e. k → iκ). We then

get

ψ ∝ A

(
S(κ)

e−κr

r
+
eκr

r

)
. (2.20)

Solutions to the Schrödinger equation in this regime should lead to bound states,

with boundary conditions implying exponentially decaying wavefunctions. There-

fore, the coefficient A must vanish, as the s-matrix S diverges, such that the

product SA is held constant, so that the normalization of the wavefunction is

finite. We see in this case that a pole in the s-matrix implies a bound state. At

a resonance, we saw above, the scattering amplitude has a (complex) pole, which

means that the s-matrix also has one. In this light we can think of poles in the

scattering amplitudes as either bound states, if real, or as resonances, if complex.

In somewhat qualitative terms, we may say that resonances indicate the

presence of the “shadow” of a bound states (known as a quasi-bound state),

whereby when the two particles scatter at this energy they spend an unusually

large time close together, in a bound-like state, but eventually come apart. The

amount of time they spend together is inversely related to the imaginary part of
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kr k→

4π
k2

σl=0

σ0

Figure 2.1: Typical l = 0 cross-section versus momentum profile near an s-wave
resonance (solid line), and its unitarity limit (dashed line).
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the resonant energy, or, more precisely, to width of the resonance.

2.3 Types of Resonances

In the previous section we have introduced the concept of scattering reso-

nance by disregarding the internal degrees of freedom of the colliding objects, and

thus focusing on the simplest possible example. Here we will briefly introduce

other types of resonances, including the Feshbach resonance, complementing the

previous discussion by focusing mainly on the phenomenological characteristics of

resonant scattering.

2.3.1 Potential Resonances

In section 2.2.2 we mentioned that resonance states are “shadows” of real

bound states. Here we would like to better qualify this statement, by introducing

the simple example of a “potential resonance”, graphically illustrated in fig. 2.2.

In this thought experiment we will consider an attractive interparticle potential,

and we analyze what the effect on the physics would be if we could tune its depth.

For a perturbative attractive potential, the scattering length is negative.

This can be understood by noting that the wavefunction in the absence of this

potential is sin(kr). Since the potential is negative, for small r the deBroglie

wavelength will be slightly smaller, and the wavefunction will thus oscillate slightly

faster, accumulating a small positive phase. Since for asc = − limk→0 tan(δ)/k ≈

−limk→0 δ/k, then if δ > 0, asc < 0.

As the potential is made deeper, and thus less perturbative, the phase shift

increases, and the scattering length becomes more and more negative. The phase

shift eventually reaches π, adding a node to the wave function, and causing the

scattering length to diverge through negative infinity. This added node is a sig-

nature of a new bound-state having appeared. Increasing the potential further
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a s c < 0
a s c � �
a s c � � �

a s c < 0
Figure 2.2: Conceptual representation of a potential resonance. A weakly at-
tractive potential with small negative scattering length is represented in the top
figure. As the depth of the potential is increased it becomes more and more attrac-
tive, and the scattering length increases, as a resonant state approaches threshold.
Eventually the resonance crosses threshold, and a bound state is created, as the
scattering length remains large, but changes sign abruptly. As the potential be-
comes deeper, the bound state becomes more deeply bound, and the scattering
length decreases, eventually becoming negative once again. The whole process
repeats as more and more bound states are created
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causes the scattering length to initially change sign abruptly, and subsequently

diminish from positive infinity, through zero, and again through negative infinity

as another bound-state is added to the potential.

2.3.2 Shape resonances

Another example of single-channel resonance, is the shape resonance. This

resonance is characterized by the presence of a potential barrier in the interparticle

potential. If we imagined the barrier to be infinitely high, we could easily convince

ourselves of the existence of a bound-state behind it. As the barrier becomes finite,

tunneling will allow the particles to separate, though the presence of the barrier

will cause them to spend a long time close to each other, in correspondence to

energies around where the original bound-state was. This phenomenon causes an

amplification of the scattering cross-section, causing a resonance.

Examples of shape resonances are ubiquitous in nonzero partial-wave scat-

tering between alkali atoms, where at long range the repulsive centrifugal potential

l(l+1)/2µr2 is stronger than the (negative) Van der Waals potential −C6/r
6, while

at short range the opposite is true.

2.3.3 Feshbach Resonances

Feshbach resonances are different from all other resonances described so far,

in that they are an intrinsically multi-channel phenomenon. What this means

is that they are the consequence of the complicated interplay between different

internal states of the colliding particles.

Using qualitative reasoning similar to that used above, we can think of a two

channel scattering problem, for example a spinless particle (particle 1) colliding

with a two state particle (particle 2), where state |1〉 and state |2〉 are separated by

energy ∆, |2〉 being the higher energy one. There are therefore two distinct ways
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in which the two object can interact, namely particle 1 with particle 2 in either

of the two states. This implies that there are two distinct interaction potentials,

characterizing the two collisions. Let us assume that the potential for state |2〉

collisions hold a bound state ǫ, with binding energy B < ∆.

Let us now introduce the concept of coupling: the possibility, that is, that

a collision between the two particles could change the state of particle 2. In the

absence of coupling, a particle of type 1, and one of type 2 in state |2〉 could be

bound in state ǫ for ever. If coupling is introduced, since B < ∆, then it would

be energetically favorable for particle 2 to change state, and for the two particles

to break-up, implying that ǫ would no longer be a proper bound-state.

From a collisional point of view, consider a particle of type 1 colliding with

a particle of type 2 in state |1〉, at an energy smaller that ∆. In this example,

it is possible that that during the scattering event particle 2 will visit state |2〉

temporarily, though it is energetically impossible it will leave the collision in this

state. If the collision energy is close to ∆ − B (the position of state ǫ relative to

state |1〉 threshold), then the time the two particles spend together before breaking

up becomes quite long, and we identify a resonance.

2.4 Magnetic Feshbach Resonances in Alkali Gases

In this section we will briefly introduce the physics of ultracold collision

of alkali atoms in a magnetic field, from the perspective of an atomic physicist.

Because of the scope of this thesis, we will not dwell substantially on this point,

but only give a general overview. A more accurate and detailed account is given

in [50].

Magnetic Feshbach resonances in alkali atoms, are the consequence of the

interplay between the magnetic/hyperfine degrees of freedom, dominant at long-

range, and the interatomic interaction, which is diagonal in the electronic spin
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P o t e n t i a lR e s o n a n c e
S h a p eR e s o n a n c e

F e s h b a c hR e s o n a n c e
Figure 2.3: Pictorial representation of the three main types of resonances described
in the text.
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degrees of freedom, and dominates the short-range physics.

The Hamiltonian can be schematically written as

H = T (R) +HM +HHF + V (R), (2.21)

where T (R) = − 1
2µ

∂
∂R

+ l(l+1)
R2 is the kinetic term in the interparticle coordinate

R, V (R) is the interparticle potential, HM is the Zeeman Hamiltonian, and HHF

is the hyperfine Hamiltonian.

We should note that while V (R) → 0 as R → ∞, HM and HHF are very

nearly R-independent, and they persist at R → ∞, thus defining the thresholds

of the problem. From this follows that the basis we use to describe the problem

must diagonalize these two components of the Hamiltonian. Simultaneously, we

will see that this basis does not diagonalize V (R), and these off-diagonal elements

will provide the coupling which will lead to the existence of Feshbach resonances.

The operational procedure, which we will describe in more detail below, may

be outlined as follows:

• basis |a〉 diagonalizes V (r)

• basis |b〉 diagonalizes HHF .

• basis |b̃〉 diagonalizes HHF +HM .

We need to express everything in basis |b̃〉, which are the physically relevant

scattering stares at R → ∞; to this end we take the following steps:

(1) Express HHF +HM in basis |b〉; this can be done analytically, and leads

to a non-diagonal matrix.

(2) Diagonalize numerically this matrix, to obtain the diagonal eigenvalue

matrix λb̃, and the eigenvector transformation matrix Ub→b̃ = 〈b|b̃〉. This

step is known as “field dressing”
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(3) Transform V (R) from the |a〉 basis representation (in which it is diagonal)

to the |b〉 basis; this can also be done analytically, and leads to a non-

diagonal matrix

(4) Transform V (R) from the |b〉 basis representation to the |b̃〉 basis repre-

sentation, using Ub→b̃.

At this point the whole Hamiltonian is expressed in the appropriate long-range

basis, and it is possible to run a close coupling scattering calculation.

In the following section we will discuss this procedure in more detail, filling

in the missing parts of this outline, and, in particular, the quantum numbers

associated with the |a〉, |b〉 and |b̃〉 basis.

2.4.1 1 ⊗ 1-Particle Physics

We will begin our discussion by studying the R → ∞ Hamiltonian, to

define the operational long-range basis |b̃〉. The long-range physics of the problem

consists, by definition, of two distant non-interacting atoms. This implies that the

most physically relevant representation must be a direct product of single-atom

representations. This allows us to treat each atom individually, and then put the

two pictures together. We therefore write the magnetic Hamiltonian for atoms 1

and 2 as

HM
a = HZ +HHF = HZ

1 +HHF
1 +HZ

2 +HHF
2 (2.22)

Assuming without loss of generality that the magnetic field B = Bẑ,

HZ
a = −B [geµes

a
z + µNg

a
N i

a
z ]

HHF
a =

(
~f 2
a − ~s2

a −~i2a
)
C (2.23)

In these expressions ~sa and ~ia are respectively the electron spin and nuclear spin

operators of atom a (which refers to either 1 or 2), and ~fa = ~sa +~ia is the total
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spin, while saz , i
a
z and faz are the corresponding ẑ projections. Also µe and ge are

the electron magnetic moment and g-factor, while µaN and gaN are their nuclear

counterparts for atom a. Finally C = Λa
∆a

2ia+1
, where ∆a is the hyperfine energy

splitting, and Λa = sign(µaN). If Λ = 1, then the hyperfine structure is said to be

“standard”, otherwise it is said to be “inverted.”

With these definitions, we can readily identify the basis which diagonalizes

HHF
a , namely |fama〉, and we can write

〈f ′
am

′
a|HHF

a |fama〉 = Λa
∆a

2ia + 1
δfa,f ′aδma,m′

a
. (2.24)

The matrix HZ
a in this basis, on the other hand, is not diagonal, and its matrix

elements read

〈f ′
am

′
a|HZ

a |fama〉 = −B
∑

msa+mia=ma

ms [geµemsa + µNg
a
Nmia] ×

〈fama|samsa; iamia〉〈f ′
am

′
a|samsa; iamia〉, (2.25)

where 〈f m|s ms; i mi〉 is a Clebch-Gordon coefficient coupling s and i into f .

Diagonalizing the matrix 〈f ′
am

′
a|HHF

a +HZ
a |fama〉 generates a set of eigen-

values ǫa, and an eigenvector transformation matrix

U
fama→f̃ama

= 〈fama| ˜fama〉. (2.26)

It should be noted that f̃ is not a strictly good quantum number in the dressed

basis, but given the small magnetic fields generally involved in the experiments

(recall that f̃ → f in zero field), the f̃ state is usually still “recognizable”, and

the single-particle states are still referred to using f̃ .

So far we have worked focusing on a single atom; sinceHZ+HHF is separable

into 1-atom components. Obtaining a two-atom version of the Hamiltonian is

just a matter of taking direct products, so that the basis |b̃〉 can be written as

| ˜fama〉| ˜fama〉 (or equivalently| ˜fama; ˜fama〉 , and the full transformation matrix
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becomes

U
f1m1f2m2→f̃1m1f̃2m2

= U
f1m1→f̃1m1

⊗ U
f2m2→f̃2m2

= 〈f1m1| ˜f1m1〉〈f2m2| ˜f2m2〉.

(2.27)

A plot of the hyperfine levels of 40K and 87Rb appears in fig. 2.4, along with

a plot of the thresholds for the collision in the |9/2 − 9/2〉|11〉 state.

2.4.2 The Interparticle Potential

Alkali atoms have only a single valence electron, and we are only concerned

with their orbital ground state which is an s-shell. It follows that the only elec-

tronic degrees of freedom which influence the interatomic interaction is the spin of

this electron. In this regime, the interatomic potential V (R) is therefore diagonal

in the basis |IMI ;SMS >, so that

〈S ′M ′
S; I

′M ′
I |V (R)|SMS; IMI〉 = δI,I′δMI ,M ′

I
δS,S′δMS ,M ′

S
VS(R) (2.28)

where ~S = ~s1 + ~s2, ~I =~i1 +~i2 and i1, i2 are the nuclear spins of the atoms, while

s1 = s2 = 1/2 are the electronic spins.

Although the details of how the actual potentials are derived are beyond

the scope of this thesis, and we refer the reader to [51] for more details, we would

like to point out that the potentials VS(R) are not in general entirely ab-initio,

as they generally require some tweaking via empirical parameterizations. High-

precision Feshbach spectroscopy experiments have been used heavily to determine

these parameterizations, with outstanding results, such as [4, 7, 8, 9]. Potential

curves for the Rb-K collision were obtained in [52], and are plotted in fig. 2.5.

Our goal is to integrate the above representation of V (R) with our previous

representations. To this end we first wish to represent V in the hyperfine basis
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Figure 2.4: a) Hyperfine levels as a function of external magnetic field of 40K in
its electronic orbital groundstate. b) Same as a) but for 87Rb. c) Thresholds for
a 40K−87Rb collision, incoming in the |9/2 − 9/2〉|11〉 channel. Since m1 +m2 is
conserved in the collision, only the states plotted in black in the a) and b) channel
participate. It is informative to note the energy scale of the threshold energies,
and compare it with the depths of the singlet and triplet potentials in fig 2.5.
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Figure 2.5: Singlet and triplet potential curves for the Rb-K collision. Note the
potential depth is of the order of 105 Kelvins, while the threshold energies are of
the order of hundreds of milliKelvins or less. (see fig 2.4)
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with the following basis transformation:

〈f ′
1m

′
1; f

′
2m

′
2|V (R)|f1m1; f2m2〉 =

∑

S,S′,MS,M′
S

I,I′,MI,M′
I

〈f ′
1m

′
1f

′
2m

′
2|S ′M ′

S; I
′M ′

I〉 ×

〈S ′M ′
S ; I

′M ′
I |V (R)|SMS; IMI〉〈SMS; IMI |f1m1; f2m2〉 =

∑

S

VS(R)〈SMS; IMI |f1m1; f2m2〉〈f ′
1m

′
1f

′
2m

′
2|SMS; IMI〉, (2.29)

where in the first step we introduced two complete sets of the form |SMS; IMI〉〈SMS; IMI |,

and in the second step we used equation 2.28.

To make the final expression in equation 2.29 useful, we need the matrix

elements 〈SMS; IMI |f1m1; f2m2〉, which, it turns out, are well known [53]

〈SMS; IMI |f1m2; f2m2〉 =
∑

f,m

〈SMS; IMI |fm〉〈f1m1; f2m2|fm〉

√
(2f1 + 1)(2f2 + 1)(2S + 1)(2I + 1) ×





s1 i1 f1

s1 i1 f1

s1 i1 f1





. (2.30)

Here 〈SMS; IMI |fm〉 and 〈f1m1; f2m2|fm〉 are Clebsch Gordon coefficients, and

the quantity in curly brackets is an object known as a “nine-J” symbol [53].

From this expression we note that m1 +m2 = m = MS+MI . Since from the

equivalent “primed” expression we get that m′
1 + m′

2 = m = MS + MI , then we

can conclude that m′
1 +m′

2 = m1 +m2. This makes perfect physical sense, given

the cylindrical symmetry of the problem around the field axis, which we also use

as quantization axis.

The final step is to transform the matrix elements in eq.2.29 in the dressed

basis. To this end we use the transformation matrices U derived in the previous

section, obtaining

〈 ˜f ′
1m

′
1;
˜f ′
2m

′
2|V (R)| ˜f1m1; ˜f2m2〉 =

∑

f1f2f ′
1

f ′
2

m1m2m′
1

m′
2

〈f1m1| ˜f1m1〉〈f2m2| ˜f2m2〉 ×

〈f ′
1m

′
1; f

′
2m

′
2|V (R)|f1m1; f2m2〉〈f1m1| ˜f1m1〉〈f2m2| ˜f2m2〉. (2.31)



25

Now that we managed to write the Hamiltonian matrix elements in a phys-

ically relevant basis, we need to add the kinetic energy part, whereby our basis

becomes | ˜f1m1; ˜f2m2〉|LML〉. Within our approximation L andML are good quan-

tum numbers.

Finally, the last step to take is symmetrization of the wavefunctions, but

since we are concerned here with collision between distinguishible particles, we

will not require it.

Where necessary, in throughout the thesis we have solved the coupled-

channel equations for K-Rb collisions using the log-derivative propagator method

described in [54, 55].

Feshbach resonances are very common in multichannel problems with this

level of complexity. What truly renders these resonances special is the motion of

the thresholds relative to one-another as a function of magnetic field, as depicted

in fig 2.4. This causes the resonances to shift in line with the thresholds, which,

in many cases, provides a very powerful and direct mean to control the creation

of molecuar dimers.



Chapter 3

Two-Body Physics: The Model

In order to describe the many-body properties of the system we wish to

employ the powerful tools offered by statistical field theory. To this end we need

to rephrase the concepts from the last chapter in the language of field theory, and

to develop a simplified model able to retain most of the relevant two-body physics.

In this chapter we present a reasonably well studied field theoretical model

of resonant collisions, which we tailor for our specific needs. The model is exactly

solvable in the two-body limit, and we show it can reproduce the equations de-

rived in section 2.2.2. We then proceed by testing quantitatively the model by

comparing its predictions to the results of (virtually exact) close-coupling calcu-

lations.

3.1 The Hamiltonian

We are interested primarily in the effects of resonant behavior on the other-

wise reasonably understood properties of the system. To this end we use a model

which, in the last few years, has become one of the standards in the literature,

and which was used to study the effect of resonant scattering in systems com-

posed of bosons [38, 56, 57], and fermions [58, 59, 60, 61, 62, 63]. Because there is

already a significant literature explaining the details involved in the choice of the

appropriate model Hamiltonian, we only outline the extent of the approximation
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involved in such a choice.

An accurate approach to the problem would have to incorporate several

scattering channels, since the resonance in question is a consequence of the in-

tertwined behavior of the complex internal structures of the atoms. In a field

theoretical sense, that would imply having to consider vector fields for the bosons

and fermions with as many components as there are spin states involved in the

interaction, and a non local interaction tensor of adequate size, to account for all

coupling between such components. Fortunately, if we assume that the resonances

in the system are sufficiently far from each other, such that it is possible to de-

fine a “background,” or away from resonance behavior, we can focus on only one

resonance at a time, which in turn makes it possible for an effective two channel

model to describe the resonance.

Furthermore, since the closed channel threshold is energetically unaccessible

at the temperatures of interest, we can “integrate out” the closed channel compo-

nents of the fermion and boson field, in favor of a fermion field which we identify

as representative of the motion of one boson and one fermion, and which we dub

the “molecular field.” In the appropriate limit the molecular field identifies bound

states between fermions and bosons.

We emphasize that the molecular field is a theoretical artifice that alleviates

the need to treat relative motion of two atoms on the natural scale of the inter-

action (tens of Bohr radii). However, this model is appropriate for the study of

the systems at hand, typically composed of 1012 40K atoms per cubic centimeter,

whereby the characteristic length scale associated with the many body system is

of the order of the inverse Fermi wavenumber, (thousands of Bohr radii), imply-

ing an average interparticle distance, which is given by
(

9
4π

)1/3
1
kF

, of the same

order. Lastly, since the coupling terms in the Hamiltonian represent an effective

interaction, we can choose its functional form, and we do so by choosing to deal
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with contact interactions, which simplify the calculations immensely.

The resulting Hamiltonian has the following form:

H = H0 +HI , (3.1)

where

H0 =
∑

p

ǫFp â†pâp +
∑

p

ǫBp b̂†pb̂p +
∑

p

(
ǫMp + ν

)
ĉ†pĉp

+
γ

2V

∑

p,p′,q

b̂†p−q b̂
†
p′+q b̂pb̂p′

HI =
Vbg
V

∑

p,p′,q

â†p−q b̂
†
p′+qâpb̂p′

+
g√
V

∑

q,p

(ĉ†qâ−p+q/2b̂p+q/2 + h.c.).

(3.2)

Here âp, b̂p, are the annihilator operators for, respectively, fermions and bosons, ĉp

is the annihilator operator for the molecular field [58, 62, 63]; γ = 4πab/mb is the

interaction term for bosons, where ab is the boson-boson scattering length; and

Vbg, ν, and g are parameters related to the Bose Fermi interaction, yet to be deter-

mined. Also we define single particle energies ǫα = p2/2mα, where mα indicates

the mass of bosons, fermions, or pairs, and V as the volume of a quantization box

with periodic boundary conditions.

3.2 Two Body Scattering Parameters

The first step is to find the values for Vbg, ν, g, in terms of measurable pa-

rameters. We will, for this purpose, calculate the 2-body T-matrix resulting from

the Hamiltonian in eq. 3.2. Integrating the molecular field out of the real time

path integral, (see Appendix C for clarifications) leads to the following Bose-Fermi



29

interaction Hamiltonian

H2body
I =

1

V

(
Vbg +

g2

E − ν

)
∑

p

â†pb̂
†
−pâpb̂−p. (3.3)

This expression is represented in center of mass coordinates, and E is the collision

energy of the system. From the above equation we read trivially the zero energy

scattering amplitude in the saddle point approximation:

T = (Vbg −
g2

ν
), (3.4)

which corresponds to the Born approximation 1 . We emphasize that this approx-

imation is only valid at exactly zero energy, and it does not, therefore, describe

the correct binding energy as a function of detuning, and will be improved in

treatment in Sec. 3.3. However, with this approach we obtain an adequate de-

scription of the behavior of scattering length as a function of detuning, which

allows us to relate the parameters of our theory to experimental observables via

the conventional parameterization [58, 56]

T (B) =
2π

mbf

abg

(
1 − ∆B

(B − B0)

)
, (3.5)

where abg is the value of the scattering length far from resonance, ∆B is the width,

in magnetic field of the resonance, mbf is the reduced mass, and B0 is the field at

which the resonance is centered.

The identification of parameters between eqns, (3.4) and (3.5) proceeds as

follows: far from resonance, |B − B0| >> ∆B, the interaction is defined by a

background scattering length, via Vbg =
2πabg

mbf
. To relate magnetic field dependent

quantity B − B0 to its energy dependent analog ν, requires defining a parame-

ter δB = ∂ν/∂B, which may be thought of as a kind of magnetic moment for

the molecules. It is worth noting that ν does not represent the position of the

1 This is akin to identifying the scattering amplitude f = asc in the Gross-Pitaevskii equation,

where the interaction term would be 2π
mbf

asc
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resonance nor the binding energy of the molecules, and that, in general δB is

a field-dependent quantity, since the thresholds move quadratically with field,

because of nonlinear corrections to the Zeeman effect. For current purposes we

identify δB by its behavior far from resonance, where it is approximately constant.

Careful calculations of scattering properties using the model in eq. (3.2), however,

leads to the correct Breit-Wigner behavior of the 2-body T-matrix, as we show in

section 3.3

Finally we get the following identifications:

Vbg =
2πabg

mbf

g =
√
VbgδB∆B

ν = δB(B − B0).

(3.6)

3.3 Solution of the Model in the Two-Body Limit

In this section we will abandon the Hamiltonian formalism in terms of the

path integral formalism, which is better suited to the perturbative treatment we

wish to present. This implies that we will be using the field operators φ, ψ, ξ

instead of the second quantized operators b, a, c used so far [64].

The perturbative analysis begins by recasting the Hamiltonian in eq. (3.2)

in terms of a 2-body action, in center of mass coordinates :

S[ψ, ψ†, φ, φ†, ξ, ξ†] = SB[φ, φ†]+SF [ψ, ψ†]+SM [ξ, ξ†]+SC[ψ, ψ†, φ, φ†, ξ, ξ†], (3.7)

where the field φ represents the bosons, ψ the fermions, and ξ the fermionic

molecules, and where

SB[φ, φ†] =
∫
dω

2π

∑

p

(−h̄ω + ǫBp ) φ†
ω,pφω,p +
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1

2V
γ
∫
dω

2π

∑

p,p′q

φ†
ω,p−qφ

†
ω,p′+qφω,p′φω,p

SF [ψ, ψ†] =
∫
dω

2π

∑

p

(−h̄ω + ǫFp ) ψ†
ω,pψω,p

SM [ξ, ξ†] =
∫
dω

2π

∑

p

(−h̄ω + ǫMp + ν) ξ†ω,pξω,p

SC [ψ, ψ†, φ, φ†, ξ, ξ†] =
Vbg
V

∫
dω

2π

∑

p,p′q

ψ†
ω,p−qφ

†
ω,p′+qψω,p′φω,p

+g
∫
dω

2π

∑

pq

(ξ†ω,pψω,q−pφω,p + c.c), (3.8)

where h̄ω is the frequency associated with the motion of the various fields.

The initial difficulty is that there are two distinct interaction pathways be-

tween bosons and fermions: a direct one of the form |φ|2|ψ|2, and an indirect

molecule-mediated one, of the form ξφ†ψ†, corresponding respectively to open and

closed channel events. In order to proceed, we will introduce an alternate effective

molecular field, which will exactly reproduce both these interaction pathways via

a single mediated interaction term. This is accomplished by first integrating out

the original molecular degree of freedom [64] to get :

S ′
C [ψ, ψ†, φ, φ†] =

∫ dω

2π

dω′

2π

∑

pp′

(
Vbg +

g2

E − ν

)
φ†
ω,pψ

†
E−ω,−pφω′,p′ψE−ω′,−p′(3.9)

where E is the collision energy between the fermions and the bosons. After col-

lecting the background and resonance terms of the interaction, we note that this

new direct interaction contains both the resonant and background channels. Next

we undergo the inverse transformation to eliminate all direct boson-fermion inter-

actions in favor of interactions mediated by new effective molecules, to obtain:

S ′′
M [ξ, ξ†] = −

∫
dω

2π

∑

p


Vbg
g2

+
1

w − p2

2(mb+mf )
− ν




−1

ξ′†ω,pξ
′
ω,p

S ′′
C [ψ, ψ†, φ, φ†, ξ, ξ†] =

∫
dω

2π

∑

p

g2(ξ′†E,0ψE−ω,−pφω,p + c.c).

(3.10)
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Here ξ′ represents the new effective (i.e. primed) molecules. The first line of fig.

3.1 shows the diagrams describing the effective resonant collisions between bosons

and fermions. Here the solid lines refer to fermions, the dashed lines to bosons,

and the double solid-dashed lines to effective molecules.

Figure 3.1: Feynman diagrams representing the resonant collision of a fermion
and a boson. Solid lines represent fermions, dashed lines bosons, and double
solid-dashed lines represent the effective composite fermions.

Since we are looking for poles of the S-matrix, we can disregard the trivial fermion

and boson propagators, and proceed, as outlined in fig. 3.1, to calculate the

renormalized propagator for ξ′, denoted as D̂, represented there as a heavy broken

line. This object is proportional to the T-matrix of the system, and shares its

poles. Using the definition of the retarded molecular self energy Π̂ given in fig. 3.1,

and calling the free molecular propagator D̂0 (again for ξ′), we get the following

Dyson series:

T = gD̂0g + gD̂0g Π̂ gD̂0g + gD̂0g Π̂ gD̂0g Π̂ gD̂0g + · · · = gD̂g (3.11)

where T is the T-matrix for the collision, and which has formal solution

T = gD̂g =
g2

(D̂0)−1 − g2Π̂
. (3.12)

These quantities take the explicit form

D̂0(E) =

(
Vbg
g2

+
1

E − ν

)
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Π̂(E) = −i
∫

dω

2π

dp

(2π)3

1

(h̄ω − p2

2mb
+ i0+)(E − h̄ω − p2

2mf
+ i0+)

≈ i
m

3/2
bf√
2π

√
E +

mbfΛ

π2
, (3.13)

where mbf is the boson-fermion reduced mass, and Λ is an ultraviolet momentum

cutoff needed to hide the unphysical nature of the contact interactions; we will

dwell more on that shortly. Finally inserting eq. 3.13 into eq. 3.12, we obtain the

following expression for the T-matrix:

T (E) =


 1

Vbg + g2

E−ν
+ i

m
3/2
bf√
2π

√
E +

mbfΛ

π2



−1

(3.14)

To show that this expression correctly represents the low-energy two-body

T-matrix for resonant scattering, we will compare it to the s-wave (l = 0) version

of equation 2.18, remembering that T = 2π/mbff

T (E) =
2π

mbf

√
2mbf

(
Γ

(E −Er) − iΓ
√
E

)
. (3.15)

The quantities Γ and Er can be extracted from experimental observables, through

accurate two-body scattering calculations.

From the parameterization of the zero energy T-matrix in eq.(3.5), and the

E → 0 limit of (3.15), we easily derive Γ =
√

2mbfabfδB∆B. With these defini-

tions we can relate equations (3.15) and (3.14), to find a regularization scheme

for the theory, by substituting the non observable parameters g, ν, and Vbg by

the Λ dependent (renormalized) quantities ḡ, ν̄, and V̄bg, such that the observable

T-matrix will not be itself Λ dependent

Following [58] we compare equations (3.14) and (3.15), in the limit E → 0,

where we have (once we include the definitions of the bare quantities)

Vbg −
(g)2

ν
=


 1

V̄bg − ḡ2

ν̄

+
mbfΛ

π2



−1

. (3.16)

Since we have one equation and three unknowns, we will have to consider some

physical circumstances, analyzing 3.16 in various limits. The first limit is far from
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resonance, where ν → ∞

V̄bg = Vbg


 1

1 − mbf ΛVbg

π2


 (3.17)

We are now left with the task of defining the resonant quantities, and we

have no more leeway to make physically motivated simplifications. The equations

which remain are ambiguous, which leaves us with a set of possibilities for the

choice of ḡ and ν̄. One way is to proceed as follows: insert eq. (3.17) into (3.16),

and solve for ν̄, to get

ν̄ = ḡ2(1 − mbfΛVbg
π2

)(
mbfΛ

π2
+
ν

g2
). (3.18)

From inspecting the above equation we can choose a definition of ḡ, which

will also imply one for ν̄, and we get (reporting also eq(3.17) for completeness)

V̄bg = Vbg


 1

1 − mbf ΛVbg

π2




ḡ = g


 1

1 − mbf ΛVbg

π2




ν̄ = ν + ḡg
mbfΛVbg

π2
(3.19)

Using these definitions of V̄bg, ḡ and ν̄, together with the policy of imposing Λ as

the upper limit of momentum integrals, will guarantee that observables will not

depend on the choice of Λ, as long as it is chosen to be bigger than momentum

scales relevant to experiment.

3.3.1 Poles of the T-Matrix: The Two-body case

As described in section 2.2.2, bound states and resonances of the two-body

system are identified in the structure of poles of the T-matrix (eq.3.14). This is

illustrated in Figure 3.2, where real and imaginary parts of the poles’ energies

are plotted as a function of magnetic field. The resonance portrayed in the figure
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is the 544.7G resonance present in the |9/2,−9/2〉|1, 1〉 state of 40K-87Rb. For

B < 544.7G (corresponding to detunings ν < 0) the two-body system possess

a true bound state, whose binding energy is denoted by the solid line. In this

case, the pole of 3.15 occurs for real energies. This bound state vanishes as the

detuning goes to zero, where the resonance occurs.

For positive detunings, ν > 0, on the other hand, the poles are complex, and

the inverse of the imaginary part is proportional to the lifetime of the metastable

resonant state. In this regime, there is no longer a true bound state, but there

may be a scattering resonance, indicated in fig. 3.2 by a thick dashed line. This

resonance appears for magnetic fields B > 544.7 for this particular resonance,

well before the disappearance of the bound state. This is highly dependent upon

the value of the background potential. We will see in chapter 5 that for Vbg = 0,

the resonance actually appears at positive detunings. In the case of 40K-87Rb,

Vbg < 0, implying that there is a weak potential resonance in the open channel

which interferes with the closed-channel resonance, and causes it to cross the axis

at negative detunings. For VBG > 0 ([65]) the positive background scattering

length is set by a bound state in the open channel, which does not affect the

resonance states, but which interferes with the bound state at negative detunings.

An in depth analysis of this physics is highly interesting, but is beyond the scope

of this thesis.

The thin dashed lines in fig. 3.2 are physically meaningless solutions to the

Schrödinger equation, in which the amplitude in the resonant state would grow

exponentially in time, rather than decay. These poles do not therefore identify

any particular features in the energy-dependent cross section of the atoms, and

will not modify the physics of the system.

Finally fig. 3.2 contains data obtained from virtually exact close-coupling

calculations (see section 2.3.3), which show the extent of validity of the model.
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Figure 3.2: The top panel shows the scattering length versus magnetic field for
the 544.7 G resonance, present in the |9/2,−9/2〉|1, 1〉 states of the 40K-87Rb
collision. The bottom panel shows the poles of the model two-body T-matrix
(eq. 3.14) parametrized for the same resonance, as a function of magnetic field.
Thick solid and dashed lines denote the real parts of relevant poles, representing
bound and resonance states respectively. The thin dashed lines are the real parts
of unphysical poles. The empty circles and squares, represent the position of
the resonance and the bound state, obtained via a virtually exact close coupling
calculation, and are presented to show the level of accuracy of the model.
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For the purposes at hand this agreement is sufficient.

It should be noted that the agreement is not as good for positive back-

ground scattering length systems, since the open-channel bound state determining

this scattering length is not adequately described by the model, which treats the

background physics as an essentially zero range interaction. This implies that the

relation between the background scattering length and open channel bound-state

energy is exactly Eb = 1/2µa2
bg, while in the physical system this relation depends

on the details of the interaction potential. This problem has been addressed in

the literature [49], but no treatable field theory has yet been proposed.
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B0(G) ∆B(G) δB(K/G) abg(a.u.)

492.49 0.134 3.624 × 10−5 −176.5

544.7 3.13 1.576 × 10−4 −176.5

659.2 1.0 2.017 × 10−4 −176.5

Table 3.1: Parametrization of the three main Feshbach resonances used in this
thesis. All Three resonances are in the |9/2,−9/2〉|1, 1〉 states of the 40K −87 Rb
collision



Chapter 4

Mean-Field Theory: The Language

In this chapter we wish to introduce the many-body physics of the system,

by first analyzing the mean-field approach. Because of the statistical properties

of the system, we will see right away that mean-field theory does not recover the

correct two-body physics in the low density limits. In spite of this substantial

weakness, however, the approach has several qualitative features which persist

even in the improved theory which we will later introduce. Furthermore, since the

model is exactly solvable, it will allow us to develop a language which will help us

to understand the problem in simpler terms, and to identify some small physical

effects, which, when ignored, can greatly simplify the beyond mean-field approach

presented in the next chapter.

We will then develop the Hartree-Fock-Bogoliubov equations of motion, as a

first attempt to gain beyond mean-field insight. We will observe that the peculiar

physical structure of the problem is such that the HFB equations reduce to the

mean-field equations, and higher order correlations play an unusually important

role in the physics of mixture.

This fact is of itself a novelty: the physics of other resonant systems, com-

posed of either fermions or bosons, is known to be mainly driven by atom-atom

correlations, (at least qualitatively). We will show that even some of the most

fundamental qualitative physical aspects of resonant Bose-Fermi mixtures require
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that at least three-body correlations be considered to be reasonably well under-

stood, implying a peculiar complexity of the system that sets it apart from its

Bose-Bose and Fermi-Fermi counterparts.

4.1 Equilibrium Approach

The mean-field theory approach to the resonant Bose-Fermi mixture lends

itself very naturally to treatment in the Hamiltonian formalism, and in the next

section we will mainly focus on this particular approach. Nonetheless, to create

a stronger link to the beyond-mean-field approach of chapter 5 we will also intro-

duce the Green’s function formalism, and discuss the similarity between the two

approaches. All calculations in this and next Chapters assume a gas in free space,

at zero temperature.

4.1.1 The Formalism

Starting with the Hamiltonian described by equation 3.1, we obtain the

mean-field Hamiltonian by substituting the boson annihilator b̂ by its expectation

value φ = 〈b̂〉, a complex number. The number operator b̂†pb̂p therefore becomes

|φ|2 = Nb, where Nb is the number of condensed bosons. The grand canonical

Hamiltonian therefore becomes

H = Eb +
∑

p

(
ǫFp − µf + Vbgnb

)
â†pâp +

∑

p

(
ǫMp + ν − µm

)
ĉ†pĉp (4.1)

+ g
√
nb
∑

p

(
ĉ†pâp + h.c.

)
,

where nb is the density of condensed bosons, Eb/V = γnb2 − µbnb is the energy

per unit volume of the (free) condensed bosons, a constant contribution to the

total energy of the system, and µ(b,f,m) are the chemical potentials. These are

Lagrange multipliers that serve to keep the densities constant as we minimize the
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energy to find the ground state. In the following we will drop the volume term,

absorbing it in the definition of the creator/annihilator operators, such that the

expected value of the number operator represents a density, instead of a number.

Before proceeding with the analysis of this Hamiltonian, we should introduce

the set of self-consistent equations we wish to solve. To this end we define the

quantities n0
b,(f), representing the total density of bosons (fermions) in the system,

at detuning ν → ∞. At finite detunings some of these atoms will combine into

molecules, and the densities will be denoted as n(b,f,m) for bosons, fermions and

molecules respectively.

The system, therefore, is composed of six unknowns, namely three densi-

ties, and three chemical potentials, which require six equations to solve. These

equations, which can be derived by number-conservation constraints and energy

minimization arguments, are:

nf + nm − n0
f = 0 (4.2.a)

nb + nm − n0
b = 0 (4.2.b)

nf =
d Ω

dµf
(4.2.c)

nm =
d Ω

dµm
(4.2.d)

dΩ

dφ
= 0 (4.2.e)

µb + µf = µm, (4.2.f)

where Ω = 〈H〉/V is the Gibbs free energy.

Equations 4.2.a and 4.2.b follow from the simple counting argument that

for every molecule created, there is one less free boson and one less free fermion in

the gas. Equations 4.2.c, and 4.2.d are simply the Lagrange multiplier constraint

equations, equation 4.2.e follows from the mean-field approximation, whereby the

bosonic field is simply a complex number, and minimization of the energy can
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therefore be done directly. Finally equation 4.2.f, known as the “law of mass

action,” is just a condition on the multipliers that follows from the fact that to

make a molecule it takes one free atom of each kind.

The next step is to write down Ω for the system, by taking the expectation

value of the Hamiltonian in equation 4.1, obtaining

Ω = Eb/V +
∑

p

(
ǫFp − µf + Vbgnb

)
ηf (p) +

∑

p

(
ǫMp + ν − µm

)
ηm(p) (4.3)

+ 2g
√
nb
∑

p

ηmf (p),

where ηf (p) = 〈â†pâp〉 and ηm(p) = 〈â†pĉp〉 are the fermionic and molecular mo-

mentum distributions, ηmf (p) = 〈ĉ†pâp〉 is an off-diagonal correlation term arising

from the interactions in the system, and the densities are given by nf,m,mf =

∫ dp
2π2 ηf,m,mf (p). Equations 4.2.a-4.2.f then read

nf + nm − n0
f = 0 (4.4.a)

nb + nm − n0
b = 0 (4.4.b)

nf,m,mf =
∫ dp

2π2
ηf,m,mf(p) (4.4.c)

g nmf − µb
√
nb + λn

3/2
b = 0 (4.4.d)

µb + µf = µm (4.4.e)

The remaining task is now to find expressions to calculate the expected values

ηf,m,mf (p). To this end we follow a Bogoliubov-like approach, similar to that de-

scribed in [35]. The mean-field Hamiltonian is bilinear in all creation/annihilation

operators, which means that it can be diagonalized via a change of basis, whereby

introducing the operators

αp = Aαap + Cαcp (4.5)

βp = Aβap + Cβcp,
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for some appropriately chosen coefficients Aα,β and Bα,β, the Hamiltonian will

read

H ′ = E0 +
∑

p

λα(p)α
†
pαp +

∑

p

λβ(p)β
†
pβp. (4.6)

At this point we note that the Hamiltonian is just a separable sum of free-particle

Hamiltonians, where the free particles are fermions, with dispersion relations

λα,β(p). We can readily write down the distribution

ηα,β(p) = Θ(−λβ,α(p)) (4.7)

, where Θ is the step function, and calculate the densities nα,β. The step function

could be replaced by the free Fermi distribution for non-zero temperatures, but

the mean-field assumption that all bosons are condensed would no longer hold.

Also Note that if these were ordinary free fermions with dispersion p2/2m − µ,

equation 4.7 would reduce to the standard zero-temperature Fermi distribution.

We will see below that λα,β(p) are dispersion relations of quasi-particles, which

are a mixture of atoms and molecules.

Below we show how these ideas, together with equation 4.2.a - 4.2.f, give us

the tools we require to calculate the observable atomic and molecular densities as

a function of the chemical potentials.

To illustrate more explicitly the diagonalization procedure we define the

vectors

A =



ap

cp


 A† = ( a†p c†p ), (4.8)

and

B =



αp

βp


 B† = ( α†

p β†
p ), (4.9)

whereby the Hamiltonian can be written as A†ĤA, and B†Ĥ ′B, where

Ĥ =




(
ǫFp − µf + Vbgnb

)
g
√
nb

g
√
nb

(
ǫMp + ν − µm

)


 , (4.10)
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and

Ĥ ′ =



λα(p) 0

0 λβ(p)


 . (4.11)

Diagonalizing Ĥ , we get the two eigenvalues

λα,β(p) =
hf (p) + hm(p)

1
± 1

2

√
4g2nb + (hm(p) − hf (p))2, (4.12)

where we have defined hf (p) =
(
ǫFp − µf + Vbgnb

)
, and hm(p) =

(
ǫMp + ν − µm

)
,

and the unitary eigenvector matrix

U =



Aα Bα

Aβ Bβ


 . (4.13)

The transformation in eq. 4.5 can then be written as A = U †B, and its inverse

B = UA.

Our goal now is to write the densities ηm,f,mf (p) in terms of the known

densities ηα,β(p). In component notation, (where Ai = ap, etc.), we can write

〈A†
iAl〉 = 〈B†

jUji(U
†)ljBk〉 = UljU

∗
ij〈B†

jBj〉, (4.14)

where we have used the fact that since the Hamiltonian is diagonal in the B basis,

then 〈B†
jBk〉 = 〈B†

jBj〉δjk.

Using this formalism we get the relations:

ηf (p) = |Aα|2ηα(p) + |Bα|2ηβ(p) (4.15)

ηf (p) = |Aβ|2ηα(p) + |Bβ|2ηβ(p)

ηfm(p) = A∗
αAβηα(p) +B∗

αBβηβ(p).

Using these expressions in conjunction with eqs. 4.4.a-4.4.e will then allow

us to compute the equilibrium properties of the system.
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4.1.2 Analysis and Results

For concreteness, in this section, as well as in some of the following ones, we

will consider a free gas of fermionic 40K atoms, with a density of 8.2× 1014cm−3,

corresponding to the Thomas-Fermi density of 106 such atoms in the center of a

100Hz spherical trap. The coupling term g
√
nb in equation 4.10 is the perturbative

expansion parameter for the problem, and since it has units of energy, it must be

compared with the characteristic non-perturbed energy of the gas, which in this

case is Ef . Also since in the perturbative expansions it always appear squared

(see eq. 3.11), we can define the unitless small parameter for the system as

ǫSM = g2nb/E
2
f = g2nf/E

2
frbf , where rbf is the boson to fermion density ratio.

For the 492G resonance in table 3.1, we have ǫSM = 6.35× 10−2rbf , and since we

will be mostly concerned with values of rbf generally smaller than 10 (106 87Rb

atoms correspond to a bosonic density in the center of the same 100Hz trap about

six times larger than the fermionic one i.e rbf = 6), the small parameter is of order

10−1, appropriate for perturbative treatment.

Figure 4.1 shows the quasi-particle energy levels λα,β(kf), as a function

of detuning. On the leftmost and rightmost part of the graph we see that the

two lines asymptote to the detuning (mean field molecular energy) and 0 (atomic

internal energy). Looking in the region near the resonance we see that the two lines

avoid crossing each other, and from the form of the Hamiltonian in equation 4.10

we can easily deduce that the avoiding is due to the coupling term g2nb, which,

for a specified resonance, implies that the size of the crossing is proportionally

related to the density of condensed bosons in the gas.

If we consider a gas with more fermions than bosons, we easily see that on

the left side of the plot, both states are populated, and there exist a well defined

atomic Fermi surface, as well as a well defined molecular Fermi surface. However,
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Figure 4.1: The thick solid lines represent the “renormalized” mean-field energy
levels λα,β(kf) , while the thin dashed lines represent their bare counterparts.
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if the density of bosons is much larger than the density of fermions, the crossing

may be so large, that the higher state is energetically inaccessible, and only the

bottom state is ever populated, such that a single Fermi surface is ever populated.

This implies that the atoms on the large positive detuning side of the resonance

“morph” into molecules as the detuning is shifted, to the negative size, and it is

no longer strictly appropriate to talk about atoms or molecules separately in this

regime.

To illustrate this difference, we start by an example problem, in which we

turn off the interactions (i.e. g, Vbg, γ → 0). Using this simplified system, we

study an example of a gas with two Fermi surfaces, rbf = 0.6, and one with one

Fermi surface, with rbf = 6. Results appear respectively in figures 4.2 and 4.3,

where we plot the chemical potentials and populations as a function of detuning.

At zero temperature, the chemical potential in a Fermi gas, represents its

Fermi energy. Analyzing the top panel of figure 4.2, starting from the positive

detuning region, we see that the molecular and fermionic chemical potentials coin-

cide, which is reasonable, since the chemical potential for a condensate vanishes at

zero temperature. Plotted in the graphs are also the internal energies of fermions

and molecules, which for the noninteracting gas are equal to 0 and ν respec-

tively. In the large positive detuning regime, the only Fermi surface present is

the fermionic one, since µf > 0 (and 0 is the internal energy of the fermionic

atoms), while µm < ν, which implies that it is energetically not favorable to cre-

ate a molecule. As the detuning diminishes, and becomes smaller than 1 (region

marked “a” in the graph), it starts to “cut” into the energetically favorable regime,

so that creating low-momentum molecules becomes favorable to high momentum

atoms. This reduces the number of atoms present in the gas, and causes µf = µm

to diminish. This process continues until there are no bosons left (region marked
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Figure 4.2: Equilibrium chemical potentials (top panel) and populations (bottom
panel) as a function of detuning for a non interacting gas with rbf = .6. The solid
lines represent fermions, dashed lines molecules, and dashed-dotted lines bosons.
The dotted lines in the top panel represent the bare molecular and fermionic
internal energies, respectively ν and 0. The vertical lines labeled a) and b) are
discussed in the text, and represent the detuning at which molecular formation
begins and ends, respectively
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internal energies, respectively ν and 0.
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“b” in the graph), and no more molecules can be formed. Since there are no

bosons left in the gas, the bosonic chemical potential can become negative, and

this allows µf and µm to separate, so that two separate Fermi seas are created: a

molecular one, from ν to µm, and an atomic one, from 0 to µf .

The case of only one Fermi surface, is represented in figure 4.3. Like the

previous case, no molecules are generated until the detuning cuts into the atomic

Fermi gas. Since there are enough bosons to turn all the fermions into molecules,

the atomic and molecular chemical potentials move in unison. When they cross

zero, then no more fermions can exist in the gas, since µf < 0 (the atomic internal

energy), and µm > ν, (the molecular internal energy), making molecules the only

energetically accessible state.

Since, under standard experimental conditions, in the center of the trap

the bosonic density is larger than the fermionic one, we only analyze the one

Fermi-surface case in the mean-field approximation. Figure 4.4, shows the equi-

librium chemical potentials for the system obtained via a self-consistent solution

of equations 4.16 and 4.4.a-4.4.e.

The first main difference which appears when comparing the graph in figs

4.4 with its non-interacting equivalent in fig 4.3, is the fact that µb > 0, causes a

split between the molecular and fermionic chemical potential. At first sight this

may suggest the existence of two Fermi surfaces, as it was the case in fig 4.3.

The reason why µb is nonzero, is a consequence of equation 4.4.d, whereby the

boson-boson interaction energy generates a shift. In physical terms, this means

that there is an energy cost in maintaining bosons unpaired, and therefore we

need to take this into account in the kinematic analysis, by realizing that while

in the noninteracting case pairing becomes energetically favorable when ν crosses

µf , in the interacting case this happens when ν crosses µf + µb. Therefore the

only consequence of this interaction energy is to shift the molecular population
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Figure 4.4: Mean-field equilibrium chemical potentials (top panel) and molecular
fraction (bottom panel) as a function of detuning. In the top panel, solid lines
represent fermions, dashed lines molecules, and dashed-dotted lines bosons. In the
bottom panel, the solid line represents the full mean-field result, while the dashed-
dotted line represents results obtained using the approximations in described in
the text.
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curve up and to the left by exactly and amount µb (see bottom panel of fig 4.4).

Another substantial difference between the interacting and noninteracting

case, is that molecule creation takes place in a much narrower range of detunings

in the noninteracting case. This can be understood by the fact that the avoided

crossing makes for a gentler sloping internal molecular energy than the bare de-

tuning. This will be emphasized even further when we will discuss the beyond

mean-field case, where the molecular binding energy slopes even more gently.

The last goal of this section is to introduce some approximations to facili-

tate the beyond mean-field approach to the problem. These approximations have

been tested numerically, and they give corrections of the order of .1% or less in

calculated molecular populations for all regimes of interest here.

• Vbg can be disregarded

• As per the arguments above, the interaction γn3
b is included by appropri-

ately shifting the detuning, and the molecular potential.

• 〈ηbf(p)〉 (analogous to the boson polarization operator in the Green func-

tion formalism) can also be disregarded, since its contribution to µb is

much smaller than that of γn3
b .

A comparison plot of the full calculation and the approximate calculation of the

molecular population as a function of detuning appear in the second panel of

figure 4.4. With exception of the last item, and some aspects of the first, we

are unable to directly test the validity of these approximations in the generalized

beyond mean-field theory which we introduce in the next chapter. However, we

have reason to believe that this approximations will be valid also, since, as we will

see, the generalized mean field theory is, after all, a mean-field theory at heart.
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4.2 Non Equilibrium Approach

Having discussed the equilibrium mean-field properties of the system we will

now develop the Hartree-Fock-Bogoliubov equations of motion, as a first attempt

to gain beyond-mean-field insight. We will then notice that the peculiar physical

structure of the problem is such that the HFB equations reduce to the mean-field

equations, and higher order correlations play a peculiarly important role in the

physics of mixture.

4.2.1 The Formalism

We now move on to derive the Heisenberg equations of motion for the many

body system. The way this is done is to find equations of motion for correlation

functions, fs(x1, ....xs), which represent the probability of finding s particles at

positions x1, ..., xs. As it turns out, the equation of motion for the correlation

function f1 will depend on the function f2, which in turn will depend on f3, and

so on all the way to fN , where N is the total number of particles in the system.

This is known as a Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

[66]. In practice we will be concerned with momentum space correlation functions,

but the idea is the same.

Given the large number of particles in the system, it is impossible to cal-

culate equations of motion for all correlation functions, and we need to invoke

an approximation. In practice, correlation functions are often calculated only

up to two-body correlations, s = 2. This is justified under the assumption that

interactions are suitably “weak.” Higher-order correlations are included in an

approximate way by considering, not the actual atomic constituents, but rather

combinations called quasiparticles. The quasiparticles are defined to be noninter-

acting, so that their higher-order correlation functions can be written in terms of
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second order correlation functions [64].

Using this qualitative idea we proceed to develop a more formal understand-

ing. In statistical field theory, given an operator O, and Hamiltonian H , we define

the thermal average of O with respect to H as 〈O〉H = 1/ZTr
{
Oe−βH

}
, where

β = (kBT )−1 is the inverse temperature, and Z = Tr
{
e−βH

}
is the partition

function. In this framework, the 1-particle correlation function is defined as the

thermal average of the number operator, with respect to the Hamiltonian of the

system.

In the quasiparticle representation, we define the annihilation operator for

quasiparticles as a′, reminding ourselves that it is a complicated function of

a, a†, b, b†, c, c†. In momentum space, the 1-particle correlation function in this

representation, will then be 〈a′p1a′p2〉Hqp
, where Hqp is the (noninteracting) quasi-

particle Hamiltonian.

Now we introduce the real approximation, namely that the quasi-particles

can be written as linear combinations of all possible products of two operators

(except for averages involving one fermionic and one bosonic operator, which are

easily shown to vanish). The procedure is then to find the Heisenberg equations

of motion for these pairs of operators, and then average over the quasi-particle

Hamiltonian

ih̄
∂

∂t
〈O〉Hqp

= 〈[O, H ]〉Hqp
, (4.16)

which, being Gaussian, allows us to invoke Wick’s theorem to decompose all higher

order correlations in 1-particle correlations, thus truncating the BBGKY hierar-

chy.
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4.2.2 The Equations of Motion

Before generating Heisenberg equations, we need to take a little care in the

treatment of the Bose field, to properly treat the condensed part. To this end

we perform the usual separation of mean field and fluctuations of the Bose field,

substituting b0 ( the zero-momentum component of the Bose gas) with a c-number

φ = 〈b0〉Hqp
, and identifying it with the condensate amplitude, while 〈bp 6=0〉Hqp

= 0

are the fluctuations. We insert these definitions in the Hamiltonian in eq. (3.2),

then proceed to calculate commutators.

Since we wish to consider a homogeneous gas, the correlation functions

f1(x, x
′) can be written in terms of a relative coordinate y = x − x′. Thus in

momentum space f1(p) is the probability to find a particle with momentum p in

the gas, or in other words it is the momentum distribution of the system.

Having taken all appropriate commutators, and applied Wick’s theorem,

(for more details on the procedure see [67], or Appendix B for the derivation of

a sample equation.), we obtain the following self consistent set of equations of

motion for the system:

ih̄
∂

∂t
φ = VbgρFφ+ γ (2φρ̃B + ∆Bφ

∗) + gρ∗MF + γ|φ|2φ (4.17.a)

h̄
∂

∂t
η̃B(p) = 2γ ℑm

[
κB(p)(φ∗2

+ ∆∗
B)
]

(4.17.b)

ih̄
∂

∂t
κB(p) =

[
ǫBP + 2VbgρF + 4γ(|φ|2 + ρ̃B)

]
κB(p) +

γ(2η̃B(p) + 1)(φ2 + ∆B) (4.17.c)

h̄
∂

∂t
ηF (p) = −2g ℑm(φηMF (p)) (4.17.d)

ih̄
∂

∂t
κF (p) =

[
ǫFp + 2Vbg(ρ̃B + |φ|2)

]
κF (p) (4.17.e)

h̄
∂

∂t
ηM(p) = 2g ℑm(φηMF (p)) (4.17.f)

ih̄
∂

∂t
κM(p) =

[
ǫMP + ν

]
κM(p) (4.17.g)
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ih̄
∂

∂t
ηMF (p) =

[
ǫFp − ǫMp − ν + Vbg(ρ̃B + |φ|2)

]
ηMF (p) −

gφ∗ (ηF (p) − ηM(p)) (4.17.h)

ih̄
∂

∂t
κMF (p) =

[
ǫFp + ǫMp + ν + Vbg(ρ̃B + |φ|2)

]
κMF (p) −

g [φκF (p) + φ∗κM(p)] , (4.17.i)

where η̃B(p) = 〈b†p 6=0bp 6=0〉Hqp
is the momentum distribution of non-condensed

bosons, and ρ̃B =
∫ dp

2π2p
2η̃B(p) is the density of non-condensed bosons; κB(p) =

〈bp 6=0bp 6=0〉Hqp
is the anomalous distribution of bosonic fluctuations, and ∆B =

∫ dp
2π2p

2κB(p) the anomalous density. Similarly ηF,M(p) are the fermionic and

molecular distributions, ρM,F the densities, and κF,M(p), and ∆F,M the anomalous

molecular and fermionic distributions and densities. Finally ηMF (p) = 〈c†pap〉Hqp

and κMF (p) = 〈cpap〉Hqp
are the normal and anomalous distribution for molecule-

fermion correlation, with the associated densities ρMF and ∆MF .

4.2.3 Analysis and Results

Equations (4.17.a-4.17.i) describe the complete self-consistent set of HFB

equations for the resonant BF mixture. Inspection of these equations, however,

allows us to simplify the set quite dramatically, without sacrificing almost any of

the physics thereby contained. First, we notice that the evolution of the anoma-

lous fermionic densities κMF (p), κF (p), and κM(p) is entirely decoupled from the

evolution of all other quantities, and can therefore be considered separately. This

implies that, since we are mainly interested in the evolution of the normal densi-

ties, we can eliminate without approximation all the anomalous ones.

The next thing we notice is that the evolution of the normal and anomalous

bosonic averages is completely independent of the resonant interaction, and is

controlled only by the background interactions between bosons and with fermions.

For typical background interaction strengths, and cold enough temperatures, it is
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well established that the role of noncondensed bosons is minor, and the system is

well described at the Gross-Pitaevskii level of approximation.

We can therefore write the following reduced set of equations:

ih̄
∂

∂t
φ = (VbgρF + γ|φ|2)φ+ gρ∗MF (4.18.a)

h̄
∂

∂t
ηF (p) = −2g ℑm(φηMF (p)) (4.18.b)

h̄
∂

∂t
ηM(p) = 2g ℑm(φηMF (p)) (4.18.c)

ih̄
∂

∂t
ηMF (p) =

[
ǫFp − ǫMp − ν + Vbg|φ|2

]
ηMF (p) −

gφ∗ (ηF (p) − ηM(p)) . (4.18.d)

Together with the prospect of simulating time dependent experiments, such

a set of equations allow us to calculate many characteristics of the system, which

we could use to understand further physics or, more importantly at this stage, to

test the theory against our knowledge of the system in various limits.

A relevant quantity we can calculate to this end is the binding energy of

the molecules. This can be done by an instantaneous jump of the detuning from

large and positive values, where we know the equilibrium distributions very well,

to some other arbitrary value. The system thus perturbed oscillates at a specific

characteristic frequency, which is identified as the (unique) pole of the HFB many

body T-matrix of the system. For negative detunings, as shown below, this pole

corresponds to the binding energy of the molecules, dressed by the interactions in

the system.

Figure 4.5 shows a representative example of time evolution of the con-

densate population (number conservation guarantees that all three populations

oscillate with the same frequency) under the conditions described above. In this

particular example, at time t=0 the detuning is suddenly shifted a magnetic field
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detuning of approximatively 0.1G. The response of the population shows an en-

velope function, indicated by the gray shaped area, that arises from nonlinearities

in the equations of motion. The inset shows that under this envelope is a well

defined sinusoidal oscillation.

The nearly monochromatic character of the response is made clearer by

Fourier transforming the time-dependent population. The Fourier transform shown

in the second panel of Fig 4.5 is strongly peaked at 5.4×10−6K. Similarly, the po-

sition of the peak in the frequency spectrum, for different final detunings, should

map the molecular binding energy as a function of magnetic field.

Figure 4.6 shows the results obtained by this method. This plot represents

the binding energy of the molecules, dressed by the interactions in the system.

This dressing is expected to be weaker for smaller densities of atoms and molecules.

In this limit, we should thus recover the two-body molecular binding energy,

obtained via coupling calculations (solid line in fig 4.6), and which, as described

in chapter 3 can be well approximated by our model.

Instead we see that the pole behavior approaches the bare detuning (dashed

line in fig 4.6), indicating that the renormalization of the binding energy obtained

at the presented level of approximation is inadequate to correctly include the

two-body physics. This behavior is in sharp contrast to the Bose-Bose resonant

interaction, where the correct binding energy is preserved at the HFB level [38].

This is also true for the Fermi-Fermi case [68].

This discrepancy is due to the fact that the creation of molecules requires the

formation of correlations between bosons and fermions, which, as shown in the fol-

lowing, cannot exist if the density matrix is assumed to be Gaussian. Specifically

what is required is a more careful consideration of the noncondensed bosons.
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Figure 4.5: The top panel represents the time evolution of the population of
condensed atoms after detuning is suddenly shifted from infinitely positive to -
5.1 K (−.1G magnetic detuning) around the 659.2G resonance in 87Rb −40 K
described in table 3.1. The bottom panel shows the absolute value of Fourier
transform of said time evolution. The main peak in this graph represents the
computed value of the binding energy, which we see is about 5.410−6K. The
system under consideration is composed of fermionic densities of 1015cm−3, for a
constant density ratio of six bosons per fermion.
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Figure 4.6: Plot representing the poles of the scattering t-matrix for the 659.2G
resonance in 87Rb-40K described in table 3.1. The dotted line represents the “bare”
molecular detuning as a function of field, as defined in the text. The solid black
line is the correct binding energy of the molecular state, obtained by means of full
close coupling calculations, while the gray solid lines are the eigenenergies obtained
from equations 4.18.a-4.18.d, for different atomic densities. From top to bottom
on the right the grey lines refer to fermionic densities of 1013cm−3,1014cm−3, and
1015cm−3, for a constant density ratio of five bosons per fermion. We note that
for lower and lower densities the calculated binding energy incorrectly approaches
the bare detuning instead of the correct two-body binding energy.
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4.3 The Importance of Noncondensed Bosons

The reason for the failure of the HFB theory is not immediately clear from

the theory itself. To bring out the inadequacy of this theory in the dilute limit,

in Chapter 5, we recast the problem in an alternative perturbative form that can

reproduce the correct behavior in the two-body limit. This path integral approach

will also lay bare the role of noncondensed bosons.

What we will see in the upcoming analysis may be qualitatively understood

in the following simple terms. A molecule in the gas can decay into a pair of “vir-

tual” (i.e. non energy conserving) atoms, which can then meet again and reform

the molecule. These events modify the behavior of the molecule, and an appro-

priate treatment of these virtual excitations is therefore necessary to correctly

include the two-body properties of the molecules in the many-body theory. In

particular, the molecules can decay forming a virtual non condensed boson, and

the contribution of this set of events to the physics of the molecules turns out to

be very important. An appropriate theory would therefore consider the coupling

of the molecules to non condensed bosons explicitly, which implies that one has to

include in the equations of motion three-point averages, such as 〈c†qa−p+q/2b(p+q/2)〉.

Since the HFB theory disregards three-point averages, it only contains molecule-

atom-atom couplings of the form 〈c†qaq〉φ0, where molecules can only decay forming

a condensed boson.

It is straightforward to see that the HFB theory treats 3-body correlation

functions differently depending on the quantum statistics of the constituents. For

a Bose-Bose mixture, the correlation function is approximated (schematically) by

〈bbm†〉 ≈ 〈m†〉〈b(−q)b(q)〉 + 2〈b〉〈bm†〉, (4.19)

where b is a boson andm is a molecule. The first term of the right of this expression

allows explicitly for virtual bosonic pairs of arbitrary momentum, provided that
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the molecular field 〈m〉 accounts for most of the molecules, which is assumed to

be the case. Similarly, in a mixture of distinct fermions, the correlation function

reads

〈f1f2m〉 ≈ 〈m〉〈f1(q)f2(−q)〉, (4.20)

and the same argument applies, since the molecules are bosons.

For the Bose-Fermi mixture, on the other hand, the correlation function

would be approximated by

〈bfm〉 ≈ 〈b〉〈fm〉 + 〈f〉〈bm〉 + 〈m〉〈bf〉. (4.21)

The required virtual atom-atom pairs would arise from the third term on the

right-hand-side of this expression. However, these molecules are fermions, which

have no mean field, 〈m〉 = 0. The only surviving term is then the first one, which

accounts only for condensed bosons, and somehow correlates the fermionic atoms

to the fermionic molecules. This is only an indirect way to get the bosons and

fermions correlated.



Chapter 5

Beyond Mean Field

In chapter 4 we reached the conclusion that the mean-field approach to the

resonant Bose-Fermi system does not properly account for the correct two-body

physics of the system. In this chapter we wish to improve on this, by introducing

a generalization to mean-field theory, via an appropriate renormalization of the

molecular propagator, which is able to reproduce the correct two-body physics in

the low-density limit. To accomplish this, we will have to abandon the Hamilto-

nian treatment of the previous chapter, in favor of a perturbative approach based

on the Green’s function formalism, much as was done for two bodies in chapter 3.

We begin this treatment, by first describing the effect of the many-body

medium on the collisional properties of the constituents. We will find that the

kinematic implications of Pauli blocking play an important role in the physics of

the stability of the molecules. We then proceed by introducing a generalized mean-

field theory, which we solve self-consistently to calculate equilibrium molecular

densities and distribution in the gas, as a function of detuning.

5.1 Scattering in the Medium

The behavior of the atom pairs in a resonant BF mixture depends subtly

on the momentum of the pairs. Roughly speaking, as discussed in chapters 2 and

3 for a single, free pair of atoms, a true molecular bound state exists on one side
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of the resonance, denoted as the “negative detuning” side. On the other, “pos-

itive detuning,” side, the pair is not rigorously bound but may exhibit resonant

scattering. (see fig. 3.2). For free molecules this demarcation at zero detuning

between bound and resonant states is clearly independent of the pair’s center-of-

mass momentum. In the many-body environment, however, this situation changes

dramatically. We will show that slowly moving molecules can be stable against

decay even on the positive detuning side of resonance. The reverse is also true:

pairs that are moving fast enough will become unstable and exhibit only reso-

nances on the negative detuning side, even though their two-body analog would

be completely stable. This unusual behavior is connected to the fact that the

pairs are themselves fermions, and must obey the correct Fermi statistics. This

is of course different from the case of either a boson-boson or fermion-fermion

resonance, where the pairs are always bosons.

In this section we will consider only one aspect of BF mixture near FR,

namely how the stability of a composite fermionic molecule will be affected by

the many-body medium. To do this we will assess the poles of the many-body

T-matrix of a molecular pair propagating in the many-body medium. All the

calculations in this section refer to the 659.2G resonance in 87Rb−40 K described

in table 3.1

5.1.1 Poles of the T-Matrix: The Two-body Case Revisited

The mean-field analysis in section 4.1.2 led us to conclude that the role of

Vbg close to resonance is negligible with regards to the many-body properties of

the system. In this section we present once more the analysis of section 3.3.1, and

modify it to include this approximation, to establish a closer connection to the

many-body analysis which follows. In this light, as Vbg → 0, after the appropriate
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renormalization, equation 3.14 becomes

T2B(E) = −2πh̄

mbf

1

−a−1 + r0mbfE − i
√

2mbfE
, (5.1)

where r0 = −2π/m2
bfg

2 is the effective range of the interaction resulting from the

underlying model. The main difference in the pole structure, as anticipated in

section 3.3.1, is that the resonant state crosses threshold for the positive detuning

ν = µ < g4m3
bf/4π

2, where we have introduced the chemical potential µ to provide

a direct link to the many-body analysis which will follow.

At the same detuning, there emerges a positive imaginary part of the pole

energy (dashed line), which denotes the energy width of the resonance. Interest-

ingly, for detunings 0 < ν/µ < g4m3
bf/4π

2, the poles of (5.1) are purely imaginary,

and the imaginary part is negative. These poles stand for physically meaningless

solutions to the Schrödinger equation, in which the amplitude in the resonant

state would grow exponentially in time, rather than decay. These poles do not

therefore identify any particular features in the energy-dependent cross section of

the atoms. There is a characteristic detuning scale on which these events occur.

This scale is given by the width parameter γ2 = g2M
3/2
bf /

√
2π [60], also indicated

in the figure.

5.1.2 Poles of the T-Matrix: The Many-body Case

In a many-body environment, the T -matrix and its poles depend on the

center-of-mass momentum. The importance of taking into account this depen-

dence was demonstrated in [69] for the BCS-BEC crossover at T 6= 0 when non-

condensed fermion pairs lead to pseudogap effects above Tc and non BCS- behavior

below. The influence of the many- body medium on a Feshbach resonance between

two fermions was demonstrated in [70] for a composite boson as well. In the BF

mixture the composite object is a fermion, so its momentum dependence cannot
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Figure 5.1: Complex poles of the two-body T-matrix, as a function of detuning.
Solid and dashed lines denote the real and imaginary parts of physically relevant
poles, respectively. The dotted and dash-dotted lines are real and imaginary parts
of unphysical poles, respectively.
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be omitted even for T = 0. Thus the T -matrix near the FR in a BF medium must

be considered as a function of densities of both the Bose and Fermi subsystems

as well as the center-of-mass motion of a given BF pair. We have found that

T-matrix poles and residues are quite sensitive to all these ingredients.

The T -matrix T̂ of the system in the many-body medium is defined, similarly

to the two-body version case discussed in chapter 3 by the Lippmann-Shwinger

equation:

T̂ = ĝD̂ĝ† = ĝD̂0ĝ† + ĝD̂0ĝ†ĜBĜF T̂ , (5.2)

where D̂ is the renormalized molecular Green function, and ˆGB/F is the bo-

son/fermion renormalized Green function. These quantities are defined in terms

of their many-body non-interacting counterparts

D̂0 =
1

ω − ξM(p) + iη sign(ξ(p))

Ĝ0
F =

1

ω − ξF (p) + iη sign(ξ(p))

Ĝ0
B =

1

ω − ξB(p) + iη
, (5.3)

where ξM,F,B(p) = ǫM,F,B
p − µM,F,B, and the role of η is described in depth in

appendix A), by the self-consistent set of equations

D̂ = D̂0 + D̂0Π̂D̂

ĜB = Ĝ0
B + Ĝ0

B ĝĜF D̂ĝ†ĜB

ĜF = Ĝ0
F + Ĝ0

F ĝĜBD̂ĝ†ĜF

where Π̂ is the molecular self energy. All quantities are functions of the energy

E and center-of-mass momentum P of the molecules. The complete solution to

these equations is beyond current computational capabilities, except perhaps by

Monte Carlo methods.

We therefore make a few simplifying assumptions, namely we account for

propagation of the atomic fermions and bosons using their free Green functions
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only (i.e., setting ĜF ≈ Ĝ0
F and ĜB ≈ Ĝ0

B ). An important consequence of these

choices is that the many-body T -matrix is approximated by its ladder series, which

means that Π̂ ≈ gĜ0
BĜ

0
Fg

† analogously to that introduced chapter 3, but obtained

integrating the free Green functions in eq. 5.3. This standard approximation has

the property of being exact in the two-body limit, where Eq. 5.1 satisfies 5.2.

This implies that the two-body physics is accounted for exactly in the many-body

problem.

Another appealing characteristic of this approach is that the molecular self

energy Π can be calculated exactly [71], leading to the following expression

Π(E, P ) = g2

π2mbfΛ − g2

4π2mbfkf − g2

8π2

(
mbk

2
f

P
− m2

bf
P

mb
− mbD

P

)

ln
(

(kf +P mbf /mb)
2−D

(kf−P mbf /mb)2−D

)
+ g2

4π2mbf

√
D ln

(
(kf +

√
D)2−(P mbf/mb)

2

(kf−
√
D)2−(P mbf/mb)2

)
, (5.4)

where D =
√

2mbf(E − P 2/2(mf +mb) + µ), and Λ is the ultraviolet cutoff in-

troduced in chapter 3, which in the Vbg → 0 approximation used here can be

regularized by a shift in the detuning ν → ν − g2

π2mbfΛ.

Further approximations include considering a homogeneous system where

the density of the fermionic subsystem is much larger than that of the bosonic

one, whereby the avoided crossing between atomic and molecular state introduced

in chapter 4 becomes approximately a real crossing. This condition is introduced

for the purposes of this section, to allow us to isolate the effects of Pauli blocking

on the collision physics, and will be relaxed later, when we study the equilibrium

properties of the system.

The set of equations we obtain with these approximations is therefore

T (E) = g2D(E), (5.5)

where D(E) is the pair propagator defined by:

D(E) = D0(E) +D0(E)Π(E)D(E), (5.6)



69

Π(E) = g2G0
B(E)G0

F (E),

which lead to

T (E, P ) =
g2

E − P 2

2m
− ν + µ− Π(E, P )

, (5.7)

where m = mf +mb is the molecular mass.

In order to understand the stability of a BF molecule, we study the struc-

tures of the poles and residues of the T-matrix in Eq. (5.7). To determine numeri-

cally the poles, we consider this equation as a system of two nonlinear equations for

real and imaginary parts of the internal energy, E − P 2/2(mf +mb) + µ. The re-

sulting nonlinear system of equations always has some unphysical solutions which

can be rejected by the following analysis: i) the residues for physical solutions,

which represent the distribution of population in that state (see appendix A)

must be less than unity; ii) for the imaginary solutions the relative momentum,

D =
√

2mbf(E − P 2/2m+ µ) in Eq. (5.4), should dwell on the lower half of the

complex momentum plane, to ensure that resonances decay with time [72]; iii)

the sum rule (5.11, see below) should be fulfilled including both the discrete and

continuum parts.

As an example, we have calculated the poles of (5.7) for a dual species

gas with fermion density 1013 cm−3 and boson density 1014 cm−3. The results

are shown in Figure 5.2 for two representative center-of-mass momenta P of the

molecules. (Note the different scale from Figure 5.1). Unphysical poles are not

shown in this figure. These results are cast as a kind of “binding energy,” by

subtracting the center-of-mass kinetic energy, and adding the chemical potential

µ. They can therefore be compared directly to the two-body results in Fig. 5.1.

The structure of these poles is quite different near resonance, although we

stress that far from resonance (ν ≫ γ2/2) they return to the two-body values. A

main difference from the two-body case is that now there may exist physical poles
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Figure 5.2: Complex poles of the many-body T-matrix, as a function of detuning.
Solid and dashed lines denote the real and imaginary parts of physically relevant
poles. In (a) the center-of-mass momentum of the molecule is P = kf , i.e., equal
to the Fermi momentum of the atomic gas. In (b), this momentum is P = 0.1kf .
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for any detuning across the resonance, depending on momentum. The appearance

of poles depends, however, on the center-of-mass momentum P of two atoms. If

P ≫ 2kf , the two-body physics will not be influenced much and the poles structure

will be as it is in Fig. 5.1. We have verified this numerically, but have not shown

it in this thesis.

Figure 5.2(a) shows the case where the center-of-mass momentum of the

atom pair is equal to the Fermi momentum of the atomic gas, P = kf . The

criterion of molecular stability is set by the vanishing of the imaginary part of the

pole. Figure 5.2(a) shows that the imaginary part remains zero until ν/µ ∼ −5,

after which the pair becomes unstable. Thus, for detunings −5 ≤ ν/µ ≤ 0, some

of the molecules that would have been stable become de-stabilized in the many-

body environment. They may still be rather long-lived, however. In the limit

of very large momenta, P ≫ 2kf , we find that the pole structure returns to the

two-body value. This makes sense, since a very rapidly-moving molecule does not

interact strongly with the gas at all. In particular, for P ≥ 2kf , we find that

a “gap” reappears, in which no physical poles exist for some range of positive

detuning. In the P → ∞ limit, this gap returns to its two-body value, γ2/2.

Figure 5.2(b) shows an alternative case in which the molecular momentum

is much smaller than the atomic Fermi momentum, P = 0.1kf . In this case, the

imaginary part of the pole only differs from zero at positive detunings, ν/µ > 8.

Therefore, quite the opposite to the P = kf case, here the molecules that would

have been unstable are stabilized by the presence of the many-body environment.

Roughly, this is due to Pauli blocking of the fermionic atoms into which the

molecules would dissociate. If such an atom already occupies the state into which

the molecule would drop its atom, then the process is forbidden. We discuss

this further below. For any molecule with P ≤ 2kf , there exist physical poles

at all detunings. Thus positive-detuning molecules are always present in the BF
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mixture.

5.1.3 Conditions for molecular stability

To make a more global picture of whether molecules are stable or not for a

given detuning, we can consider the spectral function for atom pairs. In general,

when the molecular propagator possesses an imaginary part, this part alludes

to the decay rate of the pair due to interactions with the rest of the gas, in

the same sense that the oscillator strength of an atom alludes to its decay rate

by spontaneous emission. Following a standard approach (see appendix A), the

spectral function is defined as

ρ(P,E) = −1

π
ImD(P,E). (5.8)

In the case of a true, bound molecular state, the spectral function reduces to a

delta function at the energy of the state E0:

ρ(P,E) = 2πZ(P )δ(E −E0), (5.9)

where the coefficient is given by the “spectral weight” function

Z(P ) =
1

1 − dRe(Π(P,E))/dE|E0

. (5.10)

Just as for an oscillator strength, the discrete and continuum parts of the spectral

density must satisfy a sum rule:

Z(P ) +
∫
dEρ(E, P ) = 1 (5.11)

for each momentum P . We have explicitly verified the sum rule in each case

we computed, as a test of the numerical procedure, and to distinguish between

physical and unphysical poles of the T-matrix.

As mentioned above, the spectral weight Z is associated with a specific pole

E0 of the T-matrix, an energy level of the system, and represents its population.
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Therefore, if Z vanishes, so does the probability of finding stable molecules in the

gas. To this end, Figure 5.1.3 plots contours of the function Z(P ) as a function of

detuning ν and center-of-mass momentum P of the atom pairs. These calculations

are performed for fermion density nf = 1013 cm−3. The contour of Z = 0 thus

represents the borderline between conditions where molecules exist and are stable

(to the left of this line) and where they are unstable to decay (to the right of this

line, in the white region of the graph).

Figure 5.1.3 thus shows that: i) molecules are still stable for a continuum

of positive detuning when P is small; ii) molecules that would have been stable at

negative detuning may not be such stable at intermediate momenta P (although at

small negative detuning they may possess small widths); and iii) in the limit P →

∞, the borderline between stable and unstable again returns to zero detuning.

Thus far, these are exact results, at least within the simplifying approxi-

mations made above. Once this is done, the effective dissociation energy of the

molecules within the medium is determined. The relation between the molecule’s

total energy at dissociation and the molecule’s momentum is then easily deter-

mined from kinematics, plus simple considerations on the Pauli blocking of the

atomic fermions. For example, consider the case where the molecule’s kinetic

energy is greater than twice the atomic Fermi energy, i.e., P 2/2(mf + mb) ≥

2 × k2
f/2m. At the same time, the molecule is assumed to be exactly at its dis-

sociation threshold, so that it could live equally well as a molecule or as two free

atoms. Upon dissociating, each atom would carry away half the energy, so in

particular the fermionic atom is at the top of the Fermi sea, and this dissocia-

tion is not prevented by the Pauli exclusion principle. The total energy of the

molecule at its dissociation threshold is then determined simply by the molecular

kinetic energy, and no contribution is required from the molecular binding energy.

Thus, if B represents the internal energy of the pairs relative to threshold, bound
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Figure 5.3: Contours of molecular population under various combinations of
molecular center-of-mass momentum P and detuning ν. The uppermost con-
tour identifies the detuning at which bound molecules first appear for a given
momentum P . Numbers indicate contours with a equal molecule fraction. The
dots represent the result obtained analytically for the critical detuning, Eq. (5.16).
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molecules are possible when

B ≤ 0 for P ≥
√√√√2(mb +mf)

mf
kf . (5.12)

Alternatively, suppose the molecules have less than twice the atomic Fermi

energy, P 2/2(mf + mb) ≤ 2 × k2
f/2m. Now it is no longer guaranteed that

the molecules can automatically decay in the many-body environment, since the

fermion’s kinetic energy may lie below the Fermi level of the atomic gas. In such

a case, the molecule can sustain a positive internal energy without dissociating,

simply due to Pauli blocking. To decide how high this binding energy can be, we

examine the conservation of energy and momentum in the dissociation process:

P = pf + pb (5.13)

P 2

2(2m)
+B =

p2
b

2mb
+

p2
f

2mf
. (5.14)

Here pf , pb, and P are the momenta of the atomic fermions, atomic bosons,

and molecules, respectively. To ensure that the atomic fermion emerges with the

maximum possible kinetic energy, we consider the case where P and pf point

in the same direction. To ensure that pf > kf , where kf is the atomic Fermi

momentum, along with (5.14), implies that molecules are stable when

B ≤ (mfP − (mb +mf )kf)
2

2mb mf (mb +mf)
for P ≤

√√√√2(mb +mf )

mf
kf . (5.15)

Figure 5.4 shows the internal energy of the molecules evaluated at the sta-

bility boundary, as described above, as a function of center-of-mass momentum.

The solid line in this figure is determined numerically from the Z = 0 contour

of Fig. 5.1.3. Subtracting the kinetic energy contribution and chemical potential

from the pole of the T-matrix evaluated on the contour, we obtain the molecular

internal energy. Also shown, as dots, are the kinematic estimates (5.12,5.15).

Analytical expressions for the detuning at the boundary as a function of

center-of-mass momentum, plotted as dots in Fig. 5.1.3, are readily obtainable
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analytically, with similar accuracy by inspecting the denominator of Eq. (5.7).

The total energy of the molecule, measured from the chemical potential, is, in

fact, given by the pole of (5.7). In general this energy can be written as E0 =

P 2

2(mf +mb)
−µ+B, where B is a complicated function of all the parameters. However,

since Etot is a pole of (5.7), then E0 = P 2

2(mf +mb)
− µ+ ν + Π(E0, P ), so

νcrit = B − Π

(
P 2

2(mf +mb)
− µ+B,P

)
. (5.16)

Plugging the stability boundary value of B from Eqs. (5.12,5.15) into this formula

leads to an analytic, albeit complicated, expression for the critical detuning as a

function of cente-of-mass momentum.

5.2 Many-Body Physics

Having described the effect of the many-body medium on the resonant colli-

sion physics, we now proceed to an equilibrium analysis of the system. In chapter

4, we introduced the mean-field theory for the gas; here we will introduce a gen-

eralized version of that same theory, which will properly take into account for the

intricacies of the resonant two-body physics.

We begin this discussion by introducing the mean-field theory approach in

the language of Green-Functions, within the limits of the three approximations

we tested in the previous chapter, namely

• Vbg → 0

• γn3
b → 0

• 〈ηbf(p)〉 → 0 .

The self-consistent Dyson equations that describe this system are:

GMF
F (E, P ) = G0

F (E, P ) + g2nb D
0(E, P ) GMF

F (E, P )

DMF (E, P ) = D0(E, P ) + g2nb G
0
F (E, P ) DMF (E, P ). (5.17)
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The processes which these equations describe, depicted diagrammatically in fig

5.5, are simply the facts that a free fermion may encounter a condensed bosons on

its path and associate with it creating a molecule, or that a free molecule may split

into a fermion and a condensed boson. The self-consistency ensures that these

processes may be repeated coherently an infinite number of times. The omission

of the bosonic renormalization equation φMF = n0
b + g2nb G

0
F (E, P ) D0(E, P ),

whereby a boson sitting in the condensate may pick-up a fermion to create a

molecule, is a restatement of the third of the approximations described above.

Figure 5.5: Feynman diagrams included in the mean-field theory. Thin (thick)
solid lines represent free (renormalized) fermions, thin double dashed-solid lines
represent free molecules, and thick double dashed lines represent renormalized
molecules. The little lightning bolts represent condensed bosons, whereby the
arrow indicates whether they are taken from or released into the condensate.

Solutions to these equations take the form

GMF
F (E, P ) =

1

G0
F (E, P )−1 − g2nb D0(E, P )

DMF (E, P ) =
1

D0(E, P )−1 − g2nb G0(E, P )
. (5.18)

Plugging in the definitions of G0
F (E, P ) and D0(E, P ) from eq 5.3 and solving

for the poles, we notice that we get exactly the mean-field eigenvalues λα,β(p)

from chapter 3, appropriately modified to include the three approximations above-

mentioned.

Another interesting property of this theory, is that it is perfectly symmetric
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with respect to interchange of GF and D, which implies that both renormalized

Green functions have the same poles, and the same residues, which means that

we can, for example, study the properties of the fermions by only looking at the

molecules. This is not completely striking, since, given that the condensed bosons

are relatively inert, every molecules corresponds exactly to a missing fermion, and

vice-versa.

The simple discussion above, in terms of the fundamental processes included

in the theory, highlight numerous limitations, but one is particularly striking,

namely that we only allow molecules to decay into a free fermion and a con-

densed boson, disregarding the possibility that the bosonic byproduct may be

noncondensed. The fundamental mean-field assumption is that the gas is at zero

temperature, and therefore the noncondensed population should be negligible at

equilibrium. Furthermore, if a molecule is made by a zero-momentum boson and

a fermion from the Fermi sea, dissociating into a noncondensed boson implies that

the outgoing fermion would have momentum lower than the Fermi momentum,

and will need to be “fit” into quite a tightly packed Fermi sea, an event which

Pauli blocking makes quite unlikely.

In this light, we should therefore feel relatively confident about the fact that

if a molecule does indeed decay yielding a non-condensed boson, it should be in

order to recapture it right-away, in a virtual process such as that described in fig.

3.1. It is only convenient that these events are exactly the kind of events which

will correctly renormalize the binding energy of the molecules, leading to a theory

which will reproduce the exact two-body resonant physics.

The Dyson equation describing this theory are:

GGMF
F (E, P ) = G0

F (E, P ) + g2nb D(E, P ) GGMF
F (E, P )

DGMF (E, P ) = D(E, P ) + g2nb G
0
F (E, P ) DGMF (E, P ). (5.19)
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where D is the renormalized molecular propagator from equation 5.7. A diagram-

matic representation of this theory appears in fig. 5.6, and the solution to these

equations are:

GGMF
F (E, P ) =

1

G0
F (E, P )−1 − g2nb D(E, P )

DGMF (E, P ) =
1

D(E, P )−1 − g2nb G0(E, P )
. (5.20)

Figure 5.6: Feynman diagrams included in the generalized mean-field theory. Like
in the mean field case (fig 5.5), thin (thick) solid lines represent free (renormalized)
fermions, thin double dashed-solid lines represent free molecules, and thick double
dashed lines represent renormalized molecules. The little lightning bolts represent
condensed bosons, whereby the arrow indicates whether they are taken from or
released into the condensate. The novelty here in the inclusion of the 2-body
dressed molecules from fig. 3.1.

These equations preserve the symmetrical nature of the mean-field theory

described above, and also the two avoiding states structure discussed in the pre-

vious chapter. This is demonstrated in figure 5.7, where we reproduce the P = kf

pole of D from fig 5.1, and the corresponding poles for the generalized mean-field

theory. As in figure 4.1 we note the splitting in two energy levels, avoiding each-

other around ν = 0. The fundamental difference in this case is that the molecular
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curve does not asymptote to the bare detuning, but rather to the correct molecular

binding and resonance energies.

Studying the equilibrium properties of the system is now a matter solving

the self-consistent set of equations 4.4.a-4.4.e, remembering to disregard ηmf and

λ. To do this we first need to extract the distributions ηf,m from the Green

functions DGMF and GGMF
F ; to avoid taking a distracting detour here, we refer

the reader to appendix A.

As in the previous section, we will consider a mixture composed free gas of

fermionic 40K atoms, with a density of 8.2 × 1014cm−3, and a gas of condensed

87Rb bosons with density 4.9 × 1015 (corresponding to the respective Thomas-

Fermi densities of 106 atoms of either species in the center of a 100Hz spherical

trap).

As mentioned in Chapter 4, the generalized mean-field theory presented

here is very similar, in spirit, to the simple mean-field theory presented there.

The real difference between the two, is simply a shift in the molecular internal

energy structure, in line with the two-body results of Chapter 3. This means that

the difference between the two approaches will be quantitiatve only, and that the

interpretation of the results can be done in the same exact way as we did in section

4.1.2.

Figure 5.8 shows the equilibrium molecular population as a function of de-

tuning, for the 492.5G resonance, where, for the conditions mentioned above, the

mean-field parameter ǫSM = g2nb/E
2
f ≈ .38 is indeed perturbative. In this regime,

the agreement between mean-field and generalized mean-field is quite good, unlike

the example in fig. 5.9, where the mean-field parameter is ǫSM = 38.7. The differ-

ence in this latter example is due to the fact that the actual molecular bound-state

energy is actually higher than the bare detuning, by an amount proportional to

ǫSM . Using the chemical potential arguments analogous to the ones used in sec.
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4.1.2, this can be shown to hinder molecular formation.

5.3 Non-Equilibrium Mean-Field Theory Revisited

In section 4.2, we outlined the limitations of the non-equilibrium theory, by

claiming that to obtain the correct two-body physics in the low-density limit it

would be necessary to include three point and possibly higher correlations. While

this fact is indeed true, we showed in the previous section that for experimentally

reasonable parameters, there exists a regime where mean-field theory accurately

describes the equilibrium properties.

In and of itself, this argument does not necessarily guarantee that the non-

equilibrium approach will also be accurate, however the results do encourage us

to push forward, though the results should be taken with an appropriate amount

of caution.

In the following we wish to study molecular formation via a time depen-

dent ramp of the magnetic field across the resonance. To this end we use two

approaches: the first consists of propagating equations 4.18.a-4.18.d, ramping the

detuning linearly in time from a large positive value to a large negative one, and

plotting the final molecular population as a function of detuning ramping rate R.

The second approach consists in noticing that if ν(t) is a linear function of time,

then the mean-field Hamiltonian (eq. 4.10) is ideally suited to a Landau-Zener

treatment, whereby the final molecular population as a function of detuning can

be readily written as

nm/min(nb, nf ) = 1 − e
−R
τ (5.21)

Here nm/mim(nb, nf) is the fraction of possible molecules formed, and R = 1/∂B
∂t

is the inverse ramp rate, and the exponential time constant is given by τ = h̄δB
g2nb

=

mbf

habgnb∆B
, where abg is the background scattering length, mbf the reduced mass, h
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Figure 5.8: Equilibrium molecular population as a function of detuning for the
narrow 492.49G resonance. The solid line represents results obtained via the
generalized mean-field theory presented in the text, while the dashed-dotted line
represents the mean-field results.



85

−100 −50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν/Ef

N
m

/N
f
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wider 544.7G resonance. The solid line represents results obtained via the gen-
eralized mean field theory presented in the text, while the dashed-dotted line
represents the mean field results.
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is Plank’s constant, and ∆B is the magnetic field width of the resonance.

Remarkably, the τ does not depend on the fermionic density. This is an arti-

fact due to fact that in mean-field theory the momentum states of the fermionic gas

are uncoupled, except via the depletion of the condensate. Since in the Landau-

Zener approach the depletion is assumed small, it follows that the various fermionic

momentum states are considered independent, and that the probability of transi-

tion of the gas is equal to the probability of transition of each individual momen-

tum state. This approximation is only valid for narrow resonances, such as the

492.5G resonance in table 3.1.

The two approaches described above agree virtually exactly, and the re-

sults for an example set of parameters is shown in fig 5.10. We note from the

bottom panel of the figure, that the Landau-Zener model agrees with the numer-

ical simulations even when nb < nf . This is quite surprising, since the width of

the crossing is proportional to density of leftover bosons, and we expect that this

number will change substantially as the bosonic population is depleted via the for-

mation of molecules. This type of time dependent crossing should not be properly

described by the Landau-Zener formula. However, monitoring the time evolution

of the molecular population as a function of time shows that the majority of the

transfer takes place quite abruptly somewhat after crossing the zero-detuning re-

gion, whereby the change in bosonic density does not modify the energy levels

substantially.



87

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Ramp Rate (µ s/G)

n
m

/
m

in
(n

b
,
n

f
)

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Ramp Rate (µ s/G)

n
m

/
m

in
(n

b
,
n

f
)

r b f = 6

rb f = .6

Figure 5.10: Transition probability into molecular state via a magnetic-field ramp
across the 492.5G Feshbach resonance. The solid lines are obtained via numerical
solutions of equations 4.18.a-4.18.d, while the dashed lines represent the Landau-
Zener equivalent. In the top panel the gas is composed of more bosons than
fermions rbf = 6, while in the bottom panel the opposite is true rbf = .6



Chapter 6

Conclusion

In this thesis, we developed and solved a generalized mean-field theory de-

scribing an ultracold atomic Bose-Fermi mixture in the presence of an interspecies

Feshbach resonance. The “generalized” attribute refers to the fact that we had

to modify the simple mean-field treatment obtained by neglecting bosonic fluctu-

ations, to include the correct two-body physics.

We also attempted to give a reasonably self-consistent account of the two-

body physics involved, and attempted to bridge the often obscure gap between it

and the many-body field-theoretical treatment.

The theory presented, as any mean-field theory, presents undeniable limi-

tations. Nevertheless, any useful many-body treatment must start from a well

conceived mean-field theory, which we provide herein.

In light of these remarks, necessary future directions of this work may include

the generalization to finite temperature, and the inclusion of a trap, initially in

a local-density approximation. These advances would be essential to check for

empirical confirmation (or lack there of) of the theory.
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Appendix A

Green Function Methods for Fermions

In this Appendix we briefly introduce some of the Green function techniques

that we found useful in our calculations.

A.1 Free Green functions

We start from the Green function for a gas of free fermions, which is given,

in the frequency-momentum representation by

G0(w,q) =
1

ω − ξ(p) + iη sign(ξ(p))
, (1.1)

where ξ(p) = p2/2m − µ. The momentum distribution, at equilibrium, is given

by

n(p) = −i lim
η→0+

∫
dω

2π
eiωηG0(w,q), (1.2)

Here the limit comes from the equilibrium condition; the frequency, in the Green

function definition, is the fourier space equivalent of time, whereby the real time

green function represents the evolution of the system from from time t to t’,

and the observables obtained this way, represent expected values of the kind

〈ψ(t)|O|ψ(t′)〉. However, since we want equilibrium conditions, we need to take

the limit t → t′, which is non trivial, since G0 is defined by a green function

equation of the form L G0(t − t′) ∝ δ(t − t′), where L is some linear operator,

and which higlights a peculiar behaviour in the limit we desire. However, since we
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know on physical grounds that observables, such as the momentum distribution,

must be defined and well behaved at equilibrium, then by first taking the expec-

tation value integral, and then the limit, we can circumvent the problem. In eq.

1.2 this implies we cannot quite get rid of the fourier transform exponent eiω(t−t′)

until after the ω integral.

To perform the integral in 1.2, we exploit the fourier exponent, by noting

that since η is positive, eiωη → 0 as ω → +i∞, so that the integral is identical to

a contour integral over the path defined by the real ω axis, closed in the upper

complex ω plain by an infinite radius semicircle, which, as we have just seen, gives

no contribution to the integral. We can now integrate using the residue theorem.

We note that the integrand in 1.2 has a simple pole at ω = ξ(p)−iη sign(ξ(p)).

Thus, if ξ(p) > 0, then the pole is in the lower complex plane, and the integral

vanishes, and if ξ(p) > 0, then the pole is in the upper complex plane, with residue

1. Using the residue theorem, and summarizing these results we finally get

n(p) = Θ(−ξ(p)), (1.3)

which we recognize as the zero temperature fermi distribution.

A.2 Interacting Green functions

According to Dyson’s equation, the green function for an interacting system

has the form

G(w,q) =
1

ω − ξ(p) − Σ(ω,p)
, (1.4)

where Σ(ω,p) is an arbitrarily complicated function summarizing all the interac-

tions in the system, which is known as self energy.

The prescription to find Σ is quite straightforward, and it consists of adding

all amputated connected feynman diagrams for the system. The fact that, in gen-

eral, the number of such diagrams is infinite, makes this task virtually impossible.
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Nonetheless, eq. 1.4 is very powerful, since it allows one to include the effect of

infinite subsets of the total number of diagrams in the system, by only having to

explicitly calculate a few representative ones.

An alternative standard approach, leads to the exact result (NOTE: Abrikosov

[83] measures energy from µ, here we measure from 0, which is more standard)

G(ω,p) =
∫ ∞

0
dω′

[
A(ω,p)

ω − ω′ + iη
+

B(ω,p)

ω + ω′ − iη

]
, (1.5)

Where A and B are, again, arbitrary complicated functions, though they are

known to be finite.

To understand A and B more closely, we need to introduce the following

well known identity:

lim
ν→0

1

x± iν
= P 1

x
∓ iπδ(x), (1.6)

where P is a Cauchy principal value, which represents the contribution due to a

discontinuity in a Riemann sheet (branch cut), and the delta function represents

the contribution due to the pole.

Applying 1.6 to 1.5 we get

Re G(ω,p) = P
∫ ∞

0
dω′

[
A(ω,p)

ω − ω′ + iη
+

B(ω,p)

ω + ω′ − iη

]
(1.7)

Im G(ω,p) =





−πA(ω,p) if ω > 0

πB(−ω,p) if ω < 0
(1.8)

Finally, eq. 1.2 represents a fundamental property of green functions, and it

can be generalized to interacting systems simply substituting G0 with G. Applying

it to eq. 1.5, and performing the ω integral first, we get

n(p) =
∫ ∞

0
dω′B(ω,p) =

∫ 0

−∞
dω

−1

π
Im G(ω,p). (1.9)

Introducing the function ρ(ω,p) = −2ImG(ω,p), generally called spectral func-

tion, the above equation can be written as

n(p) =
∫
dω

2π
ρ(ω,p)Θ(−ω). (1.10)
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An important property of the spectral function is that for all p,

∫ dω

2π
ρ(ω,p) = 1. (1.11)

This can be understood as a sum rule in the following sense: if we wish to calculate

the number of holes in the system, we would take the η → 0− limit in equation 1.2.

The distribution would then have been nholes(p) = 1− n(p) =
∫∞
0 dω′A(ω′,p), so

that 1 =
∫∞
0 dω′ [A(ω′,p) +B(ω′,p)] =

∫ dω
2π
ρ(ω,p).

Using eq.1.4, toghether with the definition of ρ, we can write

ρ(ω,p) =
−2ImΣ(ω,p)

[ω − ξ(p) − ReΣ(ω,p)]2 + [ImΣ(ω,p)]2
. (1.12)

Furthermore, if Σ were to be real, or if, eqivalently, the pole of the green function

were to be real, for some momentum p, then taking the limit ImΣ → 0 of 1.4,

and using eq,1.6, we get

ρ(ω,p) = 2πδ(ω − ξ(p) − ReΣ(ω,p)), (1.13)

which can be simplified, using the properties of the delta function, to

ρ(ω,p) = 2πZ(p)δ(ω − ω0(p)), (1.14)

where Z, known as spectral weight is given by

Z(p) =
1∣∣∣1 − ∂

∂ω
ReΣ(ω,p)

∣∣∣
w=ω0(p)

, (1.15)

and ω0(p) is the pole of the green function, defined by

ω0(p) − ξ(p) − Σ(ω0(p),p) = 0. (1.16)

The momentum distribution in this case is thus given by

n(p) = Z(p)
∫
δ(ω − ω0(p))Θ(−ω) = Z(p)Θ(−ω0(p)). (1.17)



Appendix B

Derivation of Mean-Field Equation of Motion

In this appendix we will present a sample derivation of one of the equations

of motion, namely that for 〈δ†δ〉.

Starting with the Hamiltonian in coordinate space

H =
∫
dx ψ†(x)T F (x)ψ(x) +

∫
dx φ†(x)TB(x)φ(x) +

∫
dx ξ†(x)TM(x)ξ(x) +

1

2
γ
∫
dx |φ(x)|4 +

Vbg

∫
dx |φ(x)|2|ψ(x)|2 +

g
∫
dx (ξ†(x)φ(x)φ(x) + c.c)

(2.1)

, where T α(x) is the kinetic energy of molecules, bosons or fermions.

We then write the bosonic field in terms of its average and fluctuations

around it φ(x) = φ0(x) + δ(x), where φ0 is a complex number. Inserting this

expression in the Hamiltonian, we get the following

H = E0 +
∫
dx ψ†(x)(T F (x) + Vbg|φ0(x)|2)ψ(x) +

∫
dx δ†(x)TB(x)δ(x) +

∫
dx ξ†(x)TM(x)ξ(x) +

γ
∫
dx (4|φ0(x)|2|δ(x)|2 + φ∗

0(x)
2δ(x)δ(x) +



99

φ0(x)
2δ†(x)δ†(x)) +

∫
dx

(
φ∗

0(x)δ(x) + φ0(x)δ
†(x)

)
×

(
γ

2
|φ0(x)|2 + Vbg|ψ(x)|2

)
+

γ
∫
dx

(
φ∗

0(x)δ
†(x)δ(x)δ(x) + c.c

)
+

γ

2

∫
dx δ†(x)δ†(x)δ(x)δ(x) +

Vbg

∫
dx |δ(x)|2|ψ(x)|2 +

g
∫
dx

[
ξ(x)† (φ0(x) + δ(x))φ(x) + c.c

]
,

(2.2)

where E0 is a constant which depends on φ0, and its relevant for its motion, but

does not contribute to that of δ†δ.

The next step is to calculate the commutator [δ†(z)δ(z′), H ], and to take its

average, thereby obtaining

〈[δ†(z)δ(z′), H ]〉 =
(
TB(z′) − TB(z)

)
〈δ†(z)δ(z′)〉 +

γ
[
2|φ0(z

′)|2〈δ†(z)δ(z′)〉 + φ2
0(z)〈δ†(z)δ†(z′)〉−

2|φ0(z)|2〈δ†(z)δ(z′)〉 − φ∗
0
2(z′)〈δ(z)δ(z′)〉

]
+

φ0(z
′)
(
γ〈δ†(z′)〉|φ0(z

′)|2 + Vbg

∫
dx 〈δ†(z′)ψ†(x)ψ(x)〉

)
−

φ∗
0(z)

(
γ〈δ(z)〉|φ0(z)|2 + Vbg

∫
dx 〈δ(z)ψ†(z)ψ(z)〉

)
+

γ
∫
dx

[
φ∗

0(x)(〈δ†(z)δ(z′)δ†(x)δ(x)δ(x)〉

−〈δ†(x)δ(x)δ(x)δ†(z)δ(z′)〉)+

φ0(x)(〈δ†(z)δ(z′)δ†(x)δ†(x)δ(x)〉

−〈δ†(x)δ†(x)δ(x)δ†(z)δ(z′)〉)
]
+

γ
(
〈δ†(z)δ†(z′)δ(z′)δ(z′)〉 − 〈δ†(z)δ†(z)δ(z)δ(z′)〉

)
+

Vbg
(
〈δ†(z)δ(z′)ψ†(z′)ψ(z′)〉 − 〈δ†(z)δ(z′)ψ†(z)ψ(z)〉

)
+
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g
(
〈ξ(z′)ψ†(z′)δ†(z)〉 − 〈ξ†(z)ψ(z)δ(z′)〉

)
. (2.3)

The next step is to apply Wick’s theorem to correlation functions of three

or more operators. This implies that all correlation functions of odd order will

vanish.We then get

〈[δ†(z)δ(z′), H ]〉 =
(
TB(z′) − TB(z)

)
〈δ†(z)δ(z′)〉 +

γ
[
2|φ0(z

′)|2〈δ†(z)δ(z′)〉 + φ2
0(z)〈δ†(z)δ†(z′)〉−

2|φ0(z)|2〈δ†(z)δ(z′)〉 − φ∗
0
2(z′)〈δ(z)δ(z′)〉

]
+

γ
(
〈δ†(z)δ†(z′)〉〈δ(z)δ(z′)〉 + 2〈δ†(z′)δ(z′)〉〈δ†(z)δ(z′)〉−

2〈δ(z)δ†(z)〉〈δ†(z)δ(z′)〉 − 〈δ†(z)δ†(z)〉〈δ(z)δ(z′)〉
)

Vbg
(
〈δ†(z)δ(z′)〉〈φ†(z′)φ(z′)〉 − 〈δ†(z)δ(z′)〉〈φ†(z)φ(z)〉

)
+

(2.4)

In free space, φ0 becomes a constant, and all two point correlations, which

are functions of z,z’, become functions of z-z’, so that in momentum space they

become functions of a single momentum.



Appendix C

Gaussian Integrals

When we use the words “integrate out” in the text, we are referring to

performing one of the following integrals.

• Bosons

∫
D[φ(x), φ†(x)]eTr[ −φ†(x) G−1(x,x′) φ(x′) +J†(x) φ(x) + J(x) φ†(x) ] =

2πi

[det G−1(x,x′)]
eTr[ J

†(x) G(x,x′) J(x) ]

1

[det G−1(x,x′)]
= e−Tr[ ln G−1(x,x′) ]

• Fermions

∫
D[ψ(x), ψ†(x)]eTr[ −ψ†(x) G−1(x,y) ψ(y) +J†(x) ψ(x) + J(x) ψ†(x) ] =

[
det G−1(x,y)

]
eTr[ J

†(x) G(x,y) J(x) ]

[
det G−1(x,y)

]
= eTr[ ln G−1(x,y) ]
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In the above expressions, φ refers to a bosonic field, while φ refers to a

fermionic (Grassman) field. Details of how these formulas are derived are very

well explained in chapter 1 of [64].



Appendix D

Reduced Units

In this section we wish to introduce a set of natural units which we found

useful to approach the problem. In particular we chose as fundamental energy

unit the Fermi energy Ef of the atomic Fermi gas at ν → ∞. As a length scale we

chose the inverse of the Fermi wavenumber kf , and as time we chose the “Fermi

period” τf = h/Ef . In terms of these units the various quantities of interest can

be converted from standard units to reduce units by multiplying by the respective

factors in the table below.

Physical Quantity Multiplicative Factor

mass Ef/k
2
f

density 1/k3
f

4-point coupling (Vbg, γ) k
3/2
f /Ef

3-point coupling (g) k3
f/Ef

For magnetic field we define the unit via the product δBB = ν, which has

units of energy.


