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The measurement of parity nonconservation (PNC) in atomic cesium pro-
vides the most precise low-energy test of the standard model of electroweak interac-
tions. However, the test is limited by the uncertainty in the ab initio calculations that
are required to interpret the measurement. This thesis describes one measurement
that suggests that the accuracy of the theory may be better than its authors claim,
and a second measurement that may be used in place of a less accurate calculation.

A 0.11% measurement of the dc Stark shift of the 6S ! 7S transition in ce-
sium using high-precision laser spectroscopy removes the largest discrepancy between
experiment and theory. With this new measurement, and several recently improved
measurements by other groups, the uncertainty of the theory is re-evaluated. We
�nd that the standard deviation of the di�erences between experiment and theory is
0.40%. This standard deviation suggests that the quoted uncertainty of the theory
can be reduced from 1% to 0.40%.

A 0.16% measurement of Mhf=� using similar methods is also presented.
The quantity Mhf is the o�-diagonal hyper�ne-interaction-induced magnetic dipole
amplitude, and � is the tensor transition polarizability; both are for the 6S ! 7S
transition in cesium. This ratio is combined with a 0.25% semi-empirical determi-
nation of Mhf from another group to determine the value of � with a precision of
0.30%. Previously, the value of � used in the test of the standard model was cal-
culated using the ab initio theory, thus increasing the uncertainty due to theory in
the �nal test. Using the new measured value of �, the current values of the theory
with improved precision, and the previous measurement of PNC in cesium we make
a 0.61% test of the standard model.

The precision of this test is likely to motivate further work in this �eld.
Therefore, two experiments are discussed that may be useful in improving the signal-
to-noise ratio on a future PNC measurement: an experiment that phase modulates
the dye laser used to drive the 6S ! 7S transition to eliminate the spatial intensity
variation inside a Fabry-Perot etalon, and an experiment that transversely cools the
atomic cesium beam. Finally, a di�erent{but related{PNC measurement is discussed.
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CHAPTER 1

INTRODUCTION

1.1 Search for Understanding

At some very basic level, physicists are driven by the desire to understand

the world around them. We perform experiments and invent theories that probe and

describe how things work. Good experiments are sometimes described as \beauti-

ful" and simple theories are sometimes called \elegant." It seems as if there is an

underlying desire to have nature, its behavior, and descriptions of its behavior be

beautiful, elegant, and simple.

When formulating theories one would like things to be symmetric in some

way, just like nature. For example, the physics of a particle in motion is the same

regardless of whether time is running forward or backward. Indeed, symmetries

are so fundamental that the de�nite relationship between invariance or symmetry

properties of a system and its conserved quantities is described in the mathematical

Noether's Theorem [1]. So, when a symmetry is broken, physicists take notice.

Such was the case when parity nonconservation (PNC) was �rst observed

in nuclear beta decay by Wu and collaborators [2]. In this experiment, the scientists

studied the decay 27Co60 !28 Ni60+ e+ �� by measuring the direction of the emitted

electrons relative to the magnetic moment of the 27Co60 nuclei. They found that the

direction of emission was not symmetric with respect to the plane perpendicular to

the magnetic moment. Instead, there is a preferred direction of emission that is \left-
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handed" with respect to the direction of an imaginary current that would produce

the same magnetic moment of the 27Co60 nucleus. The physics of the mirror image (a

parity reversal) of this reaction is not the same, as shown in Fig. 1.1. In the mirror

image, the electron emission is right handed. Thus, the decay does not conserve

parity.

Figure 1.1: A picture of beta decay in the 27Co60 nucleus. Electrons are emitted
in a preferred direction opposite the magnetic moment of the nucleus. In a parity
reversal, the direction of the magnetic moment changes, but the direction of electron
emission does not. Thus, beta decay process does not conserve parity.
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1.2 The Standard Model

The force that is responsible for beta decay is the weak force, which has

been uni�ed with the electromagnetic force by a theory developed by Glashow [3],

Salam [4], and Weinberg [5] in the 1960's. The Glashow-Salam-Weinberg model

uni�es the two forces into the electroweak force and, when combined with quantum

chromodynamics, is known as the standard model. Part of this model describes the

electroweak interaction between six quarks (the up, down, strange, charm, bottom,

and top quarks) and six leptons (the electron, muon, tauon, and their three neutri-

nos). The electroweak force is mediated by four particles: the neutral photon and

Z0 boson, and the charged W� bosons.

Although the standard model predicts the electroweak interactions between

particles, it is silent as to the masses of those particles. There are also three addi-

tional parameters, the �ne-structure constant, �, the Fermi constant GF , and the

Weinberg angle, �W , whose values must be determined from experiment. In addi-

tion, the mechanism for the quarks and leptons to acquire mass is the so-called Higgs

mechanism, which is mediated by the Higgs boson. The Higgs boson has never been

seen, and the Higgs mechanism is poorly understood.

For the above reasons, physicists have been devoting massive amounts of

time and e�ort to test the standard model. The high energy physics community

has achieved great success in their experiments [6] (although the funding for the

Superconducting Super Collider, which may have found the Higgs boson, was ter-

minated), and many in the atomic physics community have devoted their e�orts to

understanding PNC in atoms to test the standard model, as suggested by Bouchiat

and Bouchiat [7, 8]. Both communities' experiments have now reached the level of

precision where they can test the radiative corrections and search for new physics

beyond the standard model.
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1.3 Parity Nonconservation in Atoms

Parity nonconservation in atoms comes from the the exchange of a Z0

boson between an electron and a quark inside the nucleus. This interaction is to

the weak force as the exchange of a photon between an electron and a proton is to

the electromagnetic force. Feynman diagrams comparing these two interactions are

shown in Fig. 1.2. The exchange of a Z0 boson gives rise to a Hamiltonian that is

Figure 1.2: Two Feynman diagrams showing (a) electromagnetic interaction via an
exchange of a photon and (b) the weak interaction via the exchange of a Z0 boson.
Here N is a nucleon.

proportional to the Dirac matrix 
5 and the weak charge QW . The weak charge is

a neutral analog to the electric charge e, and wherever there is an electromagnetic

interaction via the exchange of a photon there is also a neutral weak interaction.

In atoms, the neutral weak interaction mixes eigenstates with opposite parity, and

thus provides a mechanism for electric dipole transitions that do not conserve parity.

Experiments that measure the PNC electric dipole transition give access to the value

of QW , which can then be compared to the standard model prediction.
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There are two types of experiments that are typically used to measure the

e�ect of PNC mixing: optical rotation experiments and Stark interference experi-

ments. In optical rotation experiments [9, 10, 11, 12], linear laser light is directed

through an atomic vapor. The PNC mixing induces birefringence in the vapor, and

causes a rotation of the polarization of the incident light. The angle of rotation is

measured and can be used to determine QW . Stark interference experiments measure

the interference between the small PNC-induced amplitude and a larger electric-�eld

induced electric dipole amplitude.

1.4 Parity Nonconservation Interference Measurements in Cesium

The most precise atomic PNC measurement to date [13] measures the in-

terference between the PNC amplitude and the Stark-induced amplitude between

the 6S and 7S states of cesium. The PNC amplitude is given by

EPNC � h7S j ~D j 6Si = (
QW
N

)kPNC; (1.1)

where the bars over the bra and the ket indicate that they have small amounts of

opposite parity states mixed into the pure parity eigenstates. Here, e is the electron

charge, a0 is the Bohr radius, N is the number of neutrons in the atom, and kPNC

is the value of a combination of the relevant parity conserving and PNC matrix

elements. It is calculated using the ab initio theory of Blundell et al. [14] and of

Dzuba et al. [15]. The quantity measured in Ref. [13] is the ratio of two amplitudes,

Im(EPNC)=�, where � is the tensor transition polarizability that characterizes the

strength of the Stark-induced transition. The test of the standard model is through

the equation

Im(EPNC)

�
= �iQW

�N
kPNC: (1.2)

This equation contains the motivation for all of the work presented in this thesis.
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1.5 Motivation for the Present Work

Equation (1.2) connects the measurement of Im(EPNC)=� and the calcu-

lation kPNC, allowing the extraction of QW . This is atomic physics' link to the

standard model.

The left side of the equation is the 0.35% measurement of Ref. [13]. The

amplitude EPNC is too small to measure by itself, so the experiment measures it

relative to �. The right side contains QW , which is the quantity we wish to know,

but it also contains two other parameters needed to interpret the experiment: kPNC

and �.

The constant kPNC contains matrix elements of the Dirac matrix 
5 that

can only be calculated. Therefore, prior to this work, the uncertainty of kPNC was

limited by the 1% uncertainty in the atomic theory calculations. Further, while �

has been determined semi-empirically, the best value was again from a 1% atomic

theory calculation [14].

Because the goal of PNC measurements in cesium is a high-precision test

of the standard model, as a �rst objective we would like to reduce the uncertainty

due to the calculations. The work presented in this thesis achieves this objective.

The main stumbling block in the way of reducing the uncertainty in kPNC

is a 2% di�erence between the measurement and the calculation of the dc Stark

shift of the 6S ! 7S transition in cesium. Because the level of agreement between

experiment and theory is one indicator of the accuracy of the theory, this di�erence

was of great concern and prevented a reduction in the uncertainty below 1%. In

order to resolve this problem, we have measured the dc Stark shift, and our new

measurement agrees with the predictions to 0.3%.

Our previous result forQW [13] used the calculated value of � from Ref. [14].

We have performed a new measurement that allows the determination of � to 0.3%,

which can then be used instead of the calculation. This reduces the number of
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quantities that need to be calculated to determine QW from two to one. In addition,

our result for � can be used as an additional test of the atomic theory.

This thesis is arranged as follows. Chapters 2 and 3 discuss the theory

and apparatus used in the experiments described in subsequent chapters, Chapter 4

discusses the measurement of the dc Stark shift, Chapter 5 covers the determination

of �, and Chapter 6 discusses the implications of the two experiments on tests of

the standard model. Finally, Chapter 7 discusses the possibility of additional im-

provements or new measurements that may be useful for future tests of the standard

model.



CHAPTER 2

THEORY

Using atomic PNC to test the standard model brings together two disparate

�elds of physics: high-energy physics and atomic physics. It is not the purpose of

this chapter to write at length about the underlying theories. Instead, this chapter

presents enough theory so that the atomic physics measurements can be understood,

and it also illustrates the way in which the measurements provide a test of the stan-

dard model. The theory of the weak interaction is covered in detail in the literature,

and the reader is referred there for technical details and for general information on

atomic theory [16, 17, 18, 19]. Here only an overview will be provided.

This chapter covers the theory necessary to understand the experiments dis-

cussed and the implications of those experiments. In addition to the general theory,

this chapter also covers the e�ects of external magnetic �elds and their alignment

with respect to the experimental apparatus, and it details the exact transition rates

the experiments measure. Much of the content of this chapter closely follows the

theses of Gilbert [20], Noecker [21], Masterson [22], and Wood [23].

2.1 Weak Interaction

The weak interaction can be mediated by the exchange of a Z0 boson

between an electron and a quark. This exchange, shown in Fig. 1.2(b), is analogous

to the exchange of a photon for the electromagnetic interaction, shown in Fig. 1.2(a).

In the present form of the standard model, the weak interaction is described by a
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Hamiltonian given by

HPNC =
1

2
p
2
GFQW


5�N (r); (2.1)

where GF is the Fermi constant, �N (r) is the nuclear density, and 

5 is the Dirac

matrix, which is responsible for PNC. The weak charge of the nucleus, QW , is anal-

ogous to the electric charge for the electromagnetic interaction. For an atom with

atomic number Z and N neutrons, the value of QW is given by

QW = 2[(2Z +N)C1u + (Z + 2N)C1d]; (2.2)

where C1u and C1d are electron-quark coupling constants for the up and down quarks,

respectively, which are described in Chapter 1. Thus, QW is atomic physics' \win-

dow" into the standard model. At tree level� QW is given by

QW = �(N � Z + 4 sin2 �W ); (2.3)

where sin2�W is the Weinberg angle. Any deviation from the tree level value of

QW indicates the need for higher order corrections (such as the so-called \radiative

corrections") or signals a breakdown in the standard model predictions.

The weak interaction does not conserve parity, so HPNC mixes states of

opposite parity as in

j  i =j  +i+
X
i

j ��i i
h��i j HPNC j  +i

E �E�i
(2.4)

where the \+" and \�" indicate opposite parity states. The matrix elements h��i j HPNC j  +i
are essentially matrix elements of 
5. The operator 
5 does not appear in any

atomic observable, so the values of these matrix elements must be calculated. The

�Tree level is essentially the lowest order of the theory.
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Bouchiats [8] have shown that in the non-relativistic approximation

hn0`0 j HPNC j n`i /
�
Rn0`0(r)

@Rn`(r)

@r

�����
r=0;

(2.5)

where n is the principal quantum number, ` is the orbital angular momentum quan-

tum number, and Rn`(r) is the radial wave function of the jn`i state. Because

Rn`(r) � r`Z`+
1
2 for small r, HPNC mixes only S and P states, and to a good

approximation it only mixes states with J = 1=2.

2.2 Cesium Energy Level Structure.

Atomic cesium has a single valence electron with a Xenon-like core. We

use the stable isotope 133Cs, which has 55 protons and 78 neutrons. It has nuclear

spin I = 7=2, electronic spin S = 1=2, orbital angular momentum L = 0; 1; : : :, and

total electronic angular momentum ~J = ~L+ ~S. Its total angular momentum is given

by ~F = ~I + ~J , so with J = 1=2 there are two hyper�ne levels: F = 3 and 4. With

J = 3=2 there are four hyper�ne levels: F = 2; 3; 4; and 5. The projection of F

onto the quantization axis is given by mF = �F;�F + 1; : : : ; F � 1; F . The most

important of these energy levels are shown in Fig. 2.1.

Perhaps the most familiar spectral features of atomic cesium are the so-

called \D1" and \D2" lines, which are electric dipole transitions from the 6S1=2

ground state to the 6P1=2 and 6P3=2 states, respectively. The work in this thesis uses

the D2 line for optical pumping and for detection, and it uses the normally forbidden

transition between the 6S1=2 and 7S1=2 states to study the interesting science.
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Figure 2.1: The lowest energy levels of the cesium atom. The mechanisms giving rise
to the 6S ! 7S transition are shown, as well as hyper�ne structure of all the states
and the Zeeman structure of the 6S and 7S states. The 6P1=2 state is not shown
because of its relative unimportance for the work presented in this thesis. Energy
splittings are not shown to scale in this �gure.
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2.3 Electric Dipole Amplitudes

2.3.1 Parity Nonconserving Amplitude

In cesium, the mixing of S and P states by the weak interaction discussed

in Section 2.1 is given by

j nSFmF i =j nSFmF i+
X
n0

j n0P ihn
0P j HPNC j nSFmF i

EnS �En0P
: (2.6)

In the presence of an oscillating laser �eld with electric �eld polarization ~�, there is

an E1 amplitude between the 6S and 7S states of cesium. This amplitude is given

by

(E1PNC)
F 0m0

F
FmF

= h7SF 0m0
F j � e~� � ~rj 6SFmF i

=
X
n

�h7SF 0m0
F j HPNC j nP i

E7S �EnP
hnP j ~D j 6SFmF i

+ h7SF 0m0
F j ~D j nP ihnP j HPNC j 6SFmF i

E6S �EnP

�

= iIm(EPNC)~� � hF 0m0
F j ~� j FmF i; (2.7)

where the unprimed quantum numbers are for the ground state and the primed quan-

tum numbers are for the excited state, and the operator ~� is the Pauli spin matrix.

The constant EPNC contains all the radial information as well as the connection to

the standard model:

EPNC =
X
n

 
h7S j HPNC j nP ihnP j ~D j 6Si

E7S �EnP
+ (2.8)

h7S j ~D j nP ihnP j HPNC j 6Si
E6S �EnP

!
:

(2.9)

the geometrical matrix element hF 0m0
F j ~� j FmF i can be written in terms
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of the C
F 0m0

F
FmF

coe�cients:

CF
0mF+q

FmF
�
�

1p
2

�jqj
hF 0mF + q j �1q j FmF i; (2.10)

where q = 0;�1. These coe�cients are simply combinations of Clebsch-Gordan

coe�cients, and they are tabulated in Appendix A. The PNC amplitude can then

be written as

(E1PNC)
F 0m0

F
FmF

= iIm(EPNC) [(��x + i�y)

�CF 0mF�1
FmF

�mFm
0

F
�1 + �zC

F 0mF
FmF

�mm0 ];
(2.11)

where we have evaluated the dot product ~� � ~� in Eq. (2.7). Note that the operators

�x and �y drive �mF = �1 transitions and �z drives �mF = 0 transitions.

2.3.2 Stark-Induced Amplitude

An applied external dc electric �eld ~E polarizes the cesium atom and also

mixes states in a similar way the weak interaction does in Eq. (2.4) with HPNC

replaced with e ~E �~r. An oscillating laser �eld then drives the Stark-induced 6S ! 7S

amplitude given by

(E1Stark)
F 0m0

F
FmF

=
X

n;J;F 00;m00

F

(
h7SF 0m0

F j e ~E � ~r j nPJF 00m00
F ihnPJF 00m00

F j e~� � ~r j 6SFmF i
E7S �EnPJ

+
h7SF 0m0

F j e~� � ~r j nPJF 00m00
F ihnPJF 00m00

F j e ~E � ~r j 6SFmF i
E7S �EnPJ

)
: (2.12)

The Bouchiats [8] showed that this complicated expression can be written in a simple

form using an e�ective dipole operator:

(E1Stark)
F 0m0

F
FmF

= ~� � h7SF 0m0
F j ~re�ective j 6SFmF i (2.13)

= �~E � ~� �F;F 0�mFm0

F
+ i�~� � hF 0m0

F j ~� � ~E j Fmi

= �~E � ~� �F;F 0�mFm
0

F
+ i�( ~E � ~�) � hF 0m0

F j ~� j Fmi:
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Here � and � are the scalar and tensor transition polarizabilities, respectively. They

are given by [8, 24]

� =
e2

9

X
n

"
h7S j r j nP1=2ihnP1=2 j r j 6Si

 
1

E7S �EnP1=2
+

1

E6S �EnP1=2

!

+ 2 h7S j r j nP3=2ihnP3=2 j r j 6Si
 

1

E7S �EnP3=2
+

1

E6S �EnP3=2

!#
; (2.14)

and

� =
e2

9

X
n

"
h7S j r j nP1=2ihnP1=2 j r j 6Si

 
1

E7S �EnP1=2
� 1

E6S �EnP1=2

!

� h7S j r j nP3=2ihnP3=2 j r j 6Si
 

1

E7S �EnP3=2
� 1

E6S �EnP3=2

!#
: (2.15)

The �F = 0 transitions are dominated by the � term because �=� = �9:905(11) [25].
Here hnS j r j nP i are e�ective radial integrals which are related to reduced matrix

elements by [24]

hnS jj r jj n0P1=2i = hn0P1=2 jj r jj nSi =
r
2

3
hnS j r j n0P1=2i (2.16)

and

hnS jj r jj n0P3=2i = �hn0P3=2 jj r jj nSi =
r
4

3
hnS j r j n0P3=2i: (2.17)

We use these forms of Eqs. (2.14) and (2.15) to emphasize the fact that � is the

sum of similar sized terms and � is the di�erence of similar sized terms. Thus, the

fractional uncertainty of � is comparable to or better than the fractional uncertainty

of its individual terms, while the fractional uncertainty of � is much worse than that

of its individual terms.

If we evaluate the dot product as before, the Stark-induced amplitude can
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be written as

(E1Stark)
F 0m0

F
FmF

= �~E � ~� �FF 0�mFm
0

F
+ i�( ~E � ~�)zCF

0mF
FmF

�mFm
0

F
(2.18)

+ �[�i( ~E � ~�)x � ( ~E � ~�)y]CF
0mF�1

FmF
�mFm0

F
�1:

The Stark-induced and PNC electric dipole amplitudes di�er signi�cantly

in size. If the D1 amplitude has a strength on the order of unity, E1Stark has a

strength of 3� 10�5 when E = 500 V/cm, and E1PNC has a strength of 10�11.

2.4 Magnetic Dipole Amplitudes

Although to �rst order magnetic dipole (M1) amplitudes vanish between

states with di�erent n, relativistic e�ects [26] and the o�-diagonal hyper�ne inter-

action [8] both contribute to a small amplitude between the 6S and 7S states. The

Hamiltonian for this interaction connecting S states is given by

HM1 = ~� � ~Bac =
�B
�h
(L̂+ 2Ŝ) � ~Bac (2.19)

= �B~� � ~Bac (2.20)

where �B is the Bohr magneton, ~� = 2Ŝ=�h is the Pauli spin operator, and if ~k is the

propagation vector of the laser, ~Bac = ~k � ~� is the oscillating magnetic �eld of the

laser. L̂ and Ŝ are the electron angular momentum and spin operators, respectively.

The amplitude for the M1 transition is then given by

M1
F 0m0

F
FmF

= h7SF 0m0
F j HM1 j 6SFmF i =M1(~k � ~�) � hF 0m0

F j ~� j FmF i; (2.21)

where the radial integrals have been incorporated into the constant M1. The radial

part can be written as

M1 =M �Mhf�F;F 0�1; (2.22)
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where M is from relativistic e�ects, and Mhf is from the o�-diagonal hyper�ne in-

teraction. The M1 amplitude has a size of about 2 � 10�6 compared with the D1

line. As before, Eq. (2.21) can be written as

M1
F 0m0

F
FmF

=M1f[ �(~k � ~�)x + i(~k � ~�)y]
�CF 0mF�1

FmF
�mFm

0

F
�1 + (~k � ~�)zCF

0mF
FmF

�mFm
0

F
g:

(2.23)

2.5 Electric Quadrupole Interaction

Another transition that is driven by a laser �eld is the electric quadrupole

transition (E2), which arises from mixing of hn0Di states with hnSi states by the o�-

diagonal hyper�ne interaction. This amplitude is very small compared to the allowed

E1 transitions and even the M1 transition (E2=M � 0:01). However, in order to

test the standard model at the few tenths of a percent level, we must account for

the small e�ects of the E2 amplitude, as discussed in Section 5.4 and Appendix B.

In our case, the E2 amplitude requires us to correct our data by only � 0:08%;

in other experiments the necessary correction is as large as 3% [27]. Because the

e�ect of E2 on our measurements is so small, we can determine the ratio E2=Mhf

by comparing our result for Mhf=M with other results that were a�ected by E2.

See, for example, Ref. [28] and Section 5.4. A phenomenological discussion of E2

following the treatment of Ref. [29] will be presented in Section 5.4.

2.6 E�ect of Misaligned ~B

In the foregoing discussion it has been assumed that the quantization axis

is along ẑ. It is important to ask what happens if the magnetic �eld is slightly

misaligned from the ẑ axis.

The e�ect of a misaligned magnetic �eld is to change the de�nition of the

operator ~�. The Pauli spin matrix is de�ned assuming a quantization axis along

ẑ, so we must rotate ~�0, which is de�ned with ~B = Bẑ0, into the experimental
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Figure 2.2: A picture showing magnetic �eld misaligned into the x̂ direction.

coordinate system where ~B = Bxx̂+By ŷ+Bz ẑ. Using Fig. 2.2 it is easy to see that

ẑ = cos �ẑ0� sin �x̂0 and x̂ = sin �ẑ0+cos �x̂0, where cos � = Bz=B and sin � = Bx=B.

A similar rotation can be performed if ŷ replaces x̂ in the formulas. The components

of the Pauli spin matrix are then given by

�x =
Bz
B
�0x +

Bx
B
�0z (2.24)

�y =
Bz
B
�0y +

By
B
�0z

�z =
Bz
B
�0z �

Bx
B
�0x �

By
B
�0y:

Simple algebra then shows that the C
F 0m0

F
FmF

coe�cients are transformed into

C
F 0m0

F�1
FmF

�mFm
0

F�1
! C

F 0m0

F�1
FmF

�mFm
0

F�1
�
�
Bx
B

� i
By
B

�
CF

0mF
FmF

�mFm
0

F
: (2.25)

This means that a misaligned magnetic �eld introduces �mF = 0 transitions where

there should only be �mF = �1 transitions. The form of CF
0mF

FmF
�mFm

0

F
is also

changed, but it is not important for our purposes and so it is omitted.
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2.7 Measured Transition Rates

As we have seen, in the presence of an external dc electric �eld and a cw laser

�eld there are �ve di�erent amplitudes connecting the 6S and 7S states of cesium:

the PNC and Stark-induced E1 amplitudes, the M1 amplitudes from relativistic

e�ects and o�-diagonal hyper�ne interactions, and the tiny E2 amplitude. There

are four hyper�ne components to the 6S ! 7S transition: the �F = 0 F = 3 to

F 0 = 3 and F = 4 to F 0 = 4, and the �F = �1 F = 3 to F 0 = 4 and F = 4 to

F 0 = 3. All the experiments discussed in this thesis use ~E = Ex̂, ~B = Bẑ�, and

~k = ŷ, and a general normalized polarization ~� = �z ẑ + (�x + i�i)x̂.

The most recent PNC measurement performed by our group measured the

interference between the Stark-induced and PNC electric dipole amplitudes. The

geometry in that experiment used E ' 500 V/cm, B ' 6:6 G, �i=�z ' 1 and 2,

and �x = 0. The �nal quantity measured was the ratio of the two amplitudes for

�F = �1 transitions given by��

R
F 0m0

F
FmF

= 2
Im(EPNC)

�E

�i
�z

P
mF

�fmF
dmF

�
CF

0mF�1
FmF

�2
P
mF

fmF
dmF

�
CF

0mF�1
FmF

�2 ; (2.26)

where fmF
is the fractional population in a Zeeman sublevel mF , dmF

is a detuning

factor that accounts for the non-degeneracy of di�erent Zeeman transitions (see

Section 2.8). The value Im(EPNC)=� can then be extracted if all the other quantities

are measured.

In order to measure the dc Stark shift (see Chapter 2.18) we use the F = 3

to F 0 = 3 transition. We use electric �elds from 1 kV/cm to 10 kV/cm, with ~E = Ex̂,

�In this section we ignore the problem of misaligned magnetic �elds. That will be addressed in

Chapter 5
��Actually, the ratios measured on the �F = �1 transitions are slightly di�erent because of

nuclear PNC. This di�erence will be ignored in this thesis.
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B = 0, and ~� = �xx̂+ �z ẑ. The transition rate from Eq. (2.12) is simply

j (E1Stark)Fm
0

F
FmF

j2' [�2E2�2x �mFm
0

F
+ �2E2�2z(C

Fm0

F
FmF

)2�mFm
0

F�1
]�E1(I; �); (2.27)

where �E1(I; �) is a line shape factor that depends on the intensity I and frequency

� of the excitation laser (see Ref. [30]), and the small M1 and E2 rates have been

ignored.

To measure the tensor transition polarizability � we use the �F = �1
transitions. We also have E = 700 and 0 V/cm, B = 4 G, �z = 1, and �x = �i = 0.

With E = 0 V/cm the transition rates from Eq. (2.23) are

j (M1)
F�1m0

F
FmF

j2' (M �Mhf)
2�M1(I; �)(C

F�1m0

F
FmF

)2: (2.28)

With E ' 700 V/cm, [using Eq. (2.18)] they are

j (E1Stark)F�1m
0

F
FmF

j2' �2E2�E1(I; �)(C
F�1m0

F
FmF

)2: (2.29)

Here again, �(I; �) is a line shape factor. The total rate for a given transition is

found by summing over mF and integrating over all �. If we take the ratio of the

total of these two rates, we have

R� �
�
M �Mhf

�E

�2
: (2.30)

These two ratios can be combined with a semi-empirical value of Mhf [27] to deter-

mine �.
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2.8 Zeeman E�ect in Cesium

2.8.1 E�ect on Eigenstates

The presence of a dc magnetic �eld mixes the hyper�ne states and shifts

the energies of the 2F + 1 Zeeman sublevels. For a small magnetic �eld, the e�ect

can be treated as a perturbation, and the Hamiltonian is given by

HZ =
�B
�h

�
L̂+ gSŜ

�
� ~B =

�B
�h
gSŜ � ~B; (2.31)

for L = 0 states. In large magnetic �elds, the di�erent F states can be mixed into

one another. However, for the �elds used in this thesis and in Ref. [13, 23] the mixing

is on the order of or less than 10�3 and is negligible. The energy shift for a given

state is

�"nSFmF
= hnSFmF j HZ j nSFmF i (2.32)

= �BgFmFB;

where gF is the Land�e g-factor. For the F = 3 and 4 states jgF j= 4, so the magnitude

of the frequency shift of each sublevel is given by

��mF
= (0:35 MHz=G)mFB: (2.33)

2.8.2 E�ect on Spectrum

While the mixing of states due to an external magnetic �eld is negligible,

the energy shifts due to the Zeeman e�ect have profound implications for PNC mea-

surements and for the other measurements presented in this thesis. It is this shift in

energy that made the 1988 PNC measurement [31] possible by completely resolving

di�erent 6SFmF ! 7SF 0m0
F transitions in a large �eld. In the 1997 PNC measure-

ment [13], the magnetic �eld was smaller but the atomic beam was spin polarized.
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Therefore, the Zeeman splitting allowed a correction for unwanted transitions that

would not be possible without energy shifts. For the experiments described in this

thesis, no discrimination is made between di�erent Zeeman sublevels, so the energy

shifts serve only to broaden the spectral features observed. In the absence of a mag-

netic �eld, there are only the four hyper�ne transitions described in Section 2.7.

These are shown in Fig. 2.3. The widths of these transitions will depend on, for

Figure 2.3: The four 6S ! 7S Stark-induced electric dipole hyper�ne transitions in
atomic cesium in the absence of an external magnetic �eld.

example, the Doppler width of the atomic beam or the intracavity intensity of the

excitation laser.

In the presence of a magnetic �eld, the spectrum becomes much more com-

plicated. As the Zeeman sublevels lose their degeneracy, each 6S ! 7S hyper�ne

transition splits into its underlying Zeeman transitions. For �F = 0 transitions,
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there are three spectral lines, one each for the �mF = 0;�1 transitions, as shown

in Fig. 2.4(a). However, for �F = �1 transitions, the Land�e g-factors for di�erent

F levels have opposite signs. The result is the very complicated spectrum shown in

Fig. 2.4(b).

Figure 2.4: The Zeeman spectrum for 6S ! 7S transitions in a small magnetic �eld.
(a) The spectrum for the F = 3 to F = 3 transition with the �mF = 0 peak greatly
reduced. (b) The spectrum for the F = 3 to F = 4 transition. The Stark-induced
rates are shown in solid lines and the Stark-PNC interference terms are shown in
dashed lines and o�set for clarity.
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As mentioned earlier, this separation of di�erent transitions made the 1988

PNC measurement possible. This is because the interference terms on opposite sides

of the spectrum have opposite signs, as is shown in Fig. 2.4(b). Without the Zeeman

splitting, and assuming an approximately uniform distribution among the Zeeman

sublevels, all the interference terms sum to zero. If optical pumping is used to spin

polarize the atomic beam as in the 1997 PNC experiment, the Zeeman splitting

reduces the level of precision needed when measuring the degree of spin polarization.

This point will be discussed in more detail in Section 7.3.

For measuring the dc Stark shift (Chapter 4), the Zeeman e�ect is unimpor-

tant because we use the F = 3 to F 0 = 3 transition, where all �mF = q transitions

that have the same value of q are degenerate. Here q = 0 or �1. For measuring

� (Chapter 5), the Zeeman e�ect broadens the spectral feature but does not a�ect

the total transition amplitudes we measure. Sample scans over the E1 F = +1

transition with small and large ~B are shown in Fig. 2.5.

In our measurement of � we would like to use as small a magnetic �eld as

possible. This is because it is di�cult to make scans over very large frequency ranges,

and the smaller the magnetic �eld is, the narrower the transition will be. However,

there is a systematic error that is proportional to the ratio of Bi=Bz, where i = x or

y, so we compromise and use an intermediate magnetic �eld of 4 G.
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Figure 2.5: Sample scans of the E1 transition in (a) small and (b) large magnetic
�eld showing broadening due to the Zeeman e�ect. The total area of each transition
does not change because the Zeeman e�ect does not change the total transition rate.



CHAPTER 3

APPARATUS

Much of the apparatus used in the experiments described in this thesis was

inherited from the previous PNC measurement. Intricate details of the apparatus

will not be repeated where they have been presented in the literature or in previous

theses, such as for the Pound-Drever-Hall locking scheme that stabilizes the dye laser

to the power build-up cavity, or the details of the external cavity diode lasers used

in the optical pumping and detection.

The entire apparatus �ts onto a large optical table that is isolated from

building vibrations by nitrogen-�lled legs. A vacuum chamber, which is a large

aluminum box measuring about 30� 56� 66 cm is bolted to one end of the optical

table. Figure 3.1 is a schematic of the apparatus showing the vacuum chamber on

the right and the other assorted elements above and to the left. Cesium comes

out of an oven in an atomic beam and enters the vacuum chamber. The atomic

beam then enters the optical pumping region where the atoms are placed in a single

hyper�ne state by the hyper�ne pumping laser. The atoms then enter the interaction

region where there are mutually orthogonal electric, magnetic, and laser �elds. The

laser �eld is an intense standing wave with a wavelength of 540 nm. The standing

wave is created in a Fabry-Perot etalon with a �nesse of 105. This etalon increases

the power available to drive the 6S ! 7S transition in the cesium atoms and it is

called the power build-up cavity (PBC). The 540 nm light is provided by a tunable

dye laser that is locked to the PBC using the Pound-Drever-Hall method [32, 33]
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Figure 3.1: The apparatus used in the experiments described in this thesis. SMOF is
a single-mode optical �ber, RefCav is the invar reference cavity, AOM is an acousto-
optic modulator, EOM is an elecro-optic modulator, T is a mode-matching telescope,
HFP is the hyper�ne-pumping diode laser, OP is the optical pumping region, OpIs
is an optical isolator, �=2 is a half-wave plate, P is a polarizer, PBC is the power
build-up cavity, D is the detection region, and LAPD is a large area photodiode.
PD1, PD2, PD3 are photodiodes.

and the PBC is then locked to a stable reference cavity. The atomic beam �nally

enters the detection region where atoms that repopulated the depleted hyper�ne

state after making the 6S ! 7S transition scatter photons from the probe laser. The

scattered photons are collected on a large area photodiode, and the photocurrent is

proportional to the number of atoms that made the 6S ! 7S transition. A schematic

view of just the atomic beam path is shown in Fig. 3.2.
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Figure 3.2: Detail of the atomic beam path showing its travel from the liquid nitrogen
(LN2) cooled plate, through the optical pumping region, through the interaction
region, and into the detection region.

3.1 The Cesium Oven

The cesium oven used as the source of the atomic beam in these experiments

was designed by Carl Wieman and built by Blaine Horner in the JILA instrument

shop. It replaces the oven that had been used since the �rst PNC experiments

with cesium were performed by Sarah Gilbert at the University of Michigan [20].

A diagram of the oven is shown in Fig. 3.3. The oven has two sections, the main

section in the back of the oven where ampoules of cesium are placed and heated, and

the nozzle in the front where the atoms receive their initial collimation.

To load the oven, its pieces are completely assembled except for the rear


ange. Then, in a glove box back-�lled with argon gas so that the cesium does

not react with air, two 10 g cesium ampoules are broken and placed in a small glass

\boat." The boat is then placed in the main section of the oven and the rear 
ange is

attached. The oven is then removed from the glove box and attached to the vacuum
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Figure 3.3: A schematic of the cesium oven. Shown are the back section where the
cesium ampoules are loaded, the nozzle where the atoms rethermalized to �250�C,
and the assorted heaters, capillary array, etc.

chamber. When the vacuum chamber has been evacuated, the oven gate [34] can

be opened. The rear section of the oven is heated by two ceramic heaters fastened

around the oven. The entire oven is then wrapped in insulation and temperature
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stabilized at around 180�C.

The hot cesium atoms travel from the back of the oven through a small tube

to the nozzle which is kept at 250�C to dissociate cesium dimers. A glass plate blocks

the direct line-of-sight from the rear of the oven so that the atoms must rethermalize

to the nozzle temperature. Once rethermalized, the atoms can leave the nozzle

through a glass capillary array that is purchased from Galileo Electo-optics. The

arrays are made from blocks of many glass tubes 10 �m in diameter, close packed,

and sliced into 0.5 mm thick, 2.54 cm square wafers. Each wafer is then cut into

0.85�2.54 cm rectangles by dragging the corner of a razor blade across its surfaces

until enough glass has been scraped away for the array to break cleanly along the

scratch. The array covers an opening in the nozzle that is 0.8 cm high and 2.5 cm

wide, which gives the initial de�nition to the atomic beam shape. After leaving the

oven, the atomic beam passes through an aperture �0.5 cm high � 2.5 cm long in a

large copper plate, which is cooled to liquid nitrogen (LN2) temperature, and then

the beam passes through a vertical vane collimator with vane separation of 1 mm.

After the vane collimator the beam has a divergence of �30 �rad.
It is important to note that capillary arrays are also sold as \microchannel

plates", which are made of leaded glass. These plates are often intentionally cut on

a bias. That is, the slices are not cut normal to the long direction of the glass tubes.

The arrays we received from our supplier varied in the angle at which they were cut

from zero to �ve degrees, despite our speci�cation of zero bias angle. To ensure a

high 
ux in the atomic beam, we measured the bias angle of every array and rejected

any arrays that had a bias angle of greater than 0.5�. We were able to use 65% of

the arrays delivered to us.

3.2 Optical Pumping Region

Once collimated by the capillary array and the vane collimator, the atomic

beam enters the optical pumping (OP) region, which is 10 cm from the oven. Here
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the atoms interact with the hyper�ne pumping laser (HFP), which is tuned to the

6S1=2 to 6P3=2 transition. We use the F = 3 to F 0 = 4 transition to deplete the

F = 3 state when we want to drive transitions from the 6S1=2 F = 4 hyper�ne

state and we use the F = 4 to F 0 = 3 transition to deplete the F = 4 when we

want to drive transitions from the 6S1=2 F = 3 hyper�ne state. These transitions

were chosen in previous experiments [22] to minimize the amount of light scattered

down the beam that could \undo" the initial optical pumping and to minimize the

number of atoms left in the depleted state. The requirements remain the same for

the present experiments, so the hyper�ne pumping scheme has not been changed.

The hyper�ne pumping takes place in a 2.5 G magnetic �eld, and the

polarization of the light is linear and perpendicular the the magnetic �eld. The

light is therefore equal parts �+ and �� so that atoms should not be preferentially

pumped to mF < 0 or mF > 0 states.

The HFP is an external cavity diode laser constructed using an SDL 5401-

G1 semiconductor laser locked to a saturated absorption spectrometer as described

in Ref. [35]. This laser provides approximately 20 mW/cm2 of light, which is well

above the 1.1 mW/cm2 saturation intensity of cesium.

In previous experiments, the atomic beam was spin polarized as well as

pumped into a single hyper�ne state. That \Zeeman pumping", which placed all

the atoms into an extreme Zeeman sublevel, is not needed or used for the present

experiments.

The result of this mechanical and optical manipulation is a well collimated

beam of atoms predominantly (99.95%) in one hyper�ne level of the ground state.

The horizontal distribution of the atoms is fairly uniform with 64% of the atoms in

the center 50% of the beam. The vertical distribution is roughly Gaussian with a

height of � 0:8 cm. Typical 
uxes were 1013 atoms/sec, estimated from the shot

noise on the signal. (See Section 3.5.3 of Ref. [23] for a discussion of this estimation.)
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3.3 Interaction Region

3.3.1 Electric and Magnetic Field Production

In the interaction region the atoms encounter a region of mutually orthog-

onal electric, magnetic, and laser �elds. The electric �eld is produced by two plates,

made either of molybdenum evaporated on glass or of solid molybdenum (depending

on the experiment). The plates are centered on both the atomic beam and on the

laser �eld. The magnetic �eld is produced mainly by a pair of Helmholtz coils, which

is also centered on the atomic beam and the laser beam. The laser �eld is produced

by a dye laser coupled into a high-�nesse Fabry-Perot etalon as discussed below.

3.3.2 Dye Laser

The 6S ! 7S transition is excited by a 540 nm laser �eld. For the previous

PNC experiment and for the present experiments, the frequency of the laser driving

the 6S ! 7S transition must be extremely stable. To achieve the necessary stability,

we use the locking scheme shown in Fig. 3.4. The dye laser is a heavily modi�ed

Spectra-Physics 380 pumped by a Coherent Innova-90 argon ion laser. Typical ion

laser powers range from 3 to 5 W, depending on the age of the dye, and give 200-

500 mW of tunable, single-frequency 540 nm light. We use a dye solution made of

1 g/` of Pyromethene 556 dye dissolved in ethylene glycol.

Coarse tuning of the laser is accomplished using an intracavity birefrin-

gent tuner, while thick and thin etalons select the longitudinal lasing mode. A

Faraday rotator prevents bidirectional lasing. Fine tuning of the laser frequency is

performed using three additional intracavity elements. Two galvonometer-mounted

glass plates with a range of about 20 GHz control the frequency on a slow time scale

(f <2 Hz). A piezoelectric transducer behind one of the cavity mirrors has a range

of approximately 300 MHz and controls the frequency at an intermediate time scale

(2 Hz< f <2 kHz). Finally, an electro-optic modulator controls the frequency at
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Figure 3.4: A schematic of the dye laser frequency stabilization scheme. The dye
laser passes through the EOM where it is phase modulated at 7 MHz and through
an AOM before entering the PBC. The light re
ected o� the PBC is directed to a
photodiode (PD1). The signal from PD1 is mixed with the 7 MHz driving signal
at A to generate an error signal. The error signal is sent to the Pound-Drever-Hall
electronics and then to the dye laser transducers at B. The dye laser is also sent
through a second AOM to the reference cavity. The input piezo-electric transducer
(PZT) is dithered at 300 Hz. The modulated transmission of the reference cavity
is collected on PD2 and sent to the dither lock electronics where an error signal is
generated and sent to the PBC PZT at C. The transmission of the PBC collected
on PD3 is used to stabilize the intensity of the dye laser.

fast time scales (�1.3 MHz> f >2 kHz).

The gross location of the dye laser frequency is referenced to a group of

molecular iodine lines. The proper mode of the laser can be found by scanning the

frequency of the laser and observing the 
uorescence in an iodine cell. If the laser

is far away from the correct frequency it is sometimes necessary to use a portable



33

scanning double monochromator to set the frequency of the laser near 540 nm.

3.3.3 Fast Frequency Stabilization

The light from the dye laser passes through an electro-optic modulator that

puts 7 MHz sidebands on the light. The light then passes through an acousto-optic

modulator used to stabilize the laser intensity. The light passes through a telescope

for proper mode matching into the etalon. An optical isolator protects the laser

from optical feed back, and a half-wave plate and a polarizer are used to control the

polarization. The laser light is then incident on the Fabry-Perot etalon.

The frequency of the dye laser is locked to the etalon using the Pound-

Drever-Hall method [32]. This method works by looking at the 7 MHz sidebands

re
ected o� the input mirror of the etalon after they are demodulated on a pho-

todiode. When the laser frequency is directly on the resonance of the etalon, the

sidebands are phase shifted by equal and opposite amounts. The two sidebands sum

together and the demodulated signal size is zero. When the dye laser frequency is

slightly detuned from resonance, the sidebands are not phase shifted equally and

the demodulated signal is nonzero. Thus, an error signal can be derived from the

demodulated sum of the sidebands and used to feed back to the galvos, the piezo

and the EOM in the dye laser to keep the frequency of the dye laser on the etalon

resonance. When locked to the etalon the dye laser has a line width much less than

the 5 kHz resonance width of the etalon.

3.3.4 Power Build-up Cavity

The Fabry-Perot etalon is constructed of two high re
ectivity multilayer

dielectric mirrors 2.5 cm in diameter. The input mirror has a radius of curvature of

10 m and the output mirror has a radius of curvature of 6 m. The two mirrors are

separated by 27 cm, which gives the etalon a free spectral range of '550 MHz and a

relatively large beam radius of !0 = 0:41 mm. Since the etalon geometry is almost
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\
at-
at" there is minimal focusing of the beam. In fact, the beam waist only varies

by 1% over the length of the etalon.

The two mirrors are of very high quality with the transmittance of each

expressed in parts per million rather (ppm) than per cent. The input mirror has

T = 40 ppm and the output mirror has T = 13 ppm. The geometry and the

re
ectivity combine to give the etalon a �nesse of 105, and the power inside the

etalon is approximately 30,000 times the incident power. For this reason, the etalon

is referred to as the power build-up cavity (PBC), and it is one of the main reasons

the experiments described in this thesis and the PNC experiment are possible at

all. The power density inside the cavity is typically 800 kW/cm2, which makes

observation of the very weak 6S ! 7S transitions easy.

The mechanical design of the PBC is shown in Fig. 3.5. The two mirrors

are mounted on aluminum brackets using silicone rubber to minimize stress-induced

birefringence. The brackets are then mounted in optical mounts. The input mirror

is also mounted to a tube piezo-electric transducer (piezo) to allow for tuning of the

Figure 3.5: Detailed mechanical design of the PBC.
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resonant frequency of the PBC. The two mounts are then bolted to a large granite

block, which is very rigid and provides a large inertial mass. The granite block is

suspended in the plane of its center of mass by four beryllium-copper springs, which

are damped by a small amount of sorbothane rubber. This arrangement is to mini-

mize tilts between the cavity and the optical table and to retain a gentle suspension

to isolate the cavity from vibration and shock. Since temperature variations will

cause frequency shifts, both mirror mounts are temperature stabilized.

3.3.5 Slow Frequency Stabilization

While the line width of the dye laser is less than 5 kHz on a short time

scale when locked to just the PBC, the PBC does bounce slightly, and the piezo on

the input mirror can creep. Therefore the longer term stability can be unacceptably

poor. In order to stabilize the frequency of the dye laser on long time scales, the PBC

is locked to a stable reference cavity. This reference cavity was locked to the peak

of the 6S ! 7S transition for the PNC experiment, and was only used to stabilize

the PBC on a long time scale. However, for the experiments described in this thesis

the cavity must serve as a frequency reference by itself.

To improve the stability of the reference cavity, which is already constructed

of Invar, the nearly confocal cavity was hermetically sealed, and a second stage of

temperature stabilization was added. In addition, light is coupled into a single

mode optical �ber before going into the reference cavity because motion of the beam

incident upon the reference cavity can cause a change in the point at which the PBC

locks to the reference cavity. (See Chapter 4.)

One of the mirrors of the reference cavity is mounted on a piezo. The

voltage on this piezo is dithered at 300 Hz, and the transmission through the cavity

is monitored on a lock-in ampli�er. The signal from the lock-in ampli�er provides

an error signal that is fed back to the PBC piezo, and thus the PBC is kept locked

to the reference cavity.
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3.4 Detection Region

After the atoms interact with the frequency-stabilized dye laser light and

are excited to the 7S state they relax back to the 6S state via transitions to the 6P1=2

and 6P3=2 states and then to the ground state. The atoms decay to both hyper�ne

states of the ground state with 75% of the atoms decaying to the state with the same

quantum number F to which they were excited That is, of the 7S1=2 F
0 = 4 atoms,

75% decay to the 6S1=2 F = 4 and 25% decay to the 6S1=2 F = 3. We then detect

the number of atoms that made the 6S ! 7S transition by \counting" the number

of atoms that are in the initially depleted hyper�ne state.

To detect atoms that relax to the F = 4 hyper�ne state we lock another

external cavity diode laser{the probe laser [23, 35]{to the 6S1=2 F = 4 to 6P3=2

F 0 = 5 transition. Since the dipole selection rule requires �F = 0;�1, atoms driven
to the 6P3=2 F

0 = 5 state can only relax back to the 6S1=2 F = 4 (since there are no

F = 5 or 6 states in the ground state) where they are available to be excited again.

We collect roughly 200 scattered photons per atom on this \cycling" transition on

a large area photodiode located directly beneath the region where the atomic beam

and probe beam intersect. We place a gold mirror above the atomic beam to re
ect

photons emitted upward back into the photodiode. In order to maximize the number

of photons an individual atom can scatter we use two cylindrical telescopes to widen

the probe laser beam to about 2.5 cm in width and 1 cm in height.

The situation is a little di�erent for atoms that are excited out of the F = 4

hyper�ne state. The appropriate cycling transition here is the 6S1=2 F = 3 to 6P3=2

F 0 = 2. This transition su�ers from the problem that it is similar to a \lambda"

transition where there are fewer excited state levels than there are ground state levels.

Atoms that are excited can eventually evolve into a superposition of ground states

are no longer resonant with the excitation recitation; they \go dark" [36, 37, 38].

In order to prevent the atoms from \going dark", the probe beam is linearly
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polarized and re
ected back upon itself, passing twice through a quarter wave plate.

The result is that the polarization of the re
ected light is rotated by 90� forming

a con�guration known as \lin-perp-lin" [39], which has a spatial variation of the

polarization. At one point in space the light is linearly polarized, then �=8 away the

light is �+ polarized, then another �=8 away the light is linearly polarized, then ��,

and so on. In addition, a magnetic �eld gradient is applied in the detection region

so that as an atom moves down the atomic beam it is in a di�erent magnetic �eld

each time it is excited to the 6P3=2 state. In this way the atoms never encounter the

right conditions to \go dark." The scheme is not perfect, however, and the number

of photons scattered on the F = 3 to F 0 = 2 transition is only 45% of the number

scattered on the F = 4 to F 0 = 5 transition

3.5 Data Acquisition

All of the work presented in this thesis is basic spectroscopy. That is,

the frequency of the dye laser is scanned across the 6S ! 7S transition, and the

transition rate as a function of laser frequency is recorded. A computer controls the

data acquisition in the following manner, schematically illustrated in Fig. 3.6.

The computer sends a signal to a digital-to-analog converter that provides

a control voltage to change the frequency of the dye laser. For low-precision mea-

surements of the line shape (Section 7.1) the computer changes the voltage on the

reference cavity piezo, thus changing the reference frequency. For the dc Stark shift

measurement (Chapter 4) and for the tensor transition polarizability measurement

(Chapter 5) the computer controls the frequency of an AOM that shifts the frequency

of the light coupled into the reference cavity. The frequency of the dye laser must

change to account for the shift.

After a �xed amount of time after the dye laser control voltage changes

(to let transients settle, etc.), the computer triggers two gated integrators. These

integrators integrate the signal from the probe photodiode and the voltage controlling
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Figure 3.6: A schematic of the data acquisition system. The computer controls the
laser frequency through a digital-to-analog converter (DAC). As the laser scans over
the transition, the scattered light is collected on the probe photodiode (PPD) and
ampli�ed. The voltage to the frequency control and the signal from the PPD are
integrated in 16.667 ms intervals, converted on the analog-to-digital converter (ADC)
and stored on disk.

the laser frequency. The length of the integration interval, which is also controlled

by the computer, is 16.667 ms. This particular interval is chosen to average away any

60 Hz noise. The two voltages are then converted to a digital signal by an analog-

to-digital converter and are stored on disk. As the control voltage is scanned, we

generate a transition rate versus voltage plot that, with suitable calibration, may be

converted to a transition rate versus frequency plot similar to that shown in Fig. 3.7.

Plots like this make up the data for all of the experiments described in this thesis.
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Figure 3.7: A sample of the data taken for the measurements in this thesis. The
x-axis is the frequency of the AOM that shifts the frequency of the dye laser before
it is incident on the reference cavity, and the y-axis is the signal from the probe
photodiode.



CHAPTER 4

MEASURING THE STARK SHIFT OF THE 6S ! 7S

TRANSITION

As discussed in Chapter 1, a test of the standard model using measurements

of PNC in atomic cesium requires an accurate and precise calculation of atomic

structure using atomic theory. The most objective way to test the accuracy of the

theory is to compare its predictions with measurements of various atomic properties.

There are many measurements of the properties of cesium, including the

lifetimes of the 6P states [40], and the hyper�ne structure constants of the 6S,

7S [41], 6P1=2, and 7P1=2 [42] states. All of these measurements agree with the

predictions of Blundell et al. [14, 43, 44, 45] and Dzuba et al. [46, 15, 47, 48] to better

than 1%. There was a notable exception to this good agreement in the measurement

of the 6S ! 7S dc Stark shift, where the di�erence between the theory and the

experiment [49] was 2%.

This chapter presents the theory of the dc Stark e�ect along with the de-

tails of our experiment that re-measures the dc Stark shift of the 6S ! 7S transition

and eliminates the previous discrepancy. The details of the experiment include dis-

cussions of the requirement of a stable reference frequency and its implications for

our data taking method and frequency stabilization schemes, the production and

measurement of the electric �eld causing the Stark e�ect, and the determination of

the dc Stark shift from our data. A presentation of our results concludes the chapter.
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4.1 Theory of the dc Stark E�ect

The theory of the dc Stark e�ect, which gives rise to the dc Stark shift, is

discussed in detail in Ref. [50]. The full theory will not be repeated here. Instead,

an outline of the calculation following that in Ref. [51] is presented. The interaction

of an atom with a dc electric �eld ~E can be described by the Hamiltonian

HStark = �e
X
i

~ri � ~E; (4.1)

where e is the electric charge, and ~ri is the vector from the nucleus to the ith electron.

In Ref. [50] it is shown that this Hamiltonian can be broken into two components:

HStark = Hscalar +Htensor. The term Hscalar depends on only the magnitude of the

electric �eld, while the term Htensor depends on the �eld's direction as well as its

magnitude.

The Stark Hamiltonian shifts energy levels as well as gives rise to the mixing

discussed in Section 2.3.2, which permits the Stark-induced electric dipole transition.

If the hyper�ne structure is neglected, the energy shift is given by

�"(n; J;mJ ) = �1

2
�0E

2 � 1

2
�2

3m2
J � J(J + 1)

J(2J � 1)

 
3E2

z �E2

2

!
; (4.2)

where �0 is the scalar polarization due to Hscalar and �2 is the tensor polarization

due to Htensor. These two polarizations are given by

�0 = �2

3

X
n0J 0

j hnJ j p j n0J 0i j2
(2J + 1)(EnJ �En0J 0)

(4.3)

and
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�2 = 2
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where EnJ is the energy of the jnJi state.
In this approximation it is clear that the tensor polarizability vanishes

for J = 1=2. However, when higher orders of the theory are considered there

is a contribution to �2 from the combination of the o�-diagonal matrix element

of Htensor between J = 1=2 and J = 3=2 states and the matrix element of the

hyper�ne structure operator between the same states. For the L = 0 states we

are considering, this mechanism vanishes, but there are still tiny contributions due

to the spin-dipolar part of the magnetic hyper�ne structure and the quadrupole

interaction [50]. In cesium, the tensor polarizability has been measured to be

�2 = �0:1372(79) � 10�7 Hz(V=cm)�2 [52]. When compared with the scalar polar-

izability �0 � 0:7 Hz (V/cm)�2 it is clear that the tensor polarizability is negligible.

Therefore, we are only concerned with the scalar part of the dc Stark shift, which is

independent of hyper�ne level for energy shifts that are small compared to the �ne

structure splitting [53].

The energy shift due to the dc Stark shift of an jnS1=2i state is given simply
by

�"nS = �1

2
�nSE

2; (4.5)

where �nS is the scalar polarizability. The dc Stark shift of the 6S ! 7S transition

is given by

�Stark = ��7S � �6S
4�

E2 = kE2: (4.6)

To determine the constant k we scan across the 6S ! 7S transition at high and low

electric �elds, measure the line centers of the two scans, and calculate the frequency

separation, ��Stark, of the two centers. Sample scans are shown in Fig. 4.1. The
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Figure 4.1: Four di�erent scans of the 6S!7S transition with dc electric �elds of
(a) 1 kV/cm, (b) 6 kV/cm, (c) 8 kV/cm, and (d) 10 kV/cm.

value of k is then given by

k =
��Stark

E2
high �E2

low

: (4.7)

Because the value of k is independent of hyper�ne level, we use the transition with

the highest signal-to-noise ratio: the F = 3 to F 0 = 3 transition.

4.2 Details of the Experiment

4.2.1 Data Scans and Frequency Drift

The major challenge in this experiment is determining the frequency sepa-

ration of two scans to 0.1%. In order to make such a determination we must have a

stable reference frequency. We use use the reference cavity described in Section 3.3.5,

which is the same cavity discussed in section 5.1.3 of Ref. [23]. In order to make
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the cavity stable enough for the present experiment we have hermetically sealed the

cavity and added a second stage of temperature stabilization. In addition, we use

a simple peak locking scheme rather than the Pound-Drever-Hall locking scheme

because of the latter's suceptibility to electronic o�sets. The �nal frequency drift

rate of the reference cavity averaged 0.5 MHz/min with a maximum observed drift

of 0.8 MHz/min.

As described in Section 3.5, a computer controls the data acquisition. For

this experiment the computer uses GPIB commands to control a Hewlett-Packard

frequency synthesizer. The output from the synthesizer drives an acousto-optic mod-

ulator (AOM), which shifts the frequency of the dye laser light incident on the ref-

erence cavity. Since the dye laser is locked to the PBC, and the PBC is locked to

the reference cavity, changing the AOM frequency causes the dye laser frequency to

change by twice that amount. (Twice because the AOM is double passed. See the

next section.)

The scans over the 6S ! 7S transition are 75 MHz wide and take approx-

imately 8 seconds. The frequency separation between a scan at E=1 kV/cm and a

scan at E=10 kV/cm is �70 MHz. Therefore, the maximum allowable drift rate of

the reference cavity is 0.5 MHz/min. Even smaller drift rates are required for lower

electric �elds. For all the data used in the �nal analysis we measured the drift before

and after the measurement to ensure the rate was at an acceptable level.

4.2.2 Coupling Light into the Reference Cavity

The AOM is used to shift the frequency of the dye laser light incident on

the reference cavity. Because the angle through which the light is di�racted by the

AOM changes as the frequency of the AOM is changed, the AOM is \double-passed"

as shown in Fig. 4.2. Double passing the light in the AOM works in the following

way.

First we examine the horizontal motion by looking at the top view in
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Figure 4.2: Top and side views of light \double-passed" through an AOM. Double
passing the light eliminates most of the angular motion associated with a change in
AOM frequency.

Fig. 4.2. The light to be passed through the AOM is centered horizontally on a

lens that has a focal length f . The center of the AOM transducer is placed at the

focal point of the lens, and the action of the AOM di�racts the light at some angle �.

The light then travels to another lens placed a distance f away from the AOM. This

second lens also has a focal length f . The second lens bends the light back parallel

to the initial direction of the laser beam. The beam is then retro-re
ected o� a prism

and retraces its path back through the lenses and the AOM. As the frequency of the

AOM changes, so does the angle �. However, because of the positioning of the second

lens, the laser beam is always normal to the prism and always gets retro-re
ected.

Therefore, the horizontal motion of the beam has been nearly eliminated.

A consequence of removing the horizontal motion of the laser beam is that

the re
ected beam travels back upon itself. This makes it di�cult to use the light

that has passed through the AOM. To describe the solution to this problem, we use
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the side view in Fig. 4.2. The light incident on the lens-AOM system comes in above

the center of the �rst lens. The �rst lens bends the light down through the AOM,

causing the light to hit the second lens below its center. The second lens then brings

the light back parallel to the initial direction and the prism re
ects the light back

with a vertical shift, and the light passes back through the second lens above its

center. The second lens repeats the action of the �rst by bending the light down

through the AOM and then low on the �rst lens. The beam is then bent back to

parallel by the �rst lens. The result of the whole system is that the beam coming out

of the lens-AOM system is lower than the one going in, but the horizontal motion

does not change with changing AOM frequency. The lower beam is easily directed

to the reference cavity.

The double-passed AOM system does not eliminate all the motion; the

angular displacement with a change in frequency of�40 MHz is�0.3 mrad, compared
with the usual 260 mrad. This is su�cient to keep the laser beam from moving o�

the reference cavity. It is not su�cient for measuring 70 MHz separations to 0.1%,

however. The reason is as follows.

The reference cavity was constructed to be a confocal cavity. However, the

limitations of experimental science preclude us from building a perfectly confocal

cavity, so the cavity is only nearly confocal. As a result, adjacent modes are not

perfectly degenerate. The transmission through the reference cavity of three such

modes, (a), (b), and (c), into which the light might couple is shown in Fig. 4.3. As

the light incident on the reference cavity moves, the coupling into each mode changes.

Figure 4.4(d) shows the results when 60% of the light is coupled into mode (a), 30%

is coupled into mode (b), and 10% is coupled into mode (c). Figure 4.4(e) shows

the results when the fractions coupled into mode (a) and mode (c) are reversed.

Because we use a locking scheme that locks the laser frequency to the frequency

of the maximum transmission of the reference cavity, the lock point of the laser

frequency will change as the coupling changes. To eliminate this problem from beam
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Figure 4.3: Transmission versus frequency of three nearly degenerate modes of the
reference cavity.

motion on the reference cavity, we couple the light from the double-passed AOM

into one end of a 0.3 m length of single mode optical �ber. The other end of the

�ber is �xed to an optical mount. By using this scheme, the intensity of the light

incident on the reference cavity changes by up to 20% because the light from the

AOM moves on the face of the �ber, which changes the coupling e�ciency into the

�ber. However, the output end of the �ber remains �xed, and thus the light into the

reference cavity remains motionless. The variations in intensity transmitted through

the �ber do not a�ect the lock point of the dye laser.
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Figure 4.4: Total transmission through the reference cavity versus frequency. The
transmission when 60% of the light is coupled into mode (a) (from Fig. 4.3), 30% of
the light is coupled into mode (b), and 10% of the light is coupled into mode (c).
The transmission shown in (e) is when the fraction of light coupled into modes (a)
and (c) has been reversed.

4.2.3 Production and Measurement of the Electric Field

The electric �eld plates used in this experiment are di�erent from those used

in the PNC measurement and in the measurement of �. The plates are 2�5�0:5 cm

blocks of molybdenum mounted in a plexiglas bracket. The plates are separated by

0.48994(25) cm. They were made smaller than the plates used in the PNC experiment

to keep them as far away from other conducting surfaces as possible in order to handle

safely the 5 kV applied across the plates. In addition, all the corners and sharp edges

on the plates are rounded or smoothed to prevent arcing.

The voltage on the plates is measured with a high-voltage probe that was
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Figure 4.5: The voltage divider measurement of E at point A for the dc Stark shift
measurement. Vprecision is the high-voltage source, RCL is a current-limiting resistor,
and the two resistors and the dashed box are the high-voltage probe. The experiment
is always run with the probe in place because the probe and RCL in series make a
second voltage divider that changes the voltage at A.

calibrated with a NIST-traceable voltage source in the JILA electronics shop. The

probe divides the voltage applied to the plates by 901.52(5). The method for mea-

suring the voltage is shown in Fig. 4.5. It is important to note that when the

high-voltage probe is in place it makes a voltage divider with the current-limiting

resistor RCL. This divider causes a voltage drop across RCL. If the experiment is

performed with the probe removed the voltage on the plates will be di�erent than

the voltage that was measured. Because of this di�erence, the probe is left connected

at all times.

4.3 Determination of the dc Stark Shift

4.3.1 Determination of Line Centers

To obtain the transition rate versus frequency plots for this experiment,

we lock the laser and the cavities with the AOM frequency set in the middle of its
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range. We then change the voltage on the reference cavity piezo to tune the dye

laser frequency to the peak of the 6S ! 7S transition�. The computer then quickly

sweeps the voltage controlling the AOM frequency to a point below the 6S ! 7S

transition and then sweeps the voltage across the transition in small steps, taking a

16.667 ms long data point at each step.

An accurate determination of the center of each scan is critical to the success

of this measurement. Because the ac Stark e�ect can cause broadening of the line

shape and large frequency shifts of its e�ective center [�21 MHz/(MW/cm2)] [30] we

keep the intensity inside the PBC as low as possible. The intensity in this experiment

is 200 W compared with the intensity of 4 kW typical for the PNC experiment. Our

intensity reduces the ac Stark shift to 0.84 MHz. This is much larger than the

acceptable uncertainty on our measurement of high- and low-E peak separations.

However, the ac Stark shift does not depend on the dc electric �eld. Therefore, this

small ac Stark shift does not a�ect the accuracy of our measurement.

Because of the asymmetry introduced by the ac Stark shift, it is impossible

to �t our line shapes to a simple function. Therefore it is not straight forward

to determine the line center. The line shape does not change signi�cantly with

E, however, so it is possible to determine an e�ective line center for each scan.

The \center" of a line is found by taking the two frequencies at which the probe

signal is n=10 times its peak value and averaging the pair of frequencies for each

n = 1; 2; : : : ; 9. The e�ective center is then the average of these nine values. We

test the reproducibility of this method by changing slightly the value of the probe

signal at which we determine the two frequencies. For example, instead of taking the

values at n=10, we can take the values at 1.01�n=10. The reproducibility of �nding
line centers in this manner is 0.02 MHz.

We �nd that saturation of the 6S ! 7S transition can cause small shifts in

�Of course, we only adjust the reference cavity before the initial scan. For successive scans the
cavity serves as the frequency reference.
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the e�ective line center. Scans over the transition with and without saturation are

shown in Fig. 4.6. As can be seen in Eq. (2.27), the 6S ! 7S \�" transition rate

has two terms. To avoid an error from saturation we rotate the linear light until

�x is roughly 10% smaller than its smallest value at which we can measure a shift

of the line center. Therefore, there is no e�ect on our determinations of the line

centers from saturation. The small � terms are larger as a result, but the relative

size of the \�" rate to the \�" rate is (�=�)2 = 98:1, so the small � terms are still

unimportant�. In the end we determine the line center to approximately 2 parts in

1000.

4.3.2 Determination of Frequency Separation of two Electric Fields

If the reference cavity were perfectly stable, determining the frequency sep-

aration between a low-E scan and a high-E scan would be trivial. However, the

reference cavity has a nonzero drift rate as previously discussed. As can be seen in

Fig. 4.7, the drift can be nonlinear, even reversing direction from time to time. Tak-

ing several scans at high and low electric �elds in succession is su�cient to eliminate

a linear drift. To account for the nonlinear drift we use a standard least squares

technique [54] to �t the centers of 16 scans, which alternate between high and low

E, to a third order polynomial plus a constant. The extracted constant is the dc

Stark shift. Our �nal fractional uncertainty in ��Stark, which is dominated by the

uncertainty in the determination of the line centers, is 0.04% for each ten scan set.

4.4 Results

Once we can determine the separation between two scans taken with dif-

ferent electric �elds we can, in principle, determine the value of k. However, a more

precise determination can be made if we extract k from the �t to data taken at

�Even if the \�" terms do become appreciable, their contribution to the line shape scales the
same way the \�" contribution does. Therefore, the frequency shift between e�ective line centers
will be the same as in the absence of the \�" transition.
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several di�erent values of the high �eld. Determinations of k from pairs of �elds

(eg. 1 kV/cm and 10 kV/cm) are shown in Fig. 4.8. The weighted average of the 14

scans is 0.72618(19) Hz (V/cm)�2. The �t of the data to ��Stark = kE2, along with

a plot of the residuals is shown in Fig. 4.9. The slope of the line �tting the data is

k = 0:72620(13) Hz (V/cm)�2. The reduced �2's for the �t and the weighted average

both indicate a 60% probability that the data are from a random distribution. The

contributions to the uncertainty in our �nal result for k are 0.1% from the measure-

ment of the �eld plate separation�, 0.04% from the determinations of ��Stark, and

0.01% from the measurement of the applied voltage. This yields a total fractional

uncertainty of 0.11%. Our �nal result is

k = 0:7262(8) Hz(V=cm)�2; (4.8)

which disagrees with the previous result of 0.7103(24) Hz (V/cm)�2 [49], but is in

excellent agreement with theoretical prediction k = 0:7257 Hz (V/cm)�2 of Blundell

et al. [14], and is within 0.3% of the prediction k = 0:7237 Hz (V/cm)�2 of Dzuba

et al. [55]. These data are shown in Fig. 4.10. The di�erence in polarizabilities of

the two states, �7S � �6S can be extracted from these numbers. In atomic units,

our result is �7S � �6S = 5837(6) compared with the predictions of Blundell et al.

(�7S � �6S = 5833) and Dzuba et al. (�7S � �6S = 5817). We have attempted

to determine the source of the disagreement between the present work and that of

Watts et al. [49]. However, Watts, who carried out the primary data analysis, is

deceased and the records of his analysis are no longer available.

�We measure the separation of the plates by using a high-precision height-micrometer and a
dial indicator to measure the di�erence in each plate's height above a 
at granite surface. A more
precise measurement could be made optically, but the constraints of the experiment prevent us
from constructing the plates out of materials that would allow such a measurement. (See Ref. [13],
Section 5.2.)
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Figure 4.6: Scans over the 6S ! 7S transition (a) with and (b) without saturation.
In (a) the electric �eld is 9 kV/cm and in (b) the electric �eld is 1 kV/cm. Note
that in (b) the signal has been increased by a factor of 100.
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Figure 4.7: Typical data from a data \set" showing the drift of the reference cavity.
The separation between the data points is the dc Stark shift.
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Figure 4.8: Determinations of k from paris of electric �elds. The high �eld value
is shown on the x̂ axis. The dashed horizontal line is the weighted average k =
0:72618(19) Hz (V/cm)�2 and the solid lines show the one � error bars.
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Figure 4.9: (a) Measured values and (b)residuals of ��Stark plotted as a function of
E2. In (a) The error bars are smaller than the data points and values from scans
with the same values of E have been averaged together. The solid line is a �t to the
data assuming ��Stark / E2. The result is k = 0:72620(13) Hz (V/cm)�2.
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Figure 4.10: A comparison of determinations of the dc Stark shift of the 6S ! 7S
transition. The number of Watts et al. is from Ref. [49], the number of Dzuba et al.

is from a private communication, and the number of Blundell et al. is from Ref. [14].



CHAPTER 5

MEASURING THE TENSOR TRANSITION POLARIZABILITY

As discussed in Chapter 1, the standard model can be tested by extracting

the value of the weak charge QW from the equation

Im(EPNC)

�
= �iQW

�N
kPNC; (5.1)

where the value of Im(EPNC)=� has been measured to 0.35% [13]. Also discussed

was the fact that atomic theory calculations are needed to determine the values of

kPNC and ��. Because the uncertainty in the theory is the limiting factor in the test

of the standard model, it is desirable to reduce the dependence on theory by making

an independent measurement of �.

While the measurements of the dc Stark shift and � are both accomplished

by scanning a dye laser across the 6S ! 7S transition and measuring the transition

rate as a function of frequency, the latter experiment is susceptible to many more

problems. Measuring the dc Stark shift requires only the accurate measurement of

the frequency separation of two spectral lines. The line shapes, contributions from

background signals, magnetic �eld perturbations, and contamination of the signal

from unwanted amplitudes are all examples of e�ects that do not a�ect the dc Stark

shift measurement but are important for measuring �.

This chapter details our measurement of �. It begins with a description

�� has also been determined semi-empirically, but the calculation from the atomic theory has
higher precision.
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of the basic idea behind the measurement and continues with a detailed discussion

of the experimental complications that must be addressed to make an accurate and

precise measurement. The raw data are then presented, and the chapter concludes by

covering the issue of the presence of an electric quadrupole transition. The electric

quadrupole amplitude has a�ected previous experiments, and its e�ects must be

considered carefully in the present measurement. A full mathematical treatment of

these e�ects is given in Appendix B.

5.1 Experimental Concept

As discussed in Section 2.7, in order to determine �, we need to �rst measure

the E1 andM1 amplitudes on the �F = �1 transitions. We do this by scanning the

dye laser across the appropriate 6S ! 7S transitions and integrating the total 
uo-

rescence collected on the probe photodiode. These integrated areas are proportional

to the transition rates. If we then take the ratio of the M1 area (measured with

no applied E) and the E1 area (measured with E = 700 V/cm), all the unknown

parameters (such as beam 
ux, probe detection e�ciency, and intensity inside the

PBC) cancel, and to a good approximation we are left with the ratios

R� �
�
M �Mhf

�E

�2
; (5.2)

where R� correspond to the �F = �1 transitions. From these ratios we can extract

the value of Mhf=�. [See Eq. (5.6) and Eq. (5.7) for minor corrections.] Then we

can use the value of Mhf determined in Ref. [27] to extract �. The amplitude Mhf

can be determined very precisely because it is related to the well-known hyper�ne

splittings of cesium. The goal is to measure Mhf=� with a precision of 0.1%. The

uncertainty in the �nal value of � is then dominated by the 0.25% determination of

Mhf [27].
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5.2 Experimental Considerations

5.2.1 Measuring the Areas Correctly

Determining a transition amplitude by measuring the area underneath a

spectral feature is straight forward if the line shape �ts a well known function, for

example a Voigt function. Our line shapes do not �t simple functions, so we must

�nd another way to extract the amplitude.

Consider the sample line shape shown in Fig. 5.1. The signal detected

on the photodiode as a function of laser frequency is f(�), which is the sum of

two quantities: the signal from atoms making the 6S ! 7S transition, represented

by h(�), and the signal from all other contributions, represented by BG(�). The

Figure 5.1: A hypothetical scan across the 6S ! 7S transitions. The total signal is
f(�i) and the background is BG(�i). See text for discussion of the symbols in the
�gure.
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quantity we want to measure is given by

ATotal =

Z 1

�1
h(�)d�: (5.3)

Of course, we make measurements of the signal size at discrete frequencies, and

we can only scan the frequency of the laser within its tunable frequency range. In

addition, we cannot measure h(�) directly. Rather, we must calculate it from the

di�erence between f(�) and BG(�). We then have

ATotal =
1X

i=�1

[f(�i)�BG(�i)]��i (5.4)

=
X
i<a

[f(�i)�BG(�i)]��i +
bX
i=a

[f(�i)�BG(�i)]��i

+
X
i>b

[f(�i)�BG(�i)]��i

= Alow +Ameasured +Ahigh:

Clearly we must choose a and b such that Alow and Ahigh are negligible. Then we are

left with Ameasured. We are still left with two problems: the noise on the background

and the fact that we can only measure f(�i), not h(�i) and BG(�i).

If the background is a linear function of frequency then we can measure

its value at a low reference point and a high reference point where the contribution

from h(�i) is negligible. Then, if these two reference points are centered around

the peak of the transition, we can take their average and use
P
[f(�i) � BG(�i)] =P

[f(�i) � BGAVG] to subtract o� the contribution from the background. If the

background is nonlinear, this method does not give the right answer.

The contributions to the background level from known sources are all essen-

tially linear functions of the dye laser frequency or independent of it. These sources

are atoms left in the wrong hyper�ne state, scattered light from the PBC mirrors,

and scattered light from the probe and hyper�ne pumping lasers. The only contri-
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bution to the background that might be nonlinear is from molecules interacting with

the dye laser and being detected by the probe laser in a frequency sensitive manner.

However, we measure the background with varying oven nozzle temperatures (which

vary the fraction of Cs2 molecules in the beam) and �nd no measurable molecu-

lar background. Therefore, the procedure in the previous paragraph does give the

correct answer.

Another complication is the fact that there is noise on the background, and

this 1=f noise is our limiting source of noise. Thus, if we measure the background

at the high and low reference points and subsequently scan across the transition,

the background will be slightly di�erent at each measurement of f(�i) than it was

when we �rst measured it. To solve this problem, we take advantage of our �25 Hz
data taking frequency: before and after each measurement of f(�i) we measure the

background at the high and low reference points. In this way we get the average

background at the time of the measurement of f(�i). We also alternate which

reference comes �rst to eliminate problems that might arise due to hysteresis.

Finally, we must know the frequency separation ��i between each mea-

surement of the transition rate. This is because we are essentially determining the

area of the line shape using the trapezoidal rule. We must know both the height and

the width of each \rectangle" we use to determine the total area. If the rectangles

are not of uniform width and we assume they are, we will get an incorrect result.

Therefore, we calibrate the control voltage from the computer to obtain su�cient

accuracy in our knowledge of �i.

5.2.2 Comparing the Areas Correctly

As mentioned in Chapter 4, the line shapes of the 6S ! 7S transition are

asymmetric because of the ac Stark e�ect [30]. The ac Stark e�ect causes another

problem: it shifts and distorts theM1 transitions di�erently from the E1 transitions.

This is because the E1 transition is driven by the oscillating electric �eld (�ac) of
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the laser and the M1 transitions are driven by the oscillating magnetic �eld (bac) of

the laser, while the ac Stark e�ect causes the largest shift where �ac is large. Thus,

in the regions of large �ac there is a large ac Stark shift and a high� probability of

driving an E1 transition. In regions of small �ac (and a correspondingly large bac)

there is a small ac Stark shift and a large probability of driving an M1 transition.

This e�ect is shown dramatically in Fig. 5.2.

If the line shapes for the two transitions had simple Voigt pro�les with the

same widths, for example, and we missed 1% of each area in the wings, the ratio will

still be correct. That is M1=� = (0:99 �M1)=(0:99 � �). However, since the two

line shapes do not have the same width and they are o�set, it would be easy to miss

1% of � and only miss 0.1% of M1. We avoid this problem by making the scans

across the transitions wide enough to measure all the area for both transitions. We

also con�rm that the scan width is wide enough by reanalyzing the data by omitting

increasingly large amounts of data from the beginning and end of the scans. We do

not �nd a signi�cant variation in the ratios when we do the reanalysis.

The discussion so far has implied that all we need to do is scan across the

M1 transition and then scan across the E1 transition and we have the two values we

need to determine the ratio. However, when we scan across the E1 transition, the

M1 transition is not absent, it is just very small. The ratio we actually measure is

R�measured =
(M �Mhf)

2

�2E2 + (M �Mhf)2
: (5.5)

The ratio we actually want is given by

R� =
(M �Mhf)

2

�2E2
=

R�measured

1�R�measured

: (5.6)

�The terms \high" and \low" are only used in the relative sense. For example, there may be a
\high" probability of making a Stark-induced E1 transition, but that transition amplitude is over
seven orders of magnitude smaller than the D1 electric dipole transition.
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Figure 5.2: Plot comparing the E1 andM1 line shapes. The asymmetries in the line
shapes and the di�erences in widths and center frequencies are due to the ac Stark
e�ect as discussed in Ref. [30].

5.2.3 Photoionization Correction

Just as the ac Stark e�ect's dependence on �ac combines with the depen-

dence of E1 on �ac and M1 on bac to give di�erent line shapes, photoionization also

causes a di�erence in detection e�ciency between E1 and M1 because it is also

maximum where �ac is maximum. This is explained in the following manner.

Atoms that are in a region with a large �ac have a high probability of making

an E1 transition. The same atoms also have a high probability of being photoionized.

Atoms in a region with a large bac have a high probability of making anM1 transition.

However, these atoms have a small probability of being photoionized. Any atoms

that are photoionized are no longer available to be detected downstream in the

detection region. Thus, a smaller fraction of atoms that made the E1 transition is

available for detection relative to the fraction of atoms that made theM1 transition.
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The result is that as the intensity inside the PBC gets higher, the ratio M �Mhf=�

gets correspondingly larger. With this e�ect, the ratios on the two transitions are

given by

R�I � (
M �Mhf

�E
)(1 + �I): (5.7)

The intensity inside the PBC is proportional to the power that is transmitted through

the output mirror, which we measure on a photodiode. I is this voltage, and � is a

parameter that describes the di�erence in photoionization probabilities. In order to

correct for this e�ect, we must take data at several intensities and extrapolate the

result to zero intensity. The data taken for this correction are shown in Section 5.3.

5.2.4 Non-Bz Magnetic Field Systematic Error

As mentioned in Section 2.6, a misaligned magnetic �eld can change the

de�nition of the operator ~�. This, in turn, changes the rates we measure. Using

Eq. (2.28) and Eq. (2.25) we �nd that the ratios we measure become

R =
(M �Mhf)

2P
m0

F

��
Bz
B

�2
(C
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F
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(5.8)

for a small rotation of ~B into the x̂ axis, and

R =
(M �Mhf)

2P
m0

F
(C
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F
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for a small rotation of ~B into the ŷ axis. This would not be a problem if the

populations of the mF sublevels were uniform. This is because

X
mF

(CF�1mF
FmF

)2 = 2
X
mF

(CF�1mF�1
FmF

)2: (5.10)

Therefore, the ratios are constant, regardless of the value of Bx or By.
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However, we know that pumping the atoms into a single hyper�ne state

redistributes the atoms in a nonuniform way. The populations from a uniform dis-

tribution, from a simple Monte Carlo rate equation simulation, and from a full

quantum mechanical treatment are shown in Table 5.1. When we pump atoms into

the F = 3 state, more atoms tend to fall into the Zeeman sublevels near mF = 0,

and when we pump atoms into the F = 4 state, more atoms tend to fall into the

Zeeman sublevels near jmF j= 4.

The C
F 0m0

F
FmF

coe�cients have a nonuniform dependence on the initial mF

state that is similar to the dependence of the Zeeman sublevel population distri-

bution. The �mF = 0 transitions are stronger for transitions starting from near

mF = 0, and the �mF = �1 transitions are weaker for the same transitions. The

result is that on the F = 3 to F 0 = 4 (F = 4 to F 0 = 3) transitions the numerator

gets larger (smaller) as ~B rotates into x̂ and weights the �mF = 0 transitions more

heavily. Similarly the denominator gets larger (smaller) as ~B rotates into ŷ. This

behavior has been veri�ed experimentally. The results of the theory are compared

Table 5.1: The fractional population in a given Zeeman sublevel after hyper�ne
pumping has been performed. The uniform distribution assumes that no redistribu-
tion of the populations takes place. \Bennett" refers to the populations found using
a simple Monte Carlo simulation of hyper�ne pumping. \Marte" refers to the results
of a full quantum mechanical calculation performed by Peter Marte [56].

Method Method
F mF Uniform Bennett Marte F mF Uniform Bennett Marte

3 3 0.1429 0.1030 0.1163 4 4 0.1111 0.1430 0.1230
2 0.1429 0.1570 0.1442 3 0.1111 0.1308 0.1061
1 0.1429 0.1598 0.1632 2 0.1111 0.1067 0.1038
0 0.1429 0.1598 0.1666 1 0.1111 0.0831 0.1040
-1 0.1429 0.1598 0.1593 0 0.1111 0.0749 0.1109
-2 0.1429 0.1570 0.1369 -1 0.1111 0.0831 0.1028
-3 0.1429 0.1030 0.1134 -2 0.1111 0.1067 0.1068

-3 0.1111 0.1308 0.1104
-4 0.1111 0.1430 0.1321
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with data in Fig. 5.3. The results shown are for the F = 4 to F 0 = 3 transition

with the magnetic �eld rotated into the x̂ direction. It is clear that the full quantum

mechanical treatment gives reasonable qualitative agreement.

Figure 5.3: Data and theory showing the e�ect of misaligned ~B on the ratio M +
Mhf=� on the F = 4 to F 0 = 3 transition. Here the magnetic �eld is rotated into
the x̂ direction.

This error due to misaligned magnetic �elds is the most serious systematic

error we need to address. Using the data we collected (not the theoretical prediction),

we �nd that in order to have the e�ect of a misaligned magnetic �eld contribute less

than 0.02% we must keep Bx and By less than 220 mG when the main �eld is set at

Bz = 4 G. This is an easy requirement to meet since we routinely kept these �elds

less than 1 mG for the PNC measurement. To con�rm the absence of any e�ect

we also take data with main magnetic �elds smaller than 4 G. If there is a residual

misaligned component, the fractional error in the ratio will get larger as the main
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�eld gets smaller. These data are shown in Fig. 5.4. The fractional di�erence between

Figure 5.4: Measured ratios Mhf=� as a function of Bz. Any deviation as the value
of Bz is scaled indicates the presence of a misaligned Bx or By.

the measurements at 1 G and 4 G is 0:1(1:0)� 10�3. The misaligned magnetic �eld

that is required to give this change is 9.5�95 mG. If we assume the actual stray �eld
is 100 mG, then the �eld is a factor of two smaller than the maximum misaligned

�eld we can tolerate. Thus, the error due to a misaligned �eld is negligible in our

measurements.

5.3 Preliminary Data

The �nal data taken to measure the ratio Mhf=� were taken over a period

of one week and the conditions of the experiment were changed twice during that

period to ensure the measured ratio did not depend on things that we thought it

should not, for example collimator angle (which changes the direction of the atomic
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beam), alignment of the dye laser into the PBC, and beam density. The raw data

with no corrections are shown in Table 5.2. A least squares �t of these data to

Table 5.2: Table of raw data for the ratios R�I = (M �Mhf=�E)(1 + �I) with no
corrections and with E = 707:63(68).

I R+ (10�3) R� (10�3)

2.300 2.5112(06) 1.1602(08)
2.000 2.5047(12) 1.1573(16)
1.500 2.4926(10) 1.1522(24)
1.000 2.4793(29) �
0.800 2.4775(34) �

Eq. (5.7) with the correction shown in Eq. (5.6) gives

R+
I = 2:4636(24) � 10�3[1 + 0:009522(13)I ]: (5.11)

The data plotted against this line are shown in Fig. 5.5. The reduced �2 for the �t is

0.20 indicating a probability of 90% that the data come from a random distribution.

The correction for photoionization is dominated by the fraction of atoms

that make the E1 transition. Therefore, the fact that M13!4 =M �Mhf compared

to M14!3 = M +Mhf has no e�ect of the correction (1 + �I) and we expect that

the correction factor � is the same for both ratios. If we use the slope from the R+

�t to �nd the least squares �t to the R� data we �nd that

R�I = 1:1357 � 10�3[1 + 0:009522I ]: (5.12)

The reduced �2 for this �t indicates a 90% probability that the data come from a

random distribution. This means the data are consistent with our assumption that

both ratios scale the same way with intensity. However, we do not use this �t to

determine Mhf=� because the poor signal-to-noise ratio on the F = 4 to F 0 = 3

transition at low intensities does not allow su�cient precision in the determination
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Figure 5.5: Plot of M �Mhf=� vs. laser intensity showing the e�ect of photoioniza-
tion.

of R�0 . Instead, we use the ratio R
+
I =R

�
I using data at higher intensities where the

signal-to-noise ratio is high. This does allow su�cient precision, and it eliminates

the need to determine R�0 .

The equation

Mhf

M
=

1�
q
R+
I =R

�
I

1 +
q
R+
I =R

�
I

(5.13)

gives the value of Mhf=M without the need to make a correction for photoionization

e�ects. The weighted average of R+
I =R

�
I for the three largest intensities shown in

Table 5.2 corrected according to Eq. (5.6) is R+
I =R

�
I = 2:1673(14): This gives a

preliminary value of Mhf=M = �0:1910(2).
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The equation

Mhf

�
=
q
R+
0

0
@1�

vuutR�I
R+
I

1
A E

2
(5.14)

gives the value of Mhf=�. Here it is only necessary to use the determination of R+
0 ,

and we can use the more precise values of R� at higher intensities. The prelimi-

nary value is Mhf=� = �5:6325(85) V/cm. We can combine this value with Mhf =

�151:86(38) a30 V=cm [27] to arrive at the value � = 26:962(41)expt(67)theorya
3
0. How-

ever, these values need to be corrected for E2.

5.4 Accounting for the Electric Quadrupole Amplitude

The data given in the previous section is very nearly the �nal data, with the

e�ects of magnetic �eld misalignments, photoionization, o�set line centers, asymmet-

ric line shapes, and nonzero background taken into consideration. However, we have

not yet considered the e�ects of the electric quadrupole amplitude (E2) in the mea-

surements. If we had a uniform population distribution among the mF states there

would be no correction for the E2 amplitude because its e�ects cancel exactly. (See

Appendix B.) We do not have a uniform distribution, as discussed in Section 2.6, so

we need to correct the data.

Electromagnetic amplitudes beyond the usual electric and magnetic dipole

amplitudes are commonly ignored because of their relatively small size compared to

allowed E1 andM1 amplitudes. However, when dealing with amplitudes such as the

PNC E1 amplitude and the �rst-order forbidden M1 amplitude, the E2 amplitude

must be considered to reach accuracies of 0.1%.

Bouchiat and Gu�ena [27] consider the E2 amplitude in their reanalysis of

several experiments that determine the ratio Mhf=M for the 6S ! 7S transition in

cesium. In particular, they say that the work of Ref. [28] does not measure Mhf=M ,
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but instead measures the ratio

R =
Mhf

M

�
1� 3

4

E2

Mhf

�
: (5.15)

Clearly, if the ratio E2=Mhf is small enough, there is no error. However, the results

of Ref. [27] indicate that E2=Mhf = 42(13) � 10�3 and so Mhf=M = �0:1886(17)
rather than the valueMhf=M = �0:1830(4) found in Ref. [28]. Indeed, if we compare
this with our result of Mhf=M = �0:1910(2), there is clearly a discrepancy.

As shown in Appendix B, if we have the population distributions calculated

by Peter Marte, then the measurements of the ratio R+ need a �0:094% correction

and the measurements of the ratio R� need a +0:079% correction. This is a small

but signi�cant correction to our data. The revised numbers that follow assume that

there is a 50% uncertainty in these corrections, mainly from the uncertainty in the

determination of the population distribution.

To arrive at the fractional corrections in the previous paragraph, we begin

by assuming that the E2 amplitude does not a�ect our measurements. The di�erence

between the values ofMhf=M determined by the present experiment and in Ref. [28]

then gives us the value of E2=Mhf using the equation

�
Mhf

M

�
present

=

�
Mhf

M

�
Ref: [28]

�
1� 3

4

E2

Mhf

��1
: (5.16)

Then we use this value of E2=Mhf to correct our data for the E2 contributions. Our

new value of Mhf=M can again be compared with that of Ref. [28] to determine an

improved value of E2=Mhf , and so on. This procedure is iterated until we arrive at

an internally consistent value of E2=Mhf . Our �nal value is E2=Mhf = 53(2)� 10�3 ,

which gives the corrections mentioned above. The �nal results for this experiment

are given in Table 5.3. Our new value of � is compared to previous results in Fig. 5.6.
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Table 5.3: Final results for the Mhf=� experiment. The uncertainties shown are one
sigma values. In the �rst three values, the uncertainty is purely experimental, and
in the �nal value the uncertainties have been separated into their contributions from
experiment and theory.

Quantity Without E2 Correction With E2 Correction

E2=Mhf � 0.053(3)
Mhf=M �0:1910(2) �0:1906(3)

Mhf=� (V/cm) �5:6325(85) �5:6195(91)
� (a30) 26:962(41)expt(67)theory 27:024(43)expt(67)theory

Figure 5.6: An historical comparison of the determinations of �. Gilbert is from
Ref. [57], Bouch1 is from Ref. [58], Bouch2 is from Ref. [59], Dzuba is from Ref. [24],
and the theory is from Ref. [14].



CHAPTER 6

CONCLUSIONS AND IMPLICATIONS

We have now presented the two main results of this thesis. We �nd that

the 6S ! 7S dc Stark shift is k = 0:7262(8) Hz(V=cm)�2, and we �nd that the

6S ! 7S tensor transition polarizability is � = 27:024(43)expt(67)theorya
3
0. We will

now use the measurement of the dc Stark shift to re-evaluate the uncertainty of the

atomic theory calculations, and then use our new measurement of �, along with our

previous measurement of Im(EPNC)=�, to obtain a value for the weak charge QW .

This value of QW will be compared with the prediction of the standard model. The

comparison provides a test of the standard model.

6.1 Re-evaluation of Atomic Theory

The test of the standard model using a measurement of PNC in atomic

cesium requires calculations of the cesium matrix elements. If the uncertainty of the

experiment is signi�cantly smaller than the uncertainty of the calculations, then the

test will be limited by the theory.

There are two groups that have made a considerable e�ort to develop the

theory to determine the structure of cesium: Blundell, et al. [43, 14, 45] at the

University of Notre Dame and Dzuba, et al. [15, 47, 48] now at the University of

New South Wales. The most important result of their calculations is the value of
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kPNC, which is given by

kPNC =
N

QW

X
n

 
h7S j ~D j nP ihnP j HPNC j 6Si

E6S �EnP
(6.1)

+
h7S j HPNC j nP ihnP j ~D j 6Si

E7S �EnP

!
:

The quantity kPNC is made up of two types of matrix elements: allowed

electric dipole matrix elements like h6P j ~D j 6Si, and unmeasurable matrix elements
like h6P j HPNC j 6Si. Because HPNC is proportional to the Dirac matrix 
5, these

latter matrix elements are essentially the matrix elements of 
5.

Of equal importance to the calculated value of kPNC is the accuracy of the

calculation; if the calculation is only good to 2%, then the subsequent test of the

standard model is limited to 2%. Therefore, the two groups have spent considerable

time evaluating the accuracy of their calculations. Because the behavior of the two

sorts of matrix elements is so di�erent|the matrix elements of ~D are sensitive to

the value of the wave function at large ~r and the matrix elements of 
5 are sensitive

to values of small ~r|one must be careful to test the predictions of the theory using

quantities that behave in a similar fashion to both of these matrix elements. The most

objective way to estimate the accuracy of the theory is to compare its predictions

with the results of experiments.

In order to provide these comparisons, many groups have performed high-

precision measurements of the properties of cesium. Among the most precise of

these are measurements of the hyper�ne structure constants. These measurements

are particularly relevant because of the similarity of their behavior to the behavior of

the matrix elements of 
5. Other precise measurements are of the lifetimes of excited

states such as the 6P 1
2
; 3
2
states. The lifetime measurements are important because

they involve the same radial matrix elements as kPNC, such as h6P j ~D j 7Si.
To quote from Ref. [14]: \If all known properties of cesium could be repro-

duced by some ab initio calculation scheme to within 0.1%, we feel it would be rea-
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sonable to trust a PNC calculation carried out in the same fashion to this same level,

subject to a scatter analysis along the lines presented above." The \scatter analysis"

mentioned is one where the measured values of EnS , EnP , and hnS j ~D j nP i are
used in di�erent combinations with ab initio calculations to estimate how much the

value of kPNC would change with small changes in the calculated parameters�.

In Blundell et al. [14], the authors quote a variation of 0.78%, but the

standard deviation of their calculated numbers is more accurate: � = 0:40%. Thus,

if we can show that the theory's predictions agree with experiments at the 0.4% level,

then it should be reasonable to trust the calculation of kPNC to that same level.

All of the measurements made prior to the publication of Ref. [14] show only

small di�erences from the theory (less than 1%) with the exception of the measure-

ment of the dc Stark shift [49], where there was a 2% di�erence between the theory

and experiment (Chapter 4). This di�erence is now 0.3%. In addition, there are new

experiments that reveal errors in earlier lifetime measurements of sodium [60, 61] and

lithium [62]. These new experiments eliminate what had appeared to be troubling

1% errors in calculations for these atoms that are equivalent to the calculations in

cesium. Finally, the agreement is very good for the newly-measured 7S ! 9S inter-

val in 210Fr [63, 64]. Now is an opportune time to revisit the comparison between

the experiments and the predictions and re-evaluate the uncertainty that should be

attributed to the theory.

In Table 6.1 we have collected the most precise measurements of several

quantities in cesium that provide tests of the theory, along with the \rescaled" pre-

dictions of Dzuba, et al. and the ab initio predictions of Blundell et al.

Particularly notable are the top three lines of the table, which show that

the agreement has dramatically improved from the 1-2% agreements of the older

�This scatter analysis is performed by Blundell et al. to estimate their uncertainty. They do not
change the numbers they report, however. When the ab initio calculation of Dzuba et al. did not
\reproduce the energy level, (they) multiplied the correlation correction by some numerical factor
to �t the energy." [47] That is, they use the experimental energies to \correct" their calculations.
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Table 6.1: Fractional di�erences (�103) between measured and calculated values of
quantities relevant for testing PNC calculations in atomic cesium. We only list the
most precise experiments. The second column lists the most relevant aspects of the
wave functions that are being tested. h1=r3inP is the average of 1=r3 over the wave
function of the electronic state nP . Where the experiment has improved or changed
signi�cantly since the publication of Ref. [14], the di�erence from the old experiment
is listed in brackets.

Quantity Calculation Di�erence (�103)
measured tested Dzubaa Blundell b �Expt

6S!7S dc Stark shift c h7P jj ~D jj 7Si �3.4[19] �0.7[22] 1.0[4]

6P1=2 lifetime
d h6S jj ~D jj 6P1=2i �4.2[�8] 4.3[1] 1.0[43]

6P3=2 lifetime
d h6S jj ~D jj 6P3=2i �2.6[�41] 7.9[�31] 2.3[22]

� e h7S jj ~D jj 6P1=2i, and
h7S jj ~D jj 6P3=2i � �1.4 3.2

� f same as � � �0.8 3.0
6S HFS g  6S(r = 0) 1.8 �3.1 �
7S HFS h  7S(r = 0) �6.0 �3.4 0.2
6P1=2 HFS

i h1=r3i6P �6.1 2.6 0.2

7P1=2 HFS
j h1=r3i7P �7.1 �1.5 0.5

experiments� .

The standard deviation of the fractional di�erences between theory and

experiment in Table 6.1 is 4:0 � 10�3. We believe this to be the most objective

number to use to represent the 68% con�dence level for the atomic theory, and thus

for the uncertainty on kPNC. Using the average of kPNC = 0:905 � 10�11iea0 [14]

and kPNC = 0:908 � 10�11iea0 [15], we �nd the value

kPNC = 0:9065(36) � 10�11iea0: (6.2)

6.2 Final Result and Implications

We now have all the numbers|with less than 0.5% uncertainty|to de-

termine the value of the weak charge and to test the standard model. When we

�The footnotes in Table 6.1 are as follows. aRefs. [15, 47, 48]; b [14, 43, 44, 45]; c This work;
dRef. [40]; e Using the present work and �=� from Ref. [25]; fThis work; gDe�ned; hRef. [41];
iRef. [65], iRef. [42].
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combine the 0.40% value of kPNC from Eq. (6.2) with our new 0.30% value for � and

the 0.35% measurement Im(EPNC)=� from Ref. [13], we �nd

QW = �72:06(28)expt(34)theory: (6.3)

This value is virtually the same as our previous resultQW = �72:11(27)expt(89)theory [13]
but more precise. It would be extremely satisfying to use this number to say that

the standard model is either right or wrong, but a quick look at a recent 105 page

review paper on tests of the standard model [66] shows that it is not an easy task to

draw such a simple conclusion.

The value of QW given by Eq. (2.2) depends on the two coupling constants

C1u and C1d. These constants depend on the de�nition of sin2 �W , and they depend

on which radiative corrections are included in the calculation. Using the analysis

of [67, 68], we �nd that the standard model predicts QW = �73:20(13). This value
di�ers from our measured value by 2.5�. A comparison of our values of QW and the

standard model prediction is shown in Fig. 6.1.

Assuming that the di�erence from the standard model is not due to an

experimental error or a statistical 
uctuation, it suggests several possibilities. The

�rst is that there is some very perverse feature of the calculated electronic wave

functions and the 
5 operator that causes errors in the calculation of this matrix

element to be much larger than for directly measurable matrix elements. In this

case, our assumption that the standard deviation of the values in Table 6.1 repre-

sents the accuracy of kPNC is wrong. The second is that there are contributions or

corrections to atomic PNC within the standard model that have been overlooked.

We see no justi�cation for either of these possibilities, but they clearly need to be

explored further. The �rst o�ers a formidable but not overwhelming challenge to

both theoretical and experimental atomic physicists.

The �nal possibility is that the discrepancy is indicative of the presence
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Figure 6.1: A comparison of values from Ref. [13], this work, and the standard model.
The di�erence between this work and the standard model is 2.5�.

of some new physics not contained in the standard model. Physics that would be

characterized by the S parameter is not a likely candidate because the size of the

contribution needed (S = �1:44(35)expt(46)theory) would be in con
ict with other

data [6]. However, there are other types of new physics, such as an additional Z

boson, that would be consistent all other current data. For example, there is a

theory that predicts the existence of an extra Z� boson [67] with a mass given by

�QW (55+N55 Cs) ' 0:4(2N + 55)
m2
W

m2
Z�

: (6.4)

Using our value of QW this theory predicts mz� = 692(29) GeV/c2. The possibility

that this theory|or other theories like it [69, 70, 71, 72, 73]|is correct also needs

to be explored further.



CHAPTER 7

CONSIDERATIONS FOR FUTURE EXPERIMENTS

The implications of atomic parity nonconservation for the standard model

depend on both experiments and theory. The present work lessens the dependence

of the test of the standard model on the theory, but does not eliminate it. If the

re-evaluation of the uncertainty in the theory stands up to scrutiny, and if the cal-

culated value of the PNC matrix elements does not change signi�cantly with further

re�nement of the theory, then atomic PNC reveals a need for extensions to the

standard model.

It is worthwhile to consider improvements in the experiments. Therefore,

this chapter explores ways that the measurement presented in Refs. [13, 23] might

be improved. There are three approaches I have studied: reduce (or eliminate) the

e�ect of the largest systematic errors, increase the signal-to-noise ratio to reduce the

amount of time it takes to reach a given precision, or make another measurement

using the same technique on the so-called \�" transition. Section 7.1 describes a

method that can be used to make the 6S ! 7S line shape symmetric and thus elim-

inate or reduce many of the systematic errors that are enhanced by an asymmetric

line shape. Section 7.2 details an experiment on transversely cooling the atomic

beam to increase the signal-to-noise ratio. Section 7.3 discusses repeating the PNC

measurement using the \�" transition.
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7.1 Cavity Sidebands

7.1.1 Experimental Idea

Without the high-�nesse Fabry-Perot etalon, the PNC measurement pre-

sented in Refs. [13, 23] would not have been possible. The increase in laser power

inside the cavity makes it possible to drive very weak transitions with high signal-to-

noise ratios. The standing-wave nature of the laser �eld inside the etalon does have

one large drawback: a spatially-varying ac Stark shift due to the sinusoidal variation

of laser intensity.

Because the intensity inside the cavity is proportional to sinky, atoms

crossing through the laser beam at di�erent positions su�er from di�erent size ac

Stark shifts. Furthermore, atoms that have a nonzero transverse velocity see a

changing intensity and thus experience a varying ac Stark shift. The spatially varying

ac Stark shift causes the asymmetry and broadening in the spectral lines of the 6S !
7S transition as discussed in Ref. [30]. The asymmetry couples with other e�ects

such as E1-M1 interference to produce PNC systematic errors. If the asymmetry

can be eliminated, some of the most troublesome systematic errors could also be

eliminated.

Because the asymmetry comes directly from the spatially varying laser in-

tensity, if we could make the intracavity power uniform, the asymmetry would be

eliminated. This can be accomplished by phase modulating the laser light incident

upon the PBC at the free spectral range of the PBC. The following discussion will

show how this is possible.

A phase modulated laser �eld of the form � = A cos[(!t � � sin!mt)] can

also be written in terms of Bessel functions as [74]

� = A[J0(�) cos!t + J1(�) cos(! � !m)t� J1(�) cos(! + !m)t (7.1)

+ J2(�) cos(! � 2!m)t+ J1(�) cos(! + 2!m)t];
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where terms involving Bessel functions higher than order two are neglected. Pre-

sented in this form it is easy to see that the phase modulation at !m puts sidebands

on the laser that are separated from the main frequency by integer multiples of

!m. The size of the sidebands relative to the carrier with a modulation index of

� = 1:2045 is shown in Fig. 7.1.

Figure 7.1: Relative sizes of phase modulation sidebands with � = 1:2045. The
height of each line indicates the amount of power in each sideband relative to the
carrier [J20 (�)]. A negative height indicates a 180� phase shift with respect to the
other sidebands.

If the laser �eld is incident on a perfectly stable Fabry-Perot etalon with a

free spectral range !FSR = 4�`=c, where ` is the cavity length, and if !m = !FSR,

then Appendix C shows that the standing wave inside the etalon is given by
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� = A[2J0(�) sin ky sin!t + 2J1(�)(sin k+y sin!+t� cos k�y sin!�t) (7.2)

+ 2J2(�)(sin k��y sin!��t+ sink++y sin!++t)];

where !� � ! � !m, !�� � ! � 2!m and so on. If the natural lifetime of an atom

is long compared to both ! and !m, and A = 1=
p
2, then the atom \sees" a time

averaged intensity given by

I = sin2 ky[J20 (�) + 2J21 (�) cos 2kmy + 2J22 (�) cos 4kmy] (7.3)

+ 2[J21 (�) sin
2 kmy + J22 (�) sin

2 2kmy]:

When � = 0, there is no phase modulation and the intensity is simply

I = sin2 kz. This is exactly the situation discussed in Ref. [30] that gives rise to a

spatially varying ac Stark shift and asymmetric line shapes. When � 6= 0, there is

still the sin2 kz term. Now, however, that term is multiplied by a much more slowly

spatially varying term that depends on km. In addition, there is a term that does not

have the fast sin2 kz dependence. The result is a rapidly spatially varying intensity

superimposed on a more uniform pro�le. The envelope of the rapidly varying part

is shown in Fig. 7.2. The question now is what e�ect will this have on the ac Stark

shift and on the 6S ! 7S transition rate for each atom?

The size of the ac Stark shift depends on the detuning of the laser light

from allowed transitions such as the 6S1=2 ! 6P3=2 transition. The detuning of the

carrier from this transition is approximately 2 � 108 MHz, and the �rst side band

is only di�erent by 500 MHz, which is 2:5 � 10�6 of the carrier detuning. For the

purposes of the ac Stark shift, the sideband and the carrier are indistinguishable.

Thus, the ac Stark shift depends on the time average of the sidebands and the carrier

combined.

Conversely, the strength of the 6S ! 7S transition depends on the laser

detuning from the 6S ! 7S resonance. Therefore, the carrier is on resonance, but
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Figure 7.2: A plot showing the intensity of the laser light inside the PBC as a
function of position in the cavity when the incident light is phase modulated at the
free spectral range of the PBC. The intensity is the sum of two terms: one that varies
rapidly with position (sin2 ky) and one that varies slowly (trigonometric functions
of kmy.) Close to either end of the cavity the intensity varies rapidly, but near the
center where the atomic beam intersects the laser beam, the intensity is very close
to uniform.

the sidebands are well detuned (� 100�) from resonance. Thus, the strength of the

6S ! 7S transition depends on the time average of only the carrier. The result is

that we can eliminate the spatial dependence of the ac Stark shift at the expense of

a factor of two in signal size.

7.1.2 Experimental Implementation

In order to put sidebands on the light inside the PBC we borrowed a home-

built electro-optic modulator (EOM) from Dr. John Hall's laboratories. We drive

the EOM using a tunable frequency synthesizer. The EOM has a resonant frequency

of 503 MHz and is tunable from 489 MHz to 518 MHz. The resonant frequency is
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very sensitive to temperature, so any attempt to make permanent use of the EOM

must include temperature stabilization. For the purpose of demonstrating the e�ect

of the sidebands, temperature stabilization is not needed. In its usual con�guration,

the free spectral range of the PBC is slightly larger than 518 MHz, so during this

experiment the input mirror of the PBC is mounted on a modi�ed optical mount as

shown in Fig. 7.3.

Figure 7.3: Under normal conditions, the length of the PBC is 27 cm. In order to
change the free spectral range of the PBC to match the resonant frequency of the
EOM used to phase modulate the dye laser the input mirror has to be moved in
front of its mount to make the cavity length 30 cm.

To monitor the sidebands on the dye laser we place a scanning Fabry-Perot

etalon after the PBC and use it as a spectrum analyzer. The amount of power in the

sidebands is easily monitored using the etalon. The dye laser with sidebands was

then simply locked to the PBC using the usual Pound-Drever-Hall scheme.
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The asymmetry of the 6S ! 7S line shape is emphasized if the photoion-

ization current on the electric �eld plates is monitored. Therefore, we connect an

electrometer to the �eld plates during this experiment so we can look at both the

probe scattered light and the photoionization line shapes. We use the 6S1=2 F = 3

to 7S1=2 F
0 = 4 transition for these measurements.

7.1.3 Results

Sample scans over the \�" 6S ! 7S E1 transition with and without side-

bands are shown in Fig. 7.4. The dramatic reduction of the asymmetry in the line

shapes is evident by comparing the pairs of scans. However, a signi�cant reduction

in peak signal also occurs. Scans were also taken (unintentionally at �rst) with the

modulation index slightly o� the optimum � = 1:0245. In that case, the peaks of the

scans are very sharp and the asymmetry is prominent. It only takes a change in �

of about 1% to begin to see the asymmetry again.

7.1.4 Conclusion

The addition of the sidebands on the dye laser to remove the asymmetry

in the line shape of the 6S ! 7S transition can be considered a success, but it is not

at all clear that this is a viable solution to the problem of line shape asymmetry for

two reasons.

First, the price of having the sidebands to produce a uniform intensity is

a factor of two loss in the amount of laser light that is resonant with the 6S ! 7S

transition. Losing a factor of two in signal means we need to take twice as much

data to get the same uncertainty as before. The whole purpose of the sidebands was

to eliminate a major source of systematic error so that we would not have to take as

much data. Reducing the resonant intensity by a factor of two does not achieve this

goal. If the line shape asymmetry were the limiting systematic the sidebands might

be an excellent solution, but that is not the case with the PNC measurement.
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Second, putting sidebands on the dye laser is a complicated task. The addi-

tional temperature stabilization that would be required, as well as �nding some way

to determine when the modulation index is correct, would add many complications

to an almost hopelessly complicated experiment. So, while the sidebands do make

the line shape symmetric, in the end it seems that phase modulating the dye laser is

not a modi�cation that we would like to make to a next-generation PNC experiment.

7.2 Improving the Signal-to-Noise Ratio

7.2.1 Increasing Beam Flux

The second way to improve upon the last PNC measurement would be to

improve the signal-to-noise ratio. Increasing the signal-to-noise ratio by a factor of

n also reduces by a factor of n the amount of time required to reach a given level of

precision, since the PNC measurement is shot noise limited.

We investigated the e�ect of turning up the oven temperature, which should

increase the number of atoms in the beam. As shown in Fig. 7.5, the beam size as

measured by the probe laser does increase with temperature initially, but at higher

temperatures the number of atoms reaching the detection region begins to plateau.

A plausible explanation for this e�ect is that at high temperatures there are so many

atoms emerging from the oven nozzle that not all of the atoms pass through the �rst

beam-de�ning aperture. The result is that a cloud of atoms forms just in front of

the oven nozzle and becomes the e�ective source of the atomic beam. A hotter oven

only means a bigger cloud, not a denser beam. Details of such a process are given

in Ref. [75].

At approximately 225�C the oven repeatably exhibits behavior we call

\crashing": the size of the beam increases by 30 to 50% and then settles to a value

10 to 20% lower than when the temperature was changed. This decreased level then

slowly decreases with time. If the oven is turned o�, allowed to cool, and turned back
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on again, the signal size at a given temperature is lower than before but stable. We

cannot explain this behavior, but it gives us an upper limit for the oven temperature.

Another drawback of a very dense atomic beam is that the e�ciency with

which the optical pumping lasers spin-polarize the atomic beam decreases as the

density of the atomic beam increases. Data showing this e�ect are shown in Fig. 7.6.

At low beam 
ux, the spin-polarization is near 98%, but as the beam size is increased,

the spin-polarization drops o� signi�cantly. Future PNC experiments using this

apparatus will rely on highly spin-polarized samples of atoms, so an increase in the

density of the atomic beam that causes a reduction in the degree of spin-polarization

is undesirable.

7.2.2 Transversely Cooling the Atomic Beam

7.2.2.1 Experimental Concept

An alternative to simply increasing the number of atoms in the beam is

to transversely cool the atomic beam to decrease its divergence and to increase

the number of atoms available for making the 6S ! 7S transition. However, the

techniques normally used to cool atoms do so by making the hot atoms scatter

many photons and thus dissipate energy. If we were to use the same techniques

in the PNC experiment, a signi�cant portion of those scattered photons would be

scattered back along the beam where they can be absorbed by atoms that have

already been spin-polarized. The result is a subsequent depolarization of the beam,

which is unacceptable.

In 1986 Dallibard and Cohen-Tannoudji [76] published a paper describing

the so-called \Dressed-Atom" approach that describes the interaction of atoms with

high-intensity standing-wave laser �eld. In the regime of high intensity, simple pic-

tures of the light-atom interaction (as used in describing Doppler cooling) break

down. The dressed atom approach uses the basis states j i; ni, where i is either 1 or
2, and n indicates the number of photons in the electromagnetic �eld. At low laser
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intensities these \dressed" states reduce to the normal basis states j s; ni, where s
represents the ground (g) or excited (e) state of the atom. At high intensities, the

states j1; ni and j2; ni are di�erent linear combinations of the jg; ni and je; ni states.
A comparison of the two sets of basis states is shown in Fig. 7.7.

Where the laser intensity is small, the states reduce to the normal j s; ni
set. Where the laser intensity is high, the j i; ni basis states must be used, and the

energies of these states depend on the intensity. Therefore, in any laser beam (where

the intensity pro�le is, for example, Gaussian) there is a maximum energy shift at

the center of the beam. The energy shift gets smaller as the atom moves away from

the center. If the atom is in a standing wave, the intensity varies sinusoidally in the

longitudinal direction as well as varying as a Gaussian in the transverse direction.

This longitudinal variation is shown in Fig. 7.8. In the Dressed-atom picture, atoms

moving along a standing wave can be cooled via stimulated emission. Using Fig. 7.8

as a guide, we now describe the idea behind the cooling.

Consider an atom in the j 1; n + 1i state moving along the standing wave.

The probability of this atom making a transition to another state is small in the

nodes and large in the anti-nodes. As the atom moves from node to anti-node it

loses energy. If it makes a transition at the peak of the anti-node (point A), then

that energy loss is permanent. The atom, now in the j 2; ni state (point B), again
moves along the standing wave. Now, however, the probability of making a transition

is large at the nodes and small at the anti-nodes. If the atom again makes a transition

(at point C), the energy loss from anti-node to node is again permanent. As the atom

moves along the standing wave the process repeats itself (points D and E) and the

atom is cooled. More important, since the force due to stimulated emission cooling is

much greater than that due to Doppler cooling, many fewer photons are required to

do the same amount of cooling and the problem of depolarizing the beam is minimal.

There are two demonstrations of this cooling e�ect on a cesium atomic

beam where the standing wave is detuned from the 6S1=2 ! 6P3=2 transition. One
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experiment [77] uses a high power ring dye laser, and another experiment [78] uses

a low power diode laser coupled into a power build-up cavity. In both cases, cooling

of atoms with transverse velocities of less than 4 m/s was achieved. However, it was

unclear whether the same mechanism could cool atoms with transverse velocities of

up to 17 m/s. If this is possible, it may lead to an increased signal-to-noise ratio for

the PNC experiment.

7.2.2.2 Horizontal Cooling

In order to utilize transverse cooling of the atomic beam we need a stable,

high-power laser and a power build-up cavity into which we can inject the power.

We use a Ti:sapphire laser that provides 300 mW of 852 nm light and a cavity

constructed of two 
at, 1 in diameter mirrors separated by 5 cm. The �nesse of

the cavity is roughly 40, and the ultimate power density inside is 3.4 W/cm2. The

cavity is placed in the optical pumping region with the optical pumping magnetic

�eld coils removed. Once aligned, the cavity does not creep out of alignment; all

that is needed to peak up the power inside the cavity is minor realignment of the

input laser beam.

All horizontal collimating elements after the cavity are removed (a vertical-

vane collimator and two beam de�ning apertures) so as many atoms as possible

actually reach the detection region. In the two previous references, detection of the

velocity distribution is performed using a hot wire detector. The transverse velocity

of a group of atoms is inferred from its position in space. In our experiment we detect

the atoms by collecting the light scattered by the atomic beam as we sweep the probe

laser across the 6S1=2 ! 6P3=2 transition. The transverse velocity is inferred from

the Doppler shift of a particular group of atoms and we use a saturated absorption

spectrometer as a reference. In the rest of the chapter the units of velocity are MHz.

These may be converted to m/s using the formula v = ���, where � = 852 nm and

�� is the Doppler shift.
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Our detection method limits our sensitivity to the amount of cooling. Imag-

ine an atomic beam with a Gaussian distribution transverse velocities. If the width

of the distribution is 20 MHz FWHM, then we would measure a line width very close

to 20 MHz. Now imagine we can cool all the atoms in the beam to zero transverse

velocity. A hot wire detector would measure a large signal right near zero velocity;

we would measure a line width of about 10 MHz since we are limited by the natural

line width of the 6S1=2 ! 6P3=2 transition.

In order to overcome this limitation, we leave in the �rst vertical-vane

collimator. This allows us to \steer" the beam. Thus, we can move the beam so

that the transverse velocities are centered at various Doppler shifts, not necessarily

near zero shift. Then, if we cool all the atoms to zero transverse velocity we will see

the entire line shape move to zero Doppler shift. Sample uncooled line shapes are

shown in Fig. 7.9.

The previous experiments used carefully chosen detunings to optimize their

cooling; once we saw evidence of cooling we selected the detuning that appeared to

give the \best" e�ect. The detuning for all the data shown here is � = 48 MHz = 9�,

where � is the natural line width of the 6S1=2 ! 6P3=2 transition. It is possible to

study the e�ects of detuning extensively, but the discussion that follows shows that

the exact detuning does not ultimately a�ect the increase in signal that is possible,

so we do not perform this study.

Taking the data for this experiment is almost trivial. Interpreting the

data, however, is not. Figures. 7.10 through 7.15 show scans with and without

cooling for a variety of collimator positions. In all cases, the e�ect of the cooling

is evident, whether it is a narrowing of the line width (Fig. 7.10) or a signi�cant

shift of the atoms toward zero Doppler shift (Fig. 7.15). Also shown in each �gure is

the di�erence between the cooled and the uncooled lines showing clearly that atoms

are removed from areas with high transverse velocity and placed in areas of low

transverse velocity.
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In order to quantify the e�ects of the cooling we would like to be able to

look at the number of atoms having a given transverse velocity. That is, we want

to know the population distribution (or equivalently, the velocity distribution) of

the beam. Since the 
uorescence we measure is the convolution of the population

distribution with the natural line shape, we should, in principle, be able to deconvolve

the population distribution from the 
uorescence if we know the natural line shape.

In practice this is very di�cult because the solution to the deconvolution is not

unique.

As an alternative to a deconvolution, we can make an ansatz about the

population distribution and then convolute that with the natural line width of the

6P3=2 ! 6S1=2 transition. We can then use the di�erence between the line shape

prediction of the ansatz and the measured line shape to modify our initial ansatz.

Several iterations give good agreement with measured line shape. An example of an

initial ansatz and the �nal population distribution for the data shown in Fig. 7.16.

The asymmetry is not surprising because of the probable bias angle in the capillary

array as mentioned in the caption of Fig. 7.9. The velocity distribution of the whole

atomic beam with no collimation is shown in Fig. 7.17.

Ultimately, we want to know the �nal velocity distribution of the atomic

beam after cooling. To do this, we need to compare the velocity distributions in

the beam before and after cooling. So, we perform the iteration discussed for each

collimator position. This gives us the velocity distribution for each position before

and after cooling. We then ask the question: \What fraction of atoms in a given

velocity class is transferred to near the zero transverse velocity class?" The answer

gives us the e�ect of cooling as a function of transverse velocity. The maximum,

average, and minimum e�ects of cooling are shown in Fig. 7.18.

Now that we know what fraction of the atoms with a given transverse veloc-

ity will be cooled to near zero transverse velocity, we can determine the population

distribution of the whole atomic beam with and without cooling. These data are



93

shown in Fig. 7.19 The number of atoms with zero transverse velocity increases by

about a factor of eight. Clearly the cooling technique is successful at slowing atoms

with transverse velocities between 10 MHz and 4 MHz to less than �4 MHz.

The net e�ect of the cooling on the atomic beam is not as dramatic as

Fig. 7.19 would suggest, however. The line shapes we would expect if we measured

the beam and the 6S ! 7S transition are shown in Fig. 7.20. The severe reduction

in the improvement of the signal is due to the fact that in the PNC experiment

we must always convolve the population distribution with the natural line width of

the detection. In addition, the ac Stark broadening [30] will broaden the 6S ! 7S

transition regardless of cooling, and this e�ect is not shown in the �gures. The

variation in intensity in the radial direction of the dye laser is unavoidable, and

the variation of the intensity along the laser due to the standing wave can only be

eliminated if we sacri�ce a factor of two in power, as discussed in Section 7.1. We

estimate the reduction in the bene�t of cooling by the ac Stark shift is 50%, which

limits the improvement in the 6S ! 7S signal size to a factor of 1.5.

7.2.2.3 Vertical Cooling

It is important to remember here that the previous discussion is relevant

only for cooling in the horizontal direction. For the vertical direction, the natural

line widths are not important. What is important is the total number of atoms

interacting with the dye laser that is driving the 6S1=2 ! 7S1=2 transition. For this

analysis we assume that we can cool the beam perfectly in the vertical direction.

First, the relative number of atoms emerging from a long thin tube at an

angle � is given approximately by [75]

N(�) = 1:00978 � 0:85898� � 0:09489�2 + 0:15163�3: (7.4)

The capillary array in the oven nozzle can be thought of as many in�nitely thin tubes
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stacked one upon another. The total number of atoms coming out of a vertical slice

in the array is then given by

NTotal = 2

Z �=2

0
N(�)d� � 5 mm: = 6:35: (7.5)

This is simply twice the sum of all the atoms with trajectory angles from 0 to 90�

times the height of the array. The total number of atoms in an uncooled beam

intersecting the dye laser beam is given by

NHot
Intersect = 2

Z 2:5mm

�2:5mm
N
�
Sin�1(jxj=260mm)

�
dx� 1mm = 0:5: (7.6)

This is twice the contribution from each of the in�nitely thin tubes in one half of the

array that are a distance x from the middle of the array that reach the laser beam

26 cm away. If we can perfectly collimate the beam, then all the NTotal atoms will

be compressed into the height of the array. The number of atoms intersecting the

beam will be

NCooled
Intersect =

height of laser

height of array
�NTotal =

1mm

5mm
� 6:35 = 1:27 (7.7)

In this case, we gain the ratio of

NCooled
Intersect

NHot
Intersect

= 2:54: (7.8)

7.2.3 Conclusion

The best improvement we can get by cooling is approximately a factor of

1.5 in the horizontal direction and a factor of 2.54 in the vertical direction giving

a factor of 3.8 total improvement. This assumes that the ac Stark shift [30] only

reduces the improvement in horizontal cooling by 50% and that we can cool the beam

perfectly in the vertical direction. This seems to be an overly optimistic situation.
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Further, attempts to increase the beam 
ux by increasing the oven temperature are

counter productive.

The bottom line is that, while we get approximately eight times more atoms

within a �4 MHz Doppler width, the largest improvement in signal on the 6S ! 7S

transition will be about a factor of three. With only this marginal improvement,

a second measurement of PNC using the same technique as Refs. [13, 23] is not

attractive.

7.3 Prospects for Further Parity Nonconservation Measurements

Equation (2.26) shows the quantity measured in the recent PNC measure-

ment [13, 23]. In that experiment we measure the interference between a PNC

electric dipole amplitude and the \�" Stark-induced electric dipole transition. This

experiment provides the value Im(EPNC)=�. A similar experiment that uses the \�"

Stark-induced amplitude from Eq. (2.13) can provide the value Im(EPNC)=�. This

would be a useful quantity to measure because it would provide another determina-

tion of the quantity Im(EPNC) as well as providing a consistency check of the past

measurements of Im(EPNC)=� and �=� [25]. Perhaps the most important reason to

make a measurement of Im(EPNC)=� is that we could check the value of the nuclear

anapole moment determined in Ref. [13]. However, there are several problems that

bring the feasibility of such an experiment into question.

The measurement of Im(EPNC)=� is performed on both the F = 3 to F 0 = 4

and F = 4 to F 0 = 3 6S ! 7S transitions. When using the �F = +1 (�F = �1)
transition, the F = 4 (F = 3) hyper�ne state is depleted. Atoms making the

6S ! 7S transition repopulate the F = 4 (F = 3) state where they are detected

using the 6S1=2F = 4 to 6P3=2F
0 = 5 ( 6S1=2F = 3 to 6P3=2F

0 = 2) cycling transition.

These detection schemes are favorable because 75% (67%) of the atoms making the

6S ! 7S transition repopulate the proper detection state.

However, the measurement of Im(EPNC)=� is performed on the �F = 0
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transitions. Here only 33% (24%) of the atoms excited to the F 0 = 3 (F 0 = 4) state

end up in the proper F = 4 (F = 3) state where they can be detected. So, attempting

a measurement of Im(EPNC)=� starts with a signal-to-noise ratio more than a factor

of
p
2 smaller than that of the already-di�cult measurement of Im(EPNC)=�.

Another consideration is the problem of fractional populations alluded to

in the discussion of Eq. (2.26). The previous measurement of PNC in cesium used a

spin-polarized atomic beam with roughly 98% of the atoms in a single extreme mF

sublevel. Equation (2.26) included detuning factors dmF
, which indicate the relative

importance of transitions that are detuned from the main transition because of the

Zeeman e�ect. The largest of the detuning factors is 0.845, while the smallest is

0.127. The e�ect of these factors is to reduce the precision with which we need to

know the populations of the mF levels.

On the �F = 0 transitions the Zeeman e�ect does not resolve transitions

from di�erentmF sublevels because the g-factors for hyper�ne levels with the same F

are equal. (See Fig. 2.1.) The result is that all the detuning factors in the \�" analog

of Eq. (2.26) are unity. For the Im(EPNC)=� measurement we only needed to measure

the populations to 1% to have an uncertainty of 0.1% in the �nal measurement; for a

measurement of Im(EPNC)=� that requirement becomes an order of magnitude more

severe. We would need to measure the populations to 0.1% to have 0.1% in the �nal

measurement. At present, our ability to measure the populations is 0.1 to 0.2%. In

order to be comfortably below the uncertainty required, a much better modeling of

the optical pumping processes that we use to spin polarize the beam would have to

be accomplished.

Further, while one would not expect a measurement of Im(EPNC)=� to take

the more than 15 years that the measurement of Im(EPNC)=� took, a considerable

amount of time (perhaps two graduate student lifetimes) would be needed to �nd and

eliminate all the systematic errors that will inevitably plague the new measurement.

These three considerations make a measurement of Im(EPNC)=� using a
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spin-polarized atomic beam an unlikely next step.

7.4 Summary

The previous 0.35% measurement of PNC in atomic cesium is a notable

achievement that, when combined with the 0.3% measurement of � and the re-

evaluation of the ab initio theory, provides a 0.6% test of the standard model. As

with any measurement with this importance, a con�rming experiment is always

comforting. However, it does not seem feasible to make another measurement of

PNC using the present methods, whether it is a measurement of Im(EPNC)=� or

Im(EPNC)=�, mainly because of signal-to-noise concerns.

Therefore, the work on parity nonconservation using an atomic beam has

come to a conclusion after more than 15 years. Future work may involve cold,

trapped atoms or measurements on a chain of isotopes to eliminate the need for the

atomic theory calculations.
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Figure 7.4: Sample scans over the \�" 6S ! 7S E1 transition with and without side-
bands using (a) photoionization detection and (b) probe detection. The asymmetry
disappears with sidebands, but the peak signal also drops signi�cantly
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Figure 7.5: This plot shows the size of the atomic beam as a function of the oven
temperature. A \saturation" e�ect at higher temperatures can be seen, as well as
evidence of an oven \crash" at about 225�C.
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Figure 7.6: This plot shows the spin polarization as a function of the size of the
atomic beam. Signi�cant deterioration of the spin-polarization at large beam sizes
is obvious.
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Figure 7.7: The bare and dressed states of an atom in an intense standing-wave laser
�eld. Here � is the detuning of the laser from the jgi to jei transition, g and e are
ground and excited states, n is the number of photons in the laser �eld, !` is the
frequency of the laser, 1 and 2 are linear combinations of the g and e states, and 

is the generalized Rabi frequency.
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Figure 7.8: The energy levels of an atom in an intense standing-wave �eld. The
atoms starts in j1; n + 1i and ends in j1; n � 1i and is cooled by losing energy as it
moves from troughs to peaks and then moves to a di�erent state.
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Figure 7.9: Doppler pro�les of the atomic beam with no cooling at various collimator
positions. The fact that the line with the largest signal is slightly o�set from zero
detuning indicates that the capillary array in the oven nozzle is slightly tilted.
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Figure 7.10: Data showing the atomic beam without cooling with transverse velocity
centered at 0.6 MHz. Also shown is the cooled beam and the di�erence between the
scans with without cooling.
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Figure 7.11: Data showing the atomic beam without cooling with transverse velocity
centered at 3.1 MHz. Also shown is the cooled beam and the di�erence between the
scans with and without cooling.
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Figure 7.12: Data showing the atomic beam without cooling with transverse velocity
centered at 5.5 MHz. Also shown is the cooled beam and the di�erence between the
scans with and without cooling.
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Figure 7.13: Data showing the atomic beam without cooling with transverse velocity
centered at 7.9 MHz. Also shown is the cooled beam and the di�erence between the
scans with and without cooling.
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Figure 7.14: Data showing the atomic beam without cooling with transverse velocity
centered at 10.3 MHz. Also shown is the cooled beam and the di�erence between
the scans with and without cooling.
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Figure 7.15: Data showing the atomic beam without cooling with transverse velocity
centered at 12.3 MHz. Also shown is the cooled beam and the di�erence between
the scans with and without cooling.
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Figure 7.16: Determination of the velocity distribution within the atomic beam using
the convolution of an ansatz with a natural line width. Plot (a) shows the initial and
�nal estimates of the velocity distribution, while plot (b) compares the predicted line
shape of these two estimates with the measured line shape. The data shown used
a total of 14 iterations to arrive at the �nal ansatz. This number of iterations was
used in all the analyses.
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Figure 7.17: The velocity distribution of the atomic beam determined using the
iterative procedure discussed above.
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Figure 7.18: The minimum, average, and maximum fractional cooling e�ect as a
function of Doppler shift. We �t to the maximum e�ect because that is the most
likely e�ect we can achieve with optimization of detuning, laser power, etc.
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Figure 7.19: Population distribution of the atomic beam with and without cool-
ing. The distribution without cooling was obtained using the iterative convolution
technique discussed above. The distribution with cooling was obtained by using the
distribution without cooling and the fractional e�ect of cooling derived from the data
in Figs 7.10 through 7.15
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Figure 7.20: The line shapes for the (a) atomic beam and (b) the 6S ! 7S transition.
The improvement from transverse cooling in signal size is not as dramatic as for these
line shapes as it was for the velocity distribution. This is because the limitations of
the natural line widths plays an important role.
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APPENDIX A

CF 0M 0

FM COEFFICIENTS

The coe�cients CF
0m0

Fm are de�ned by the relation

CF
0m+q

Fm �
�

1p
2

�jqj
hF 0m+ q j �1q j Fmi (A.1)

where q = 0;�1, and �1q are the components of the Pauli spin operator:

�11 = � 1p
2
(�x + i�y) �1 �1 =

1p
2
(�x � i�y) �10 = �z (A.2)

and

�x = � 1p
2
(�11 � �1 �1) �y =

ip
2
(�11 + �1 �1): (A.3)

With the rotations given in Section 2.6, we have

�1 �1 = �01 �1 �
1p
2

�
Bx
B

� i
By
B

�
�10: (A.4)

The values of the C
F 0m0

F
FmF

are given by

C4m
3m = C3m

4m =

p
16�m2

4
; (A.5)

C4m
4m�1 = �1

8

q
(5�m) (4�m); (A.6)
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C3m
3m�1 = �1

8

q
(4�m) (3�m); (A.7)

C3m
4m�1 = �1

8

q
(4�m) (5�m); (A.8)

C4m
3m�1 =

1

8

q
(3�m) (4�m) (A.9)

C3m
3m = �m

4
; and (A.10)

C4m
4m =

m

4
: (A.11)



APPENDIX B

EFFECT OF THE ELECTRIC QUADRUPOLE AMPLITUDE

This appendix gives a detailed treatment of the e�ects of the electric dipole

operator (E2) discussed by Bouchiat and G�uena in Ref. [27]. The angular momentum

text by Zare [79] is referred to extensively in the discussion, and the notation \Zare

(2.45)" means \equation 45 in Chapter 2 from Ref. [79]."

In Ref. [27] Bouchiat and Gu�ena introduce the phenomenological transition

operator

T (nS�n0S) = ��~E � ~�� 2i� ~S � ~E � ~�+ a1~S � ~�� ~k (B.1)

+ ia2(~S � ~I) � (~�� ~k) + ia3[(~S � ~�)(~I � ~k) + (~S � ~k)(~I � ~�)];

where a1 = �2M , a2 = �Mhf=2, and a3 = �E2=2. The �rst two terms are the

Stark-induced amplitudes from Eq. (2.13), the terms proportional to a1 and a2 are

the magnetic dipole amplitudes from Eq. (2.21), and the term proportional to a3

is a new amplitude|the electric quadrupole amplitude|caused by the o�-diagonal

hyper�ne mixing of jnDi states into the jnP i states.
In Ref [27] Bouchiat and Gu�ena re-analyze several di�erent experiments

that determine the value of Mhf=M and show that the contribution from the E2

amplitude is non-negligible in some cases. Speci�cally, they examine the result of

Ref. [28]. In the geometry of that experiment the relevant transition rates R(F 0mF ; FmF )
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are given by

R(4� 4; 3 � 3) = �E(a1 + 4a2)

�
1� 3

a3
a1 + 4a2

�
(B.2)

and

R(3� 3; 4 � 4) = �E(a1 � 4a2)

�
1 + 3

a3
a1 � 4a2

�
(B.3)

Taking the ratio of these two transition rates and inserting the values of the ai's

gives

R =
M +Mhf � 3E2=4

M �Mhf + 3E2=4
: (B.4)

Then

R� 1

R+ 1
=
Mhf

M

�
1� 3

4

E2

Mhf

�
: (B.5)

Clearly, if E2=Mhf is large enough the result is not Mhf=M . If the contribution from

E2 to the present measurement of Mhf=� is similarly non-negligible, then we must

make a similar correction.

We now consider E2 with the geometry in the present experiment, which

is the same as in Ref. [28]: ~E = Ex̂, ~B = Bẑ, and ~� = ẑ.

The transition operator of concern is

TE2 = ia3[(~S � ~�)(~I � ~k) + (~S � ~k)(~I � ~�)] (B.6)

= ia3(SzIy + SyIz):

An angular momentum spherical tensor operator of rank one is de�ned as

J1;�1 = � 1p
2
(Jx � iJy) and J1;0 = Jz: (B.7)

Equation B.6 can then be written as

TE2 = � a3p
2
[S0(I+1 + I�1) + (S+1 + S�1)I0]: (B.8)
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The product of two spherical tensor operators is another spherical tensor operator

as de�ned in Zare (5.36):

X(k; q) =
X
q1q2

hk1q1k2q2 j kqiA(k1; q1)B(k2; q2): (B.9)

We can then write down the following components of X(k; q).

X(1;�1) =
1p
2
(�S�1I0 � S0I�1): (B.10)

X(2;�1) =
1p
2
(S�1I0 + S0I�1): (B.11)

Then, the products of two spherical tensor operators may be written as

S0I�1 =
�1p
2
[X(1;�1) �X(2;�1)]; and (B.12)

S�1I0 =
�1p
2
[X(1;�1) �X(2;�1)]: (B.13)

Thus, we need to �nd the matrix elements of S0I�1 + S�1I0:

h 0 j S0I�1 + S�1I0 j  i (B.14)

=
1p
2
h 0 j �[X(1;�1) �X(2;�1)] � [X(1;�1) �X(2;�1)] j  i

=
1p
2
h 0 j �X(1;�1) �X(1;�1) +X(2;�1) +X(2;�1) j  i

=
p
2 h 0 j X(2;�1) j  i:

Thus, we have

h 0 j TE2 j  i = �a3h 0 j X(2; 1) +X(2;�1) j  i: (B.15)

This matrix element can be evaluated using the formulas Zare(5.64):
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h
j1j2jm j X(k; q) j 
0j01j02j0m0i (B.16)

= (�1)j�m
0
B@ j k j0

�m q m0

1
CA h
j1j2j jj Xk jj 
0j01j02j0i;

and Zare (5.68):

h
j1j2j jj Xk j j 
0j01j02j0i = [(2j + 1)(2j0 + 1)(2k + 1)]1=2 (B.17)

�

8>>>>><
>>>>>:

j1 j01 k1

j2 j02 k2

j j0 k

9>>>>>=
>>>>>;
X

00

h
j1 jj Ak1 jj 
00j01ih
00j2 jj Bk2 jj 
0j02i:

For our situation these give

h7SIF 0m0
F j X(k; q) j 6SIFmF i = (�1)F 0�m0

F (B.18)

�[(2F 0 + 1)(2F + 1)(2k + 1)]1=2

0
B@ F 0 k F

�m0
F q m0

F

1
CA

�

8>>>>><
>>>>>:

S S 1

I I 1

F 0 F k

9>>>>>=
>>>>>;
X

00

h 7sS jj S1 jj 
00Sih
00I jj I1 jj 6sIi:

Note that in the 3-j symbol we must satisfy the triangle condition withm0
F�mF = q

with q = �1. That means we either need the matrix elements of X(2;+1) or of

X(2;�1) but never both.
The reduced matrix elements in Eq. (B.18) can be evaluated using the

Wigner-Eckart Theorem. The results are

h1=2 jj S(1) jj 1=2i =
q
3=2 and h7=2 jj I(1) jj 7=2i = 3

p
14: (B.19)
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We can now use Eq. (B.18) to calculate the relative size of the E2 amplitude

compared with the M and Mhf amplitudes as well as calculate the size of the E2-M

and E2-Mhf interference terms. Tables B.1 and B.2 show the relevant calculations

if we assume the population in the j6SF i state is uniform across the mF sublevels.

In that case, the interference terms between the M1 amplitudes and the E2 ampli-

tude cancel and the pure E2 rate is tiny. Therefore, with uniform populations, the

contributions from the E2 amplitude can be ignored.

The population across the hyper�ne sublevels is not uniform, however, as

we discussed in Chapter 5. Tables B.3 and B.4 show the e�ect of the nonuniform

population distribution calculated by Peter Marte. (See Chapter 5.) In this case, the

R+ we measure is 0.084% too large, and R� is 0.068% too small. If we are conser-

vative and assume a 50% uncertainty in the E2 correction because of uncertainties

in the size of E2 and the exact distribution of the population, then the correction

makes our result for jMhf=� j smaller by 0.2% and increases our uncertainty from

0.15% to 0.16%.

These results can also be con�rmed by rewriting the basis states j FmF i
in terms of the electron and nucleus spin quantum numbers and Clebsch-Gordan

coe�cients using

jFmF i =
X
mSmI

jSmSImIihSmSImI jFmF i: (B.20)

Using that formalism gives identical results.
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Table B.1: Table showing coe�cients for F = 3 to F 0 = 4 magnetic dipole and
electric quadrupole amplitudes for various transitions. The transition rates in the
table are the contributions to the total transition rate relative to the M ampli-
tude assuming uniform populations in the hyper�ne levels, E2=Mhf = 0:053, and
Mhf=M = �0:1906. The sum of all the hyper�ne transitions is shown at the bottom
and the fractional correction needed to account for the presence of E2 is shown in
the \Correction" row.

F = 3 to F 0 = 4 Uniform Population

Coe�cients Transition Rates (�100=M2)

mF m0
F C

F 0m0

F
FmF

E2 Pop 2ME2 2MhfE2 (E2)2

3 4 0.93541 �0.70151 0.1429 �0.1486 0.0280 0.0004
3 2 0.17678 �0.39772 0.1429 0.0159 �0.0030 0.0001
2 3 0.81009 �0.20251 0.1429 �0.0371 0.0070 0.0000
2 1 0.30619 �0.53578 0.1429 0.0371 �0.0070 0.0003
1 2 0.68465 0.17115 0.1429 0.0265 �0.0050 0.0000
1 0 0.43301 �0.54122 0.1429 0.0531 �0.0100 0.0003
0 1 0.55902 0.41923 0.1429 0.0531 �0.0100 0.0002
0 �1 0.55902 �0.41923 0.1429 0.0531 �0.0100 0.0002

�1 0 0.43301 0.54122 0.1429 0.0531 �0.0100 0.0003
�1 �2 0.68465 �0.17115 0.1429 0.0265 �0.0050 0.0000
�2 �1 0.30619 0.53578 0.1429 0.0371 �0.0070 0.0003
�2 �3 0.81009 0.20251 0.1429 �0.0371 0.0070 0.0000
�3 �2 0.17678 0.39772 0.1429 0.0159 �0.0030 0.0001
�3 �4 0.93541 0.70151 0.1429 �0.1486 0.0280 0.0004

Sum(�100) 0 0 0.0027

Correction to R+ �0.002%
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Table B.2: Table showing coe�cients for F = 4 to F 0 = 3 magnetic dipole and
electric quadrupole amplitudes for various hyper�ne transitions. The transition rates
in the table are the contributions to the total transition rate relative to the M
amplitude assuming uniform populations in the hyper�ne levels, E2=Mhf = 0:053,
and Mhf=M = �0:1906. The sum of all the hyper�ne transitions is shown at the
bottom and the fractional correction needed to account for the presence of E2 is
shown in the \Correction" row.

F = 4 to F 0 = 3 Uniform Population

Coe�cients Transition Rates (�100=M2)

mF m0
F C

F 0m0

F
FmF

E2 Pop 2ME2 2MhfE2 (E2)2

4 3 0.93541 0.70151 0.1111 �0.1155 �0.0218 0.0003
3 2 0.81009 0.20251 0.1111 �0.0289 �0.0054 0.0000
2 3 0.17678 0.39772 0.1111 0.0124 0.0023 0.0001
2 1 0.68465 �0.17115 0.1111 0.0206 0.0039 0.0000
1 2 0.30619 0.53578 0.1111 0.0289 0.0054 0.0002
1 0 0.55902 �0.41923 0.1111 0.0412 0.0078 0.0001
0 1 0.43301 0.54122 0.1111 0.0412 0.0078 0.0002
0 �1 0.43301 �0.54122 0.1111 0.0412 0.0078 0.0002

�1 0 0.55902 0.41923 0.1111 0.0412 0.0078 0.0001
�1 �2 0.30619 �0.53578 0.1111 0.0289 0.0054 0.0002
�2 �1 0.68465 0.17115 0.1111 0.0206 0.0039 0.0000
�2 �3 0.17678 �0.39772 0.1111 0.0124 0.0023 0.0001
�3 �2 0.81009 �0.20251 0.1111 �0.0289 �0.0054 0.0000
�4 �3 0.93541 �0.70151 0.1111 �0.1155 �0.0218 0.0003

Sum(�100) 0 0 0.0021

Correction to R� 0.002%
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Table B.3: Table showing coe�cients for F = 3 to F 0 = 4 magnetic dipole and
electric quadrupole amplitudes for various transitions. The transition rates in the
table are the contributions to the total transition rate relative to the M amplitude
assuming nonuniform populations in the hyper�ne levels, E2=Mhf = 0:053, and
Mhf=M = �0:1906. The sum of all the hyper�ne transitions is shown at the bottom
and the fractional correction needed to account for the presence of E2 is shown in
the \Correction" row.

F = 3 to F 0 = 4 Nonuniform Population

Coe�cients Transition Rates (�100=M2)

mF m0
F C

F 0m0

F
FmF

E2 Pop 2ME2 2MhfE2 (E2)2

3 4 0.93541 �0.70151 0.1163 �0.1548 0.0295 0.0006
3 2 0.17678 �0.39772 0.1163 0.0166 �0.0032 0.0002
2 3 0.81009 �0.20251 0.1442 �0.0480 0.0091 0.0001
2 1 0.30619 �0.53578 0.1442 0.0480 �0.0091 0.0004
1 2 0.68465 0.17115 0.1632 0.0388 �0.0074 0.0000
1 0 0.43301 �0.54122 0.1632 0.0776 �0.0148 0.0005
0 1 0.55902 0.41923 0.1666 0.0792 �0.0151 0.0003
0 �1 0.55902 �0.41923 0.1666 0.0792 �0.0151 0.0003

�1 0 0.43301 0.54122 0.1593 0.0757 �0.0144 0.0005
�1 �2 0.68465 �0.17115 0.1593 0.0379 �0.0072 0.0000
�2 �1 0.30619 0.53578 0.1369 0.0455 �0.0087 0.0004
�2 �3 0.81009 0.20251 0.1369 �0.0455 0.0087 0.0001
�3 �2 0.17678 0.39772 0.1134 0.0162 �0.0031 0.0002
�3 �4 0.93541 0.70151 0.1134 �0.1509 0.0288 0.0006

Sum(�100) 0.1150 �0.0220 0.0042

Correction to R+ �0.094%
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Table B.4: Table showing coe�cients for F = 4 to F 0 = 3 magnetic dipole and
electric quadrupole amplitudes for various hyper�ne transitions. The transition rates
in the table are the contributions to the total transition rate relative to the M
amplitude assuming uniform populations in the hyper�ne levels, E2=Mhf = 0:053,
and Mhf=M = �0:1906. The sum of all the hyper�ne transitions is shown at the
bottom and the fractional correction needed to account for the presence of E2 is
shown in the \Correction" row.

F = 3 to F 0 = 4 Nonuniform Population

Coe�cients Transition Rates (�100=M2)

mF m0
F C

F 0m0

F
FmF

E2 Pop 2ME2 2MhfE2 (E2)2

4 3 0.93541 0.70151 0.123 �0.1637 �0.0312 0.0006
3 2 0.81009 0.20251 0.1061 �0.0353 �0.0067 0.0000
2 3 0.17678 0.39772 0.1038 0.0148 0.0028 0.0002
2 1 0.68465 �0.17115 0.1038 0.0247 0.0047 0.0000
1 2 0.30619 0.53578 0.104 0.0346 0.0066 0.0003
1 0 0.55902 �0.41923 0.104 0.0494 0.0094 0.0002
0 1 0.43301 0.54122 0.1109 0.0527 0.0100 0.0003
0 �1 0.43301 �0.54122 0.1109 0.0527 0.0100 0.0003

�1 0 0.55902 0.41923 0.1028 0.0489 0.0093 0.0002
�1 �2 0.30619 �0.53578 0.1028 0.0342 0.0065 0.0003
�2 �1 0.68465 0.17115 0.1068 0.0254 0.0048 0.0000
�2 �3 0.17678 �0.39772 0.1068 0.0152 0.0029 0.0002
�3 �2 0.81009 �0.20251 0.1104 �0.0367 �0.0070 0.0000
�4 �3 0.93541 �0.70151 0.1321 �0.1758 �0.0335 0.0007

Sum(�100) �0:0589 �0:0112 0.0034

Correction to R� 0.079%



APPENDIX C

DERIVATION OF INTRACAVITY INTENSITY WITH

SIDEBANDS

This appendix derives the intensity inside a Fabry-Perot etalon when the

incident light is phase modulated at the free spectral range of the etalon. This

intensity is given in Eq. (7.2).

An electric �eld of the form

� = A cos(!t� � sin!mt) (C.1)

can be written in terms of Bessel functions as [74]

� = A[J0(�) cos!t + 2J1(�) sin!t sin!mt (C.2)

+ 2J2(�) cos !t cos 2!mt+ : : :]

where the series extends including higher order Bessel functions and higher multiples

of !m, and � is the phase modulation index. If the �eld is part of an electromagnetic

wave, it must have spatial dependence as well. If we replace !t with !t � ky and

replace !mt with !mt� kmy, and use the identities

cos � cos� =
1

2
[cos(� � �) + cos(� + �)] (C.3)

sin � sin� =
1

2
[cos(� � �)� cos(� + �)] (C.4)
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we get a wave traveling in the ŷ direction with the form

� = AfJ0(�) cos(!t� ky) + J1(�) [cos(!�t� k�y)� cos(!+t� k+y)] (C.5)

+ J2(�) [cos(!��t� k��y) + cos(!++t� k++y)]g

where k� = k � km and !� = ! � !m. If this wave is injected into a stable Fabry-

Perot etalon with a free spectral range of �FSR = 2�!m, then the standing wave

formed inside the etalon is given by

� = 2A[J0 sin!t sinky + J1 (sin!�t sink�y � sin!+t sink+y) (C.6)

+ J2 (sin!++ sink++y + sin!�� sink��y)];

where the label � for the phase modulation index has been dropped. Using the

identities sin(� � �) = sin � cos�� cos � sin�, the electric �eld can be written as

� = 2A[J0 sin!t sinky (C.7)

� 2J1 (cos!t sin!mt sinky cos kmy + sin!t cos!mt cos ky sinkmy)

+ 2J2 (cos!t sin 2!mt cos ky sin 2kmy + sin!t cos 2!mt sinky cos 2kmy)]:

We square the �eld to �nd the intensity, and since the atoms do not react

to changes in the intensity on time scales near 2�=!, or even 2�=!m, we will take

the time average of the intensity. Therefore we will drop terms containing odd

trigonometric functions or products of orthogonal trigonometric functions. The time

averaged intensity inside the cavity is given by

h�2it = 2A2 [ J20 sin
2 ky + 2J21

�
sin2 ky cos2 kmy + cos2 ky sin2 kmy

�
(C.8)

+ 2J22

�
sin2 ky cos2 2kmy + cos2 ky sin2 2kmy

�
] :

Using the identities cos2 � = 1 � sin2 � and cos2 � � sin2 � = cos 2�, and setting
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A = 1=
p
2, the time averaged intensity inside the cavity can �nally be written as

h�2it = sin2 ky[J20 (�) + 2J21 (�) cos 2kmy + 2J22 (�) cos 4kmy] (C.9)

+ 2[J21 (�) sin
2 kmy + J22 (�) sin

2 2kmy]:


