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CHAPTER I

Introduction

From a practical point of view, atoms are the basic building blocks that we can

use to manipulate our natural world. Molecules are collections of atoms with be-

havior drastically di�erent from that of the atoms of which they are composed. The

ability to control these atoms and molecules has driven the creation of materials

that has revolutionized every aspect of technology that impacts our daily lives. Fur-

thermore, the synthesis of chemicals (including life-saving drugs) also relies on our

ability to control atoms and molecules. Current methods used to control the atoms

and molecules that drive much of our technology are based on thermodynamics. An

understanding of those laws allows us to exploit the predicted behavior of atoms

and molecules for the synthesis of materials. Improvements in our ability to control

atoms and molecules beyond what is allowed by thermodynamics will usher in a new

era of technologies based on the control and not just the observation of nature.

At the turn of the previous century, it became apparent that a thermodynamic

and deterministic mechanics description of matter, especially for the case of small

objects like atoms and molecules, could not explain all of the observed behaviors.

1
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This led to the development of quantum mechanics, which uses wave mechanics of

matter to explain much of the observed behavior. Because the behavior of atoms and

molecules can be describes as waves, they exhibit interference e�ects between these

matter waves. However, in order to observe the wave interferences of an ensemble of

quantum-mechanical objects, the waves must be stable with respect to one another,

i.e., the ensemble must be coherent. The coherence of a system is not preserved in the

presence of collisions or spontaneous radiation, and all quantum-mechanical systems

are subject to these de-coherence mechanisms. The time-scales for de-coherence of

atoms and molecules at room temperature are on the order of pico and femto-seconds.

Provided there is a coherence, the wave interferences of atomic and molecular

quantum-mechanical wavefunctions can be manipulated by the application of an ex-

ternal electro-magnetic �eld. By manipulating this external control �eld, the wave

interferences can be tailored to produce a desired �nal quantum-mechanical state

that may result in the production of a speci�c chemical reaction product, or the

shaping of the power spectrum of radiation produced by the atom or molecule. Ef-

�cient control requires that the control �eld interact with a coherent ensemble. In

order to create and manipulate a quantum-mechanical population e�ciently, the

time-duration of the control �eld must be sorter than the de-coherence time. Fur-

thermore, the natural time-scale of evolution of atoms and molecules is femto to pi-

coseconds. As a result, in order to e�ciently control the wave interferences of atoms

and molecules, the use of coherent, ultrashort pulses of light is required. Atoms in

molecules with negligible thermal population vibrate with characteristic periods of
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< 50 femtoseconds, while electronic wave functions in molecules in our experiments

have sub-femtosecond lifetimes. In order to access these natural timescales, an opti-

cal source with a broad-bandwidth, corresponding to controlled sub-20 femtosecond

pulse durations is required.

This thesis work sought to control the dynamics of quantum-mechanical systems

using shapes light pulses [1, 2].

The new scienti�c advances discussed in this thesis are:

� The application of coherent control techniques to a highly nonlinear quantum

system.

� Attosecond control of a process for the �rst time by controlling the phase of an

electron wave packet with a shaped light pulse.

� Demonstration that a learning algorithm can be used as a powerful tool to

discover new science.

� Discovery of a new phase matching mechanism in the high-�eld regime that

occurs between a single atom and a light �eld.

� The �rst demonstration that a non transform-limited pulse can optimize a

purely electronic nonlinear process.

� The generation of nearly transform-limited soft x-ray pulses.

� Demonstration of learning control of molecular vibrational coherences at room

temperature and atmospheric pressure.
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� Observation of molecular wave packet dynamics by analyzing the phase mod-

ulation imposed by a time-varying molecular polarizability.

� Self-seeding of impulsive stimulated Raman scattering.

� Use of modi�ed cost functionals in a learning algorithm to learn about a system

under study.

� Generation of a perfectly spatially coherent XUV beam for the �rst time.

� The �rst demonstration of the measurement of the spectrum of a light �eld by

analyzing a double-pinhole interferogram.

� The demonstration of a new pulse compression scheme using phase modulation

from controlled molecular rotations.

We achieve control of quantum systems by interacting a very broad bandwidth,

shaped light pulse with atoms and molecules. To determine how to shape the optimal

light �eld, I used an idea proposed by Herschel Rabitz in 1992 [3] that suggestes using

a feed-back loop (or more appropriately, a learning loop) to allow the quantum system

under investigation to determine which pulse shape best controls the system.

The idea of using learning control was a revolutionary advance for the �eld of

"coherent control" because of the di�culty in determining optimally shaped �elds

to control complex, real-world, quantum systems; however, it is an approach that is

borrowed from engineering. A number of scientists have implemented this idea in the

laboratory, but the experiments focused on systems easily understood [4, 5, 6, 7, 8],

where the optimal �eld was easily calculated, or extremely complex systems that
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could not be understood theoretically [9, 10]. Furthermore, none of these prior ex-

periments demonstrated that optical control of a quantum system could have practi-

cal applications outside of understanding and controlling quantum dynamics, leading

critics of the �eld to complain that coherent control is an impractical way to con-

trol systems. Moreover, many thought that there is no hope of understanding the

control mechanism for complex systems and that, once controlled, the systems were

of no practical value to scientists in other �elds. Herschel Rabitz's idea of learning

control was also criticized as a naïve approach to science and that experiments are

best performed under the direct control of the scientist.

In this thesis, I describe a set of experiments that address these major criticisms

of coherent control, and shows that learning control algorithms can, in fact, act as

powerful tools for discovering new, useful science. The work described in this thesis

represents scienti�c advances physics, chemical physics, chemistry, and optical engi-

neering. We have applied these learning, coherent control techniques to the control

of electron wave packets in atoms, and to the control of rotational and vibrational

wave functions in molecules.

The format of this thesis is as follows: the second chapter gives a brief description

of learning control and evolutionary algorithms, the third chapter discusses control

in atoms, the fourth chapter discusses the control of molecular systems, the �fth

chapter discusses useful applications of controlled quantum systems, and the sixth

chapter summarizes this work.

In the third chapter, I explain how to achieve the control of high harmonic genera-
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tion (HHG) [11, 12, 13] using broad-bandwidth, shaped light pulses. HHG normally

produces a frequency comb of harmonic lines that are an odd integer multiple of

the driving laser frequency. I demonstrate that a learning algorithm can be used to

�nd an optimal HHG spectrum to produce a single harmonic, resulting in a quasi-

monochromatic x-ray spectrum that is concentrated in a femtosecond duration pulse.

In this experiment, the learning algorithm found a new solution that was previously

unknown, and would have likely gone undiscovered. This spectrum has applications

to a wide variety of time-resolved x-ray experiments because it generates a very short

duration x-ray pulse without the need for spectral �ltering that might broaden the

pulse. Not only does the optimal pulse shape modify the HHG spectrum, it also in-

creases the conversion e�ciency of energy from the fundamental driving laser pulse

to the x-ray pulse, compared to the conversion e�ciency of a transform-limited pulse

into HHG light. This result was very surprising, and is the �rst demonstration of the

optimization of a nonlinear process by a non transform-limited laser pulse. Finally,

since HHG is the most "extreme" nonlinear process that has ever been observed.

This thesis describes the coherent control of a quantum system with the highest

nonlinearity to date.

Chapter 3 also discusses models of HHG generation [14, 15, 16, 17, 18] that can

describe most of the experimentally observed features. A theoretical model was used

in conjunction with a learning algorithm, and the result was that the model exhibits

excellent agreement between theory and experiment. Through our understanding of

the control of HHG [13], we discovered a new phase-matching mechanism that occurs
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between the interaction of a single atom and a pulse of light. This phase matching

mechanism is the result of the control of the phase of an electron wave packet with

25 attosecond precision. Thus, this work is the �rst experimental demonstration of

the control of any process with attosecond precision. These results directly refute

assertions that the control mechanism of a complex quantum mechanical system can

not be determined from a learning control experiment. In fact, in our experiment,

the learning algorithm discovered new science.

In the fourth chapter, I apply the learning control "machine," developed originally

for the HHG experiments, to the problem of controlling molecular systems. The

ultimate goal of such control is to manipulate chemical reactions [19], resulting in the

synthesis of products that would be otherwise di�cult, or impossible, to synthesize

by other methods. The essential idea is to use an optimal control pulse to distort

molecules in such a way that a barrier to a reaction pathway is reduced or eliminated,

allowing a reaction to proceed. A surface catalyst acts in much the same way in that

the surface itself distorts the reactants in order to initiate a chemical reaction. Thus,

the shaped laser pulse in this scheme acts as a laser catalyst.

Using the learning machine, we performed experiments that manipulated vibra-

tional and rotational degrees of freedom in molecular gasses and vapors [20, 21].

Due to the short duration of our laser pulses, we are able to induce coherent mo-

tion in molecules that exhibit substantial "random" motion, i.e., in gasses at room

temperatures, and where the gas is held at atmospheric pressure. This approach

holds the promise of coherently "driving" chemical reactions in "real-world" condi-
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tions, resulting in macroscopic quantities of products. Furthermore, our approach is

non-resonant and can be applied to any molecular system.

In these experiments, we demonstrated selective control (or heating) of speci�c

vibrational modes in multimode molecules. We have also developed a new form of

molecular spectroscopy that monitors molecular wave packet motion by analyzing the

modi�ed power spectrum of a probe pulse. The probe spectrum experiences changes

when phase modulated by the time-dependent molecular polarizability generated by

the pump pulse. This approach allows us to monitor the evolution of ro-vibrational

wave packets and observe and control overtone and combination band vibrational

excitation. The observation of overtone excitation using this technique [21] is an

important development towards mode-selective chemistry. Finally, we observe indi-

cations of control of the reaction rate of a bimolecular chemical reaction with shaped

laser pulses.

Learning control has been shown to be a powerful tool for the control of complex

quantum systems. This approach allows one to control the system, even if the details

of the system are unknown. During the course of an optimization, many "experi-

ments" are performed, each with a di�erent pulse shape. These distinct pulse shapes

each probe the quantum system in a di�erent way. By collecting and analyzing these

experimental results, it may be possible to uncover information about the system

under control.

We have taken a �rst step towards using the learning algorithm itself to determine

information about the system under control. The learning algorithm was modi�ed
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so that the pulse shaper was "penalized" (i.e., reducing the �tness value) for pulse

shapes that deviated from a target shape. The e�ect is that control knobs that do

not result in an improvement of the system control are not used. The result is that

the optimal pulse shapes are simpli�ed, and only the essential control features are

preserved. These experiments are the �rst demonstration of the use of modi�ed cost

functionals to learn about the system under control. The simpli�ed optimal pulse

shapes clearly demonstrate the control mechanism and illustrate the promise of using

the algorithms to learn about the systems under investigation.

In the �rst section of chapter 5, I discuss the generation of controlled molecular

rotational wave packets, and demonstrate a new technique for compressing ultrafast

optical pulses [22]. This technique is applicable at any wavelength from the deep

ultraviolet (deep-UV) to the infra-red (IR) regions of the spectrum. In our scheme,

one light pulse was used to create a set of "designer" spinning CO2 molecules inside

a hollow glass �ber. The "designer" nature of the spinning CO2 molecules is that

they align and realign periodically, having been set spinning (or "kicked") at the

same time by the light pulse. This light pulse is 20 femtoseconds in duration at a

wavelength of 800nm, in the near-IR (where it is easy to generate such fast pulses

of light). A second, longer duration light pulse with a di�erent wavelength (color)

is then sent into the same �ber, at precisely the right time where it encounters the

spinning molecules. The aligning molecules act like microscopic molecular modula-

tors - tiny versions of the modulators used to encode optical pulses for transmitting

voice and data information across optical networks. This coherently-evolving molec-
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ular system exhibits faster modulation times (ps) than is possible using electro-optic

modulators, corresponding to the time of less than one picosecond during which the

molecules come into and then go out of alignment. This system thus has an enormous

bandwidth exceeding 40 THz. Such ultrafast modulation causes dramatic spectral

modulation of the second pulse, increasing its bandwidth by over an order of magni-

tude. This increased spectrum means that the time duration of the second pulse can

also be compressed by an order of magnitude, provided that all the new colors in the

light pulse can be made to arrive at the same time. One very attractive feature of

this scheme is that this second pulse can be compressed by simply sending it through

a piece of glass. This is much simpler to implement than traditional approaches to

compressing light pulses that require sending the spectrally-broadened pulse through

a prism or grating pair. It is also far less lossy (particularly in the UV), and far more

compact. Thus far we have demonstrated that this scheme can easily generate 30

femtosecond duration light pulses. The next step will be to generate < 5 femtosecond

light pulses in the deep-UV and vacuum-ultraviolet, where materials and many small

molecules can be probed.

In the second section of chapter 5, we show that, by using a phase-matched

hollow-�ber geometry, the EUV light generated exhibits the highest inherent spatial

coherence of any source in this region of the spectrum [23]. Since this source exhibits

full spatial coherence at very short wavelength, this light source represents the small-

est inherent e�ective source-size of any light source yet created. While studying the

spatial coherence of HHG, I realized that by measuring the spatial coherence, the
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power spectrum of the incident �eld could be determined [24]. We demonstrate this

by comparing the deconvolved spectrum with that obtained by a traditional grating

spectrometer. HHG generated in a hollow-�ber geometry is constructed on a fraction

of an optical table. Finally, in the third section of Chapter 5, I show the application

of this versatile source to coherent x-ray imaging that may be useful for plasma and

biological imaging.



CHAPTER II

Coherent control of quantum systems with learning

algorithms

2.1 Introduction

Since the advent of the laser in the early 60's, researchers have sought to use laser

light to solve problems in virtually every scienti�c discipline. Chemists, in partic-

ular, looked upon this intense single-frequency light source as a way to manipulate

chemical reactions. The initial idea was simple: simply tune a laser source to the

characteristic frequency of a bond you wish to break and turn up the intensity of

the laser. The molecule should snap apart and you could use those products to drive

and control chemical reactions. However, in the laboratory this idea was a complete

failure. Energy that was dumped into speci�c bonds redistributed itself throughout

the molecule on femtosecond to picosecond timescales [25]. Increasing the energy

only broke the weakest bond in the molecule and no control seemed possible.

Thus, the dream of manipulating matter with light pulses soured and research

interest dwindled. This early work ignored a signi�cant aspect of the molecules

they sought to control. Molecules are quantum mechanical systems and their normal

12
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modes are described by waves that can interfere [1, 2]. Shaped light �elds can control

this interference and thereby control the �nal state of the system (as illustrated in

Figure 2.1); this approach has been dubbed "coherent control". Coherent Control

techniques have evolved from focusing solely on chemical systems to a wide range of

quantum mechanical systems, and have been applied to semiconductor systems [26,

27, 28, 29, 30, 31], terahertz radiation sources [32, 33, 34] , shaping of Rydberg wave

functions [6], and single atoms [11].
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Figure 2.1: Coherent control is accomplished by manipulating inferring pathways in

a quantum mechanical system.

2.1.1 A brief history of coherent control

Two major approaches to the control of quantum mechanical systems have been

proposed and developed. Both of these ideas exploit wave interferences in quantum

mechanical systems and highlight di�erent aspects of this mechanism. The �rst pro-

posal by Brumer and Shapiro [35] excites two pathways that interfere constructively

or destructively depending on the relative phase of two CW lasers. The probability

of forming a given product or exciting a particular state depends on the coherent
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sum of the two states since they are indistinguishable.

This technique has been utilized by Elliot to control transitions in mercury [36]

and thoroughly studied in Robert Gordon's group to control the ionization of HCl,

CO, and H2S [37], photoexciation of HI [38], and controlling product ratios of the

photodissociation of H2S [39] and CH3I [40]. Shnitma et al. demonstrated the

control of branching ratios in the photodissociation of Na2 [41], while Dupont et al.

demonstrated the control of photoexcited electrons in semiconductors for applications

in fast switching [27].

Although this approach has been quite successful, its e�ciency is limited be-

cause quasi-CW lasers act on only a fraction of the thermal distribution of atoms or

molecules in which control is sought. For example, at 1K, the thermal energy kT is

� 20GHz, which is larger than a ns pulse bandwidth. Energy redistribution relys on

relatively slow processes such as collisions to restore depleted populations. Further-

more, the decay of coherences limits the amount of energy that can be e�ectively

used for control because these coherences are required for stable wave interference.

An alternative approach proposed by Tannor and Rice suggested using pairs

of short pulses to manipulate quantum mechanical wave packets [42, 43]. More

generally, this can be viewed as optimal control in which some optimally shaped

electromagnetic �eld is used to sculpt a desired �nal quantum mechanical state [44].

This concept is illustrated in Figure 2.2. The pulses used in this approach are shorter

than the energy redistribution and coherence decay times in molecules, making it

highly e�cient. A short pulses excites vibrational wave packets that evolve in a
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�eld-free manner, and that achieve a desired target goal at some speci�ed time.

There are generally three types of control that are grouped in this control scheme.

The �rst utilizes pulse pairs that excite two time-delayed quantum mechanical wave

packets that interfere to excite speci�c states in the system. The second, called pump-

dump, excites a wave packet on an excited state surface, then a second pulse "dumps"

that population to a ground-state level, or some dissociative product channel. The

�nal, more general, approach is to determine a single, shaped optical �eld that creates

an optimal quantum mechanical state.

fΨε )(tOptimal field

+ System evolutioniΨ
Figure 2.2: Optimal control is a variation of coherent control that uses a shaped

optical �eld that drives a quantum system form some initial state into a

desired �nal state.

Coherent control with pairs of unshaped phase-locked pulse pairs has been demon-

strated in a host of molecular [45, 46, 47, 48, 49, 50, 51, 52, 53] and semiconduc-

tor [28, 29, 30, 34, 31] systems. Optimally shaped laser �elds o�er the most versatile

and general approach to the control of quantum mechanical systems. The optimal

�eld guides the system from some initial state to the desired �nal state by work-

ing in conjunction with the system evolution. The capabilities of this approach can

be extended in the high-�eld regime as the optimal �eld itself begins to substan-

tially modify the potential of the system under control and allows for more complex

control [10].
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The calculation and shaping of optimal �elds for control has been demonstrated

for selective control of optical phonons in cryogenic solids [4], the control of ex-

cited state vibrational wave packets [54, 55], controlling the yield of a chemical

reaction [56], the control of 2-photon absorption [5, 57, 58], and for the control of

molecular vibrations with overtone excitation [21].

Determining the optimal driving �eld for controlling quantum systems requires

detailed knowledge of the Hamiltonian of the system to be manipulated, ample com-

puter time to calculate the �eld (where all experimental conditions must be known

exactly). The primary di�culty here is that the Hamiltonian for most systems is

unknown, particularly for complex chemical systems. Furthermore, it might be di�-

cult and time-consuming to calculate the optimal �eld given the Hamiltonian. Once

found, there is no guarantee that the optimal �eld will be robust and the control

may be very poor on average as the experimental conditions �uctuate. Finally, even

if we have the exact optimal �eld, it can be di�cult to reliably deliver the optimal

�eld to the quantum system to be controlled.

2.2 Learning algorithms for coherent control of quantum sys-

tems

The di�culty of calculating the optimal �eld for controlling a quantum system

gets progressively more di�cult as the system gets more complex. However, a clever

approach proposed by Rabitz et al. [3, 59, 2], demonstrated through computational

simulations that trial-and-error learning algorithms can in principle be applied to

optimally control quantum systems. This approach essentially uses the quantum
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system under control as an analog computer, testing each trial solution, and guid-

ing the laser system to discover the optimal �eld. This approach solves the basic

problems of optimal control discussed above. The quantum system knows its own

Hamiltonian, and no computation time is required because the system solves for the

solution essentially instantly. The solution found is guaranteed to be robust because

the control is achieved in a noisy laboratory environment where the experimental

parameters may be �uctuating. Finally, since the control �led is found in-situ, the

correct optimal �led is automatically delivered to the quantum system under control.

Figure 2.3 illustrates the basic concept of a learning loop. The learning algorithm

tests large groups of trial pulse shapes on the quantum system and evaluates how

well the pulse shape allows the system to evolve to the desired outcome. The learning

algorithm then uses the results of the experiments to determine new pulse shapes

to try, and repeats the loop until the system is in the target quantum state. As

the learning algorithm iterates through each loop, it learns to control the quantum

system better until eventually the algorithm "teaches" the laser how to control the

quantum system.

2.3 An overview of learning algorithms

The type of learning algorithm employed to control quantum systems is typically

an evolutionary algorithm. These algorithms are so named because the inspiration

for their design is based loosely on the principles of biological evolution. The basic

steps of reproduction, natural selection, and diversity by variation are all used in a

typical evolutionary algorithm. The reproduction stage mixes genetic information
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Figure 2.3: An evolutionary algorithm can be used to teach a laser system to control

a quantum system. The algorithm begins with a random population.

Each member of the population is a trial pulse shape; for our system, a

trial pulse shape is represented by the set of voltage levels applied that

distort a deformable mirror. Each trial pulse shape is tested in the system

under control, and then a �tness value is calculated that quanti�es the

quality of the control. A fraction of the �ttest members of the population

are duplicated, forming the set of children. Those children are mutated

so that the solutions are perturbed. The parents and mutated children

are combined and the process repeats. After a number of iterations,

the algorithm converges to an optimal control �eld (the best trial pulse

shape).



19

from two members of a population to produce a "child" (new trial solution) with

a combination of traits from the two parents. Natural selection is the process that

chooses individuals that propagate to the population that forms the next generation.

In nature, this is a combination of the �tness (or degree to which an individual has

successfully adapted to his environment) and chance that determines what genetic

information is passed to the next generation. Finally, there is diversity in genetic

information due to the variation in members of a population. Mutation of genetic

information is the primary way that new genetic information is introduced into a

population.

2.3.1 Terminology of Evolutionary Algorithms

Before delving into a discussion of evolutionary algorithms (EA), it is important

to de�ne the components of the algorithms. The DNA gives the genetic information

of a member of the population, which can carry either phenotypic (characteristics of

the individual) or genetic (a coded form of the phenotype) information. The type

of information contained in the DNA varies according to the type of EA used. A

population is a set of members, which are described by their DNA. The �tness of

an individual is a measure of how well the individual has adapted to the environ-

ment. For the purposes of controlling a quantum system, the �tness is determined

by evaluation some observable of the quantum system. This �tness function can be

viewed as a mountainous landscape (i.e., �tness landscape) and a "good" solution

corresponds to a tall mountain peak. There is may be a global optimum, which is

simply the tallest peak in the landscape. The process of selection determines which
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members of the population are carried over to the next generation. It follows that

selection also determines what information from the pervious experiments is retained

by future generations. Recombination and mutation operations serve to perturb the

DNA content of members of the population in order to explore the parameter space

of the �tness landscape and avoid a local minima.

2.3.2 An overview of evolutionary computation

The foundation for current evolutionary algorithms come from work done just as

computers began to emerge as a tool in large research facilities. However, the low

computational speed and memory of these machines hampered this early work. The

idea of automatic programming was �rst presented in the work of Friedberg [60] at

IBM. The idea was to use a limited set of instructions from which a computer algo-

rithm could select to construct a program that would convert an input to a desired

output. This approach used no selection mechanism and turned out to do worse

than a pure random search. The next attempt was by Bremermann [61] to perform

evolutionary optimization. He sought to optimize functions by recombination and

mutation. However, his algorithm did not converge well and was largely ignored.

Both automatic programming and evolutionary optimization, although �awed, pro-

vided the basis for future developments in evolutionary algorithms.

Using the lessons of Friedberg and Bremarmann, Fogel tried another approach

he called "evolutionary programming" (EP) [62]. This new approach used selective

pressure to push a population towards a solution. The original implementation com-

pared a parent and a child (a mutated version of the parent) and kept the better
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one for the next generation. He later expanded the number of members to form real

populations and introduced recombination operators. An EP represents the DNA

(or set of information that describes the trial solution as implemented in a learning

system) as simply the control knobs (i.e., parameters of the system that we control)

that manipulate the device that produces the trial solution we wish to analyze in

our apparatus. The DNA elements are mutated with a normally distributed random

variable weighted by a scaled �tness value. Recombination is not used in EP be-

cause it is seen as secondary to mutation [62]. The members of the population that

form the next generation are taken from the union of the set of parents and children

from a tournament (tournament selection operator). This work was ignored until

the early 70's when genetic algorithms and evolutionary strategies were developed

independently in the US and Germany.

Evolutionary Strategies (ES) were developed by Bienert, Rechenberg, and Schwe-

fel at the Technical University of Berlin for the optimization of �uid dynamics prob-

lems (e.g., optimization of nozzle shapes) [63]. The initial implementation compared

a parent (�) and a child (�) in a manner similar to EP. Later versions made use of

large populations including both parents and children (�+ �), referred to as elitism,

or only the children made by the parents (�; �). Schwefel also introduced the self-

adaptation of algorithm operators so that the operators can be optimally adjusted

throughout the optimization [64].

The DNA (or set of variables that produces a trial solution) in an ES simply

uses the control knobs directly just as in the EP. The mutation operator adds a
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normally distributed random variable, with some variance, to each component of the

DNA. The variance is also modi�ed on each iteration so that the mutation rate self-

adapts. A recombination operator then splits the DNA into pieces and exchanges

information. This recombination operator has been viewed by some as a macro-

mutation operator. The members of the population of the next generation are then

simply the set of children, or the combined set of children and parents in the case

where elitism is included. The optimal convergence rate has been found to correspond

to a ratio of children to parents equal to seven (
�

�

= 7) [63]. There is no theoretical

optimum for the number of parents; however, setting � too small results in a path

oriented search, whereas a larger � takes advantage of a population, but consumes

more computation and experimental time.

John Holland, working independently at the University of Michigan, developed

the genetic algorithm (GA) in parallel with the ES development in Germany [63]. The

DNA in a GA is not simply the control knobs, but a transformed version of the control

knobs (or variables we apply to our "solution generator apparatus"). Instead, each

variable in the DNA is transformed into a new representation. The most commonly

used representation for DNA in a GA is to convert the control knobs to their binary

numeric representation. For example, if the "control knobs" that would be used in

an evolutionary program or an evolutionary strategy were the set f2; 4; 9; 3; 4g, then

in a 4-bit binary encoding, the DNA would be f00100100100100110100g. Due to

the binary nature of the representation, a Gaussian mutation operator is no longer

appropriate, and as a result, the mutation operator used in a GA is random bit �ips.
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The mutation operator is seen by Holland as secondary, so the mutation probability

is set to be small in a typical GA implementation.

Recombination on the other hand, is quite evolved in a GA. The initial operator

was simply a one-point crossover, similar to ES, where the genetic information is

exchanged between two parents at a single point. The obvious extension of this is to

exchange several blocks of DNA (multipoint crossover) by splicing the DNA at sev-

eral locations. More advanced versions of these recombination operators have been

made to self-adapt. The simplest, segmented crossover, is multipoint crossover with

an adaptable number of crossover points [65]; they also used shu�e crossover which

mixes up the ordering of the DNA blocks. The most advanced recombination opera-

tor, punctuated crossover, dynamically varies the number and locations of crossover

points [66]. Instead of choosing the member for the next generation to be only the

top performers, the members are selected by a roulette wheel selection. The idea is

that each member of a population (trial solution) is assigned a probability that is

proportional to its �tness value. A fraction of the current population is chosen to

proceed to the next generation by a random number generator that favors more "�t"

solutions that have larger �tness values.

2.4 Experimental demonstrations of Learning Control

A number of experiments have recently demonstrated the use of shaped pulses for

control of quantum systems with a learning algorithm. Bardeen et al. [67] demon-

strated that a learning algorithm can determine that a pulse with positive chirp is

optimally e�ective in avoiding saturation of a molecular transition and the control
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in I2 in both the gas and solid phases. Gerber et al. [9] demonstrated that molecu-

lar dissociation could be controlled through the use of pulses with a complex shape

determined through a learning algorithm. Bucksbaum et al. [6] demonstrated the

use of iterative algorithms to "sculpt" Rydberg atom wavefunctions into the desired

con�guration, and also to control Stokes scattering in molecular systems. Weinacht

et al. demonstrated the control of Raman scattering in liquids [68]. Leone et al. [8]

demonstrated the time-shifting of rotational wave packet dynamics in Li2. These

experiments represent systems at the two extremes of complexity. In the case of

one-and two-photon absorption or molecular excitation, the physical reasons behind

the optimum solutions are straightforward to understand. In the case of vibrational

excitation or dissociation of polyatomic molecules, the pulse shapes obtained through

optimization are complex and extremely di�cult to interpret.

In contrast, as will be discussed in Chapter 3, the case of high-harmonic gener-

ation represents a quantum process that is highly nonlinear, but that nevertheless

has proven to be both accessible to experiment and theoretically tractable. The

optimal laser pulse for coherent x-ray generation can be explained as a new type

of "intra-atomic" phase matching [13], that enhances the constructive interference

of the x-ray emission from di�erent electron trajectories driven by adjacent optical

cycles for a particular wavelength (i.e. harmonic order). This intra-atomic phase

matching allows us to selectively increase the brightness of a single harmonic order

by over an order of magnitude, essentially channeling the nonlinear response of the

atom to a particular order of nonlinearity. Furthermore, the arbitrary control over
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the shape of the driving pulse allows us to spectrally narrow a given harmonic order

very e�ectively, resulting in a bandwidth of the harmonic peak that is likely to be

at or near the time-bandwidth limit for such a short x-ray pulse. Finally, optimiza-

tion of a single harmonic without suppressing adjacent harmonics can increase the

brightness of some harmonic orders by factors of �30.

Furthermore, it was thought that the learning algorithm was not su�ciently

robust to operate on high-order or highly complex quantum systems. Our work

demonstrating control of high harmonic generation showed that a high order quantum

system could be controlled, and that control could also be well understood.

2.5 Experimental Apparatus

For our work, we used a broad-bandwidth, short-pulse-optimized Ti:sapphire am-

pli�er system into which a closed-loop pulse shaping apparatus was incorporated [69].

By careful design of these ampli�er systems, pulses as short as 15 fs (approximately

6 optical cycles) FWHM can be generated at high repetition-rates and high pulse

energies (up to 7 kHz with pulse energies > 1mJ). In such laser systems, low energy

pulses of duration � 10 fs are generated by a broad-bandwidth Ti:sapphire oscilla-

tor [70], stretched in time to lower their peak intensity, and then ampli�ed in two

ampli�er crystals prior to re-compression. This type of laser system is ideal for inclu-

sion of a simple, phase-only, pulse shaper into the beam before ampli�cation, since

phase modulations introduced by the shaper will propagate without distortion in the

high-energy, ampli�ed, laser pulse.

We used a new type of phase-only pulse shaper for this work, incorporating a
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used to adjust the relative delay of colors (and thereby spectral phase)
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Si3Ni4 (600 nm) on a Si substrate and back-etching a window which is

over-coated with a metal. This mirror is suspended over an array of pads

patterned on a PC board. When a voltage is applied to one of the pads,

the mirror deforms due to electrostatic attraction, changing the spectral

phase (c) [71].
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micro-machined deformable mirror [69, 71]. This simple shaper (illustrated in Fig-

ure 2.4) works by separating the color components of the ultrashort light pulse (which

span � 80 nm bandwidth centered at 800 nm) using a grating, then re�ecting them

from the deformable mirror. Subsequently, the color components are reassembled to

form a collimated, temporally shaped, beam. Altering the exact shape of the mirror

can then control the relative arrival time of each color component in the pulse. Thus,

the pulse shaper manipulates the phase of the pulse in the spectral domain, reshap-

ing the pulse shape and phase in the time domain, while conserving the pulse energy.

The mirror itself is a smooth silicon-nitride surface incorporating 19 actuators that

deform the mirror � thus it is possible to precisely control the pulse shape, without

introducing artifacts due to discrete pixellation. Furthermore, by not altering the

spectrum of the pulse, we avoid possible pulse distortions due to nonlinear self-phase

modulation in the ampli�er. The deformable mirror used in this work was capable

of de�ecting up to 4 �m (or 20� at 800 nm), which compensates for the dispersion

accumulated by propagation through 1 cm of fused silica [71]. The exact shape of

the pulse, including the amplitude and phase of the electromagnetic �eld, can be

measured using the second-harmonic generation frequency resolved optical gating

(SHG FROG) technique [72].

The laser system was adjusted to produce a transform-limited laser pulse that

demonstrates the utility of our evolutionary algorithm, and provides a benchmark

pulse shape for comparison with our coherent control experiments descried in chap-

ters 3 and 4. We used an evolutionary algorithm that starts with a population of
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�100 members, each of which corresponds to a particular set of voltages applied to

the 19 mirror actuators (the DNA). The �tness of the corresponding pulse shape is

then measured experimentally. The �tness is simply a quantitative measure of the

desirability of a population member, and for pulse compression, we use the inten-

sity of the frequency doubled laser pulse. The best solutions (largest �tness values)

are selected as parents, which determine future populations (generation) of the al-

gorithm. Several copies of each parent form the set of children. The children are

mutated with a Gaussian noise function to perturb the solutions. The parents and

mutated children are combined to form the population of the next generation. The

process is then repeated until the �tness changes by an insigni�cant amount between

generations; at this point, the process is said to have converged. This typically occurs

in 50 to 100 iterations, with about 100 population members tested for each iteration.

Details of this algorithm can be found in Appendix A, and settings of the algorithm

used to control HHG are given in Chapter 3, while those used to control molecules

are given in Chapter 4.

2.6 Summary

In this thesis, I describe the construction and application of a learning machine

capable of controlling complex, nonlinear quantum mechanical systems in realistic

(i.e., noisy) laboratory environments. This approach is extremely powerful in that

the algorithm determines how to best control the system. Although this approach has

been criticized in the past, Chapters 3 & 4 show that it is very robust and useful. By

allowing the learning machine to search the parameter space for an optimal solution,
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we remove experimenter bias and we show that the learning algorithm discovers new,

unknown, and unexpected solutions. In other words, the learning algorithm truly

can learn.



CHAPTER III

Coherent Control of Atoms: Manipulating the

Process of High Harmonic Generation

3.1 Introduction

In this chapter, I discuss the application of coherent control concepts to the pro-

cess of high harmonic generation (HHG). HHG is a very high-order nonlinear process,

and thus is an excellent candidate system for controlling with complex, temporally

shaped pulses. Unleashing a learning algorithm that controls a deformable mirror

pulse shaper on HHG has proven to be successful, and has demonstrated the control

of electron wavefunctions using light. This control process can be thought of as a

new phase matching mechanism, and this mechanism was discovered by the learning

algorithm itself. This chapter will begin with a brief description of the physics of

HHG. I will then describe the control experiment, and �nally the modelling results

of the process.

The development of high-power femtosecond lasers [73, 69] with pulse durations

of a few optical cycles has led to the emergence of a new area of research in "extreme"

nonlinear optics (XNLO) [74, 75, 76, 77, 78]. High harmonic generation (HHG) is a

30
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beautiful example of such a process. HHG can be understood from both a quantum

and semi-classical point of view [79, 80, 14]. In HHG, an intense femtosecond laser

is focused into a gas. The interaction of the intense laser light with the atoms in the

gas is so highly nonlinear that high harmonics of the laser frequency are radiated in

the forward direction. These harmonics extend from the ultraviolet (UV) to the soft

x-ray (XUV) region of the spectrum, up to orders greater than 300. Because all of

the atoms in the laser interaction region experience a similar, coherent light �eld,

the x-ray emissions from individual atoms are mutually coherent.

High harmonic generation is a very interesting candidate for coherent or feed-

back control experiments for a number of reasons. First, the HHG x-ray emission

has a well-de�ned phase relationship to the oscillations of the laser �eld [15, 81, 82],

as explained below. Second, HHG is one of the highest-order coherent nonlinear-

optical interactions yet observed. Third, there exist both quantum [16, 17, 13] and

semi-classical [80, 14] models of HHG that, although not complete as yet, can be

used to carefully compare theory and experiment. Finally, HHG is a unique type

of ultrafast, coherent, short-wavelength, compact light source. This source can be

used as a powerful tool for time resolved studies of dynamics at surfaces [83] or in

chemical reactions, for x-ray imaging, and for generating attosecond-duration light

pulses [16, 84, 77, 78]. By improving the characteristics of HHG using coherent con-

trol techniques, many potential applications are enabled and made more straightfor-

ward.



32

3.2 Semiclassical model of HHG

The simple semi-classical theory of HHG [79, 80, 14] considers an atom immersed

in an intense, ultrashort laser pulse, where the laser pulse can be treated as a time-

varying, classical electric �eld. At laser intensities of approximately 1014Wcm
�2, the

optical �eld is so strong that the Coulomb barrier binding the outermost electron of

the atom becomes depressed. Electrons can then tunnel through the barrier, leading

to �eld-ionization of the atom. This process occurs twice per optical cycle, during

that portion of the pulse for which the laser �eld is su�ciently strong. Once ionized,

the electrons are rapidly accelerated away from the atom by the oscillating laser

�eld, and their trajectory is reversed when the laser �eld reverses (see Figure 3.1).

Depending on when during the optical cycle the initial tunnelling event occurs, some

fraction of the ionized electrons can recollide with the parent ion and recombine

with it. In this recombination process, the electron kinetic energy, as well as the

ionization potential energy, is released as a high-energy photon. The x-ray emission

bursts occur every half cycle (� 1.2 fs) of the laser �eld for which the laser inten-

sity is su�cient to ionize the atom. However, a particular harmonic (i.e., photon

energy) may be emitted only during a limited number of half-cycles depending on

the kinetic energy required to drive a particular harmonic. In the frequency domain,

this periodic emission results in a comb of discrete harmonics of the fundamental

laser, separated by twice the laser frequency. The exact nature of the emitted x-rays

depends in detail on the exact waveform of the driving laser �eld, because this deter-

mines the phase accumulated by the electron as it oscillates in the laser �eld [81]. In
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atom

accelerated electron

x-ray

Figure 3.1: In the semiclassical picture, the electron wave packet starts from rest af-

ter tunneling out of the atom and appearing in the free-electron "contin-

uum". The electron is accelerated in the laser �eld and on the subsequent

half cycle, the electron is decelerated and turns around to be accelerated

towards the parent ion. During this trajectory, the electron wave packet

accumulates a quantum mechanical phase that is determined by the laser

�eld. This phase can be roughly described classically as the deBroglie

wavelength integrated along the electron trajectory.

this chapter, I discuss coherent control techniques where, by precisely adjusting the

exact shape (waveform) of an intense ultrashort laser pulse on a sub-cycle basis, we

can manipulate the spectral properties of the high-harmonic emission to selectively

enhance particular harmonic orders, and to generate near-transform-limited x-ray

pulses for the �rst time [11].

3.3 Quantum mechanical description of HHG

Although the simple semi-classical picture of high-harmonic generation described

above is well-established and yields very useful predictions of the general character-

istics of high-harmonic radiation, a more complete description requires the use of a

quantum, or at minimum, a more rigorous semiclassical model of the evolution of the

electron wave function [18]. In a quantum picture, the wave function of the atom in

the intense laser �eld evolves in such a way that as the laser �eld becomes su�ciently

strong, small parts of the bound-state electron wave function escape the vicinity of
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the nucleus and are spread over many Bohr radii (� 100). This "free" portion of

the electron wave function can recollide with the atomic core, and re�ections from

the core then lead to very rapid modulations of the electronic wave function, both in

space and in time. The x-ray emission results from the resulting rapid �uctuations

in the overall dipole moment of the atom: in the quasi-classical approximation, the

phase of the induced dipole is determined by the value of the action at its saddle

points. This corresponds to the contribution of the electron trajectories relevant to

this particular emission. In the case of a linearly-polarized strong �eld, we use the

following approximate expression for the dipole moment

d (�) = i

Z �

0

d�b

�
�

"+ i (� � �b)

� 3

2

E (�b) exp [�iS (ps; �; �b)� 
 (�b)] ; (3.1)

where " is a positive regularization constant, and we neglect the bare atomic dipole

moments (atomic units are used here). In Eq. 3.1, we assume that the electron is

ionized at a time �b by the electric �eld E(t), and that it returns to the parent ion at

a time � after �free� motion in response to the laser �eld. Also, in Eq. 3.1, 
 (�b) =R �b

0
w (t)dt, where w(t) is the Ammosov-Delone-Krainov [85] tunneling ionization

rate, and

ps (�; �b) = �
1

� � �b

Z �

�b

A (t0) dt0

is the stationary momentum, for which the quasiclassical action

S (ps; �; �b) =

Z �

0

�
1

2
[ps + A(t)]

2
+ Ip

�
dt (3.2)

has saddle points that correspond to the most relevant electron trajectories. Here

A(t) is the vector potential, Ip is the ionization potential.
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3.4 Classical trajectory analysis

In the quantum picture, it is clear that the phase of the dipole moment of the

atom, and therefore the phase of the electric �eld of the emitted x-rays, depends

on the accumulated phase of the electronic wave function that travels away from

the core and then returns. In a simple semi-classical picture, the phase advance of

the electron during the half-cycle trajectory can be estimated from the deBroglie

wavelength �deBroglie =
h

mv

to correspond to several �cycles� of the electron wave

function (e.g., for the 27th harmonic in Argon, the kinetic energy upon recollision

is 26 eV, corresponding to a velocity of 3 nm/fs, and a deBroglie wavelength of

2.4 Angstrom, and accumulates about 5 waves of phase). With this in mind, the

potential for using precisely-shaped driving laser pulses for �coherent control� of this

system becomes more clear. Modest changes in the exact position of the crests of the

driving pulse as a function of time � that occur on a sub-optical-cycle or attosecond

time-scale � can result in a substantial shift in phase of the x-ray burst that results

from a single half-cycle of the laser �eld.

We can solve the equations of motion for an electron driven by a sinusoidal electric

�eld to obtain a picture of the electron trajectories in the classical picture [79].

Figure 3.2 shows a simple example of electron motion in a �xed-intensity �eld of

2x1014W=cm
2. HHG radiation is emitted when the electron returns to its initial

location, and the electron velocity (i.e., kinetic energy) determines the generated

harmonic wavelength. The distribution of harmonic order emitted as a function

of ionization time in the driving �eld is shown in Figure 3.2(b). This ionization
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Figure 3.2: Classical behavior of electron trajectories driven by a sinusoidal elec-

tric �eld (a). The return energy determines the harmonic order of the

released photon energy (b) at its corresponding emission time. The self-

action phase is calculated by integrating the deBroglie wavelength along

the trajectory of the electron and is plotted in terms of the number

of deBroglie waves (c), and the relationship between the ionization and

emission times (d) shows that the electrons spend a fraction of an optical

cycle in the laser �eld.
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time determines the return kinetic energy, and therefore, the harmonic order of the

emitted photon.

The recollision time is also a function of ionization time (and harmonic order) and

this relationship between the ionization time and the recollision time is plotted in

Figure 3.2(d). We can see that there is a variation in the emission time with respect

to the ionization time, which means there is a relationship between the harmonic

order and the length of time the "free" electron spends in the laser �eld.

The duration of the "free" trajectory of the electron in the light �eld is called

the excursion time, and is found by taking the di�erence between the emission and

ionization time. The excursion time for this simple driving �eld is illustrated in

Figure 3.3. Notice that at the cuto� (i.e., the maximum harmonic energy), there

is only one excursion time, and therefore, one trajectory. However, every harmonic

other than the cuto� has contributions from both a "long" and a "short" electron

trajectory.

The phase accumulated by the electron wavfunction is calculated by integrating

the deBroglie wavelength along the electron trajectory (�deBroglie =
R
kdeBroglie(x)dx

where kdeBroglie(x) =
2�

�deBroglie(x)
where x is the path variable of the electron trajec-

tory) is shown from each emission time in Figure 3.2(c), and as a function of harmonic

order in Figure 3.4. We see that the phase accumulated by the electron is maximum

for the cuto� harmonic, since these electrons have the shortest deBroglie wavelength,

and, therefore, most rapidly accumulates phase, as well as have the longest excursion

time of any harmonic.
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Figure 3.3: Excursion time duration of the electron trajectory calculated by taking

the di�erence between the emission and ionization times.

We can view the time each harmonic spends in the laser �eld (or "�ight time") by

plotting both this ionization and emission times as illustrated in Figure 3.5. The short

trajectories illustrated in Figure 3.5(a) are shown to increase their excursion time

with harmonic order, while the long trajectories experience a decrease in excursion

time with increasing harmonic order.

The �ight times for the short trajectories that recollide and emit photons with the

energy for the 25th, 27th, and 29th harmonic orders are shown in Figure 3.6. There is

nearly complete overlap of the time spent in the laser �eld between these harmonic

orders, yet we show in later sections of this chapter that we selectively increase the

brightness of the 27th harmonic by nearly an order of magnitude. In light of this

picture, it seems surprising. The important parameter for control will be shown to
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Figure 3.4: The "deBroglie phase" of the electron accumulated during the electron

trajectory. This is the classical interpretation of the electron wave packet

phase accumulated by the electon during its "free" trajectory. In the clas-

sical interpretation, this phase is computed by integrating the k-vector of

the deBroglie wavelength along the path of the electron. The deBroglie

wavelength is "chirped" in that the wavelength is not constant along its

"free" trajectory path. For example, at the turning points, where the

direction is reversed, the wavelength is in�nite. The total number of

deBroglie waves can, however, be computed by dividing the phase accu-

mulation by 2�. The "short" trajectory spends less time in the laser �eld,

and accumulated a smaller deBroglie phase than the "long" trajectory.

Thus, the bottom portion of the phase distribution corresponds to the

"short" trajectory, and the top to the "long" trajectory. Notice that the

phase depends on the peak intensity of the half-cycle, and, therefore, is

not the same on each half-cycle of the driving laser pulse.
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be the free electron wave packet phase. Note that the rate of phase accumulation

varies during the electron trajectory. For example, near the turning points (i.e.,

the stationary points), where the electron slows down and reverses direction, the

rate of phase accumulation is nearly zero. As a result, although most of the time

that each neighboring electron trajectory spends in the laser �eld is coincident, the

range of time over which the electron wave packet is e�ectively controlled is not the

same for each harmonic, making selective control possible. We do expect there to

be some coupled behavior between harmonic orders as the pulse shape is changed.

This coupling is observed in correlations between neighboring harmonics with nearly

optimal pulse shapes in a later section of this chapter.

This classical trajectory analysis gives us an intuitive classical representation for

the important control parameters for the manipulation of the HHG process. To

calculate reliable, quantitative information, a more sophisticated formalism is used

in a later section; however, this analysis shows that, we expect some selective control

among harmonic orders to be possible.

3.5 Finite time response

The preceding sections outline the features of HHG that allow us to manipulate

the properties of emitted HHG radiation from a single atom. This raises a funda-

mental question as to why it is possible to tailor the nonlinear polarization that leads

to HHG. In low-order electronic nonlinear optics, the response time of the nonlin-

earity is essentially instantaneous. As a result, the polarization depends only on

the instantaneous driving �elds, and not on a history of the �eld. The phase of the
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Figure 3.6: Flight time of the 25th, 27th, and 29th for the short trajectories.

nonlinear polarization is transferred to the radiated light at the harmonic frequency.

To maximize conversion to the new color, all of the radiation emitted during the

driving pulse must be in phase and add together constructively. The simplest way

to meet this condition is to use a transform-limited pulse, because the phase across

the pulse is "�at."

A notable exception to the instantaneous response of perturbative nonlinear op-

tics was observed by Yaron Silberberg's group [58]. In a two photon absorption

(TPA) experiment with an intermediate resonance, Silberberg's group showed that

a non-transform-limited laser pulse can increase the TPA absorption by a factor of

7 with a shaped laser pulse, even when the peak intensity of that laser pulse was

reduced. To excite TPA, pairs of photons within the laser pulse bandwidth must



43

sum together to equal the electronic transition frequency. When the TPA system

lacks a resonance, the photon pairs must arrive simultaneously, and this condition is

guaranteed for a transform-limited laser pulse. However, when an intermediate res-

onance is present, population can be transferred to the intermediate electronic state

and is stored here for a �nite time, creating a "memory" e�ect. Photons absorbed

by the intermediate resonance experience a storage time inversely proportional to

the detuning from the resonance frequency. Because of this "memory," photon pairs

that sum to the TPA frequency no longer need to arrive at the same time in the

pulse. They can now be separated by a time equal to or shorter than the "storage

time" of a given photon frequency. As a result, a non-transform-limited laser pulse

produced more TPA absorption than does a transform-limited laser pulse.

Equations (3.1) & (3.2) show that the nonlinear polarization for HHG is not

instantaneous, and depends on the cumulative e�ect of the driving �eld over the sub-

cycle (< fs) time of its excursion. The result is that the phase of the HHG radiation

during the pulse is not a direct re�ection of the driving pulse phase, but depends

on the time-history of the driving pulse phase and intensity during its excursion.

As a result, a transform-limited pulse is not optimal, because it will imprint an

irregular phase on the HHG radiation. Thus, the selectivity of a particular order is

"engineered" in the system through pulse shaping. The e�ect of the phase change on

each half-cycle could be eliminated using a "�at-top" pulse, but this would not be

selective among harmonic orders. A time-varying intensity, combined with a time-

varying pulse phase can give counter-balancing factors that can be manipulated for
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selectivity. Although the attosecond time scale of this response might be thought to

make it di�cult or impossible to coherently control the process, in fact, the very high

order-nature (i.e., extreme phase sensitivity) of this process gives us a "lever" with

which we can control the phase evolution of the process with very subtle changes in

the driving pulse shape.

3.6 Early attempts of HHG control

In the simple case where high-harmonic generation is driven by an unchirped,

transform-limited, laser pulse, the HHG light generated on the leading edge of the

pulse, where the driving pulse intensity is rising rapidly, will be emitted with an

intrinsic negative chirp. This is because the electrons released on each subsequent

half-cycle traverse an increasingly longer path away from the atom, resulting in a

larger phase-shift of the electron wave function at the time of recollision, and travel

faster, resulting in a more energetic recollison and thus a shorter x-ray wavelength.

This results in a spectral broadening of the peaks in the HHG emission spectrum [15,

81]. Imposing a positive chirp on the driving laser pulse can counteract this intrinsic

negative phase, restoring a series of well-de�ned harmonic emission peaks in the

spectrum, as illustrated in Figure 3.7. In this past work, where a simple linear

chirp is applied to the excitation pulse, all harmonic orders were observed to behave

similarly in terms of spectral widths, and the overall x-ray �ux does not increase.

Attempting to control HHG with a linearly chirped laser pulse did not result in a

substantial increase in HHG intensity or �ux, nor did it exhibit selectivity among

harmonic orders.
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tion [81]. The pulse duration is controlled by adjusting the linear chirp
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becomes well-resolved, while the structure is degraded for a negatively

chirped driving laser pulse.



46

Although past work that studied HHG excited by simple linearly chirped pulses

has proven very useful in understanding the fundamental processes involved, theo-

retical models of HHG predict that the intrinsic chirp resulting from the electron

trajectory is not in-fact linear. By altering the shape of the driving laser pulse in a

more sophisticated manner using a pulse shaper [69, 86, 71], one can expect to be

able to manipulate the spectral characteristics of the XUV emission more precisely.

In this work, however, we demonstrate that coherent control can manipulate the pro-

cess in ways that are much more powerful than was originally thought. By adaptive

feedback control of the pulse shape using an evolutionary algorithm [69, 3, 59, 2], we

demonstrate experimentally that we can not only control the spectral characteristics

of high-order harmonic generation (HHG), but also can very-substantially enhance

the overall brightness of the HHG emission in a selective fashion.

3.7 HHG Control Experiment

The process of high-harmonic generation is best implemented using very short-

duration (� 100 fs) light pulses, since these pulses allow a relatively high intensity to

be incident on a neutral atom prior to ionization, resulting in more-e�cient genera-

tion of higher-energy harmonic photons [87, 88, 89]. Furthermore, to make coherent

control practical, the number of trajectories should be limited to a small number

( 10). In this work, the driving pulse shape is manipulated using the deformable

mirror described previously. Although this type of pulse shaper is limited in that

it is a "phase-only" shaper and cannot alter the spectrum of the driving pulse, this

has not been proven to be a signi�cant limitation in controlling a highly-nonlinear
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process such as high-harmonic generation. Color-components that are not wanted

can always be moved to early or late times within the pulse where no HHG is taking

place.

The di�culty of calibrating the pulse shaper to generate a predetermined pulse

shape, as well as the uncertain accuracy of theoretical models that might predict an

optimum pulse shape, make a "one-step" optimization of the HHG process (i.e., pre-

dict an optimum pulse shape and program it into the pulse shaper) both impractical

and undesirable. Instead, we implemented a learning algorithm to train the laser

system to optimize the high-harmonic emission.

This scheme requires a large number of repeated trials, which is possible in a

reasonable time because of the high photon �ux generated through phase-matched

high-harmonic generation [90, 91]. In phase-matched frequency conversion, an envi-

ronment is created where both the fundamental and the harmonic radiation travel

through an extended medium at the same phase velocity. This allows the nonlinear

signal of all atoms within this region to add coherently and constructively, enhanc-

ing the output signal. Phase matching is characterized by a reduction of destructive

interference in order to increase total harmonic signal levels. In conventional nonlin-

ear optics at visible wavelengths, phase-matching is typically accomplished using a

birefringent crystal oriented such that the pump beam (in one polarization) and the

signal (in another) travel at the same speed. In the case of high-harmonic generation,

the XUV light propagates in a low-pressure, isotropic gas, precluding the use of bire-

fringence e�ects. Instead, we propagate the light in a waveguide structure (simply a
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hollow capillary tube), and use the frequency-dependent phase velocity of the waveg-

uide, in combination with the gas dispersion, to achieve phase matching. In the case

of phase-matched high-harmonic generation, the total conversion e�ciency is still

limited by e�ects such as the strong absorption of the HHG radiation in the gas,

and the e�ects of ionized electrons on phase-matching. Nevertheless this technique

allows us to achieve conversion e�ciencies of � 10�5 to photons energies of �50 eV,

while also using a kilohertz repetition-rate, millijoule pulse-energy laser system. The

resulting �ux is su�cient to obtain a high signal-to-noise high-harmonic spectrum in

a single shot using a �at-�eld x-ray spectrometer. In practice, our apparatus can try

�100 di�erent pulse shapes per second. Equally important, since the output signal

we observe results from an in-phase coherent addition of individual atomic responses,

many e�ects and distortions of the pulse spectrum that might result as a result of

propagation are minimized. Essentially, phase-matching allows us to approach the

"single atom" response to the driving laser.

To demonstrate that the evolutionary algorithm selects a pulse shape unique to

optimizing the high-harmonic generation, we preceded each HHG optimization run

with a pulse-duration optimization. This allows us to start with a time-bandwidth-

limited pulse, and see how the HHG optimized pulse di�ers from it. The time-

bandwidth limited pulse is obtained by using the evolutionary algorithm with a feed-

back signal derived from second-harmonic generation of the pulse [69, 71, 92, 93, 7].

A fraction of the laser output is sent into a second-harmonic crystal. The con-

version e�ciency of the SHG increases with the peak intensity of the fundamental
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Figure 3.8: Experimental set-up for optimization of high-harmonic generation.

pulse; thus the most intense pulse, which occurs when all component frequencies

of the pulse have the same relative arrival time, produces the largest �tness value

and corresponds to the Fourier transform-limited pulse. This computer optimization

converges after about 100 generations of about 100 trials each (10,000 total "experi-

ments"). This optimization takes �10 minutes of real time, and converges very well

to a transform-limited pulse, as was veri�ed by making FROG measurements on the

pulse.

Subsequent to this optimization, the HHG optimization is performed. The set-up

is shown in Figure 3.8. The x-ray output from a hollow core �ber is passed through

a 100 nm aluminum �lter to eliminate the fundamental IR beam, while passing

photon energies up to 72 eV. An imaging x-ray spectrometer (Hettrick SXR-1.75)

was used to image the spectrum onto an x-ray CCD camera. (Andor Technologies) A

computer reads-in the HHG spectrum and evaluates the �tness criterion. The �tness

functions used to evaluate the harmonic spectrum will di�er depending on the goals
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of the optimization process. A particular harmonic is designated as the spectral �ux

(sj) integrated over a 0.5 eV bandwidth about that harmonic (corresponding to the

resolution limit of our spectrometer/CCD system). Table 3.1 lists a number of �tness

functions we used for various optimization goals. The simplest �tness criterion to

use is simply to observe the peak intensity of a single harmonic order (Table 3.1(a)).

Alternatively, it is possible to select for enhancement primarily of only one harmonic

order (Table 3.1(c)). Figure 3.9 shows the result of such an optimization at 30 torr of

Argon gas pressure in a 175 �m diameter fused silica capillary 29 mm long [11]. This

pressure is optimum for phase matching in this geometry. We see that the intensity

of the 27th harmonic can be increased by a factor of eight over that obtained using a

transform-limited pulse. Furthermore, the brightness of other harmonic orders does

not increase as much, and the spectral bandwidth of the harmonic order decreases.

This is very desirable for application experiments such as time-resolved photoelectron

spectroscopy that require monochromatic emission.

Various �tness functions used by the learning algorithm

Goal Form Notation

(a) Increase brightness f := (sj;k : sj;k � sj;iV i) Mj

(b) Increase energy f :=
P
i

sj;i Ej

(c) Select a single harmonic f := Ej �
1
2
(Ej�2 + Ej+2)

(d) Select a single harmonic f :=Mj �
1
2
(Mj�2 +Mj+2)

Table 3.1: Various �tness functions used by the learning algorithm; sj refers to the

j
th harmonic spectrum. (a) �nds the maximum value of a given harmonic

order, (b) �nds the energy of a given harmonic order with summation

over i, (c) selects a single harmonic order with an energy criterion, and

(d) selects a single harmonic order with a brightness criterion.

The result discussed above is remarkable in that we have shown that although

second-harmonic emission is optimized using the highest peak-power, transform-
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Figure 3.9: Optimization of a single (27th) harmonic in argon while suppressing ad-

jacent harmonics.

limited pulse, high-harmonic emission is optimized with a non-transform limited

pulse. This is a manifestation of the fact that HHG is fundamentally a non-perturbative

process � slight changes in pulse shape can "channel" excitation from one harmonic

order to another.

The optimized pulse shape is actually only slightly di�erent from the transform-

limit�21 fs as opposed to the 18 fs transform limit. Figure 3.10 shows the laser

pulse shapes corresponding to the transform-limited and �nal (iteration number 94)

HHG spectra shown in Figure 3.9 measured with SHG FROG. The intensity pro�le

of the optimized and unoptimized pulses is nearly the same (Figure 3.10). However,

a slight pre-pulse appears on the leading edge of the optimized laser pulse. The

intensity of this pre-pulse is too weak to lead to ionization or HHG, and is an artifact
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ure 3.9: (a) initial transform-limited pulse (dashed) and optimized pulse

shape (solid); (b) initial (dashed) and optimized temporal phase (solid).

of our pulse shaper. The intensity pro�le does not produce signi�cant changes in the

HHG spectrum, but there is a change in the temporal phase on the optimal pulse

that results in the observed spectral changes. In the region of time where there

is signi�cant pulse energy, the transform-limited pulse has a �at phase, while the

optimal pulse has a small, but highly nonlinear temporal phase across the pulse.

As explained below, it is this very slight change in the pulse used to drive the

HHG process can result in a substantial and bene�cial change in the output energy,

brightness, and spectrum of the HHG radiation.

Other �tness criteria select di�erent optimal outcomes. Figure 3.11 shows the

results of an optimization run in which the brightness of the 27th harmonic is used as

the �tness criterion. In this solution, the brightness of the harmonic is increased by

more than an order of magnitude. The spectral resolution of the measured spectral

width shown in Figure 3.11 is instrument limited at 0.24 eV FWHM. A spectral

comb produces a pulse train in time, where the time-duration of each spike in the
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pulse train is determined by the number and spacing of frequency comb lines. The

number of pulses in the pulse train is determined by the width of each line in the

frequency comb. The spectrum in Figure 3.11 has an overall bandwidth of �6 eV

and a comb line width of �0.24 eV, which corresponds to a Fourier transform-limited

pulse train with a time-envelope of �5 fs with 200 as structure. Before optimization

the bandwidth of this harmonic peak was > 1 eV, with roughly the same overall

bandwidth, but corresponds to a transform-limited pulse train envelop of � 1.2

fs. Simulations predict that a 5 fs pulse train will be produced by a 20 fs driving

pulse. By applying a nonlinear chirp on the optimum pulse shape, the spectrum

was reshaped in a way that made the Fourier transform of the measured spectrum

consistent with the time-domain structure expected from our simulations. Thus,

the optimization process can likely generate near-transform-limited x-ray pulses for

certain �tness criteria.

Figure 3.12 shows the highest enhancements we have observed to date. Here,

the 21st harmonic is observed to increase by a factor of 33 when excited by an

optimized pulse compared with a transform-limited excitation pulse [12]. This large

enhancement is possible because no selectivity requirement has been imposed. As a

result, the algorithm �nds a pulse shape that optimizes each harmonic order. In later

sections, we show that the selective optimization is a result of the �attening of the

relative phase of x-ray radiation from each half-cycle for the target harmonic. Because

we can achieve higher optimization enhancements for a non-selective criterion, it

seems that �attening many of the plateau harmonic phases is easier than to do it in
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window at longer wavelengths than in Figure 3.9 and without suppress-

ing adjacent harmonics. The harmonic peak is enhanced by over an or-

der of magnitude. Harmonics before and after optimization are shown

solid and dashed respectively.

a selective manner.

Although the data of Figures 3.11 and 3.12 show the highest enhancement ob-

served in our experiments to date, all harmonics optimized in any noble gas we

observe some enhancement of the x-ray signal after optimization. As an example,

Figure 3.13 shows the results of a series of experiments in which successive individ-

ual harmonic orders (17-23) were optimized in Krypton at a pressure of 4 torr. The

�tness function used for these harmonics is that of Table 3.1(d). Each harmonic

order optimization was successful to varying degrees with brightness increases from

1.7 to 6 and increases of the energy in the optimized harmonic order from 5 % to

220 % [12]. To distinguish between the optimized pulses corresponding to the series

of harmonics shown in Figure 3.13, a Wigner distribution (a type of time-frequency

representation of the pulse) can be used. We observe that the optimal pulse shape
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results from spectral phase changes in di�erent spectral regions of the pulse for each

optimization of Figure 3.13.

As the energy of the driving laser pulse increases, the x-ray emission becomes

stronger and then eventually saturates, as shown in Figure 3.14(a). This saturation

is accompanied by a reduction in the rms �uctuations of the x-ray output, as shown

in Figure 3.14(b). Also plotted on this �gure is the peak enhancement factor of a

single harmonic order as a function of driving pulse energy. At low pulse energy,

the enhancement factor is very weak. However as the pulse energy increases, the

enhancement factor also increases. Once the HHG process saturates, the driving

laser pulse can be stretched to a longer duration while still having su�cient intensity

to create the necessary harmonic orders, providing freedom to change the pulse shape

or waveform in order to optimize the harmonics. By contrast, prior to saturation,
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the necessary pulse shape changes to the driving laser pulse often reduce the peak

intensity of the pulse su�ciently such that the particular harmonic order can no

longer be generated.

3.8 Theory of HHG Optimization

In collaboration with Ivan Christov, we have developed a successful theoretical

model of this HHG optimization process that explains the physical basis of the op-

timization [13]. Using this model, we show that a new type of "intra-atom" phase

matching is possible as a result, where an atom is driven by an optimal optical

waveform. For an optimized laser pulse shape, the x-ray emissions from adjacent

half-cycles of the laser pulse can add in phase. This leads to strong constructive
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interference in the frequency domain between emissions from electron trajectories

from di�erent half-cycles, thereby selectively enhancing a particular harmonic order.

This mechanism is based on the interaction of a short pulse with a single atom�

in contrast to traditional phase matching techniques that depend on propagation

e�ects.

This model is a highly optimized version of the Lewenstein model [18] that calcu-

lates HHG spectra in a semiclassical approximation. We apply a learning algorithm

to the model, which runs at speeds comparable to the experiment, and which applies

the same �tness functions to the HHG emissions as in the experimental optimiza-

tion. The model predicts an optimized pulse shape and emission spectrum that is

very close to the experimental results � in the case of selective optimization of a

single peak, for example, an enhancement of �8x is predicted (Figure 3.15), using

an optimized laser pulse shape slightly longer than the transform limit. Figure 3.16

shows the experimental and calculated optimized laser pulse shapes, together with

the corresponding phase. There is excellent agreement, with both pulses exhibiting a

nonlinear "chirp" on the leading edge. Harmonic radiation is generated throughout

the duration of the driving laser pulse during the time when the intensity is su�cient

to ionize and accelerate the electrons to high velocity. However, during the course

of the laser pulse, the ionization steadily rises. The increased level of ionization on

the trailing edge of the driving laser pulse destroys the phase-matching conditions.

The loss of phase-matching means that only the HHG radiation generated on the

leading edge contributes strongly to the overall signal level. As a result of the weak
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Figure 3.15: The measured HHG spectra for the transform-limit (blue) and opti-

mized pulse (red) (a) is well reproduced by the HHG spectra calculated

by our theoretical model the for the transform-limit (blue) and opti-

mized pulse (red) (b).

contribution to the HHG signal from the trailing edge of the pulse, the temporal

phase of the optimal pulse the trailing in either the experimental or theoretical case

is random, and the �tness functions do not select any particular shape for the trailing

edge of the pulse.

This model is a novel theoretical approach to high-harmonic generation that

couples a fully quantum model of the electron response with a semiclassical elec-

tron trajectory picture. In the quasiclassical model, the x-ray emission results from

rescattering of an electron, ionized in a strong laser �eld, with its parent ion. In
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our approach, each harmonic order appears as a result of a constructive or destruc-

tive interference of the contributions of a number of rescattered electron trajectories.

Since the amplitude and the phase of the contribution of a given electron trajectory

to the dipole moment is directly related to the amplitude and the phase of the laser

�eld at the time of ionization, it is intuitively clear that by shaping the waveform of

the laser pulse, one may control the interference e�ects in the x-ray emission that

comes from these di�erent electron trajectories. In this way, a signi�cant redirection

of energy between the di�erent harmonics within the harmonic comb is possible.

Such improvements are not possible by simply changing the linear chirp of the driv-

ing laser pulse, as has been demonstrated previously [81]. We note that the results

presented here do not take into account propagation e�ects. This is a reasonable as-

sumption since we use a phase-matched geometry [90, 91]. When the HHG process is

phase matched, the fundamental light is made to propagate at the same velocity as

the HHG light, and prevents a relative phase-slip between HHG radiation generated

from di�erent atoms at di�erent locations in the �ber. Thus, the phase-matching

geometry e�ectively minimizes the e�ect of an extended source region on the HHG

signal (with the exception of absorption of the HHG radiation) where propagation

e�ects are smaller than the single-atom e�ects considered here.

We use Equations (3.1) & (3.2) to calculate the dipole phase and intensity in time,

then the dipole acceleration is Fourier transformed to obtain the HHG spectrum. We

assume that the degree of ionization is low, in agreement with the experiment [11].

The integral in Eq. (3.1) can be converted to a sum by calculating the saddle points of
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Figure 3.16: Experimental and calculated optimized laser pulse shapes, together with

the corresponding temporal phase. The experimental phase trace is the

di�erence between the measured optimized and initial temporal phase

in Figure 3.10 scaled by a factor of four in amplitude.

the action with respect to the ionization time �b [94, 95]. For the quasi-free electron,

the saddle-point condition reduces to an implicit connection between the saddle-

point time �b;s, and the return time � . In fact, the calculation of the time-dependent

dipole moment in Eq. (3.1) can be simpli�ed further by assuming that for each time

� the major contribution corresponds to only those electrons which have been ionized

in the interval (� � T; �), where T is the period of the laser light. By comparing

the harmonic spectrum calculated by Eq. (3.1) with a full numerical solution of

the Schrodinger equations, we veri�ed that there is good agreement between the

semiclassical theory and the fully quantum theory, for laser pulses longer that 10 fs

(centered at 800 nm) where nonadiabatic e�ects can be neglected [16, 96].

In the case of a free electron, simple integration reveals that the action, and hence,
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the dipole phase, is proportional to the laser intensity. Near cuto�, harmonics are

generated by only a few electron trajectories corresponding to electrons ionized near

the peak of the pulse, and therefore the phase of the harmonics is close to quadratic.

Past work has demonstrated that this intrinsic phase can be compensated for by a

linearly chirped laser pulse, but without any enhancement or selectivity of the har-

monics [81, 96, 15]. In contrast, in the mid-plateau region of the harmonic spectrum,

more electron trajectories contribute to the emission. Some of these trajectories cor-

respond to ionization times further from the peak of the laser pulse, and therefore

a more complex (nonlinear) phase modulation of the harmonic orders appears. Us-

ing a laser pulse with an appropriate nonlinear amplitude and phase modulation of

the atomic dipole can result in the generation of more temporally coherent x-ray

emission.

3.9 Intra-atomic phase matching

To obtain an intuitively clear picture of the optimization process, we calculate

the contributions of the individual electron trajectories to a particular harmonic. We

Fourier-transform the time-dependent dipole moment given by Eq. (3.1), and then

calculate the Fourier integral by using the saddle point technique with respect to the

return time � [97]. The resulting expression for the amplitude of the mth harmonic

is the sum of the complex contribution from each trajectory (s) that contributed to

the mth harmonic order; omitting some slowly varying terms, we obtain

d (�) /
X
s

�
�

"+ i (�s � �b;s)

� 3

2

E (�b;s) expf[�iS (ps; �s; �b;s)� !m�s � 
 (�b)]g;

(3.3)
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Figure 3.17: (a) Phase distribution of the most relevant trajectories before (dia-

monds) and after (squares) optimization. (b) Phase distribution of

neighboring harmonic orders after optimization.

where �s is the saddle-point value of � , which is determined by the relation

1

2
[ps(�s; �b;s) + A(�s)]

2 + Ip = ~!m:

This relation poses an additional restriction on the number of relevant trajectories,

by limiting them to only those that contribute to the harmonic of interest. Equation

(3.3) is a special representation of the dipole moment, allowing one to calculate

directly the amplitude and phase of the contributions of the individual trajectories

from each half-cycle. In our simulations, we observe the same degree of enhancement

for a given harmonic for a variety of pulse shapes, provided they have the same

nonlinear chirp (within � 5 %).

Figure 3.17 illustrates the essence of the optimization process. In Figure 3.17(a),

the diamonds show the time dependence of the phase of the 25th harmonic when
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generated by a transform limited pulse. This dependence is close to parabolic, which

re�ects the e�ect of the laser-induced intrinsic phase of the atomic dipole. In contrast,

the phase dependence for the optimized laser pulse (squares) is almost �at, with a

phase error corresponding to a time delay of less than 25 attoseconds � which is

considerably smaller than the period of the 25th harmonic (106 attoseconds). This

e�ect can be interpreted as a phase matching that takes place between the atom and

the laser pulse, ensuring that the phases of the contributions from di�erent electron

trajectories are locked within a narrow time interval. This leads to a strong positive

interference e�ect in the frequency domain, optimizing the temporal coherence of

the harmonic �eld. Figure 3.17(b) shows the temporal phase of the trajectories that

contribute to the 23d and 27th harmonic orders for the identical laser pulse shape

which optimizes the 25th harmonic (Figure 3.16). It can be seen that the optimal

pulse shape for the 25th harmonic "over-compensates" the phase for lower-order

harmonics and "under-compensates" the phase for higher order harmonics.

The degree of selectivity possible in controlling the relative intensity of harmonics

of the HHG spectrum is determined by the degree to which the electron trajecto-

ries that generate each harmonic order are independent. More precisely, it depends

on how independent the regions over which the electron wave packet phase is accu-

mulated for a trajectory that contributes to one harmonic order vs. another. We

see from section 3.4 that there is signi�cant overlap between the trajectory times of

neighboring harmonic orders. It is clear that some independence exists, allowing for

energy to be channeled among harmonic orders and leading to selective control of the
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Figure 3.18: The anti-correlation of the intensity of neighboring harmonic orders of

nearly optimal driving pulses illustrates the degree to which selective

control is possible in HHG. The harmonic peak intensities from Fig-

ure 3.9 are plotted for the 25th, 27th, and 29th harmonic orders (a). The

correlation between those intensities is shown for early (b) and later (c)

generations.
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HHG spectrum. However, because most of the trajectories experience an overlap,

we also expect correlated behavior between harmonic orders for pulse shapes that

are very near optimal. As the algorithm tries di�erent pulse shapes to learn to best

control the system, many nearly optimal pulse shapes are tried. A pulse shape that

provides a �at phase for the trajectories for the target harmonic will introduce some

curvature into the neighboring harmonic orders. We see from Figure 3.17(b) that the

phase distribution of the neighboring harmonic orders has opposite curvature. Thus

if a nearly optimal pulse shape "�attens" the phase distribution for one harmonic

order, then the other neighbor will have a more-curved trajectory phase distribution.

This should be re�ected in an anti-correlation of the intensity of the neighboring

harmonic orders during the optimization. Figure 3.18(a) shows the intensity of the

25th, 27th, and 29th harmonic orders for the best result for each generation from the

data in Figure 3.9. Pulse shapes at the beginning of the optimization run show no

speci�c correlation pattern as illustrated in Figure 3.18(b), however, near conver-

gence of the algorithm, a distinct anticorrelation appears in the data as depicted in

Figure 3.18(c).

The results obtained from the rigorous semi-classical approach described above

have been independently veri�ed by Chu [98] using a full three-dimensional quantum

mechanical treatment using a learning algorithm. Their results �nd very similar

solutions to those found in our experimental and theoretical work. However, the

success of the semiclassical approach demonstrates that the approximations implicit

in the semiclassical model are both necessary and su�cient for the description of the
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intra-atomic phase-matching process.

There are two scenarios that could lead to enhancement in the x-ray emission

from the HHG process. The �rst is the intra-atomic phase matching idea discussed

above. Another possible approach is to enhance the dipole at the optimized harmonic

frequency at some time in the pulse. One mechanism for enhancement of the dipole

response is through the creation of a wavefunction that optimizes the recollision

cross section for electron wave packets with a desired kinetic energy. This is a

more standard picture of coherent control in which an overall atomic wavefunction

is sculpted by electron wave packet interferences to produce an optimal result. This

optimization mechanism will result in an increase in the dipole strength for the

target harmonic after a few half-cycles of the laser pulse. Thus, the intra-atomic

phase matching mechanism is easily distinguished from the dipole-enhancement by

looking at the dipole strength of the harmonic on each half-cycle of the laser pulse.

Figure 3.19, shows the strength of the dipole emission at the optimal harmonic

from di�erent half-cycles of the laser pulse. This �gure clearly shows that the dipole

emission strength follows the �eld and is not increased at later times for the optimal

�eld, as would be expected if the dipole emission were strengthened due to construc-

tive interference of the overall wavefunction of the atom. In the calculation, the

x-ray wavelets from each half-cycle are made to interfere implicitly when the dipole

acceleration is Fourier transformed to obtain the HHG power spectrum. There is no

interaction of the x-ray radiation with the driving laser �eld or the atom emitting

the x-ray radiation. The results clearly demonstrate that both the selectivity and
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Figure 3.19: Time dependence amplitude of dipole strength of the most relevant tra-

jectories that contribute to the target harmonic (solid line) and the

envelopes of the corresponding laser pulse (dashed line) before opti-

mization (a), and after optimization (b).

the increased conversion e�ciency are solely due to the interaction of the driving

laser �eld and a single atom due to intra-atomic phase matching.

This model clearly illustrates the physics behind the shaped-pulse optimization

and demonstrates that the optimization results from a single-atom e�ect. It con-

�rms that the total x-ray signal is the result of coherent interference of the emissions

resulting from a number of electron trajectories that emit the correct photon energy

on recollision, as illustrated schematically in Figure 3.20. In the medium, the laser

pulse propagate through each essentially stationary atom. Alternatively, in the ref-

erence frame of the pulse, we can view this as atoms traveling through stationary

laser pulses. In this picture, each time the atom passes through a half-cycle of the
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Figure 3.20: Schematic representation of intra-atomic phase matching.

laser pulse, an x-ray burst is generated. If we �lter out the target harmonic, we

can view this as a series of short, narrow-bandwidth x-ray bursts (or wavelets). For

a transform limited pulse the phases of these wavelets are misaligned, and the re-

sulting destructive interference results in a weak harmonic signal. The optimization

process shifts the phases of the x-ray wavelets so that they are aligned, resulting in

an increase in the brightness of the harmonic. The changes to the driving laser pulse

aligns the x-ray wavelets with a 25 attosecond precision.

Manipulating the phase of the x-ray bursts such that they add together con-

structively generates a larger x-ray �ux due to a reduction of destructive interference

pathways. This is exactly analogous to traditional phase matching. The observed in-

crease in total x-ray �ux as a result of re-phasing of harmonic emission therefore rep-

resents a new type of intra-atomic phase matching during the laser-atom interaction,
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and that manipulates the time-evolution of quantum system on a sub-optical-cycle

or attosecond timescale.

3.10 Attosecond science

The demonstration of the control of a process on an attosecond timescale rep-

resents the emergence of a new paradigm in the manipulation of matter. In this

work, we have demonstrated that it is possible to control a process with attosecond

precision using a properly tailored laser pulse whose duration is substantially longer

than a femtosecond. In fact, an optical cycle of the central wavelength (�2.4 fs)

is two orders of magnitude longer than the timescale of the control demonstrated

here (�25 as). The reason that control of the electronic wave packet is possible is

that it responds to the �eld, and its trajectory is determined by the integral of the

driving �eld during its excursion in the free-electron continuum. As illustrated in

Figure 3.3, the electron trajectories last a fraction of an optical cycle. The control

of the electron wave packet required for intra-atomic phase matching is achieved by

adjusting the local trajectory, which modi�es the electron wave packet phase. The

relative change between electron wave packets from di�erent half-cycles aligns the

phases using slight adjustments in the amplitude and phase of the driving laser pulse.

Furthermore, the carrier-phase o�set need not be stabilized because the control oc-

curs during the interaction of a single laser pulse and atom. In our experiment, we

are making use of the di�erence in the evolution of the systems from one half-cycle

to another. In essence, we take a "snapshot" of the system (on each half-cycle)

and superimpose the "photos." Because the picture changes on each half-cycle, we
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are sensitive to dynamic changes. However, because we are superimposing a small

number of pictures (� 10), we can still observe the dynamics. This experiment goes

a step further than simply observing the sub-cycle by sub-cycle dynamics; here we

control the "pictures" on each half-cycle to make the each picture one each half-cycle

the same.

Any process that responds to a fraction of a cycle of the �eld of an optical pulse

can be manipulated on a sub-cycle, and therefore, attosecond (at 800 nm) timescale.

A recent experiment at the NRC in Ottawa has demonstrated that excited-state

wave packets in H2 can be manipulated in a similar manner shown in our work [99].

3.11 Summary

In summary, this chapter demonstrates adaptive or "learning" control of a very

high order nonlinear process in the strong-�eld regime for the �rst time. We demon-

strate signi�cantly increased enhancement and selectivity of individual harmonic

orders, as well as the generation of near-transform-limited x-ray pulses. Both theory

and experiment con�rm that we achieve optimization and control of the HHG pro-

cess by adjusting the relative timing of the crests of the optical wave on a sub-cycle

or attosecond timescale. This adjustment changes the recollision-time of an electron

with an ion with a precision of � 25 attoseconds. Furthermore, we have shown that

this optimization process has uncovered a new type of intra-atomic phase matching.

For an optimized laser pulse shape, strong constructive interference can be obtained

in the frequency domain between di�erent electron trajectories generated from di�er-

ent half-cycles of a laser pulse, thereby optimizing a particular high-harmonic order.
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Microscopically, the optimized laser pulse shaped is mapped onto oscillations in the

wave function of the ionizing electron, thus generating an optimized atomic dipole

moment for x-ray generation.

This novel type of phase matching occurs within a single atom, and is very distinct

from conventional phase matching. In conventional phase matching, the velocities

of the fundamental and harmonic waves are "matched" throughout an extended in-

teraction medium, thereby increasing the harmonic output [90]. In contrast, here

a single-atom interacts with an optimized optical waveform. This process also has

an analog in mode locked lasers, except that in this case the constructive interfer-

ences occur in time instead of in frequency. We note that the total integrated x-ray

�ux, both experimentally and theoretically, increases as a result of optimization.

Therefore, more laser energy is converted into forward-directed x-rays as a result

of the intra-atom phase matching process. Finally, this selective optimization could

not be achieved using a �attop, fast rise time, pulse. Even if such a pulse could

be generated experimentally (which is not possible at present because signi�cantly

more bandwidth would be needed), it would likely enhance all harmonics, without

any selectivity. Using optimally shaped pulses, we achieve a higher degree of control

by combining the non-linear chirp of a laser pulse with the nonlinear phase of the

HHG. The physical reason for our ability to control HHG is that the harmonic emis-

sion is due to a high-order electronic nonlinearity with a �nite response time. This

work is the �rst to take advantage of this non-instantaneous response to enhance a

nonlinearity.
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Our results have immediate utility for the probing of dynamics of chemical and

material systems, because it provides a way to select a harmonic without temporally

broadening it. The result is a bright, quasi-monochromatic, transform-limited, and

highly spatially-coherent soft x-ray light source for use in techniques such as pho-

toelectron spectroscopy and spectromicroscopy, time-resolved x-ray studies of ma-

terial and chemical systems, and time-resolved holographic imaging. Finally, HHG

has proven to be a fruitful test-bed for further work in quantum control concepts,

because theoretical models are available to aid in understanding the outcome of

optimization. For example, the speed and robustness of di�erent algorithms can

be evaluated, to learn more about multi-parameter optimization. Finally, we note

that the application of an evolutionary learning algorithm resulted in our obtaining

a deeper understanding of the dynamics of this quantum system; i.e. "learning"

algorithms really do result in learning.



CHAPTER IV

Coherent Control of Molecules: Manipulating

Molecular Degrees of Freedom

4.1 Introduction

Controlling atoms and molecules with coherent optical �elds has been a long-

standing goal in chemical physics [1, 2]. With the advent of ultrafast lasers capable

of generating pulses that are short in comparison to molecular timescales, there has

been considerable interest in creating, controlling, and measuring vibrational wave

packets. There has been increasing interest in not only achieving control in quantum

systems, but also in understanding the control mechanism, which has proven to be

a challenging task.

Early experiments generated wave packets in excited electronic states and demon-

strated control over the position of these wave packets as function of time [54]. Recent

experiments [100] have included nuclear motion in the ground electronic state, which

is directly relevant to controlling and monitoring many chemical reactions. These

experiments focused on controlling motion in a single normal mode of the system. Ex-

tending control and measurement of vibrational motion to several modes, including

74
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overtones, is an exciting prospect for several types of studies, including mode cou-

pling and bond selective chemistry [101, 19]. Furthermore, most past work on ground

state vibrations relied on transferring population through an excited electronic state

(resonant Raman). These resonant Raman techniques are disadvantageous in that

they require lasers to be tuned to an excited electronic state, and that limits the

number of systems that may be studied. Moreover, most past work has been done at

low pressures with atomic and molecular beams that are not conducive to generating

a high yield in a bimolecular chemical reaction.

In this Chapter, I demonstrate a number of experimental advances in coherent

control of molecular systems. First, we demonstrate selective control over molecular

motion in gases at STP using very short, shaped, excitation pulses. Coherent vibra-

tional excitation of a single bond corresponding to thermal temperatures over 2000

K was shown to be possible. This is an important milestone towards the goal of laser

selective chemistry [19] on a macroscopic scale, because it extends cryogenic and

molecular beam experiments to high temperatures and densities. Secondly, I demon-

strate the creation and measurement of shaped multimode vibrational wave packets

in CCl4 with strong overtone excitation, implying signi�cant vibrational amplitude.

We also control which modes and which mode combinations are excited. This im-

plies that we are exciting vibrational coherences, where the displacement of the atoms

from their equilibrium position is substantially larger than in previous work [4]. A

learning algorithm was used to automate the control process. Using a special cost

function [102] incorporated into an evolutionary learning algorithm [103], we obtain a
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clear interpretation of the control mechanism, which is based on impulsive stimulated

Raman scattering [104, 4]. This serves as a demonstration of a general technique for

systematically gaining insight from solutions found by learning algorithms. Fourth,

I demonstrate the use of chirped Raman excitation where the delay between two

chirped pulses can be used to control the excitation of a single, speci�c vibrational

mode. Fifth, by analyzing the spectroscopic data obtained from this technique, a

wealth of information about anharmonicities and ro-vibrational coupling is obtained.

Sixth, I observe and control reaction rates of uni and bi-molecular reactions. Finally,

the reshaping of pump pulses in the Raman active medium is shown to seed the

excitation of very short vibrational motion, when used in cooperation with spectral

broadening induced by self phase modulation.

It is important to note that the vibrational wave packets in this work are excited

with a single pulse far detuned from electronic resonances, achieving non-resonant

control of the amplitude of modes in the wave packet. This was shown in earlier

solid state impulsive stimulated Raman scattering (ISRS) experiments [105, 4, 105];

however, in this new work, the samples were used at much easier to obtain con-

ditions (i.e., temperatures and pressures), and since the leaning algorithm "found"

optimal pulse shapes consistent with ISRS, the interpretation is more convincing.

Furthermore, no molecular resonance is exploited in this excitation scheme, and the

molecules are not specially prepared, the approach is general and can be applied to

a large class of molecules. Because it is non-resonant, it can be generalized to any

molecular gas or liquid with Raman-active modes that can be excited impulsively,
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and it is not limited by the need to access resonances in the VUV. This approach

works at high pressures and temperatures, and thus may facilitate laser control of

chemical reactions with macroscopic product yields. In particular, since changes in

chemical bonding will involve a superposition of several modes, control of multimode

wave packets may lead to selective control over reactions.

4.2 Impulsive Stimulated Raman Scattering

The two most important timescales for controlling molecular motion are the vi-

brational period (��), and the coherence time (�c). If one is able to generate intense,

shaped laser pulses whose duration is shorter than �� , then it is possible to manipu-

late the motion of the molecule on its own natural timescale. This regime is known

as impulsive Raman scattering. Control of molecular motion in the impulsive regime

with shaped laser pulses o�ers many important advantages over steady state or tran-

sient scattering, where the laser pulse is longer than �c and �� respectively. First, one

can create and measure vibrational wave packets sensitive to the motion of individual

bonds, rather than just populations of eigenstates. Secondly, since the laser pulse is

shorter than �c, all of the laser energy deposited into the molecules is done so coher-

ently, allowing for e�cient molecular excitation. (e.g., driving of overtones). Finally,

one can programmably alter the phase of a single driving pulse, simultaneously con-

trolling the excitation of several vibrational modes in a given molecule. Attempts to

control a comparable number of modes in a molecule with transient or steady state

Raman scattering would require several tunable, picosecond, phaselocked lasers.

Excitation of Raman-active modes involves two photons with a frequency di�er-
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ence equal to the vibrational energy. Since the molecule has a signi�cant amount of

inertia, it cannot respond instantaneously to the details of the rapidly varying electric

�eld, and the dynamics are insensitive to the absolute temporal phase. What is most

relevant for Raman type processes is the phase of frequency di�erences separated by

the Raman frequency in the light �eld. For a vibrational mode with a frequency of


� , what matters is the relative phase of frequency pairs whose di�erence is equal

to 
�. In a short pulse with a continuous spectrum, one has to integrate over all

frequency pairs separated by 
�. If the duration of a driving laser pulse �p is shorter

than the vibrational period �� =
2�


�

, the bandwidth of the laser pulse �!L exceeds

the vibrational frequency, and the excitation can be considered impulsive. During

impulsive stimulated Raman scattering (ISRS), frequency pairs with a di�erence of


� within the bandwidth of a single laser pulse act as pump and Stokes photons. For

appropriate phasing of pairs within the bandwidth, strong excitation results. In a

simple classical model, the displacement from equilibrium of the nuclear coordinate

Q for a given mode � in the ISRS limit can be described by [104]

d2Q

dt2
+ 2


dQ

dt
+ 
2

�Q =
1

2
N

�
d�

dQ

�
0

E
2
L;

where 
 is the coherence decay rate, 
� is the vibrational frequency, N is the num-

ber density of molecules,
�
d�

dQ

�
0
is the change in polarizability with intermolecular

distance Q, EL = 1
2
fA(t) exp(�i!Lt) + c:c:g is the laser �eld, and !L is the laser

central frequency. Expanding the laser �eld as

E
2
L =

1

4
f2AL(t)A

�

L(t) + A
2
L(t)e

�i2!Lt + A
�2
L (t)ei2!Ltg

gives a �dc� term corresponding to the intensity pro�le I(t), and two second harmonic
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terms. The nuclei, which have too much inertia to respond to the fundamental (or

second harmonic) �eld, are e�ectively driven by I(t). Thus, the strength of excitation

of a vibrational mode with frequency 
 is proportional to the power spectral density

D(
) of the intensity pro�le at that vibrational frequency, where

D(
) =

Z
1

�1

d!aL(!)aL(
� !) expf�i[�(!)� �(
� !)]g

and

A(!) = FfA(t)g = aL(!) exp[�i�(!)]:

Based on this simple analysis, a pulse with spectral phase described by a periodic

function at the molecular vibrational frequency (e.g., a train of pulses separated by

the vibrational period [4, 104]) should be as e�cient as a transform-limited pulse

in exciting vibrations [4, 104, 57]. Figure 4.1 illustrates this relationship, showing a

shaped laser pulse and a modi�cation of the power spectrum, illustrating the control

of a given vibrational frequency is accomplished by manipulating the power spectral

density of I(t) at the mode frequency. (NOTE: to maximizeD(
), �(!)��(
�!) =

const, which de�nes a periodic function.) Later in the text, I compare the excitation

of Raman modes with intense transform limited pulses to that of low-intensity chirped

Raman excitation and observe the breakdown of the weak excitation limit described

in this analysis.

4.3 Selective learning control of molecular vibrations

The experiments in this chapter employ intense shaped light pulses with a central

frequency of 375 THz (800 nm), generated by an ultrashort Ti:Sapphire ampli�ed



80

frequency

I(
t)

 P
ow

er
 S

pe
ct

ru
m

Ω

In
te

ns
ity

 P
ro

fi
le

time

Figure 4.1: ISRS is controlled by manipulating the power spectrum of the intensity

pro�le.

laser system. The laser system generates temporally shaped pulses as short as 15

fs, at a 1 kHz repetition rate, with over 1 mJ of energy [69]. A pulse shaper based

on a 19 element deformable mirror is inserted between the oscillator and the am-

pli�er [71]. The enormous spectral bandwidth of the pulses produced by the laser

system allows for impulsive excitation of room temperature molecules in a relatively

pure state, without pre-selecting a given set of molecules. The FWHM bandwidth

of the output laser pulses is over 18 THz, allowing for impulsive excitation of the

symmetric breathing mode (�1) of SF6. At room temperature (300 K), kT = 6.24

THz, making the thermal population of the �rst excited level of this mode only 0.024.

The shaped, ampli�ed pulses from the laser were focussed into a 450 �m inner di-

ameter hollow core �ber waveguide, with a length of 30 cm. The waveguide was �lled

with the molecular gas, with pressures varying from 20 to 1000 torr. The waveguide

could either be �lled from a pressurized gas bottle, or by simply connecting a liquid

cell to the waveguide and working with the vapor pressure of the molecular liquid.
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Temporally delayed pulses with a frequency of 750 THz (400 nm), a bandwidth of 1.5

THz, and pulse energy of 1-3 �J were injected collinear with the driving pulse in order

to probe the vibrational excitation created by the driving pulse. The delay, which

was several hundred femtoseconds, was longer than the pump pulse duration but

shorter than �c. The probe pulse spectrum was measured as the shape of the driving

pulse was varied. The spectrometer monitoring the probe spectrum was interfaced

with a computer, which also controlled the pulse shaper, allowing for closed-loop

control of the process. The amplitude and phase of the shaped pulses were measured

using second-harmonic frequency resolved optical gating (SHG FROG) [72].

As the probe pulse propagates through the vibrationally excited gas, it encounters

a periodically modulated index of refraction and therefore develops sidebands spaced

by the vibrational frequency of the excited modes. As the molecules are prepared

in a coherent superposition of � = 1 and � = 0, the probe pulse undergoes both

Stokes and anti-Stokes scattering. There are no sidebands from the probe in the

absence of the pump, since the scattering of the probe is a result of a coherence

between � = 1 and � = 0. The pump pulse also contains signatures of the molecular

coherence in the form of a continuous redshift (which is only present for pump pulses

that excite vibrations) and a modi�ed temporal pro�le at higher pressures. This

modi�ed temporal structure consisted of a pulse train at the vibrational frequency

of the mode being excited and is explored in a later section of this chapter.

In order to discover optimal pulse shapes for driving and suppressing this molec-

ular coherence, we used the evolutionary algorithm discussed in Chapter 2. The
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Figure 4.2: Learning control of SF6 by feeding back the vibrational sideband energy

into our learning algorithm.

�tness function used in these experiments is the total amount of energy in the probe

sidebands for the mode of interest, which is a quantitative measure of the vibra-

tional coherence. This approach allows for more general shaping of a multimode

wave packet because the pulse shaper is programmable and can be guided by the

learning algorithm. For example, exciting CCl4 with a single, short pulse coherently

excites all three Raman active vibrational modes (�1; �2; �4) simultaneously. Tailor-

ing the intensity pro�le allows us to control the excitation of each vibrational mode

independently.

Results demonstrating the excitation and suppression of the symmetric breathing

mode (�1) in SF6 at 250 torr are shown in Figure 4.2. Curve (a) shows the probe

spectrum for a pump pulse optimized for mode excitation, while curve (b) shows the

probe spectrum for a pump pulse optimized for mode suppression. Suppression and
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enhancement is e�ective over a broad range of pressures (20-700 torr). We interpret

the mechanism in a regime where pulse reshaping during propagation is negligible.

The sideband separation of 23.25 THz is in good agreement with the frequency of �1

as well as previous measurements [106]. Based on the intensity of the sidebands in

the probe spectrum, one can estimate that between 1-10 % of the molecular sample

is excited. This result is promising for attempting bimolecular chemistry initiated

by tailored laser pulses.

There are two strong Raman active modes in CO2: the asymmetric CO stretch

mode (�1), and two quanta of the OCO bend mode (�2). The corresponding Raman

shifts are 38.6 THz and 41.6 THz respectively. Using the di�erence in intensity of

the sidebands for the two modes as the feedback signal in an evolutionary algorithm,

we could make either mode dominant in the excitation. Figure 4.3 shows the probe

pulse spectra when the excitation pulse was optimized to drive �1 (top panel), or two

quanta of �2 (bottom panel). This data was taken at a pressure of 280 torr, with

similar results obtained at a pressure of 800 torr.

A similar experiment was performed in CCl4. The evolutionary algorithm was

used to direct the pulse shaper to excite a speci�c mode (�1)v while suppressing

others, by adjusting the relative spectral phases in the pulse. The black bar in

Figure 4.4(a) shows that the relative energy scattered into �1 is over ten times larger

than for �4. The same trend is re�ected in the power spectrum of the intensity pro�le

at the vibrational frequencies [Figure 4.4 (b)]. The reverse experiment (optimizing

�4 vs. �1) was also performed
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Figure 4.3: Selective learning control of both vibrational modes in CO2 by feeding

back the vibrational sideband energy di�erence into our learning algo-

rithm.



85

0

5

10

15

20

25

 Select 9.42 THz
 Select 13.77 THz

Sc
at

te
re

d 
E

ne
rg

y 
(a

rb
)

7 8 9 10 11 12 13 14 15 16
0.0

0.2

0.4

Sp
ec

tr
al

 I
nt

en
si

ty
 (

ar
b)

Frequency (THz)

Figure 4.4: Selective learning control of vibrational modes in CCl4 by feeding back

the vibrational sideband energy di�erence into our learning algorithm.

The degree of control shown here is limited by the resolution of the pulse shaper.

Although an algorithm is not in principle required for this technique, it is very con-

venient because it compensates for any experimental non-idealities and automates

the tailoring of populations (mode amplitudes) in the wave packet by selecting which

modes participate. In order to verify the interpretation of the results, we monitored

the probe spectrum for several di�erent gases (benzene, carbon tetrachloride, nitro-

gen and ethylene), and also varied the pump pulse duration without altering the

bandwidth. Sideband spaced by the Stokes shift for a given mode appeared only

when the pump pulse duration was less than the vibrational period.

The results shown above clearly demonstrate that the excitation of vibrational

modes with frequencies less than the laser bandwidth is very sensitive to the shape
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of the pump pulse. This is in contrast with the steady state and transient regimes of

Raman scattering [107]. It is also in contrast to the usual case of impulsive scattering,

in which the response is simply proportional to the pulse energy. However, shaping

of pulses with enough bandwidth to support impulsive scattering can lead to detailed

control over the molecular response [57].

4.3.1 Using modi�ed cost functions to learn control mechanisms

In order to learn as much as possible from the solutions discovered by the al-

gorithm, in some cases we incorporated a special cost function into the algorithm.

The cost function imposes a penalty into the �tness for deviations from an unshaped

pulse, limiting unnecessary variations in the optimized pulse shapes. This ensures

that all of the di�erences between an optimized pulse and an unshaped pulse are

not merely su�cient, but necessary. The control mechanism is therefore much eas-

ier to deduce from the solutions. The cost function, fcost, simply multiplied the

experimental �tness, and had the form

fcost = 1�
w

ng
2
max

nX
i=0

(gi � gtl)
2
:

Here, w is a weighting factor that was adjusted until fcost was slightly less than 1,

gmax is the maximum gene value for a given pulse shape, gtl is the value of each gene

for an unshaped pulse, and gi is the gene value for the i
th gene for each pulse shape

evaluated. Although the values of gtl were set to those of an unshaped pulse in the

present experiment, they can be set to bias the cost function toward any pulse shape.

Thus the deviations from any given solution can be penalized, in order to discover

the essential components of a solution.
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Figure 4.5 shows the intensity envelopes (inset) and their transforms for two pulses

optimized to excite a molecular coherence in SF6, and two pulses optimized for sup-

pression. The algorithm found two separate solutions for enhancing and suppressing

the vibrations. Each pair of solutions have very di�erent intensity pro�les, but nev-

ertheless have nearly the same values in the power spectrum of I(t) at 
� = 23:25

THz. The two solutions for optimizing excitation are shown as the green and blue

curves in Figure 4.2. The red and black curves represent solutions for suppress-

ing the vibrational coherence, exhibiting local minima at 
�. The green and black

curves were taken with the term fcost included in the algorithm, while the red and

blue curves were not so constrained. The cost function in our experiment penalized

deviations from an unshaped (transform-limited) pulse. The green and black curves

show pulses that deviate minimally from an unshaped pulse, while still maintaining

control. The di�erences between the two curves for enhancing the vibrations and the

two curves for suppressing the vibrations illustrate the ability of the cost function

to help isolate the important features in the optimized pulses � a large or small

value in the spectrum of I(t) at 23.25 THz in this case. Comparison of the curves for

enhancing and suppressing vibrations supports the impulsive excitation mechanism

described above. Analysis of mode selectivity in other molecules (such as CCl4)

illuminates the same underlying physical mechanism as demonstrated here for SF6:

to enhance or suppress excitation of a given mode, the power spectrum of I(t) at the

two photon resonant frequency must be made large or small. This control illustrates

how a single broadband laser can be used to control the excitation of N modes in a
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Figure 4.5: The measured power spectrum of the intensity pro�les of various shapes

that control vibrational excitation in SF6. Use of the cost function mod-

i�cations elucidates the control mechanism.

given molecule. This single laser replaces N +1 phaselocked narrowband lasers that

one would have to tune to the various Raman resonances in order to gain a similar

degree of control.

4.4 Chirped ISRS excitation

In order to control the excitation level of a Raman-active vibrational mode in

a molecule that can be excited impulsively by our laser systems, we need only to

control the power spectral density of the pulse shape at that vibrational frequency.

In this section, I describe what we call impulsive Raman excitation. When a linearly

chirped laser pulse is injected into a Michelson interferometer, two replica pulses

with a controlled relative time delay are produced. A linearly chirped pulse has
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an instantaneous frequency that varies linearly with time. When two such pulses

are separated by less than their pulse duration, the instantaneous frequency from

each chirped pulse beats at the di�erence frequency between the two pulses, as illus-

trated in Figure 4.6. Figure 4.6 shows the power spectrum of chirped pulse pair and

demonstrates that this apparatus acts as a tunable, single-frequency ISRS excitation

source by arranging photon pairs with a frequency di�erence proportional to the

interferometer delay to appear at each point in the pulse pair. In the time domain,

the interference produces an intensity modulation at the instantaneous frequency

di�erence ��.

Chirped Raman excitation is best understood in the frequency domain. A chirped

broadband pulse can be thought of as a comb of � 109 phase-locked quasi-cw lasers

spread out in time (reducing the peak intensity by spreading energy in time), tuning

from red to blue. The second time-delayed pulse causes interference between two

spectrally shifted combs, equivalent to detuning a cw laser by an amount proportional

to the delay time and the chirp rate.

The instantaneous frequency (!i =d'(t)=dt = !L + 2bt, where cR = b=� is the

chirp rate as de�ned by '(t) = !Lt + bt
2) of the pulse sweeps linearly in time,

producing a constant frequency di�erence (��) between the two pulses from the

interferometer for non-zero delays (�). The interference between the two pulses

produces a beat note with a period of 1=�� in the intensity pro�le described by

I(t) = Iin(t) + Iin(t� �) + 2
p
Iin(t)Iin(t� �) cos(!L� + b�

2
� 2b�);

where I(t) is the intensity pro�le, � is the delay between the pulses, and �� = cR� .



90

a

b

c

τ

τ

τ 2π/τ

τ
∆ν=cRτ

time frequency

∆ω

Nonlinear "dc" Power SpectrumIntensity Profile

ωi
ωi

Figure 4.6: Michelson apparatus used for both transform-limited pulse-pair ISRS ex-

citation and chirped Raman excitation (a). Time and I(t) power specra

of transform-limited pulse pair excitation (b), and chirped Raman exci-

tation (c).
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Figure 4.7: Impulsive chirped Raman excitation of SF6 for many chirp rates.

Changing the delay tunes the frequency di�erence and the period of the intensity

modulations, allowing for mode selective excitation of the molecule.

I �rst demonstrate impulsive Raman excitation of the 23.25 THz mode in SF6.

The probe pulse spectrum is measured as a function of the Michelson interferometer

delay. At a time delay proportional to the chirp rate of the pulse, the molecule is

excited, and vibrational sidebands appear. The chirp rate is adjusted by adjusting

the grating separation in the compressor and measured using SHG FROG. Figure 4.7

shows a lineout at the Stokes sideband as a function of Michelson delay for a series,

each with a di�erent chirp rate. For each pulse, a unique time delay (and its negative

delay) excites the 23.25 THz mode in SF6 and exhibits no vibrational excitation at

any other time delay.

Figure 4.8 shows the results of selective excitation of vibrational modes in CCl4
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using impulsive chirped Raman excitation. For this experiment, the pulse was �rst

chirped in time (to � 83 fs, with a chirp rate of 0.1125 THz/fs) prior to entering

the Michelson interferometer. The chirped pulses were injected into the hollow-core

�ber �lled with a room-temperature vapor pressure (� 80 torr) of CCl4. The three

Raman modes under control are �1; �2; �4, whose frequencies are 13.77 (459 cm�1),

6.54 (218 cm
�1), and 9.42 (314 cm

�1) THz, respectively. Figure 4.8(a) shows the

probe spectrum as a function of interferometer delay. As the frequency di�erence

in the pump matches the vibrational frequency of each mode in the molecule, that

mode is driven e�ciently while the other modes remain relatively una�ected.

Figure 4.8(b) shows lineouts of the scattered probe intensity at frequencies cor-

responding to each of the fundamental modes. For a �xed chirp rate (pulse length),

the optimal delay for mode �1 is given by �1 = 
1=cR. The optimal time delays

for modes �1; �4; �2 appear at 122, 88, and 58 fs, implying frequencies of 13.6, 9.9,

and 6.5 THz, respectively. The data shows that vibrational modes within the laser

bandwidth can be separately controlled with a properly constructed I(t).

4.5 Monitoring Ro-vibrational wave packets through phase

modulation

If one is interested in monitoring the evolution of a vibrational wave packet, then

a technique for strobing the dynamics is required. This can be accomplished with a

second probe laser pulse, which makes a measure of the vibrational wavefunction as

a function of delay from the pump pulse. If the pump and probe pulses are both non-

resonant and the measurement is purely optical, then the technique is fairly simple to
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Figure 4.8: Probe spectrum of CCl4 when excited by two chirped pulses. The shad-

ing in the �gure is proportional to the scattered light intensity. The

chirped pulse is still su�ciently short to drive some impulsive Raman

excitation near time zero. (a) Probe spectrum vs. time delay between

pump pulses. (b) Lineouts at vibrational frequencies �1; �4; �2. (c) Probe

spectrum vs. time delay between two transform-limited pulses pump

pulses. (d) Lineouts at frequencies corresponding to �1; �4; �1 � �4.
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implement and can be used for a large class of molecules. In this section, we describe

the creation and measurement of single and multi-mode vibrational wave packets

in SF6, CO2, and CCl4. In CCl4 we also observe dissociation and the creation of

vibrational wave packets in Cl2.

The experimental measurement described above records the spectrum of the

probe pulse after traveling through a vibrationally excited gas sample. The vi-

brational coherence exhibits a time-varying polarizability that modi�es the power

spectrum of the probe pulse. To modify the probe spectrum in such a manner re-

quires either a nonlinear, or time-varying index of refraction, or in a scattering theory

perspective, the probe pulse must undergo an inelastic scattering process with the

gas molecules.

The probe pulse intensity is kept low to suppress a nonlinear response from the

molecules; therefore restricting the interaction to a linear, time dependent index

of refraction, n(t). For a time dependent index of refraction, the power spectrum,

S0(!), of a electric �eld pulse with a Gaussian temporal pro�le is modi�ed according

to

S(!) =
��
F

�
E0A(t)e

i[k0n(t)l�!0t]
	��2 = ��

S0(!)
 F

�
e
i[k0n(t)l]

	��2
; (4.1)

where A(t) = exp

"
(t� �)

2

�
2

#
, l is the length of the sample, E0 is the magnitude of

the probe �eld, k0 is the vacuum wavevector for the �eld, � is the time delay between

pump and probe, � is the probe pulse duration, !0 is the central laser frequency, and

the 
 denotes a convolution operation. The symbol F denotes a Fourier transform.

The index of refraction, n(t), is related to the molecular polarizability, �, (neglecting
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orientational contributions of the molecules) through the expression

n =

s
2� + 3"0

N

3"0
N
� �

;

where N is the number of molecules per unit volume and "0 is the permittivity of

free space.

When a linearly polarized pulse interacts with a molecule that has an anisotropy

in its polarizability, that molecule experiences a torque as it tries to align itself

to the direction of the linearly polarized �eld, see Figure 4.9, and a short time

duration pulse exerts an impulsive torque that excites a large number of rotational

states and forms a quantum mechanical rotational wave packet. The anisotropy of

the molecular potential leads to dephasing and rephrasing of the rotational states,

resulting in periodic revivals of the rotational states. The details of these rotational

wave packet dynamics are discussed in chapter 5.

Figure 4.10 displays the measured probe spectrum as the pump and probe de-

lay are varied and shows evidence of both rotational and vibrational motion. The

vibrational sidebands appear on either side of the probe and are seen to decay, as

well as exhibiting revivals associated with the vibrational anharmonicity (due to the

dissociative potential of molecules, the spacing of vibrational levels is not harmonic.

The deviation from the hamonicity is called the anharmonicity). The rotations have

a time-scale longer than the length of the probe pulse, so instead of scattering energy

to sidebands, the rotational wave packet modi�es the spectrum of the probe pulse.

The rephasing of the wave packet occurs periodically and results in a broadening of

the probe spectrum and the revival time is dependent on the moment of inertia of
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Figure 4.9: Molecules with a non-uniform polarizability experience a torque the at-

tempts to align the molecule to the direction of polarization.

the molecule.

A molecule can be loosely regarded as a collection of balls coupled by springs, with

a sti�ness given by the bond strength. When the molecule rotates about its center

of mass, the molecules are pulled away from the center of mass and this results in a

sti�ening (increase) of the spring constant. The resonant frequency of a mass-spring

oscillator is proportional to the square root of the spring sti�ness, so we conclude the

faster the molecule rotates, the larger the vibrational frequency will become. This

leads to a coupling between rotations and vibrations. Furthermore, the rotational

states of a molecule are determined by the moment of inertia of that molecule. When

the molecule is excited into a vibrational mode, the inter-atomic separation increases

with vibrational excitation. This results in an increase in the moment of inertia of
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Figure 4.10: The measured probe spectrum as the delay between the pump and probe

is varied leads to the observation of ro-vibrational wave packets in CO2.
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the molecule, and modi�es the rotational level structure. Therefore, both rotations

and vibrations are coupled, and we will see that this has a pronounced e�ect on our

observed signal.

4.5.1 Observing molecular wave packet dynamics with polarizability

In order to understand the relationship between the probe pulse spectrum and

the vibrational coherences excited by the pump, we need to calculate the quantum

mechanical expectation value of the polarizability operator for each molecule in the

ensemble. This will highlight which aspects of the molecular motion are being mea-

sured by the power spectrum of the probe pulse. We start by expanding the total

molecular vibrational wavefunction in terms of the normal mode basis

	total(t) = 'gs+
Y
n

X
i

ani'ni(qn) exp

�
�i2�

Enit

h

�
+�

�X
'1i(q1);

X
'2i(q2); � � �

�
;

(4.2)

where the ground-state has been written as

'gs =
Y
n

an0'n0(qn) exp

�
�i2�

En0t

h

�

and the 'ni is the i
th vibrational eigenstate (i = 1; 2; 3; � � � ) of the nth normal mode,

qn is the n
th normal mode coordinate, and ani is the complex coe�cient corresponding

to the projection of the total wavefunction onto the normal mode basis. Note that

in general, a set of coupled harmonic oscillators can be diagonalized such that an

orthogonal basis set can be written in terms of normal internal coordinates of the

system. However, since a molecule is dissociative, its potential is, by de�nition,

anharmonic. The anharmonicity leads to a non-orthogonality between the so-called
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normal modes. The last term (�) in Eq. (4.2) represents the non-separable portion

of the molecular wavefunction that has to do with the overlap between the modes.

The internal motion of the molecule is well approximated by the normal motion for

low levels of molecular excitation.

In order to calculate the time dependent expectation value of the polarizability,

we form a Taylor expansion (limited to second order) in terms of the vibrational

coordinates for the two normal modes,

�(q1; q2) = �0 +
@�

@q1

q1 +
@�

@q2

q2 +
@
2
�

@q1@q2

q1q2 +
1

2

@
2
�

@q
2
1

q
2
1 +

1

2

@
2
�

@q
2
2

q
2
2 + : : :

When we evaluate the expectation value of the polarizability, h�(t)i, in terms of the

wave function, we arrive at the expression

h�(t)i �= �0 h	j	i+
@�

@q1

hq1(t)i+
@�

@q2

hq2(t)i+
@
2
�

@q1@q2

hq1(t)q2(t)i

+
1

2

@
2
�

@q
2
1



q
2
1(t)

�
+

1

2

@
2
�

@q
2
2



q
2
2(t)

�
+ : : :

where �0 h	totalj	totali is the time-invariant polarizability determined by the pop-

ulation of the vibrational levels and the n
th order expectation value is given by


q
n
i q

m
j (t)

�
=


	totaljq

n
i q

m
j j	total

�
.

The probe pulse experiences this time-varying polarizability due to propagation

in the medium excited with a vibrational coherence. The phase modulation imparted

in the probe pulse modi�es its spectrum, and the exact nature of the spectral changes

provides information about the expectation value of the polarizability, which we see

from the expression above directly, provides information about the molecular wave

packet dynamics. Thus, the linear expansion term,
@�

@q

, reveals direct information
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about the expectation value of the atomic motion, hq1(t)i, the second order term,

@
2
�

@q
2
, describes light that scatters o� of the coherence twice, whereas the cross-term,

@
2
�

@q1@q2

, reveals information about mutual coherences between normal modes in the

molecule.

The time-duration of the probe pulse windows the behavior of the wave packet

in that it captures the dynamics that occur over the time window de�ned by the

pulse duration. Any wave packet structure that happens on a time-scale much faster

than probe time-window appears as a sideband on either side of the original probe

spectrum, where its scatter frequency labels the frequency of the dynamic. Any

wave packet dynamic structure that happens on a time-scale slower than the probe

window simply changes the intensity of the light scattered to the sidebands. Thus,

this technique captures dynamics both faster and slower than the time-window of the

probe pulse. The fast structure appears in a single-shot measurement, but the slower

structure can only be resolved by measuring the probe spectrum as the pump-probe

delay is varied on a time-scale longer than the slow behavior.

In our experimental con�guration, the probe pulse duration is chosen to be longer

than the vibrational period, but shorter than the beat period. As a result, the probe

pulse acts as a window in time for observing the dynamics of the vibrational wave

packet that can follow the dynamics occurring as a result of the anharmonicity. The

power spectrum of the probe spectrum for a given pump probe delay is the windowed

Fourier transform, with the intensity of the vibrational sidebands being proportional

to the amplitude of the vibrational wave packet. If the probe pulse were longer than
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the beat period, then we would resolve the vibrational frequency di�erence between

each excited level, without being able to resolve the temporal evolution of the wave

packet.

4.5.2 Rotational dephasing

Any given vibrational level has a manifold of rotational levels that will be ther-

mally populated if the vibrational level is populated. For example, the ground vi-

brational state has thermally populated rotational levels. When population is trans-

ferred to a higher lying vibrational level that associated rotational manifold is also oc-

cupied. As mentioned in the introduction to this section, the rotations and vibrations

in a molecule are coupled. More formally, this coupling modi�es the energy levels,

and introduces an additional dephasing mechanism. The spacing of the energy levels

of rotational levels have a quadratic spacing given by EJ = BJ (J + 1) ;where EJ is

the rotational energy level, J is the angular momentum, B is the rotational constant

which is seen to increase as the vibrational level (i) increases, i.e., B = Be+�
�
i+ 1

2

�
.

This rotational dephasing modulates the amplitude of the oscillations in hq(t)i, and

therefore, the intensity of the sidebands as a function of delay.

Including rotational dephasing in the calculations above leads to the following

modi�cation in the expression for expectation value of the polarizability

h�(t)i = h�(t)i
vib

X
J

PJ exp [�i�J (J + 1) t] ;

where h�(t)i
vib

is the expectation value calculated neglecting rotational e�ects, and

PJ = exp

�
�
BJ (J + 1)

kT

�
is the thermal occupation probability of the rotational
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levels. The experimental results show both the behavior of the vibrational anhar-

monicity as well as the rotational dephasing.

4.6 Overtone excitation

In the past, work to control vibrational motion in solids and molecules has been

criticized as not being particularly useful because exciting the �rst vibrational level

(� = 1), for example, does not correspond to large changes in bond length in a

molecule. One might expect that a pulse twice as short as the vibrational period

of a given mode will allow e�cient excitation of the second vibrational level (or

1st overtone; � = 2) since this would result in a large power spectral density at

this frequency. However, if we consider a harmonic oscillator, the matrix element

for direct excitation across two levels (� = j to � = j + 2) is zero. Since the

vibrational levels are in an anharmonic potential this transition is allowed, but the

matrix element for �� = �2 is roughly an order of magnitude weaker than for

�� = �1. This prevents e�cient excitation of overtone levels directly from the

ground vibrational level.

The impulsive Raman excitation using two chirped pulses described in the pre-

vious section demonstrated linear excitation of the �rst vibrational level. Because

these pulses were highly chirped, their peak intensity is relatively low. Excitation of

Raman modes exhibit di�erent behavior when driven by intense, transform-limited

pulses. For transform-limited pulses, the �rst pulse creates a wave packet that be-

gins to evolve. The second pulse then generates another wave packet, which inter-

feres with the �rst, enhancing or suppressing modes in the wave packet depending
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on the delay between pulses. For a purely linear response, we expect the two-pulse

transform-limited experiment to follow the same behavior as the chirped pulse impul-

sive Raman excitation. Any di�erences between the chirped and transform-limited

excitation that we observe indicate a nonlinear response of the molecular system to

an intense transform limited pulse.

To consider the e�ect of anharmonicity on the polarizability, we consider only one,

isolated normal coordinate that has been diagonalized in terms of the eigenfunctions

� that are orthogonal. Note that the potential considered here is anharmonic. The

total wavefunctions is then written in terms of an orthonormal expansion of the

eigenfunction

	total(t) =
X
i

ai�ie
i!it

: (4.3)

Using the Taylor expansion of the polarizability introduced above, the expectation

value of the polarizability can be written as

h�(t)i =

*X
i

ai�ie
i!it

�����0 +
@�

@q

q +
1

2

@
2
�

@q
2
q
2

����X
j

aj�je
i!j t

+
: (4.4)

Note, the �rst term in the expansion is time-independent and can represented by a

constant

�0

X
i;j

hai�ijaj�ji exp [i (!i � !j) t] = �0

X
i

jaiij
2
� e�.

Again, we note that by factoring out the expansion coe�cients for the polarizability,

h�(t)i � e� =
@�

@q

hqi+
1

2

@
2
�

@q
2



q
2
�
;

it is clear that, to �rst order, the polarizability is a direct measure of the wave packet

dynamics of the vibrational coordinate hq(t)i. In general, we can write the nth order
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expectation value of the vibrational coordinate q as

hq
n
i =

X
i;j

hai�i jq
n
j aj�ji exp [i (!i � !j) t] =

X
i;j

a
�

iajM
n
i;j exp [i (!i � !j) t] ;

where the matrix elements are de�ned as M
n
i;j = h�i jq

n
j�ji. Thus, the time-

dependent portion of the molecular polarizability along a given coordinate can be

written as

h�(t)i � e� =
X
i;j

a
�

i aj

"
@�

@q

M
1
i;j +

1

2
a
�

i aj

@
2
�

@q
2

X
i;j

M
2
i;j

#
exp [i (!i � !j) t] �

For a harmonic potential, M1
i;j = 0 for j 6= i � 1, and this means that no direct

excitation of overtone levels (e.g., a transition directly from i = 0 to i = 2, etc.) is

possible. The anharmonicity relaxes this selection rule, however, M1
i;i�2 is typically

an order of magnitude smaller than M
1
i;i�1. Moreover, in the case of a harmonic

oscillator, each term in any given sum oscillates at exactly the same frequency and

there is no dephasing or rephasing of the terms, i.e., no spreading and revival of

the wave packet. However, in the case of an anharmonic oscillator, the terms in the

sums will beat against each other with a characteristic beat frequency given by the

anharmonicity of the potential.

The primary question is, however, how does excitation of vibrational overtones

manifest itself in the expectation value of the polarizability, and, therefore, in the

power spectrum of the phase-modulated probe pulse? To better understand the

expected e�ect on the power spectrum of the probe pulse, we consider the case in

which we have excited only one overtone (i.e., we have population in levels i = 0; 1; 2).

Furthermore, let's restrict our attention to the linear component of the expansion of
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the polarizability. In this approximation, the time-dependent polarizability can be

written as

h�(t)i�e� =
@�

@q

�
a
�

0a1M
1
0;1 exp [�i (!1 � !0) t] + a

�

1a2M
1
1;2 exp [�i (!2 � !1) t] + c:c:

	
:

For a harmonic potential, 
v = !1 � !0 = !2 � !1, and this would lead to the

scattering of one sideband in the probe spectrum with an intensity given by the

coherent sum of the vibrational populations. However, this is not the case for an

anharmonic potential, where !1 � !0 = !2 � !1 � � and � � !1 � !0 is the

anharmonicity. Note the conventional notation of the anharmonicity is � = 2xe!e.

The e�ect of the anharmonicity on the probe spectrum depends on the time-

scales involved. If the probe pulse is longer than 1=�, then two spectral resolved

sidebands will appear in the probe spectrum at the scattered frequencies (!1 � !0)

and (!2 � !1). However, as in our experimental conditions, if the probe pulse dura-

tion is longer than 1=�, the intensity of the sidebands is modulated with pump-probe

delay because the anharmonic beating creates an envelope on the polarizability. As

will be demonstrated in a later section, the anharmonicity is observed as modulations

in the sideband scattered intensity as the pump-probe delay varies.

Generally, many overtone levels may be excited. Those overtone levels will induce

a time-dependent polarizability at approximately the vibrational frequency for coher-

ences between neighboring levels (i.e., j = i�1). The frequency of oscillation for the

polarizability between any pair of levels i and j is written as !i�!j=i�1 = 
v��(i),

where 
v is the fundamental vibrational frequency and �(i) is the change in the

energy level spacing for the ith level. For the Morse potential, the frequency change
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can be written, to a good approximation, as �(i) = i�.

With the energy level spacing in mind, we can write an expression for the time-

dependent polarizability exhibited by a highly excited anharmonic oscillator. Con-

sidering only coherences between neighboring vibrational levels ( j = i�1), we arrive

at the expression

h�(t)i � e� =
@�

@q

(
nX
i=0

a
�

i ai+1M
1
i;i+1 exp [�i (
v � i�) t] + c:c:

)
:

This can be rewritten as a Fourier cosine series expansion

h�(t)i � e� = 2
@�

@q

(
nX
i=0

aiai+1M
1
i;i+1 cos [
vt� i�t]

)
:

For our experimental conditions, the fundamental vibrational frequency is much

faster than our probe pulse duration, while the time-scale of the anharmonicity is

much slower than the probe pulse duration. As a result, we can separate the anhar-

monic contribution as a slowly-varying envelope,

M(t) = 2
@�

@q

(
nX
i=0

aiai+1M
1
i;i+1 cos [i�t]

)
;

from the fundamental vibrational frequency component cos [
vt], and arrive at the

expression

h�(t)i � e� =M(t) cos [
vt] :

In the probe spectrum, we will see light scattered to a sideband of the fundamen-

tal vibration, and the intensity of that sideband will be modulated as the pump-probe

time delay is varied, where the scattered intensity is proportional to M(t). With a

su�ciently long pump-probe scan, we can perform a Fourier transform the sideband
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intensity signal, which is nearly equivalent to Fourier transforming M(t), the linear-

ity of the process is compromised by the fact that the sideband intensity is related

through a Bessel function transformation. It is clear, however, that we will see a

spike in the spectrum of the sideband lineout for each overtone excited, and that

the relative strength of each peak in the spectrum will be determined by the relative

strength of the coherences that connect neighboring vibrational levels. In the ex-

perimental arrangement, the probe pulse passes through many molecules, each with

an excited vibrational coherence. We can write the overall phase modulation im-

parted on the probe pulse as the product of the phase-modulation of each individual

molecule

exp

�
�i

N

"0

h�(t)i

�
;

where N is the number of molecules.

Another possible source of sideband intensity modulation is from isotopic varia-

tions of the molecules. Such isotopes exhibit a slight shift in the vibrational frequen-

cies that are on the order of the anharmonicity, and care must be taken to carefully

consider the two e�ects. The isotopic contribution to the time-dependent index of

refraction can be approximated as

n
2(t) � 1 +

Ntot

"0

e�+
Ntot

"0

X
l

flMl(t) cos [(
v � Æl) t] ;

Nl is the number of the lth isotope present, Ntot is the total number of molecules

present, Æl is the isotopic frequency shift, and fl = Nl=Ntot is the isotopic fraction.

If the resolution of the spectrometer that detects the probe spectrum is su�cient

to resolve the isotopic frequency shift, each isotopic contribution will appear as a
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separate sideband. However, as in the case of our experiment, if the spectrometer can

not resolve the individual isotopes, there is an additional modulation on the sideband

intensity due to the beating of the isotope frequencies in the spectrometer. This

additional beating must be separated from the anharmonic beating in the experiment.

4.6.1 Experimental measurements

In order to observe the evolution of a vibrational wave packet in a single mode,

created by a single intense, non-resonant impulsive pump pulse, we monitored the

probe pulse power spectrum as a function of pump probe delay after ISRS excitation

by a transform-limited pump pulse. The result of such a scan in SF6 is shown in

Figure 4.11. There is one strong Raman active mode in this molecule, the symmetric

S�F stretch breathing mode, which is not strongly coupled to any other mode. The

frequency of this mode is 775 cm�1 (23.25 THz). Figure 4.11(a) shows the probe pulse

power spectrum as a function of the delay and Figure 4.11(b) shows the intensity of

the light scattered at 775 cm�1 (23.25 THz) away from the probe central frequency as

a function of the delay. The position of zero delay is marked by a signi�cant distortion

and broadening of the probe power spectrum as a result of cross phase modulation of

the probe pulse as it co-propagates through the gas with the pump. The data shows

the dephasing of the wave packet and its subsequent rephasing at a time delay of

about 26 ps. The overall decay of the signal is consistent with rotational dephasing.

Identical measurements were made at several di�erent pressures between 20 and 100

torr in order to ensure that the decay is not a result of collisional dephasing.

The probe pulse spectrum vs. pump probe delay was also recorded for CO2,
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Figure 4.11: The probe spectrum measured as a function of delay from the pump

pulse (a). The sideband intensity, corresponding to the symmetric

breathing mode, shows beating structure due to overtone excitation.
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Figure 4.12: The probe spectrum measured in CO2 as a function of delay from the

pump pulse (a). Scattered probe light at 41.64 THz in CO2 shows

beating due to overtone excitation (b).
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and this data also exhibits observe evidence for overtone excitation as illustrated in

Figure 4.12. The pump pulse used here is short enough to impulsively excite both

of the Fermi resonance coupled Raman active modes: �1 and �4. Figure 4.12(a)

shows the excitation of both modes in addition to the excitation of a rotational wave

packet. The e�ect of the rotational wave packet is a periodic broadening of the probe

spectrum at full and fractional revivals of the wave packet.

The apparent disappearance of the vibrational sidebands at rotational revivals

is simply a result of the fact that the probe spectrum becomes extremely broad,

reducing sideband visibility. Figure 4.12(b) shows the probe intensity scattered as

by �1 as a function of pump probe delay. Modulations are evident which can be

attributed once again to the dephasing and rephasing of the vibrational wave packet.

We measure rephasing with a period of 1.47 � 0.1 ps, implying a 0.681 � 0.093

THz (22.7 � 3.1 cm�1) anharmonicity, in agreement with published values [108]. An

alternate technique can measure the anharmonicity of IR active modes in organic

molecules by observing the beating of vibrational echo signals initiated by pairs of

IR free-electron laser (FEL) pulses [109]. In contrast, our technique measures the

anharmonicity of Raman active modes with non-resonant ISRS excitation.

Figure 4.13(a) shows the probe spectrum for CCl4 as a function of pump probe

delay and Figure 4.13(b & c) shows the intensity of the probe at frequencies of

460 cm�1 (13.77 THz) and 556 cm�1 (16.8 THz), respectively. Note that there are

sidebands at frequencies that do not correspond to Raman active modes in CCl4,

such as the ones at 556 cm�1 (16.8 THz), and that the modulations in Figure 4.13(b
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Figure 4.13: The probe spectrum measured in CCl4 as a function of delay from the

pump pulse (a). Scattered probe light at 13.77 THz in CCl4 shows

beating due to overtone excitation (b). A new mode not attributable

to CCl4 at 16.8 THz also demonstrates vibrational overtones.
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& c) are much more pronounced than those in Figure 4.12(b). The new sidebands can

be explained in terms of photo dissociation of the CCl4 and the depth of modulation

is a result of two independent factors, which come to light in a detailed analysis of

the data.

In order to understand the pronounced beats in the CCl4 wave packets as well as

the new sidebands, we performed a Filter Diagonalization decomposition of the data

shown in Figure 4.13(b & c). This allows us to discern features in the spectrum of

the sideband evolution data that are not resolvable in a Fourier transform. Panels

(a) and (b) of Figure 4.14 show three representations of the spectra of the curves

shown in Figure 4.13(b & c). The decomposition assumes that the signal, S(t) can

be �t to the functional form S(t) =
P
i

aie
��it cos (!it+ �i). The decomposition

provides information on the frequencies, !i, phases, �i, and decay constants, �i of

the signal. These results for the data shown in Figure 4.14(a & b) are shown in

Table 4.1. The table contains two major contributions to the spectrum of each data

set in Figure 4.13 and both of these frequencies are evident as peaks in Figure 4.14(a

& b) .

Filter Diagonalization of Figure 4.13(b & c)

Mode Frequency !i (cm
�1) ai(relative)

460 cm�1 8.2 0.52

460 cm�1 3.3 0.48

556 cm�1 7.8 0.67

556 cm�1 5.5 0.33

Table 4.1: Filter Diagonalization of Figure 4.13(b & c).

The table contains two major contributions to the spectrum of each data set in

Figure 4.13 and both of these frequencies are evident as peaks in Figure 4.14 panels
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Figure 4.14: Filter Diagonalization decomposition of scatter light from CCl4.



115

(a) and (b). The three curves in Figure 4.14( a & b) are two spectra calculated

from the �tting coe�cients in Table 4.1 as well as Fourier transforms of the data in

Figure 4.13(b & c). The spectra, S1(!) and S2(!), were calculated from Table 4.1were

calculated according to

S1(!) =
X
i

ai

! + i�� (! + i�)i

S2(!) =
X
i

� jaij�i

(! � !i)
2
+ �2

The solid curves in Figure 4.14 are the Fourier transforms of the data in Fig-

ure 4.13, the dashed lines are S1(!), and the dotted lines are S2(!). The two spec-

tra, S1(!) and S2(!), illustrate the ability of the Filter Diagonalization technique to

resolve contributions to the structure in the Fourier transform of the datasets. The

pair of peaks in both data sets can be explained in terms of an isotopic mixture of

Cl in the CCl4, and beating between vibrational levels with an anharmonic energy

spacing.

In the case of the mode at 460 cm
�1 (13.77 THz), the contributions from the

isotope beating and the beating between the overtone states are similar in magnitude,

indicating that they are roughly equally responsible for the depth of modulation

evidenced in the data shown in Figure 4.13(b). There are three di�erent measured

frequencies of vibration for �1 in CCl4 , which beat against each other. These are

465 cm�1, 462 cm�1, and 459 cm�1, leading to a beat frequency of 3 cm�1. The low

frequency peak at 3 cm�1 is a result of the beatings of wave packets in molecules with

di�erent isotopic content. The higher frequency peak is presumably due the beating

of many vibrational states whose energy di�ers by the anharmonicity of the potential.
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Note that in Table 4.1, the contributions from the isotope beating and the beating

between the states are similar, indicating that they are roughly equally responsible

for the depth of modulation evidenced in the data shown in Figure 4.13(b). This

depth of modulation is much deeper than the modulation in the CO2 data (i.e., more

distinct dephasing and revivals), indicating the participation of more states in the

wave packet

The wave packet excited in CCl4 consists of more states than the wave packet in

CO2, resulting more distinct dephasing and revivals. The CO2 sideband signal never

completely disappears between revivals, as it does in the case of CCl4, because the

wave packet is composed of mostly � = 0 and � = 1 with small contributions from � =

2 and higher states. This is consistent with a simple classical picture of the impulsive

excitation. The pump pulse duration is several times shorter than the vibrational

period of modes at 460 cm
�1 (13.77 THz) and 556 cm

�1 (16.8 THz), whereas in

the case of CO2, the pump pulse duration is barely shorter than the frequency of

both excited modes. In a simple classical excitation picture, the excitation is a

highly nonlinear function of pulse duration that grows rapidly with decreasing pulse

duration [104] Q(�) =
R
cos (!0t) exp

�
� (t=�)

2
�
, where Q is the impulse transferred

to the molecule and is the pulse duration for a Gaussian pulse pro�le. Therefore,

modes with vibrational periods much greater than the pulse duration will feel a much

greater 'kick' than modes with periods near the pulse duration.

The second factor contributing to the large depth of modulation in Figure 4.13(b)

and (c) is the excitation of wave packets in molecules containing di�erence isotopes
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of Cl. There are two dominant naturally occurring isotopes: Cl35 and Cl
37. This

gives rise to three di�erent frequencies of vibration of �1 in CCl4, which beat against

each other. These are 465 cm�1,462 cm�1 and 459 cm�1, leading to a beat frequency

of 3 cm�1.

Further evidence of overtone excitation in CCl4 is provided by Figure 4.8(c),

which shows the probe spectrum obtained after excitation of CCl4 with two time-

delayed transform-limited pulses. This can also be seen by performing a 1-D Fourier

transform of the data in Figure 4.8(c) to produce a data set similar to that of Fig-

ure 4.8(a). Figure 4.15 shows such a transform in which various modes and mode

combinations can be seen. The two transform-limited pulses excite not only the nor-

mal modes of the system, but also overtones and combination modes not observed

in the chirped pulse data of Figure 4.8(c).

The light scattered at the frequency 2�1 in Figure 4.15 shows two local maxima,

only one of which lies on the line of slope 1. The maximum occurring with a pulse pe-

riodicity of 1=�1 cannot be unambiguously assigned to light scatter from the overtone

as it may include light scattered twice from �1. The second spot marked is scattered

to a frequency 2�1 and has a periodicity of � 1=2�1, providing unambiguous evidence

for overtone excitation.

4.6.2 Excitation of dissociated molecular fragments

Figure 4.16 reveals more interesting rotational structure. In addition to the rota-

tional revivals that can be attributed to CO2, we see additional structure resulting

in more minor modi�cations to the probe spectrum. The spacing of these can be
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Figure 4.15: Data from Figure 4.8(c) where the temporal data at each scattered

frequency is Fourier transformed. The shaded regions indicate the power

spectral density.

exactly matched to the expected revival times of rotational wave packets of O2 and

CO. This provides evidence that this structure is due to dissociation of CO2 leading

to the formation of O2 and CO.

Photo-dissociation of CCl4 is evident by examining the 556 cm�1 mode of Fig-

ure 4.13(c). The two corresponding peaks in Figure 4.14(b) provide a key for under-

standing the source of the new sidebands. The vibrational frequency of 556 cm
�1

is consistent with that of Cl352 and the two peaks in Figure 4.14(b) agree exactly

with the measured anharmonicity of Cl2 and the vibrational energy di�erences be-

tween molecules composed of di�erent isotopes. The vibrational frequencies for Cl352 ,

Cl
37
Cl

35 and Cl
37
2 are 556 cm

�1, 548 cm
�1 and 540 cm

�1 respectively. This gives

rise to a beat frequency between the isotopes of 7.8 cm�1. The anharmonicity is 5.53
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Figure 4.16: Rotational revival structure indicating that the CO2 is dissociated into

CO and O2.

cm
�1.

Perhaps the most important evidence for assignment of the new modes in the

probe spectrum is that they only appeared after several pump laser pulses were

incident on the sample. Figure 4.17 shows the buildup of the new Raman peak at 556

cm
�1 and the decay of the signal at 460 cm�1 as measured by the sideband intensities

at those frequencies. The growth of the peak at 556 cm�1 is accompanied by a decay

of the signal at 460 cm-1, which is consistent with a laser driven dissociation of the

CCl4 to produce Cl2. We also monitored the decay of the new peaks with time and

found the decay to be consistent with di�usion of the new products to locations in the

waveguide assembly where they do not interact with the laser pulse. Further studies

are underway to improve our understanding of the dissociation process and determine
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Figure 4.17: Growth of Cl2 at the expense of CCl4, indicating macroscopic photo-

dissociation.

whether or not the formation of the Cl2 is the result of a concerted reaction.

4.6.3 Observation of combination band evolution

Figure 4.18 shows three lineouts from Figure 4.8(a) and demonstrates our ability

to excite a combination mode that is a coherent sum of two di�erent normal modes.

By adjusting the delay between pump pulses to 1=(�1��4), we can excite vibrational

motion that is a combination of the �1 and �4 modes of the molecule (lowest lineout

in Figure 4.18, at position A) where no individual excitation of modes �1 or �4 is

observed. This indicates that the probe does not simply acquire modulations at the

di�erence frequency through optical mixing of the two normal mode frequencies, but

rather that it is modulated by the motion of the molecule in the combination mode.

Position B marks a delay between pump pulses for which the excitation of both
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Figure 4.18: Probe spectrum of CCl4 excited by two transform-limited pulses. (a)

Probe spectrum vs. time delay between pump pulses. (b) Lineouts at

frequencies corresponding to �1, �4, and �1 � �4.

normal modes is maximum, but where there is no excitation of the combination

mode. Excitation of such combination modes is an important step toward bond

selective excitation, since reaction coordinates do not always correspond to normal

modes of molecules.

4.7 Modi�cation of a bimolecular reaction rate

From the example in the previous section, we see that new product formation can

be determined by monitoring the vibrational or rotational spectroscopic information

obtained from probe energy scattered by molecular motion. This was an example of

a unimolecular reaction. We have also observed evidence of a bimolecular reaction

occurring in the hollow core �ber. When we introduce both carbon tetrachloride

vapor and carbon dioxide gas along with the laser pulses, we observe new Raman
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Figure 4.19: We observe new modes that appear and grow with time when Carbon

Dioxide, Carbon Tetrachloride, and laser pulses are introduced into the

gas cell.

active vibrational modes that appear as sidebands at a frequency of 580 cm
�1, as

shown in Figure 4.19. These sidebands match those of Phosgene (CCl2O). To

con�rm the presence of Phosgene as a reaction product, we sampled a gas mixture

that had been exposed to many laser shots. An FTIR scan of the sample revealed

IR absorption features that matched those present in Phosgene. As an initial test

to determine if this reaction was sensitive to the shape of the driving laser pulse,

we used the learning algorithm to feed back on the intensity of Phosgene sideband

signal. The algorithm converged to an optimal solution.

The main question that arises is whether or not this reaction is due to coherent

control, or due to photochemistry? A possible explanation is that a multiphoton

process causes photo-induced dissociation of the reactants, which in turn drives the

reaction. To rule out this possibility, we normalized the shaped and transform-limited

pulses so that they had the same integrated second-harmonic intensity. When the

pulse energies were adjusted to ful�ll this condition, we then measured the sideband
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Figure 4.20: Comparison between the reaction rates measured for an optimally

shaped (a) and transform-limited (b) laser pulse.

intensity of the Phosgene production as a function of the number of laser shots

introduced into the reaction cell. The results in Figure 4.20 show that the shaped

laser pulse induces a much higher reaction rate than the unshaped laser pulse. This

indicates that there is a pulse-selective modi�cation of the bimolecular reaction rate.

Further experiments are required to con�rm this. The ideal experiment would show

that for equal pulse energies that the shaped laser pulse has a higher reaction rate.

These results do show, however, that the di�erence in the reaction rates is not simply

due to a high-order multiphoton induced chemistry.

In should also be noted that this experiment is dangerous. Phosgene is a chemi-

cal weapons agent used in WWI, and gas that escapes into the laboratory will kill the

occupants. For this reason, once the product was identi�ed, we stopped this series of
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experiments. I strongly discourage anyone reading this document from attempting

this experiment because it may result in death.

4.8 Self-seeding of vibrational motion

In order to control vibrational motion in molecules with ISRS, it is necessary

to "hit" the molecule with an excitation pulse whose time duration is shorter than

the vibrational period we wish to excite. Moreover, the molecular motion must

result in a change in the molecular polarizability so that there is a �nite Raman

cross-section. This excitation pulse need not be a single, isolated short pulse, but

can also be a longer pulse with structure that has time duration shorter than the

vibrational period. As explained in this Chapter, the ability of a pulse to excite a

given vibrational mode is determined by the spectral density of the intensity pro�le

at the vibrational frequency. This provides a quantitative measure of the amount of

structure in the intensity pro�le at that frequency.

In this section, I detail the results of a set of experiments that show that pulse

propagation in a medium prepared with a Raman coherence reshapes the excitation

pulse, increasing the structure at the vibrational frequency in the pulse. This is in

essence a "self-modi�cation" phenomenon where the molecules reshape the excitation

pulse to be "more optimal" in exciting the molecules vibrational mode.

4.8.1 Reshaping of the ISRS pump pulse

When a laser pulse causes ISRS excitation, the pump pulse spectrum experiences

a red-shift as a result of the energy lost in exciting the vibrational mode. For ISRS,

the amount the pump spectrum shifts is determined by the number of Raman modes
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excited (and therefore energy lost) [104], and we routinely observed this e�ect in all

of the molecular systems we excited. The modi�cation to the spectrum and phase of

the pump pulse will certainly be re�ected in the time-domain. I studied this e�ect

by measuring the change in the pulse shape in the bend mode (41.64 THz) of CO2

as I varied the pressure of the gas. I measured the pulse shape out of the �ber using

SHG FROG [72] to quantify the changes.

Figure 4.21(a) shows a series of pump pulses that excite a vibrational coherence

in CO2 at pressures ranging from 20 - 800 torr. Notice that as the gas pressure

increases, the intensity pro�le of the pulses is modi�ed. The increase in the level

of excitation of the vibrational mode is accompanied by an increase in the power

spectral density of I(t) at the vibrational frequency, as shown in Figure 4.21(b). At

higher pressures, the spectral density at the vibrational frequency becomes larger

than the transform-limited value. This provides a clear indication that the fraction

of the pulse energy that has structure at 1/(41.6 THz) (see Figure 4.21(c)) in the

temporal structure is increasing as the pressure, and therefore, the excitation of the

vibrational motion. Thus, a pump pulse that impulsively excites a vibrational mode

in a molecule will experience a reshaping of its intensity pro�le in a way that more

e�ciently excites that vibrational mode. This implies that a pump pulse that is too

long to excite a given vibrational mode may be able to excite that mode provided

it somehow develops a small amount of temporal structure that allows it to initially

excite, or "seed", the vibrational mode.
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Figure 4.21: As the pump pulse that impulsively excites vibrations in a molecule is

seen to reshape into a pulse with more structure at the mode frequency.

The measured pulse shapes (a) show signi�cant distortion at higher

pressures. The power spectra of the intensity pro�les (b) reveals the

energy redistribution adds signi�cant energy to the vibrational mode.

The energy redistribution into structure at the vibrational period grows

quadratically with increased gas pressure.



127

Pu
m

p 
W

av
el

en
gt

h 
(n

m
)

550

650

750

850

950

1050

(a)

Pr
ob

e 
W

av
el

en
gt

h 
(n

m
)

350

400

450

Pressure (torr)
0 400 800

(b)70 THz mode
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Figure 4.23: Probe spectrum demonstrating excitation of the 14 fs vibrational mode

in N2.

4.8.2 Excitation of self-seeded vibrational motion in N2

The vibrational period of N2 is 14 fs, and is normally inaccessible for ISRS excita-

tion to a pump pulse with a 20 fs duration. However, the spectrum of the pump pulse

can be increased with propagation in a gas as a result of the Kerr-induced temporal

phase modulation experienced by the pulse. In a non-dispersive medium, the pump

pulse intensity pro�le is unmodi�ed as the bandwidth increases. However, in the

presence of dispersion, the pulse can acquire structure. If this medium is a molecular

gas and the structure developed is shorter than the vibrational period of previously

inaccessible vibrational modes, those modes will be weakly excited. However, with

increased propagation, the reshaping of the pulse will become more dramatic, and

the vibrational mode will be more heavily excited.

Figure 4.22(a) shows the spectrum of the pump pulse propagating though a hollow

core �ber �lled with N2 gas as the gas pressure is increased. The probe spectrum
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Figure 4.24: The variance of the probe bandwidth in Figure 4.22 (a) and the sideband

intensity at the vibrational mode at 70 THz in Nitrogen in the probe

spectrum (b).

is broadened due to self phase modulation (SPM). Notice that at a pressure of 400

torr, a sideband in the probe spectrum (Figure 4.22(b)) appears at 70 THz (see

Figure 4.23), which indicates the excitation of the 14 fs (70 THz) N2 vibrational. A

closer inspection of Figure 4.22(a) also reveals that as the pressure is increased over

400 torr, there is a more substantial red-shift evident in th pump pulse.

Figure 4.24(a) shows this sideband intensity as a function of pressure. We see

that the standard deviation of the spectral distribution (pump bandwidth shown in

Figure 4.24(b)) increases continually. Notice that at 400 torr, we begin to observe

light scattered to 70 THz from the probe central frequency, indicating there is a

threshold pressure for the excitation of theN2 vibrational motion. The reason for this

threshold pressure is elucidated by Figure 4.25, which shows the correlation between

the intensity of the sideband due to excitation of vibrational motion in N2 and the

pump spectral bandwidth. In Figure 4.25(b), I have rescaled the pump bandwidth
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Figure 4.25: The correlation between sideband intensity of the 70 THz mode in Ni-

trogen and the probe bandwidth shows that once the probe bandwidth

has exceeded 70 THz, the vibrational mode is excited.

in terms of the Raman frequency (70 THZ). This clearly shows that the "threshold"

corresponds to the pressure where the bandwidth of the pump laser has increased

to be as large as the vibrational frequency, which implies that upon compressed, the

pump pulse duration would be shorter that the vibrational period. However, in the

self-seeding approach, the bandwidth is created with SPM, and the dispersion and

ISRS processes reshape the pump pulse to e�ciently excite the vibrational mode. I

am currently developing a model to test the validity of this explanation, however,

the experimental evidence clearly shows that it is indeed possible to achieve ISRS

excitation with a pump pulse longer than the vibrational period under the correct

conditions.
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4.9 Summary

To summarize, in this Chapter I demonstrate coherent and selective vibrational

excitation of molecular gases at room temperatures and high densities. A learning

algorithm incorporating a cost function is used to achieve control and demonstrat-

ing the ability to create "custom" multimode vibrational wave packets in molecular

systems at STP, yielding a simple interpretation of the control mechanism in terms

of impulsive Raman scattering. Signi�cant fractions of the molecular samples were

excited. Furthermore, signi�cant vibrational amplitude is achieved as evidenced by

strong overtone excitation. In addition to creating shaped molecular wave packets,

we measure and observe dynamics using temporally resolved nonlinear spectroscopy.

These techniques are general and can be applied to many transparent molecular

gases, or liquids with high vapor pressures at room temperature. The results are

encouraging for the prospect of using tailored laser pulses to provide selective ex-

citations for in�uencing bimolecular reactions. We have seen preliminary evidence

of controlling the reaction rate of a bimolecular reaction with a shaped laser pulse;

however, more work is needed to unequivocally prove this result. In the future, since

shaped pulses with durations of 5-10 fs are now becoming experimentally practical,

it will be possible to extend this approach to all Raman active molecular modes,

including H2. Finally, we have also shown that Raman vibrational modes can be

excited in spectrally broadened pulses that have not been time compressed, provided

that the broadened pulse develops some structure with a time duration shorter than

the vibrational period. Further propagation in the molecular gas will reshape the
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pulse to more e�ciently excite vibrational motion in that gas, thus self-seeding the

process.



CHAPTER V

Applications of Controlled Atoms and Molecules

5.1 Introduction

The main point of controlling quantum mechanical systems, other than to learn

about those systems, is to use control and use those systems in a bene�cial way.

In this chapter, I present two applications of the work I presented in the previous

chapters. The �rst section of this chapter, we demonstrate that by creating rotational

wave packets with a 20 fs ultrafast pulse, a time-delayed pulse can be spectrally

broadened, then compressed after propagating through a transparent window. This

experiment shows that we can use a quantum mechanical system that has been

prepared in a desirable way to do something useful in the laboratory, essentially

using light to control a quantum mechanical system that can be used to control

another light pulse, with very important and wide-ranging applications.

The second application is the use of EUV radiation for coherent imaging. Imag-

ing does not make use of the coherent control of the HHG process. The imaging

work described here was done as a feasibility demonstration for time-resolved co-

herent imaging with EUV radiation. Because we require a high degree of coherence

133
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for our imaging experiments, we did a series of experiments studying the spatial co-

herence properties of phase-matched HHG. These experiments demonstrate that the

phase-matched HHG radiation generated in a hollow core �ber has the spatial char-

acteristics of a high-quality laser beam, with essentially perfect spatial coherence.

We also showed that we could obtain the frequency spectrum of our EUV light sim-

ply by a deconvolution of the interference pattern generated by a double-slit. This is

to our knowledge the �rst application since Young's experiments 200 years ago [110].

5.2 Controlled rotational wave packets as phase modulators

Ultrashort pulses have a wide variety of applications in science and technology.

For some applications such as high-harmonic generation, THz measurements, sur-

face SHG generation, or time-resolved chemical reaction dynamics, very short opti-

cal pulses are desirable [111, 112, 113]. However, the bandwidth available directly

from laser systems is limited. To circumvent these limitations, several techniques

have been developed for broadening the spectrum of a light pulse. Typically, this

creates a positively chirped pulse that can be compressed to a shorter pulse. Re-

cent advances in the �eld of coherent control of atoms, molecules, and solid-state

systems [67, 11, 13, 2, 5, 10] made possible a number of new techniques that can be

used to manipulate light pulses. In this section, we describe a technique where use a

rotational wave packet created by an ultrashort light pulse to induce a rapid phase

modulation on a time-delayed probe pulse. This technique has distinct advantages

over previous schemes of pulse compression because the phase-modulation can be

independently controlled by the pulse that excites the rotational wave packet and
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as a result, the modulated pulse can be time-compressed by propagation through a

transparent window, eliminating the use of pulse compressors that su�er from high

loss.

The most common pulse compression scheme is to use the electronic Kerr non-

linearity to produce a temporal self-phase modulation (SPM) that is proportional to

the pulse intensity [114, 115, 116, 117]. The SPM process imparts a positive chirp on

the pulse, which must then be compensated for by a di�raction grating or prism pulse

compressor [118, 119]. Moreover, because SPM is a third-order nonlinear process, it

is very sensitive to variations in the input pulse shape and energy and ampli�es any

instabilities in the input pulse. Nevertheless, this technique has been responsible for

the generation of the shortest optical pulses to date, with a duration under 5 fs [116].

In recent years, however, several alternative approaches to the modulation of

light have emerged. One method is to use intense quasi-CW lasers to excite a series

of high-order vibrational Raman lines, producing a broad frequency spectrum that

consists of a series of discrete lines [120]. In another technique, an ultrafast laser

pulse excites a strong vibrational coherence in SF6, also results in the generation

of many high-order Raman sidebands [121]. Compressing the spectra from either

technique produces a pulse train with narrow temporal structure (predicted to be

sub-fs) given by the separation of the highest-order Stokes and anti-Stokes sidebands.

Compression schemes based on rotational modulation of the index of refraction of a

molecular gas have recently been proposed, predicting compression to 3 fs duration

using rotationally-excited H2 [122] and to �1 fs using N2 [123].
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In this work, which was a collaboration involving TomWeinacht, Mark Baertschy,

and myself, we demonstrate experimentally that rotational wave packet revivals [124]

in a molecule (CO2) can be used to phase-modulate and self-compress single, ultra-

short, light pulses. A short pump pulse excites a rotational wave packet in the gas

that undergoes periodic full revivals at time delays of Tr = h=2B, where h is Planck's

constant and B is the rotational constant of the molecule. In the case of CO2, full

revivals occur at Tr = 42:8 ps. Because these revivals are separated by many ps

(even though they contain rapid structure during each revival), the probe pulse ex-

periences a non-periodic phase modulation allowing for single pulses to be generated

that are phase modulated in a simple, controlled way. We also measured the phase

induced by the time-dependent index of refraction during the rotational revival of a

wave packet. Finally, we show that soliton-like pulses can be generated at arbitrary

intensities using this scheme.

5.2.1 Theoretical description

The pump pulses used in this series of experiments are linearly polarized. When

such a linearly polarized pulse interacts with a molecule that has an anisotropy in

its polarizability, that molecule experiences a torque as it tries to align itself to the

direction of the linearly polarized �eld, see Figure 4.9. This feature of molecules has

been exploited for years as a mechanism for trapping. When excited by a short time

duration pulse, these molecules experience a large, impulsive torque that excites a

large number of rotational states and forms a quantum mechanical rotational wave

packet.
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Provided electronic excitations and rovibronic couplings are negligible, the rota-

tional motion of the molecules can be described by a simple rigid rotor model [125,

126]. The total wave function 	 will be expanded in terms of rotational eigenstates

jJMi of the �eld-free Hamiltonian H0, whose corresponding energy eigenvalues are

BJ(J + 1), where J is the angular momentum quantum number and M is its labo-

ratory frame z-axis projection. The interaction between the linearly polarized pump

pulse and a linear molecule is through an induced electric dipole moment, describable

in terms of the e�ective angular potential energy V = �

�
"
2(t)

2

� �
�k cos

2
� + �? sin

2
�

�
.

Here "(t) is the electric �eld of the laser pump pulse, � is the angle between the elec-

tric �eld and the internuclear axis, and �k; �? are the components of the anisotropic

polarizability for �elds respectively parallel and perpendicular to the axis. The full

Hamiltonian for a rotating molecule interacting with the pump pulse is

H(t) = H0 �
1

2
"
2(t)

�
�� cos2 � + �?

�
; (5.1)

where �� = �k � �?.

A quantum system initially in a pure jJMi state will be excited by the pump pulse

into a coherent superposition of di�erent jJ 0Mi states. Selection rules require that

the J 0 = J; J � 2; J� 4; � � � have the same exchange symmetry as the initial J . After

the pump pulse, the rotational wave packet evolves under the �eld-free Hamiltonian.

There are exact, periodic, full wave packet revivals at a period of Tr = h=2B. In

addition, due to the quadratic dependence of the energy on the rotational quantum

number, partial revivals occur with a period Tpartial =
h

d2E(q)=dq2
[127], where q is

a quantum number that must increase by unity.
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Our detailed model begins with a thermally averaged ensemble of di�erent pure

jJMi states weighted according to the Boltzmann distribution function. Next, we

propagate them in time through the duration of the pump pulse, using the time-

dependent Schroedinger equation, with the Hamiltonian de�ned in Eq.( 5.1). In the

case of a symmetric, linear molecule, e.g. CO2, only even J-values are included in

the ensemble (i.e., J = 2q). The dephasing and rephasing of the quantum states

induces a periodic modulation of the index of refraction of the gas, which is given by

n
2(t) � 1 +

N

"0

�
�? +��



cos2 �(t)

��
(5.2)

where N is the gas number density. The alignment cosine, hcos2 �(t)i, is the ther-

mally averaged expectation value of cos2 �. Figure 5.1 shows the calculated index of

refraction as a function of time, for rotating CO2 molecules at temperatures of 293

K and 195 K, excited by a 20 fs, 800 nm pump pulse at intensity 3x1013W=cm
2. At

t = 0, the pump pulse creates the coherent rotational wave packet. The peaks in n(t)

that occur every Tr � 42:8 ps are due to the rotational revivals where the wave pack-

ets rephase completely. Partial rephasings occur at intervals of Tpartial = Tr=4 � 10:7

ps. The partial rephasings at odd multiples of Tpartial would not exist if both even

and odd J states were allowed, e.g, for a heteronuclear molecule. Note that in Fig-

ure 5.1, the molecular alignment is improved by cooling the molecular gas. Cooling

increases the purity of the initial state, resulting in a more coherent alignment of the

ensemble of molecules and therefore a larger variation in the index of refraction.
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(a)    T = 195 K
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Figure 5.1: Calculated index of refraction, n(t), as a function of time for rotatingCO2

molecules at 195 K (a) and room temperature [293 K] (b). The plots show

deviations from the average value, < n >, where < n > �1 = 2:6x10�4

for 195 K and 1.7x10�4 for 293 K.
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5.2.2 Molecular phase modulation for pulse compression

The phase modulation imparted on the probe pulse is maximized when the delay

coincides with a full or partial rotational wave packet revival. By adjusting the delay

of the probe pulse to coincide with the minimum or maximum of the index of re-

fraction, we sample a region of curvature that provides predominately either positive

or negative quadratic temporal phase modulation. Furthermore, by adjusting the

duration of the probe pulse to match the time separation of the in�ection points of

n(t), we can maximize the total phase modulation. This is desirable for two reasons.

First, by con�ning the pulse energy to that region of the phase modulation where the

curvature is of the same sign (within the in�ection points), we ensure that the chirp

is always of the same sign. This results in a smooth spectral broadening of the pulse,

ensuring a high-quality compressed pulse. In contrast, for SPM, the time-dependent

refractive index n(t) generated by the pulse intensity envelope has in�ection points.

These lead to identical frequencies being created in di�erent temporal regions of the

pulse. Interference between these frequencies leads to modulations in the spectrum

of the broadened pulse, which makes temporal compression di�cult.

The second reason for matching the probe pulse length to the width of the curved

portion of the induced n(t) is to maximize the resultant bandwidth. Using a probe

whose length is matched to the rotational revival width will result in more spectral

broadening than for a shorter probe pulse. This result is seen by considering a simple

expression that predicts the broadening induced on Gaussian pulses that experience
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a quadratic temporal phase modulation (or linear chirp)

f =

s
1 +

�
�cR�

2
i

2 ln 2

�2

[128]. Here �i is the input pulse duration and the curvature of the temporal phase,

'(t) = !Lt+�cRt
2, de�nes the chirp rate cR. The output pulse duration is �o = �i=f

and follows a 1=�i dependence. Therefore, increasing the input probe pulse duration

can yield shorter output pulses until the probe pulse length exceeds the region of

curvature in n(t). Group velocity walko� between the pump and probe pulses could

cause the probe to shift in time with respect to the rotational revivals into a region

of opposite chirp, but it is negligible in our case (�0.56 fs/cm).

For our experiments, we used 15-20 fs laser pulses generated by an ampli�ed

Ti:sapphire laser system, at a 1 kHz repetition rate, a wavelength of 800 nm, and

an energy of �1 mJ [129, 69]. A portion of the pump pulse (� 30 %) is split o� for

use as a probe pulse. This probe pulse is frequency doubled in either a long (25 mm

KDP) nonlinear crystal to generate a long probe pulse (t 0.6 nm, 270 fs, 400 nm)

or in a short (2.5 mm KDP) crystal to generate a short probe pulse (t 2.2 nm, 52

fs, 400 nm). The pump and probe pulses are combined with an adjustable delay and

focused into a 30-60 cm long, 450 �m diameter, hollow-core �ber �lled with CO2

gas at pressures of 100-500 torr. For our �rst experiment, a rotational coherence

was prepared using a 0.3 mJ, 20 fs, 800 nm pump pulse propagating through 280

torr of room temperature CO2 gas in a 30 cm, 450 micron, hollow-core �ber. Using

the short probe pulse to sample the instantaneous index variation, we measured the

frequency shift (proportional to dn=dt) of the temporal phase modulation due to the
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Figure 5.2: Measured phase (a), frequency shift (b), and chirp rate (c) for the �rst

observable partial rotational revival.

1st observed partial rotational revival, as shown in Figure 5.2(b). These results can

be integrated to obtain the phase '(t) =
n(t)!0

c

L [Figure 5.2(a)], while the chirp

rate can be obtained by di�erentiation [Figure 5.2(c)]. The probe pulse spectrum was

measured as a function of delay in the vicinity of the 1st observed partial rotational

revival. As expected, for a 52 fs probe pulse very little broadening results from the

peak chirp rate of �0.10 THz/fs, corresponding to f � 1:17.

5.2.3 Demonstration of self-compression of ultrafast optical pulses

We then repeated the experiment with a longer probe pulse of duration 270 fs,

generated by doubling in a 25 mm thick KDP crystal. Here we used a 60 cm long
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Figure 5.3: Temporal pro�les of the injected 270 fs pulse (dashed) and the self-

compressed 30 fs pulse (solid) and phase (dotted).

�ber �lled with 300 torr of CO2 gas. The probe delay was adjusted to coincide

with the 1st full rotational revival to give the maximum output bandwidth in a

region of negative chirp. The input pulse shown in Figure 5.3 (dashed line), has a

minimum pulse duration of 270 fs as determined by the Fourier transform of the

probe spectrum. The output probe pulse was characterized using self-di�raction,

frequency-resolved optical gating (SD FROG). A 1" length of fused silica glass was

inserted into the beam before the SD FROG measurement apparatus to compress

the pulse. The deconvolved pulse shape and phase, shown in Figure 5.3 (solid and

dotted lines, respectively), indicates that the pulse duration has been reduced to 30

fs, corresponding to a compression ratio of 9. This compression is achieved without

the use of gratings, prisms, or chirped mirrors, so the e�ciency is limited only by

coupling into a hollow core �ber.
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This approach to molecular modulation of light has several desirable character-

istics. First, it allows for some tunability of the compressed pulses by shifting the

delay of the probe pulse to a region of either positive or negative slope of the wave

packet revival. Second, it can impart either a positive or negative chirp on the

pulse. Third, since the phase modulation imparted by the molecular rotations is in-

dependent of the intensity of the probe pulse, spectral broadening is stable. Fourth,

since a separate pulse prepares the rotational wave packet, this technique o�ers the

potential for some control over the phase modulation [130, 131, 132]. Fifth, this

process can lead to the generation of extremely short light pulses, possibly as short

as 1fs [123]. Sixth, this technique works best for long pulses that are relatively easy

to produce, generating shorter output pulses when the duration of the probe pulses

matches that of the rotational revival. Seventh, under some conditions, the time de-

pendent phase modulation of the rotational revival will balance the dispersion of the

gas and will therefore support soliton-like propagation that is independent of pulse

energy, i.e., the pulse is co-propagating with an index "bubble" caused by molecular

alignment. Finally, and perhaps most importantly, this technique is very general and

should allow for self-compression of light over the entire transparency range of the

molecular gas, spanning from the IR into the UV region of the spectrum. This is

particularly important in the UV, where the higher index of refraction may make

this technique more e�ective, and where other pulse compression techniques su�er

either from high-order dispersion or high loss.
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5.2.4 Improving the pulse compression

Further improvements such as lengthening the �ber, increasing its diameter, in-

creasing the gas pressure, cooling the molecular gas, using a more intense pump

pulse, and using a molecule with a larger di�erence in polarizabilities, will yield even

shorter, higher power, shaped pulses. By choosing a di�erent molecule, we can ad-

just the time scale of the width of the rotational revivals to optimize for di�erent

input pulse durations. Lastly, our model predicts that shaping the spectral phase

of the pump pulse can modify the structure of the revival. This presents the possi-

bility of tailoring the wave packet to pre-compensate for high-order spectral phase

aberrations in the compression window. Unlike techniques involving the excitation

of a single vibrational or rotational level, this is possible in a wave packet because

the relative phases of many rotational levels can be adjusted so that they rephase

in an optimal way. If the modulation of the revival structure is strong enough, this

technique could be used as a programmable molecular phase modulator operating

with bandwidths exceeding 50 THz.

As mentioned above, it is extremely di�cult to compress pulses to sub-100 fs

duration in the deep-UV. This is mainly due to the absence of very-broad bandwidth

optical gain media at short wavelengths Furthermore the conventional SPM technique

is di�cult since gratings su�er from high loss and prism materials introduce large

amounts of high-order spectral dispersion. The rotational compression technique is,

however, ideally suited to this wavelength range. This is in large part because of

the counter-intuitive �nding that it is easier to compress a long pulse to sub-5 fs
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duration, than to start with a shorter pulse, because the longer pulse experiences

more time-dependent phase modulation. Furthermore, the compression only requires

the pulse to be propagated through a transparent window for time compression, for

which Flouride salts are ideally suited.

To determine if compression to a short pulse was feasible in the UV, we simulated

the pulse compression process by using the time-dependent index of refraction to

phase modulate a 100 fs pulse centered at 248 nm (e.g., from a KrF laser). We utilize

the split-step technique, which is the standard approach for computing the e�ects

of SPM in dispersive media [133]. In this approach, the dispersion of the medium is

calculated in the frequency domain, while the phase modulation is applied in the time

domain. The length of the �ber is split into small steps so that the change imposed on

the propagating pulse is small for any given step and simulates both e�ects occurring

simultaneously. After propagating the pulse with the split-step method, the pulse

was propagated through a 1 mm thick window of LiF to time-compress the pulse.

To perform the split-step calculation, the �ber length Lf was split into NL seg-

ments, where each slice is denoted as dz. The spectral phase response of a "�ber

slice" due to the CO2 gas was calculated from the relation, �(!) =
n(!)!0

c

dz, where

c is the vacuum speed of light, !0 is the central frequency of the �eld, and n(!) is

the dispersion relationship given by the expression [134]

n� 1 = 0:012055
h

5:79925�2

166:0196�2�1
+ 0:12005�2

79:609�2�1
+ 0:0053334�2

56:3064�2�1
+ 0:0043244�2

46:0196�2�1
+ 0:000121845�2

10:0584738�2�1

i
Whereas the temporal phase was calculated from the relation �(t) =

n(t)!0

c

dz, where

n(t) is obtained from the theoretical model and is shown in Figure 5.1.
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Figure 5.4: Intensity distribution of the input (dashed) and output (solid) pulses in

both the temporal (a) and spectral (b) domains for the simulated pulse

compression of a 100 fs, 248 nm, KrF laser pulse.

Once temporal and spectral phase quantities have been computed, the input �eld

Ein(t) is computed (see Figure 5.4). For this calculation, an input pulse duration

of 100 fs FWHM center at a wavelength of 248 nm (KrF ) was assumed. The �ber

length in this simulation was 1 m and for the purposes of the calculation, it was

broken into 500 step corresponding to a �ber slice, dz, of 2 mm. Figure 5.5 shows

the evolution of the pulse spectrum as it propagates along the �ber. Note that in the

output pulse shown as the solid line in Figure 5.4(a) is time-shifted with respect to

the input pulse. This shift is due to the mismatch in the group velocity between the

pump pulse that excites the rotational coherence and pulse to be compressed. The

walko� caused by the group velocity mismatch causes the pulse to move to a region

of time-dependent index where there is a non-zero slope, leading to the frequency

shift evident in Figures 5.4(b) & 5.5.

Once broadened, the pulse must be compressed. To do this, we simulate propa-

gation through a 1 mm LiF window. The dispersion of LiF is given by the expres-
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sion [135]

n
2
� 1 =

0:92549�2

�
2 � (0:07376)

2
+

6:96747�2

�
2 � (32:79)

2

The pulse obtained after compression by the 1 mm LiF window has been compressed

to a duration of 2 fs FWHM, as illustrated in Figure 5.6(a). If the entire bandwidth

of the broadened pulser were to be time-compressed, it would yield a 1 fs FWHM

duration light pulse as shown in Figure 5.6(b). Our models have shown that by

reshaping the pump pulse that excites the rotational coherence, it may be possible

to remove higher-order spectral phase from the compressed pulse, resulting in 1 fs

pulses in the deep-UV.

In the demonstration experiment, the coupling of the blue probe pulse was not op-

timal, and as a result only a fraction of the energy of the pulse was phase-modulated.
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Figure 5.6: Input (dashed) and self-compressed (solid) pulses (a), along with the

transform-limited (dashed) and self-compressed (solid) pulses (b) for sim-

ulated KrF pulse compression.

Furthermore, CO2 is a di�cult molecule to align, resulting in low levels of alignment,

and thereby weaker phase modulation. Another limitation of this technique with the

current setup is that the group-velocity walko� limits the e�ective distance over which

the rotational phase modulation will result in broadening to a smooth spectrum. In

order to optimize this experiment, the group velocity of the pump and the probe

pulses should be matched with an appropriate choice of both �ber diameter and gas

pressure. A gas that can be more easily aligned (e.g., CS2) should be attempted so

that the phase modulation will be more e�ective. And �nally, the molecular gas (or

vapor) can be cooled to improve the alignment as well. Implementing this combina-

tion of improvements should lead to dramatic improvements in this technique and

make available sub-5 fs laser pulses across the spectral range from the near-IR to the

deep-UV.
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5.2.5 Summary

In summary, we present a �rst measurement of the phase induced by a rota-

tional wave packet revival and demonstrate its use for phase modulation and self-

compression of an ultrashort pulse. We also demonstrate the possibility of novel,

energy-independent, soliton-like propagation. This scheme is relatively insensitive to

the input wavelength and provides a method for self-compression in spectral regions

where traditional techniques are not e�cient. We expect this technique will also pro-

vide a convenient and �exible tool to manipulate and shape pulses in a wide spectral

range for a wide variety of experiments.

5.3 Spatial coherence of HHG radiation

5.3.1 Introduction

One of the fundamental properties the laser is the ability produce spatially coher-

ent beams, that can focus to a very small spot size (on the order of the wavelength of

the light). To date, the generation of fully-coherent beams has been limited to the vis-

ible/ultraviolet and longer-wavelength regions of the spectrum. A properly-designed

optical resonator will allow only a single transverse "mode" to oscillate within it,

allowing for e�cient extraction of light in a single, "TEM00" mode. Although any

light can be made fully spatially-coherent by passing it through a small-enough aper-

ture, this comes at a (usually very large) expense of beam energy. It is currently

not possible to make practical optical resonators at short wavelengths because of the

poor re�ectivity of mirrors in the extreme-ultraviolet. Short-wavelength light sources

such as electron impact sources [136], synchrotron sources [137], x-ray lasers [138],
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and free-electron lasers [139] all do not use resonators, and generate at-best partially-

coherent light.

High harmonic generation (HHG) is a useful way of generating coherent light

throughout the ultraviolet and extreme ultraviolet (EUV) regions of the spectrum.

However, experiments to date have shown that the HHG radiation is only partially

spatially coherent, and does not retain the full coherence of the fundamental driving

beam [140, 141, 142]. In this section, we show that EUV radiation generated by

phase-matched HHG in a hollow core �ber has nearly-perfect spatial coherence. Such

an EUV source, with good beam quality and high spatial coherence, can be used for

experiments in high-precision metrology, inspection of optical components for EUV

lithography [143], for and for microscopy and holography with nanometer resolution.

This source, with its short-wavelength and di�raction-limited output, represents the

smallest inherent e�ective source-size of any light source yet created.

The high-harmonic generation process is driven by coherent light from a laser,

and is itself a coherent process in that the atoms' nonlinear-optical response is fully

deterministic. Thus, one might expect that the HHG process would generate fully-

coherent light. However, measurements to date have shown that mechanisms such as

plasma refraction, as well as a complex spatial and temporal phase of the generated

light that results from the physics of the HHG process, limit the coherence of HHG-

generated EUV light. The HHG process is unique as a coherent optical process in

that high-harmonics are generated by atoms in the process of ionization - electrons

ionized by the strong �eld created by an ultrashort laser can "recollide" with their
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parent ion as they begin to oscillate in the laser �eld [80, 18]. This recollision

results in the EUV emission where the wriggle energy of the electron in the light

�eld is released as an EUV photon; however, it also dramatically and dynamically

changes the index of refraction of the medium. This large, time-varying index has

been identi�ed as the reason why early experiments have measured only partial

spatial coherence [140, 141, 142]. Degraded coherence also results from the fact

that emission at any particular wavelength can result from many electron recollision

trajectories, creating a complex and spatially-varying multimode wave front [141].

Ionization, and the subsequent recollision event, occurs twice each optical cycle as the

electric �eld reaches its peak value; however, for a particular harmonic, two separate

electron trajectories (corresponding to slightly di�ering ionization times within the

optical cycle), generate the same photon energy [18, 97]. Moreover, for HHG excited

by relatively long laser pulses, many di�erent optical cycles contribute to a given

harmonic order. All these e�ects can reduce the coherence of the source. Although

the proper selection of experimental conditions � such as the position of the focus

with relation to the position of the nonlinear medium � can mitigate these e�ects

by optimizing phase-matching in the forward direction [142], these techniques do not

appear to fully regain the coherence of the source.

In recent work, we have shown that the HHG process can be phase-matched

over a long interaction region using a hollow core �ber [90, 91]. This geometry

increases the conversion e�ciency of light into the EUV by up to two orders of mag-

nitude over what would be possible using similar pulse energies in a free-space focus
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con�guration. In this section, we show that this phase-matching over an extended

region also dramatically improves both the beam mode quality and the spatial coher-

ence, by phase-matching only the emission of individual atoms that contribute to a

fully-coherent, forward-directed, beam. Additionally, we demonstrate that the power

spectrum of a coherent EUV beam, consisting of four harmonic orders generated by

high harmonic emission (HHG), can be measured by analyzing the far-�eld inten-

sity distribution produced by a pinhole pair. Such a spectral measurement can be

calibrated by a straightforward measurement of the geometry of the experiment, pro-

viding absolute wavelength and relative intensity information. This approach proves

particularly useful in the EUV since wavelength calibration can be achieved to high

accuracy using straightforward measurements, and that the only element that has a

spectral response that must be separately calibrated is the CCD. This experiment

is, to our knowledge, the �rst spectral measurement of a source at any wavelength

by analyzing the pinhole pair interference pattern.

5.3.2 Analysis of a double-slit pattern

Although Young performed his original double slit experiment two hundred years

ago [110], it continues to yield new insights into the properties of light sources. The

interference pattern resulting from a double slit (or pinhole pair) is commonly used to

measure the spatial coherence properties of a light source in the visible [144], as well as

in the extreme ultraviolet (EUV) [145, 146] regions of the spectrum. This interference

pattern results from the path di�erence of the incident light �eld from each slit to

the observation point. In a standard spatial coherence measurement, the incident
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�eld is assumed to be quasi-monochromatic, so that temporal coherence e�ects are

isolated from a measurement of spatial coherence [147]. However, under conditions

where a broad bandwidth source illuminates a pinhole pair, the interference pattern

will contain both temporal and spatial coherence information of the source, as well

as the power spectrum [148].

Our analysis is based on coherence theory [144, 147, 148, 149]. In the far-�eld,

the path length di�erence between two sampled portions of a �eld [P1 and P2 in Fig-

ure 5.7] gives rise to an interference pattern, which is determined by the spatial and

temporal coherence. This path di�erence also introduces a time delay � =
�r

c

=
dx

zc

that generates an autocorrelation,
R
E(t)E(��t)dt, of the incident �eld. The Wiener-

Khinchin theorem shows that the power spectrum is the Fourier transform of the �eld

autocorrelation [147]. Therefore, measuring the pinhole pair interference pattern is

equivalent to measuring the power spectrum of the �eld incident on the pinhole pair

� provided that the �eld is spatially coherent and the spatial extent of the �eld

autocorrelation is less than the width of the Airy pattern from a single pinhole in the

observation plane. This connection has been known for some time [148], but to date

has not been exploited for a determination of the power spectrum of a light �eld.

The exact relationship between the interference pattern and power spectrum can

be derived as follows. The intensity distribution in the observation plane after illu-

minating two pinholes equally can be written as

I(x) = 2I(0)(x)

�
1 + 
12(x) cos

�
2�

d

�0z
x

��
; (5.3)

where I(0)(x) is the Airy distribution due to di�raction through a pinhole of width Æ,
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Figure 5.7: Experimental setup used to measure the spatial coherence and determine

the power spectrum of the EUV beam.

d is the pinhole separation, z is the distance from the pinhole pair to the observation

plane, �0 is the central wavelength of the light �eld, and 
12 is the degree of mutual

coherence de�ned as the real envelope of the complex degree of mutual coherence

(
12(x) = 
12(x) exp

�
�i2�

d

�0z
x

�
). Here the time delay has been transformed to the

spatial coordinate x =
zc�

d

. At any particular wavelength, the fringe visibility [147]

�12 =
Imax(x)� Imin(x)

Imax(x) + Imin(x)

is simply the value of 
12 at x = � = 0, i.e., �12 = 
12(0). More generally [149],


12(�) = z
�1
nb
S(�)�12(�)

o
; (5.4)

where bS(�) is the power spectrum normalized such that
R
1

0
b
S(�)d� = 1. Eq. (5.3)

shows that the interference pattern from a pinhole pair will have a broad spatial

extent determined by the Airy distribution from a single pinhole. The modulations

within the Airy disc are due to interference of the two pinholes. The slow modulations

are due to the interference of the broad bandwidth associated with several harmonics,

while the fast oscillations are determined by the central wavelength. The depth of
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modulation is determined by the spatial coherence of the beam, and therefore this

technique also applies to light �elds with imperfect spatial coherence.

A Fourier transform of Eq. (5.3) is written as

z fI(x)g � F (fx) = 2T (fx)


�
Æ(fx) +

1

2
b
S(fx)�12(fx)
 [Æ(fx + f0) + Æ(fx � f0)]

�
;

(5.5)

where 
 is the convolution operator, T (fx) = z
�
I
(0)(x)

	
is a �dc� spike, Æ(fx) is the

Dirac delta function, f0 =
d

z�0

is the carrier spatial frequency due to the pinhole-pair

interference pattern, and b
S(fx)�12(fx) = z f
12(x)g. Thus, a Fourier transform of

the interferogram produced from a Young's pinhole pair measurement should yield

three terms � a dc term corresponding to a �spike� at zero (or dc) frequency and

two terms containing information on the power spectrum convolved with the dc spike

and weighted by the spatial coherence function at that frequency. As a result, the

resolution of a spectral measurement is determined by the width of the dc spike. This

resolution limit approximately corresponds to the number of interference fringes that

can be resolved under the Airy distribution from a single pinhole, and is thus pro-

portional to the diameter of the pinhole and inversely proportional to the pinhole

separation. Equation 5.5 only yields information on the product of the power spec-

trum and the spatial coherence function at any frequency. However, in the case of

high harmonic generation (HHG) generated in a hollow-core �ber [90], the 4-5 har-

monics that emerge are phase-matched. As a result, we expect the spatial coherence

�12(�) across the entire 4-harmonic spectrum to be very high and nearly constant.

Recent spatial coherence measurements made under the same conditions and with
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the same harmonics irradiating an aperture simultaneously con�rm this assumption.

Fringe visibilities of unity were observed over most of the beam [23], and for this pin-

hole separation, the average coherence as a function of wavelength
R
1

0
b
S(�)�12(�)d�

is s0.9, indicating that the average spectral deviation of the spatial coherence is

< 10�2=nm.

In the case of quasimonochromatic radiation and pinholes with negligible size,

the modulation of spatial coherence factor, 
12, is simply twice the height of one of

the sideband terms after the maximum value of the dc spike has been normalized to

unity. More generally, we can sum the integral of the sidebands and divide by the

integral of the dc term, resulting in the following expression

~�12 =

R
T (�)
 b

S(� � �0)�12(� � �0)d� +
R
T (�)
 b

S(� + �0)�12(� + �0)d�R
2T (�)d�

; (5.6)

Note that this expression de�nes an average fringe visibility weighted by the spectral

intensity (~�12 =
R b
S(�)�12(�)d�) [144, 24]. For the case of monochromatic light,

the spectrum is a delta function and the fringe visibility at the central frequency is

obtained directly.

5.3.3 Determination of the spectrum

In this work, a 5 kHz, 1mJ, Ti:sapphire laser system [150] operating at a central

wavelength of 760 nm, and with a pulse duration of 25 fs, was focused into a 10 cm

long, 150 �m diameter, hollow core �ber �lled with Argon gas. The EUV radiation

is phase-matched at a pressure of 29 Torr in Ar. The pump pulse propagates pre-

dominantly in the EH11 mode of the hollow core �ber [151], while the high-harmonic

generation is restricted to the central, most intense portion of the fundamental mode.
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Figure 5.8: EUV beam measured with the Andor CCD camera place 95 cm from the

exit of the �ber.

Figure 5.8 is an image of the EUV beam 95 cm after the exit of the hollow core �ber.

At this propagation distance, the diameter of the EUV beam is �1 mm at the 1=e2

point, with a slight ellipticity (�1.3) due to imperfections in the hollow-�ber shape,

and with a beam divergence of < 1 mrad. A 0.35-�m thick Al �lter is used to re-

move the fundamental IR beam, after which a 20 �m diameter pinhole pair with a

574.6 �m center-to-center separation (as veri�ed by a scanning electron microscope)

is placed 95 cm from the �ber exit.

The far-�eld di�raction pattern observed 2.85 m from the pinhole pair using an

EUV sensitive CCD camera (Andor) with an exposure time of 60 seconds is shown in

Figure 5.9(a). An additional 0.35-�m thick Al �lter is placed immediately before the

CCD camera to eliminate unwanted IR scattered light. The HHG spectra were also

measured by an imaging EUV spectrometer (Hettrick Scienti�c HiREFS SXR-1.75),
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which measures �(�)bS(�), where �(�) is the relative e�ciency of the spectrometer.

Figure 5.10 shows the spatial frequency distribution along the x-dimension ob-

tained from a Fourier transform of the interferogram produced by the pinhole pair

[shown in Figure 5.9]. The high quality of the data of Figure 5.10 is due in large part

to the fact that the 2-D Fourier transform of the interferogram (with substantial ran-

dom detector noise) implicitly averages over all 256 lines of data in the y-dimension.

In essence, we take 256 simultaneous single-shot �eld autocorrelation traces; the in-

terferogram averaged over all y is shown in Figure 5.9(b). The optical frequency axis

is obtained by multiplying the spatial frequency axis by zc=d. Therefore, the pinhole

diameter, separation, and the distance to the detector determine the calibration of

the optical frequency axis in Figure 5.10. Each of these quantities can be determined

to a very high accuracy. The three terms expected from Eq. (5.5) are clearly shown

in Figure 5.10. The dc spike appears at the zero spatial frequency and has a frac-

tional width of ��=�0 = 0:022, which agrees well with the predicted resolving power

of ��=�0 = 0:8Æ=d, or 0.027 for our experimental geometry. The HHG spectrum

appears as two sidebands well separated from the dc term. The harmonic peaks are

broadened because of the intrinsic resolution of this measurement, i.e., we measure

a convolution T (�)
 b
S(�)�12(�) or T (�)
 b

S(�) assuming constant �12(�), as is the

case for this experiment. The broadening is evident from the comparison of the

spectrum measured by the x-ray spectrometer (dashed line of Figure 5.11) compared

with the pinhole spectrum (solid line of Figure 5.11). However, the width of the spec-

trum obtained from the x-ray spectrometer after being convolved with the dc spike
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Figure 5.9: Interferogram used to determine the EUV beam power spectrum (a) and

an average of the interferogram along the x direction (b).
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Figure 5.10: The spatial frequency distribution scaled in optical frequency showing

the three terms form the Fourier transform of the interferogram.

is identical to that obtained from the pinhole pair. The di�erence in the intensity of

the two spectra is due to the varying e�ciency of spectrometer response, assuming

constant spatial coherence across the harmonic spectrum, as explained above. The

inset of Figure 5.11 plots the ratio of the two spectra
b
S(�)�(�)b
S(�)

= �(�).

5.3.4 Full spatial coherence of HHG

The spatial coherence of the EUV light was measured using the well-established

double-pinhole (or double slit) interference technique [144]. The depth of modulation

of the fringes generated after passing a beam through a pinhole pair depends on

the correlation between the phase of the wavefront of the beam at the two points

where it is sampled. If the phase di�erence between the two points is constant

and deterministic (and therefore completely correlated), the fringe depth will be
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Figure 5.11: EUV spectrum obtained from a spectrometer (- -) and from the spatial

coherence measurement (-). The inset shows the inferred e�ciency of

the spectrometer from this data.

unity. However, if there are random variations in the phase between the two points,

the fringe contrast will be degraded due to implicit detector averaging. The fringe

visibility was measured across the width of the EUV beam by sampling the beam with

pinhole pairs separated by between 150 and 800 �m. We used apertures (National

Aperture, Inc) fabricated with 20 or 50 �m diameter pinhole pairs, placed 95 cm from

the exit of the �ber. The image distribution due to the pinhole pair di�raction was

captured by a back-illuminated x-ray CCD camera (Andor Technology) placed 2.85

m from the pinhole pair. The integration time of the CCD camera ranged between

20 and 240 s (100,000 � 1,200,000 laser shots). The observation of high spatial

coherence over such a long integration time indicates both high spatial coherence

and long-term stability in beam phase.
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separations of 150 (a), 250 (b), 400 (c), and 800 (d) �m.
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Figure 5.12 shows the measured di�raction pattern for a set of pinholes, to-

gether with a corresponding lineout. Note that the fringe visibility varies across the

di�raction pattern. Normally, spatial coherence measurements are performed with

quasi-monochromatic radiation. Under those conditions, the fringe visibility is con-

stant over the entire interference pattern. When the incident radiation is broadband,

consisting of several EUV harmonics, the depth of modulation at the center of the

fringe pattern (equidistant from the two pinholes) gives the fringe visibility of the

interference pattern. Analysis of the full modulation depth of the interference pat-

tern over the entire �eld can yield information about the spectrum of the incident

radiation [148, 24], as demonstrated in the previous section.

The EUV beam is sampled at 15, 25, 30, 40, 60, and 80 % of the beam diameter

using pinhole pair separations of 150, 250, 300, 400, 575, and 800 �m respectively

(as veri�ed by an SEM). A sample set of data measured by our x-ray CCD camera

is shown in Figure 5.12. In all cases, the interferograms were recorded in the far

�eld. Under these conditions, analysis using Eqn. (5.5) is valid � we simply make

a Fourier transform of the data, identify the sidebands, and integrate to obtain

the average spatial coherence. Notice that Figure 5.12(d), showing the interference

pattern produced by a pinhole pair at a separation of 800 �m, contains two circular

Airy distribution patterns with fringes across it. The two Airy distributions are

separated by �3.2 mm, even though this is the di�raction pattern generated by

a pinhole pair at a separation of 800 �m. The increased separation is due to the

fact that the pinholes are sampling the curvature of the EUV phase front, since the
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Figure 5.13: Fringe visibility across the beam.

pinhole separation (800 �m) is comparable to the beam diameter (1mm). At the

location of the pinholes on the beam, the local tilt of the EUV wavefront is larger

than the divergence due to the di�raction. Under these conditions, the two Airy

distributions are not well overlapped. In this case, Eqn. (5.3) does not apply, and

the fringe visibility varies due to the di�erent intensities from each pinhole. In the

central region where the two Airy patterns have approximately equal intensities,

highest fringe visibility is observed, and corresponds to the correct measure of 
12.

Figure 5.13 shows the magnitude of the complex coherence function as a function of

pinhole separation. It is evident from this plot that we maintain near unity spatial

coherence over the majority of the EUV beam. At the larger pinhole separations, the

EUV �ux on the CCD detector degrades quite signi�cantly making the error bars at

the extremes quite large.
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5.3.5 Summary

In summary, phase-matched EUV light generated in a �ber using the process of

high-harmonic generation exhibits the highest inherent spatial coherence yet demon-

strated. Since this source exhibits full spatial coherence at very short wavelength,

it also possesses the smallest inherent e�ective source-size of any light source in ex-

istence. Coupled with previous measurements that demonstrate that coherent con-

trol techniques can be applied to obtain nearly-full temporal coherence from these

sources [11, 12, 13], this means that fully spatially and temporally coherent laser-like

beams of EUV light can now be generated. We also experimentally demonstrated a

robust and accurate technique that allows the absolute wavelength and spectrum of

a light �eld to be determined from the far-�eld interferogram produced by a pinhole

pair. Furthermore, this technique provides a convenient method of absolute calibra-

tion in the EUV region of the spectrum where few tunable sources currently exist.

The spectrum obtained is veri�ed with the spectrum measured by a conventional

grating spectrometer. The resolution of pinhole pair spectrum can be improved by a

simple change in geometry � by either shrinking the pinhole diameter or increasing

the pinhole separation, at the cost of reduced photon �ux. The quality of the data

is extremely high due to the implicit averaging of the 2-D Fourier transform. This

experiment provides veri�cation of an important link between the spatial coherence

properties of an optical �eld and its power spectrum. Furthermore, because HHG is

generated using a table-top setup, this EUV source will be particularly useful for a va-

riety of application including nanoscale probes and imaging, and for precision metrol-
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ogy of EUV optical components for the next generation of optical lithography, as well

as for applications that take advantage of the sub-10 femtosecond time-duration of

these pulses such as time-resolved photoelectron spectroscopy [152, 153, 154].

5.4 EUV Gabor holography with HHG radiation

5.4.1 EUV Microscopy with HHG radiation

Soft x-ray and EUV radiation is an important technology for microscopy. The

fundamental reason EUV microscopy has been pursued is to take advantage of the

superior resolution that can be obtained using short-wavelength radiation. Work at

national facilities, such as Brookhaven National Laboratory and Lawrence Berkeley

Laboratory, has resulted in dramatic improvements in soft x-ray microscopy, with the

best images obtaining 45 nm resolution [155], and tomographic images that give 3-D

information. However their use is restricted to a few large and well-funded facilities.

HHG as a table-top source of EUV light has the capability of making possible soft

x-ray microscopy in a small-scale laboratory setup.

Many optical microscopy techniques exist that use varying degrees of sophistica-

tion. To extract more information from the sample under study, a more complicated

optical setup can be used. Alternatively, on can use a simple optical setup in combi-

nation with extensive signal processing. However, regardless of gthe technique, EUV

microscopy is a di�cult proposition. The EUV power in a HHG beam average power

is limited to a few microwatts. EUV light can not use refractive optics, furthermore,

because all materials scatter and absorb strongly in this wavelength regime. More-

over, EUV re�ective optics are scarce and on-average exhibit a 70 % loss per bounce.
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As a consequence, the preferred approach is to build as simple of an optical setup as

possible, then use computer processing on the acquired image to extract information.

Our goal in this work is to construct an EUV imaging apparatus that allows

for high-resolution microscopic images that can be processed at high speed. High-

speed processing rules out using a photo-sensitive material (e.g., PMMA) to record

the image, and restricts us to solid-state image acquisition devices. In this work, we

utilize an x-ray CCD camera from Andor Scienti�c (HiREFS SRX1.75). This section

describes the �rst coherent imaging experiment ever done with HHG radiation. This

initial demonstration was done to test a basic imaging setup and study the resolution

limitations.

5.4.2 Gabor holography

The simplest imaging experiment one can perform is to insert an object into a

beam and capture the intensity distribution formed some distance away. This holo-

graphic imaging experiment, invented by Gabor in 1948 [156], is performed without

the use of any optical components and requires both a recording and a reconstruction

step. A Gabor hologram is recorded by simply placing an object in an optical beam,

and therefore requires no critical alignment. The hologram is recorded by placing

an object in a coherent beam of radiation as shown in Figure 5.14. The object will

scatter some of the incident radiation, resulting in an object beam (uo), and the

remaining background radiation serves as a reference beam (ur). The image and

reference beam interfere in the recording medium, creating fringes that record both

amplitude and phase information. Because we record the intensity, the sign of the
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Figure 5.14: Experimental setup used for Gabor holography.

phase information is lost in the recording process, and the intensity distribution is

given by

I = (ur + uo)(u
�

r + u
�

o) = jurj
2 + juoj

2 + u
�

ruo + u
�

our:

For a linear recording medium, the intensity distribution is faithfully represented in

the hologram. The �rst two terms (jurj
2+ juoj

2) are due to a background image from

the object and reference beams, the third term (u�ruo) produces a real image, and

the fourth term (u�our) produces a conjugate image. The formation of this conjugate

image is also referred to as the twin-image problem.

The hologram is reconstructed by di�racting radiation from the interferogram

(either optically or numerically), and the original waveform (with both amplitude

and phase information) is retrieved. The loss of sign information results in the largest

noise source in the Gabor holography process because both a real and conjugate

image are formed.

When a collimated reference beam is used to illuminate the object in Gabor

holography, the image is formed without magni�cation. In our experiment, we have
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Figure 5.15: Diagram depicting Gabor holography geometry for illumination of the

object with a spherical wave.

an uncollimated EUV beam with a � 1 mrad divergence. This can be approximated

as a spherical reference beam as depicted in Figure 5.15. The magni�cation of the

object during the recording phase is simply the geometric projectionMc =
zp

zo � zp

=�
zo

zp

� 1

�
�1

.

5.4.3 Resolution of Gabor holography

Holography is a type of interference between a (presumably known) reference

wave and an object wave that is to be recorded. A point object produces a series of

concentric rings that is identical to a Fresnel zone plate lens (FZP) [157], which is

an optical element that either blocks or rephrases the transverse distribution of an

incident �eld so that it will act as a lens. It follows that the smallest object we can

resolve depends on the properties of the lens that we can record. This depends on

both the wavelength and coherence of the light used, as well as the resolution of the

recording medium.
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The Rayleigh resolution limit states that the distance to the �rst zero of the Airy

distribution determines the minimum transverse separation, Æ that can be resolved

between two spots and is given by Æ =
1:22�

N:A:

, where N:A: = D=f is the numerical

aperture of the FZP, D = 2rN is the FZP diameter, f is the focal length, and rN

is the radius of the outermost zone of the FZP. The focal length of a FZP can be

approximated as f �=
2rNÆrN

�

[158], where ÆrN is the width of the outermost zone of

the FZP. Thus, by combining the above equations, we arrive at the result Æ �= 1:22ÆrN .

The width of the smallest FZP zone we can record is twice the detector resolution.

This tells us that the resolution of the Gabor holography process is limited by the

smallest zone we can write, and is thus limited to the resolution of the detector.

From this analysis, we see that the only way to use Gabor holography for high-

resolution imaging is to use a high-resolution recording medium or to magnify the

holographic image. The Andor CCD camera that we utilize for our experiments has

a resolution of 26 �m, which severely restricts the resolution that can be obtained

from our experimental setup.

5.4.4 Gabor hologram generated by HHG radiation

Although our CCD camera lacks the ability to record a high-resolution Gabor

hologram, Gabor holography is still an excellent way to demonstrate the coherent

imaging capabilities of our system. The experimental setup for this experiment is the

same that was used in the previous section. However, instead of placing an opaque

pinhole pair in the EUV beam, we used a 260 �m diameter wire as an object. The

object was placed 95 cm away from the exit of the HHG �ber and the hologram
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Figure 5.16: Hologram recorded with HHG radiation of a 260 �m diameter wire.

(Figure 5.16)was recorded on the Andor CCD camera 2.17 m away from the object.

The hologram shown in Figure 5.16 was reconstructed numerically by illuminating

the recorded interferogram with a reconstruction wave and back-propagating to the

object plane. In this reconstruction, the wave was assumed to be a plane wave,

which is unity across the entire beam. Therefore, the reconstruction requires the

back-propagation of the hologram to the object plane. In the Fresnel approximation,

the propagated �eld is computed by convolving the �eld, u(x) with the impulse

response function of free space, h(x) = exp

�
�
i�x

2

�z

�
. The convolution is easily

computed as the product in the Fourier domain, U �H. Therefore, to compute the

reconstructed �eld, ur, we simply Fourier transform the hologram, uh, multiply by

the Fresnel propagation kernel, then take the inverse Fourier transform, i.e., ur =

FFT
�1
fFFT fug �Hg. The information along the vertical direction of the hologram
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Figure 5.17: Numerical reconstruction (a) of a wire hologram (b).

is redundant, so this calculation was performed with a single lineout, and is shown

in Figure 5.17(a), with the accompanying hologram lineout from Figure 5.16 shown

in Figure 5.17(b).

The recording and reconstruction stages of this hologram were simulated to verify

the reliability of our reconstruction algorithm. For the comparison, I numerically

simulated a spherical wave with a 95 cm radius of curvature incident on a wire (i.e.,

with a transmittance of unity outside of a 260 �m width). The transmitted �eld

was propagated in the manner described in the previous paragraph. The intensity

of the forward-propagated �eld is the hologram and is shown in Figure 5.18(b) and

compares well to the data shown in Figure ref�g:recon(b). The simulated hologram

was numerically reconstructed in the identical manner (Figure 5.18(a)) described

above and the result compare well to the experimental results in Figure 5.17(a).
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Figure 5.18: Numerical reconstruction (a) of a simulated wire hologram (b).

5.4.5 Summary

The proceeding section demonstrated that EUV light generated using HHG in a

hollow-�ber phase-matched geometry produces a beam with full spatial coherence.

The high beam quality and spatial coherence make this source an excellent tool for

microscopy applications. This section demonstrates the recording and reconstruction

of a Gabor hologram with this HHG radiation and demonstrates the use of this source

for coherent imaging. The ultimate goal is to make use of the high resolution a�orded

by the short wavelength of this source, and to acquire and analyze data in real time.

The latter requirement necessitates the use of a CCD camera and limits the recording

resolution to micron scales. I have shown that the resolution of Gabor holography

for such a setup is limited by the detector resolution, and thus this current setup

fails to provide high-resolution microscopy. Furthermore, Gabor holography uses
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the undi�racted portion of the incident beam as the reference wave. This limits

the complexity of objects that may be studied with Gabor holographic imaging. If

the object distribution is large and complex, the reference wave is destroyed and a

quality image cannot be reconstructed. Future work will be needed to determine the

best approach to obtaining high resolution microscopy images from the HHG light

source.



CHAPTER VI

Summary

Controlling the dynamics of atoms and molecules gives us new abilities to ma-

nipulate matter. This work was enabled by new ultrafast laser technology and the

lessoned learned by 30 years of attempts at using coherent light to control atoms

and molecules. It has only been in recent years that very successful coherent control

experiments have emerged. My work has demonstrated that very high-order non-

linear systems can not only be controlled, but that we can understand the control

mechanisms involved. By selectively optimizing a single harmonic order in the HHG

spectrum, the learning algorithm found an unexpected solution. This new solution

taught us about a new phase-matching mechanism that occurs in extreme nonlinear

optics. This demonstrates that a learning algorithm can non-only control a very

high-order nonlinear system, but it can also teach us new science.

The work presented in this thesis is an initial contribution to what will, in my

view, become a widely applied approach to the manipulation of matter. As new

applications for coherently controlled atoms and molecules are found, interest in this

�eld will grow. This new ability to manipulate matter will likely create new �eld of
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technology in the future.

Control over HHG, and in particular, sculpting a quasi-monocromatic HHG spec-

trum is directly applicable to time-resolved coherent EUV imaging applications and

monitoring chemical reactions on a surface [152]. Furthermore, the increase in con-

version e�ciency makes this source more practical for applications that require a

large photon �ux.

Controlled molecular rotational wave packets have, in this thesis, been shown

enable a new pulse compression technology that promises to provide sub 5 fs laser

pulses in the deep-UV, which are particularly interesting for studying excited-state

molecular dynamics.

Furthermore, the molecular control experiments I performed were done nomi-

nally at STP conditions, and is a promising avenue for laser-catalyst chemistry with

macroscopic yields.

6.1 Towards EUV radiation for table-top coherent imaging

This thesis described work that separately showed both the control over the HHG

spectrum by tailoring the driving pulse shape, and the use of HHG radiation for co-

herent imaging applications. One solution to the shaping of the HHG spectrum

demonstrated the selection of a single harmonic order, creating a nearly monochro-

matic EUV spectrum. A monochromatic spectrum is desirable for coherent imaging

applications since a broad spectrum can average out observed fringes, and reducing

resolution. Applying the shaped HHG spectrum to coherent imaging will provide

greater resolution for HHG microscopy experiments.
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Gabor holography has limited applicability for imaging with a relatively low-

resolution CCD camera. To improve the resolution, other imaging schemes should

be explored. The most straightforward improvement of resolution will be to magnify

the hologram with an optical component placed between the object and the CCD

camera. We are currently constructing an o�-axis re�ective Swarzchid object for

this purpose. However, each optical element o�ers a re�ectivity of � 30 %, so the

magni�cation comes at a high cost in terms of photons. Furthermore, the aberrations

of this objective are very sensitive to alignment.

Other approaches depend on the type of object to be imaged. For the case of

mostly opaque objects, imaging can be accomplished with phase retrieval algorithms,

and the resolution can be higher than the detector with the correct geometry. Hybrid

holography, which is a variation of Lensless Fourier Transform microscopy, has led

to microscopy with 1 �m resolution using a CCD camera with 24 �m and 545 nm

light [159]. This variation of the Leith-Upatnieks o�-axis hologram uses a reference

wave with a low carrier spatial frequency that is introduced with an opaque mask

with a small hole that serves as a reference beam and a larger window in which the

object is placed. The object image is retrieved from the inverse Fourier transform

of the portion of the spatial frequency distribution at the carrier frequency. These

two approaches are just two of the many techniques used for coherent imaging in the

visible domain that will be explored for application to the EUV.
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6.2 The future of laser-controlled chemical reactions

This thesis has demonstrated that control over molecular degrees of freedom at

STP is possible using pulses that are not resonant with any particular electronic

transition. In the past, work has focused on control in crossed-beam experiments or

in systems with excitation levels well below a percent. We have observed behavior

that indicates we have modi�ed the reactivity of two products with a shaped light

pulse. However, since a light pulse can also initiate a simple photochemistry reaction,

great care must be taken to show that the reaction is not simply due to the breaking

of the weakest bond, thus providing new products that may react. The goal is

to demonstrate a concerted reaction in which a speci�c pulse shape enhances the

reaction between two molecular reactants.

The apparatus used in the experiments described in this thesis was a hollow-�ber

that was �lled with the reactants. The bene�t of macroscopic conversion makes this

setup di�cult to use for learning control experiments to manipulate chemical reac-

tions since each laser shot substantially changes the concentrations of each chemical

in the cell. Therefore, tracking the changes in the product concentrations becomes

di�cult. A better approach is to make a cell �ow so that the initial conditions are

reset for each trial pulse shape that only measures the e�ect of the reactivity of the

trial pulse shape. Once an optimal "catalyst" laser pulse is discovered, the system

can be operated in a "production mode" where laser pulses can be focused into large

volumes of reactants in order to drive the desired chemical reaction and synthesize

a target product.
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APPENDIX A

Evolutionary Algorithm

A.1 Evolutionary Algorithm

This appendix details the Evolutionary Algorithm (EA) used in this thesis work.

A broad description of Evolutionary Algorithms in general as well as this algorithm

was given in Chapter 2. EAs are a generic problem solving tool, and are not optimal

for all problems [62, 63, 103]. In fact, many simple problems are easily solved either

analytically or with methods such as steepest descent. EAs are better suited for

problems with a complex, diverse parameter space. Nevertheless, the algorithm

should be tweaked and tailored to each problem being tackled. The use of adaptive

operators and operator constants has made algorithms a bit more general. However,

it is di�cult to say which algorithm is optimal a given problem.

The speci�c algorithm used here was arrived at more by convenience rather than

by design, and is based on the code written by Erik Zeek. It is quite general, using

only one operator to perturb the solutions as the parameter space is explored, and

it adapts the amount of perturbation as the optimization progresses. This allowed

us to use the same algorithm easily in both atomic and molecular systems with
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very di�erent algorithm requirements. The bottom line is the algorithm works well

and rapidly �nds an optimal solution. Primarily for that reason, the simple version

of an EA used in this work was never "upgraded" with other operators. I have

observed that the algorithm can act as a "local hill climber" towards the end of

an optimization. In my work, I did not employ cross-over, but I suspect that the

cross-over operator will help to add diversity to the population and might explore

parameter space a bit more than the current algorithm. Other more complicated

problems may require the modi�cation of this algorithm, but for the purposes of this

thesis, the algorithm worked well, and as they say, "If it ain't broke, don't �x it."

Below I have the details of the EA. I start with pseudocode, then describe the

pseudocode, then brie�y discuss the Gaussian noise function.

A.2 Pseudocode

De�nitions:

j is a test solution, integer (j = f0; 1; � � � ;Mg)

M=number of individuals in a population

k is a control knob number, integer (k = f1; 2; � � � ; Ng)

N=the number of control knobs

Vk =solution variable (pad voltage on pulse shaper ! spectral phase control)

V = fV1; V2; � � � ; VNg

pj = individual solution = fVj;1; Vj;2; � � � ; Vj;Ng

Fj is a function that evaluates solutions (spanningV) and is maximized by an

�optimal� solution
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� = parents

� = o�spring

M = �+ �

P = population = fp1; p2; � � � ; pMg

R = uniform random number generator

G = Gaussian white noise generator

r = standard deviation ratio

Initialize:

Set an initial standard deviation �init (we typically use �500 and the max(V ) =

216 � 1) and choose the number of members of parents (�) and o�spring (�). We

typically use � = 20, � = 100. Note a standard deviation is attached to each member

of the population set. Chose a standard deviation ratio r = 20.

Start with a set of random voltages for pulse shaping: pj = fR�max(V ); � � � g;for

j = 1 : : :M

Loop:

Test the population of solutions and generate harmonic spectra from each solution

Hj

Evaluate each harmonic spectrum Hj with the �tness function Fj Here there are

a couple of options. The most successful have been:

(a) pick a harmonic and maximize its brightness

(b) maximize the energy of a given harmonic

(c) maximize the brightness di�erence between a harmonic and the average of
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neighboring peaks

Sort the solutions pj according to the �tness value Fj. Keep the � top solutions

(largest �tness values) and discard the others�these are the new parents.

Make �=� copies of the new parents (I set �=� = integer).

You now have a population P with M = �+ � members

Take each member of the o�spring population � and generate a new standard

deviation then use that to perturb (mutate) the solutions:

for j = 1 : �

�new = � +G(
�

r

)

Then for that population member, calculate

for k = 1 : N

Vk = Vk +G(�new)

end

end

The mutated solution now forms a new population set (the unmutated parents

and the mutated children); the loop is repeated until the increase in the �tness value

saturates.

A.3 Description of the pseudocode

In my program, I track a set of information about a given solution: fpj; �j; Fj; Hjg.

For the initial step, the �init is unused, however, it is used in the loop to adaptively

modify the standard deviation. The idea is that as the solution approaches an op-

timal one, we want to perturb the solutions less so that the changes in pulse shape
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are smaller and to allow the algorithm to converge better for narrow �tness peaks.

In the initialization stage, parents and children (as de�ned in Chapter 2) are irrel-

evant. They simply de�ne the number of solutions (pad voltages for the mirror) that

will be generated by the uniform white noise generator (to allow complete random

coverage of the parameter space). That is, we take a population with M solutions

and generate pad voltages with a random number scaled from 0 to 1, then multiply

by the maximum voltage to distribute the random solutions all over the pad voltage

parameter space. This set of (M) randomly distributed voltages controls the spec-

tral phase of the input pulse. However, this is uniform random noise, not a Gaussian

probability density function.

The next step involves the evaluation of the �tness function. This is highly

system dependent, as well as dependent on the �nal goal. For the HHG control

experiments, this involved measuring the HHG spectrum. The spectrum was then

divided into sub-arrays (sj) that each contains one harmonic. Then operations can

be performed on the harmonic arrays individually to a�ect each harmonic separately

and the results of those operations can be combined to produces relative changes in

the harmonic spectrum. In the case of the molecules, a similar approach was taken,

but in that case the spectrum of interest was the probe spectrum and the sub-arrays

corresponded to locations of vibrational scatter.

The next step is the all-important solution perturbation (or mutation). The

children for the next generation are formed from mutated copies of the new parents

(as selected above). For example, if we have 5 times the number of children as parents,
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we will now make 5 copies of each of the parents selected as described above. This

set of children will then be evaluated as follows:

(a) we will loop through � children (note the error on the previous psuedocode

document)

(b) for each child, the standard deviation of the parent from which it was copied

is contained in it's set of information fpj; �j; Fj; Hjg and a new standard deviation

is computed from:

�new = � +G(
�

r

)

so the set for that member of the population of children is now:

fpj; �new; Fj; Hjg

the new standard deviation is used to mutate the pad voltages of this particular

child:

for k = 1 : N

Vk = Vk +G(�new)

end

The mutated voltages give a new trial solutions pnew �! fpnew; �new; X;Xg,

where X to indicates the harmonic spectrum and �tness value no longer applies

to the new trial solution. This information will be gathered in the step after the

mutations of all of the children are completed.

(c) step b is repeated for all of the children created for the next generation

(d) The next generation population has then been completed and consists of the

parents (the top � members of the previous generation, unmutated) and children for
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the next generation (mutated [with a new standard deviation] copies of the top �

members of the previous generation)

(e) Use the new population set (the new generation) the pad voltages on the

deformable mirror one-by-one and then measure the generated harmonic spectrum

by downloading the information from the ccd camera. Then the �tness values are

computed and the process is repeated.

The role of standard deviation ratio, r, is to help convergence later in the running

of the algorithm. Assuming you have evaluated the spectra to get a �tness value,

the solutions are then sorted by the �tness value from largest to smallest (larger

�tness values mean better solutions). This is when the concepts of children and

parents come into play. For the current generation, we just have a population set.

This population set is evaluated by the �tness value to choose parents and then

consequently create children for the next generation. The number of parents is �, so

the solutions (pad voltages) with the � highest �tness values are selected from the

current generation. These are now referred to as the parents for the next generation

("new parents"). The remainder of the current generation solutions are discarded.

Note: The new population for the next generation is constructed from the solu-

tions whose harmonic spectra evaluated with the �tness function have the � largest

�tness values in the current generation. � identical copies are made and modi�ed

versions of those constitute the children for the next generation. When I referred to

the �new parents�, I mean the parents for the next generation, which are the top �

�tness values from the current generation.
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A.4 Mutation operator

The mutation operator uses a Gaussian noise generator. This perturbs the solu-

tions, but limits the size of most perturbations to a value of roughly �. It utilizes

the probability density function:

where � is the root of the second moment (standard deviation).

and Efg is the expected value de�ned as

E(x) =
R
xf(x)dx

The �rst moment (expected mean value) � = Efxg = 0

and � =

q
E

�
(x� �)

2
	

Note that I utilize two di�erent random number generators. In the initialization

step, I use the uniform white noise generator. This provides numbers scaled from

0 to 1.0 uniformly. That is, if we ran the generator for a long time, the histogram

would have an equal distribution of "hits" for number in the range of 0 to 1. Once

the main loop is entered, I switch to a colored noise. That is the histogram will

not have equally probability for generating all numbers. The histogram will have a

Gaussian pro�le with a certain standard deviation �.
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ABSTRACT

Coherent Control of Atoms and Molecules

by

Randy Alan Bartels

Co-Chairs: Henry C. Kapteyn & Margaret M. Murnane

Whenever scienti�c tools are signi�cantly advanced, new discoveries soon follow.

My thesis work relies on advances in ultrafast laser technology that allow precise

control over the shape of sub 20-fs laser pulses. This laser system enabled many new

experiments that yielded signi�cant advances in attosecond science, atomic physics,

extreme nonlinear optics, quantum chemistry, coherent control, molecular physics,

ultrafast optical phase modulation, EUV coherent imagines, and EUV radiation

sources.

By using an automated learning control algorithm coupled to our deformable

mirror pulse shaper, we have demonstrated the control of a process on an attosecond

time-scale for the �rst time. We demonstrate the manipulation of the phase of an

electron wave packet, allowing us to tailor the EUV spectrum generated by high-order

harmonic generation. These optimal �elds were discovered by a learning algorithm

that both found an unknown optimal solution, but also discovered an unknown phase-

matching mechanism that occurs in the interaction of a single atom and light pulse.

We control molecular vibrational and rotational coherences with the same learn-

ing algorithm, demonstrating selective control in room temperature molecules at

atmospheric pressures. Moreover, we demonstrate that modi�cations to the algo-

rithm can help automatically uncover the physics of the control mechanism found by

the learning algorithm.

We also demonstrate a new pulse-compression technique using rotational phase

modulation, where optical pulses were compressed by an order of magnitude after

phase modulation by a molecular rotational coherence and subsequent propagation



through a transparent window. This technique will enable e�cient pulse compression

in the deep-UV.

Finally, we measure the coherence of EUV light generated by high-harmonic

upconversion of a femtosecond laser. In phase-matched hollow-�ber geometry, the

EUV light exhibits the highest inherent spatial coherence of any source in this region

of the spectrum. We use this source to demonstrate the coherent image with �rst

table-top EUV radiation. Since this source exhibits full spatial coherence at very

short wavelength, this light source represents has smallest inherent e�ective source-

size of any light source yet created. We also demonstrate that the spectrum of

an optical �eld can be determined by measuring the interference of a double-slit

pattern.


