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Results of transport property and rotational alignment experiments of the

atmospherically important molecule N2
+ are presented, as measured in a flow-drift

apparatus using the technique of single-frequency laser-induced fluorescence (LIF). A

trace amount ofN2
+ is drifted in helium as a buffer gas; the external axial electric

field of the drift tube varies the center-of-mass collision energy of the ion-neutral pair.

The net effect over hundreds of buffer gas collisions is to establish a steady-state

anisotropic ion velocity distribution, the precise character of which is determined by

the ion-neutral interaction potential, mass ratio, and field strength. A single-frequency

ring dye laser is used to probe Doppler profiles of various rotational lines of the

( , ) ( , )′ ′′ =v v 0 0  band in the B Xu g
2 2Σ Σ+ +−  system at 390 nm. The single-frequency

cw laser technique allows one to measure the velocity component distribution

function (VCDF) along the laser propagation direction k; the VCDF is a projection of

the complete ion velocity distribution function. Additionally, the rotational alignment

of the ions as a function of one component of sub-Doppler laboratory velocity is

probed by polarized LIF.

Drift velocities and ion mobilities are determined from the shift of the first

moments of the coaxial LIF Doppler profiles, while perpendicular and parallel

translational temperatures are determined from the widths or second central moments

of the profiles in the direction probed. Drift velocities measured up to a field strength
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of 16 Td appear to be in good agreement with data derived from earlier arrival-time

measurements. A small but definite increase in mobility with increasing rotational

state from J=13.5 to J=22.5 is observed. A significant difference of over 100 K

between the parallel and perpendicular temperatures is measured at the highest field

strength employed (16 Td). A small degree of positive skewness or third central

moment is observed as well in the parallel VCDF’s, which is of particular interest

since a high-velocity tail has not been previously reported for any molecular ion

system. Additionally, by probing with linearly polarized light and measuring the

degree of polarization of the resultant LIF, the collision-induced quadrupole rotational

alignment parameter A0
2( )  is determined as a function of field strength and velocity

subgroup. A strong correlation is found between the degree of rotational alignment

and the velocity subgroup when probed parallel to the field direction, with the

alignment parameters generally increasing monotonically across the distribution. A

dramatic difference in velocity-selected alignment as a function of rotational state is

observed as well, for experiments conducted on various rotational lines at a fixed

field strength of 12 Td. For sufficiently low rotational state (J about 9), it appears that

A0
2( )  changes sign across the Doppler profile.
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