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Today, sixteen years after the realization of the first Bose-Einstein condensate (BEC), the
field of ultracold many-body physics is booming. In particular, much excitement has been generated
by the prospect of creating a degenerate quantum gas of dipolar atoms or molecules. Already, some
experimental groups have succeeded in Bose-condensing atomic >?Cr and %Dy, while other groups
have made significant progress towards achieving degeneracy of heteronuclear molecules, such as
fermionic “°K8"Rb and bosonic 8"Rb'33Cs, where the strength of the dipolar interaction promises
to be much greater than that of the already rich ®>Cr condensate. Just as the creation of BEC
launched a whole new field of research, dipolar BECs are likely to do the same. However, such
systems present a theoretical challenge due to the long-range, anisotropic nature of the dipolar
interaction. In this thesis, I present a theoretical investigation of ultracold Bose gases with dipolar
interactions.

The first part of this thesis is dedicated to the field theoretical treatment of a quantum Bose
fluid with dipolar interactions in the ultracold, dilute regime, where the system is well-described by
a classical condensate field with quasiparticle excitations. The set of nonlinear integrodifferential
equations that describe these objects are derived and novel methods for solving them are presented
that, in general, require intricate numerical treatment. Of particular importance is the emergence
of a roton mode, reminiscent of that in superfluid He. In the second part of this thesis, I show how
the roton plays a critical role in the ground state structure and dynamics of a dipolar BEC. Full
numerical simulations show that the roton can, for example, be seen in the radial density profile of
a quantized vortex state or in the angular collapse and explosion of a dipolar BEC. Additionally,
I show the crucial role that this roton plays in determining the transition to superfluidity in these

systems. Thus, a set of novel phenomena in ultracold dipolar Bose gases is explained by the presence



of the roton, and experimental signatures of these phenomena are made clear.
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Chapter 1

Introduction

The experimental realization of a Bose-Einstein condensate (BEC) of alkali atoms at JILA,
MIT and Rice University in 1995 [1, 2, 3] opened the door to a vast, interdisciplinary field full
of opportunity and potential. The BEC, first theorized by A. Einstein in 1925 [4], was the cold-
est sample of matter known in the universe, and was the fruitful result of years of experimental
and theoretical progress in the field of optical and magnetic cooling and trapping [5]. The BEC
did, and still does, offer a tool with which to study a plethora of ultracold phenomena, including
superfluidity and its manifestations in quantum matter. Additionally, the realization of ultracold
temperatures allows for atoms and molecules to be trapped by purely optical means, which facil-
itates experimental control over the magnetic substates of these systems and allows for trapping
in optical lattice potentials. Atoms and molecules in optical lattices can be used, for example, for
quantum computing purposes or to study more complicated condensed matter systems in a clean,
controllable environment [6, 7, §].

The presence of dipolar interactions in the Bose-Einstein condensate enhances much of the
physics in ultracold quantum systems. The dipole-dipole interaction (ddi) is long-range, propor-
tional to the inverse cube of the distance between two dipoles, and anisotropic. As such, the ddi can
introduce inter-site couplings in optical lattice systems in one- and two-dimensions (1D and 2D),
and anisotropic couplings in three-dimensional (3D) lattices [8]. In fermionic systems, this feature
can result in a transition to superfluidity as the attractive part of the ddi leads to pairing between

sites [9, 10, 11]. Additionally, in 2D geometries, the presence of the ddi in a Bose gas is predicted



to lead to a self-ordered crystalline state, or Wigner crystal, for sufficiently large densities [12, 13].
Experimentally, BECs of atomic *2Cr [14, 15, 16] and '®*Dy [17] have been achieved, where the
atoms possess significant permanent magnetic dipole moments, being 6 and 10 Bohr magnetons,
respectively. By comparison, the magnetic dipole moment of 8’Rb is only 1 Bohr magneton. While
comparatively small, however, the ddi has been shown to play an crucial role in the physics of the
87Rb F = 1 spinor BEC [18, 19, 20].

While the first report from the 94Dy BEC experiment has already demonstrated strong
dipolar effects, the ®>Cr experiments in the group of Tilman Pfau in Stuttgart have demonstrated
that the ddi plays a strong role in the stability [21] and dynamics [22] of a BEC. Additionally,
this group demonstrated that the s-wave scattering length of the ®?Cr atoms could be tuned to
zero, thus creating a purely dipolar BEC [23]. While the dipole moments of these atoms are indeed
sufficiently large to observe (and predict) some interesting dipolar effects, recent experimental
advances in the production, trapping and cooling of heteronuclear molecules inspires great promise
that such molecules will be brought to quantum degeneracy in the near future. Such molecules can
possess very large, tunable electric dipole moments when polarized in an external field, on the order
of a Debye, which is about two orders of magnitude larger than a Bohr magneton when the two
quantities are expressed in the same system of units. Already, experimentalists have managed to
produce cold samples of heteronuclear molecules in their rovibrational ground state [24, 25, 26], and
the JILA group recently demonstrated long-lifetime trapping of fermionic KRb molecules in a 3D
optical lattice geometry [27]. Such progress inspires encouragement that a BEC of polar molecules
is realizable in the near future.

In addition to the novel physics that has been predicted in, for example, optical lattice and
spinor systems, the ddi has been predicted to lead to the rotonization of a dipolar BEC in a trapped
geometry [28, 29, 30]. The roton, being a local minimum at finite wave number in the quasiparticle
dispersion relation of an ultracold Bose gas, was first predicted and seen in the superfluid “He
system [31, 32, 33], though the origin of the two rotons are very different. The “He system is

very dense, and the roton therein is related to the structure factor of the liquid at the interatomic



level, signifying a tendency for crystalline ordering in the system. The roton in the dipolar BEC,
however, is present even in the dilute, gaseous state and derives from the momentum dependence
of the ddi in a trapped geometry. The most transparent example of this is the so-called quasi-2D
dipolar BEC, where the system is harmonically trapped in the direction of the dipole polarization
and the dipoles exhibit zero-point motion in this direction. Indeed, the demonstrated control that
experimentalists have over the trapping geometry and interactions in a dipolar BEC suggests that
this system is ideal for studying the physics of the roton. In this dissertation, we tackle this idea
head on and present a comprehensive, detailed theoretical account of the role that the roton plays
in the physics of the dipolar BEC.

Because the dipolar BECs that have been created in the laboratory setting are quite di-
lute, they are well-described by a mean-field theory that provides a relatively simple theoretical
treatment of these systems. The mean-field theory of dipoles, however, is not without its own
set of challenges. Whereas short-range interactions of ultracold atoms and molecules can be well-
described by a delta-function pseudopotential, the ddi admits no such simplification and must be
handled explicitly. For example, the mean-field theory that we employ in this work presents a series
of direct and exchange interaction terms that require the calculation of convolution integrals (see
chapter 5). While the delta-function pseudo-potential trivializes these integrals, the ddi does not
and the convolutions must be calculated as given. Additionally, we consider fully-trapped systems
in this work that generate hard numerical problems, both when calculating the condensate field and
its set of quantum fluctuations. In this dissertation, we develop and present methods for overcoming
these difficulties. The key results of this work include a set of methods and algorithms that turn
the theoretical treatment of a fully trapped dipolar BEC into a tractable one. We then apply these
results and predict a set of novel phenomena related to the roton in the trapped dipolar BEC. To
make the results presented in this dissertation as relevant as possible to the scientific community,
we have made a point to associate all of our results with current experiments, or experiments that
are realizable in the foreseeable future.

In chapter 2 of this thesis, we give a short background of the history of low-temperature



physics. This includes a discussion of the early experiments and thoughts on superfluid *He.
Indeed, it was this early scientific discourse that laid the groundwork for our understanding of
superfluidity and its manifestation in matter through, for example, quantized vortices and, most
fundamentally, long-range order. We also discuss some of the more recent experimental advances in
the field, including the basic physics behind the optical and magnetic cooling and trapping methods
that led to the first experimental realization of a BEC and the first, most fundamental results that
laid the foundation for the modern study of the ultracold physics of bosons. To give the reader an
idea of how the Bose-Einstein condensate phase emerges statistically as a function of temperature,
we also discuss the phenomenon of BEC in a trapped, non-interacting (ideal) gas of bosons.

In chapter 3, we start from a second-quantized description of a quantum many-body system of
interacting bosons and systematically derive the set of mean-field equations that describe the con-
densate field and the quantum fluctuations of the dilute, interacting Bose gas at zero-temperature,
being the Gross-Pitaevskii equation and the Bogoliubov de Gennes equations, respectively. Addi-
tionally, we motivate the use of a pseudo-potential for the short-range two-body interactions in the
ultracold gas and discuss the treatment of the ddi, where non-trivial convolution integrals must
be calculated. To treat the ddi, we employ the convolution theorem and handle the integrals in
momentum-space, moving to and from real space via Fourier transformation.

In chapter 4, we apply the mean-field theory to the homogeneous 3D and quasi-2D dipolar
BECs. We investigate the energetics and quantum fluctuations of these systems, where the quantum
fluctuations take the form of quasiparticles in the Bogoliubov theory, and thereby map their stability
in parameter space. In the quasi-2D case, an effective ddi is derived, which leads to the emergence
of the roton quasiparticle in Bogoliubov theory. Interestingly, the roton can lead the quasi-2D
dipolar BEC to collapse that is both density dependent and local, having character that opposes
the usual phonon, or energetic instability in the 3D dipolar BEC or the BEC with attractive contact
interactions. Original work from this chapter is published in [34].

We move on to treat the fully-trapped dipolar BEC in chapter 5. To simplify the problem

at hand, we consider a cylindrically symmetric harmonic trap with the dipoles polarized along



the trap axis of symmetry, so the system as a whole possesses such symmetry. In this case,
the problem is reduced from a 3D to a 2D problem in the axial and radial coordinates where
the angular dependence of the relevant functions, being the condensate wave function and the
quasiparticle modes, is included in an angular factor e’*?. A discrete Hankel transform is usedt
o handle the transforms in the radial direction (see appendix D), where the Hankel transform
expands the relevant function in terms of Bessel functions of order k. Thus, condensate modes and
quasiparticle modes with arbitrary vorticity are handled by simply choosing a Hankel transform
of the appropriate order. We use this algorithm to study rotationless dipolar BECs and dipolar
BECs with singly- and doubly-quantized vortices by employing a conjugate gradient algorithm for
efficient minimization of the Gross-Pitaevskii energy functional. We calculate the quasiparticle
modes by solving the Bogoliubov de Gennes equations via an iterative Arnoldi diagonalization
scheme. Our results reveal that dipolar BECs with maximum densities in a ring about the center
of the trap, such as dipolar BECs with singly-quantized vortices and rotationless dipolar BECs with
biconcave structure [30], become dynamically unstable due to the softening of discrete roton-like
modes with angular nodal structure. Thus, the roton manifests with angular character in these
systems. Additionally, we find regions in parameter space where the dipolar BEC with a singly-
quantized vortex exhibits radial density oscillations. We attribute such structure to the static
manifestation of a discrete radial roton mode in the ground state due to the “perturbation” of the
vortex core by applying a perturbation theory to the Gross-Pitaevskii equation. Original work from
this chapter is published in [35] and [36].

In chapter 6, we apply a 4" order Runge-Kutta algorithm to the time-dependent Gross-
Pitaevskii equation to show that the angular roton instability of the rotationless dipolar BEC with
biconcave structure results in an angular collapse and subsequent angular expansion when the trap
is turned off and the condensate is allowed to expand in free space. Imaging of the expanded cloud
with angular nodal structure would then provide a measurement of the angular collapse and, thus,
an indirect measurement of the presence of biconcave structure in the stable ground state of the

system. Original work from this chapter is published in [37].



We move on to study the superfluid properties of the dipolar BEC in chapter 7. For the fully
trapped system, we calculate a “discrete” dispersion relation, or quasiparticle energy as a function of
momentum, which allows us to apply the Landau criterion for superfluidity to the trapped system to
get an estimate of its superfluid critical velocity, or flow velocity below which flow is dissipationless.
The presence of the discrete roton serves to lower the Landau critical velocity as a function of ddi
strength or condensate density, which is confirmed via direct numeric simulation of a weak blue-
detuned laser moving through the condensate with varying velocity. Indeed, these results support
the Landau criterion, but reveal finite size effects. These effects grow as the strength and size of
the laser are increased. Indeed, if the laser is sufficiently strong so as to create a hard boundary
on a length scale on the order of the healing length of the condensate, vortices are nucleated in the
gas instead of quasiparticles being produced above the critical velocity. The critical velocity for
vortex nucleation, however, is much lower than the critical velocity for quasiparticle production.
We proceed by considering a quasi-2D dipolar BEC where the polarization is now allowed to point
in any direction, not just in the direction of the axial confinement. In this case, the interactions
take on anisotropic character and, for a certain ddi strength and “tilt” angle, the dispersion relation
of the system possesses a roton in the direction perpendicular to the dipole tilt and only phonon
character in the parallel direction. This, in turn, predicts an anisotropic critical velocity for the
system via the Landau criterion. We perform numeric simulations of both weak and strong blue-
detuned lasers moving through this quasi-2D system and find that the superfluid critical velocity for
both quasiparticle production and vortex nucleation is anisotropic, and the quasi-2D dipolar BEC
with a tilted polarization field is thus an anisotropic superfluid. Original work from this chapter is
published in [38] and [39].

In chapter 8, we consider again a dipolar BEC with cylindrical symmetry, but now loaded in
a 1D lattice. For the case of an infinite lattice, we find a significant simplification of the mean-field
interaction terms, as long as the axial wave function has an analytic form. We thus employ a
separable ansatz to the BECs at each site where the radial part of the condensate wave function

is sampled on a numeric grid, as before, and the axial part of the wave function (in the lattice



0* and 2" order Hermite polynomials. For the

direction) is given by a linear combination of the
case of a single dipolar BEC, this ansatz gives excellent qualitative agreement and good quantitative
agreement with the results of the full numeric treatment given in chapter 5. Thus, the Gross-
Pitaevskii equation for the infinite 1D lattice becomes an equation for a single dipolar BEC but
with a modified interaction potential. We study the structure and stability of this system as a
function of lattice spacing, lattice site geometry and ddi strength. We find wildly modified roton
stability in the lattice, where the system is highly destabilized for small lattice spacings due to
the attractive part of the ddi. We also find “islands” in the parameter space where biconcave
structure is present that would not be present in the absence of the lattice. Thus, we predict
emergent biconcave structure in the dipolar BEC in the infinite 1D lattice. As a check, we treat an
experimentally realistic system of nine lattice sites with varying condensate number exactly on a
very large numeric grid, and find that the emergent biconcave structure persists in the finite lattice.

Original work from this chapter is published in [40].

We summarize this dissertation in chapter 9.



Chapter 2

Background: Theory and Experiment

In this chapter, we discuss some of the important points in the history of low-temperature
physics that lead up to the discovery of Bose-Einstein condensation in a dilute alkali vapor, wherein
there are some excellent demonstrations of the advancement of scientific knowledge through the
interplay of experiment and theory. Regarding the more recent history, we discuss the experimental
advances that have occurred in the past two decades, as these are key not only to understanding
the work presented in this thesis, but also to understanding the advances that went into making
the “ultracold” regime an experimental reality. Additionally, we discuss some of the more relevant
experimental results on dilute Bose-Einstein condensates, and motivate the exploration of the role

that the dipole-dipole interaction (ddi) plays in these systems.

2.1 A Brief History

Motivated by Satyendra Nath Bose’s work on the statistics of photons, Albert Einstein for-
mulated the first theory for the statistics of massive bosons in 1924 [4]. He predicted that, below a
critical temperature T, the lowest energy state of a quantum many-body system of bosons would
become macroscopically occupied. This idea stemmed from two basic concepts, one being the in-
distinguishability of quantum particles and the other being the simple fact that bosons, as opposed
to fermions, obey statistical laws such that two or more identical bosons can occupy the same
quantum mechanical state, whereas identical fermions are forbidden to do so. As it turns out, this

behavior of fermions is responsible for, among other things, the structure of electronic orbitals in



atoms and the quantum degeneracy pressure that results in the stabilization of neutron stars, as
electrons and neutrons are both fermions.

As we will see, Einstein’s prediction was correct and the phenomenon that is now known as
Bose-Einstein condensation does indeed occur in a system of bosons at sufficiently low tempera-
ture (as long as the bosons do not solidify). Additionally, the scientific community has come to
understand that there are many interesting physical phenomena associated with this novel state
of matter, the Bose-Einstein condensate (BEC). Perhaps the most important consequence of Bose-
Einstein condensation is the emergence of superfluidity, though the connection between BEC and
superfluidity was not immediately drawn in the earlier days of its study. In fact, this connection is
still being investigated today, as we discuss further in section 2.3.2.

The word “superfluid” was first used by P. Kapitza in [41] to describe the non-classical nature
of liquid *He that was observed at temperatures below ~ 2.2K [42], where the use of the prefix
“super” was inspired by the already observed phenomenon of superconductivity in solid mercury
in 1911 [43]. The strange, non-classical, “super” behavior to which Kapitza referred was the
observation of a discontinuity of the specific heat of liquid *He around this temperature, the graph
of which resembled the Greek character “\” and was thus termed the “lambda-point.” This was
not the first time, however, that non-classical behavior was observed in liquid *He. For example,
experiments using a torsion pendulum showed that the viscosity of liquid *He drops significantly
when its temperature is dropped below the lambda-point [44], that is, the flow in liquid helium was
observed to be non-dissipative. Inspired by the accumulating body of experimental evidence for the
superfluid behavior of He below a critical temperature, by the earlier theoretical work of Einstein,
and by the fact that such phenomena were not observed in He (a fermionic isotope) at the same
temperatures, Fritz London proposed in 1938 that the unusual behavior of liquid “He was due to
the phenomenon of BEC manifesting in the cold fluid [45]. Not long thereafter, the work of other
talented theorists, namely L. Tisza and L. Landau, showed that a BEC-like superfluid fraction of
the system was likely present and responsible for the unique non-dissipative behavior of liquid *He,

supporting F. London’s earlier hypothesis.
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2.1.1 Phonons and Rotons

Both Tisza [46] and Landau [31, 47] proposed two-fluid models to describe liquid *He, where
one fluid corresponded to the superfluid component and the other to the “normal,” or non-superfluid
component. Landau’s insight was particularly brilliant in that he interpreted the normal component
as a set of occupied excited states consisting of phonons and localized quantized vortices, dubbed
“rotons” due to the rotational nature of such vortices. While the phonons disperse linearly, Landau

predicted that the rotons experience a quadratic dispersion,

k — kr20ton
w(k:) —A+m, (21)

where hkoton is the roton momentum, on the order of the inverse atomic spacing in the liquid, M;oton
is the effective roton mass and A is the roton energy gap. Landau was able to estimate the values of
these parameters by matching his theory to the observed thermodynamical behavior of liquid *He.
From this fitted dispersion, Landau developed a hard criterion for the existence of superfluidity in
4He, being that superfluid, or dissipationless flow only exists below a critical velocity, the so-called
“Landau critical velocity,” or superfluid critical velocity. The Landau criterion for superfluidity
can be derived simply by applying arguments for the conservation of energy and momentum of
a phonon or roton excitation in a Galilean frame of reference, which we present in section 7.1.
For “He, the predicted Landau critical velocity is set by the roton minimum, giving a velocity of
Ve > Afkpoton &~ 60m/s.

In 1957, Cohen and Feynman proposed that the Landau phonon-roton dispersion could be
measured by inelastically scattering neutrons off of a liquid *He sample [32]. This experiment
was carried out soon thereafter, where excellent agreement was found with Landau’s theory [33,
48]. Thus, strong evidence was obtained in support of Landau’s prediction for the phonon-roton
dispersion, though the explicit connection between superfluidity and a critical velocity was still not
made. It is worth noting, though, that whether rotons are associated with vorticity is inconclusive
in these experiments, and as a result rotons should not necessarily be thought to have a vortical

nature. The measured phonon-roton dispersion from Ref. [33] is shown in figure 2.1. Indeed, we
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Figure 2.1: Measured quasiparticle dispersion of liquid ‘He at a temperature of 1.12 K. The circles
show the neutron-scattering data from Ref. [33] and the solid line shows the free-particle dispersion.
The phonons are seen in the linear dispersion at small momentum, and the roton is seen at the
local minimum at the momentum ~ 2.0A~!. Figure taken from Ref. [33].

return with strong interest to this roton feature in the *He dispersion in chapter 4, where we show

that a similar feature emerges in the trapped dipolar BEC.

2.1.2 Vortices

While the neutron scattering experiments were able to measure the phonon-roton dispersion
in superfluid He, such techniques could not be applied to test the Landau criterion for superfluidity,
or to measure the superfluid critical velocity in *He. For such measurements, a relative macroscopic
flow velocity between the superfluid component and a “perturber” is required, the magnitude of
which must be at least as great as the critical velocity of the superfluid. Such flow was realized
in 1985 by forcing superfluid “He through a small aperture (less than 1pm) [49]. The observed
critical velocity in this experiment, however, was much lower than that predicted by the Landau

criterion, suggesting that the excitation of rotons is not the relevant mechanism for dissipation in
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this superfluid system. Instead, the observed critical velocity is associated with dissipation into
quantized vortex lines, where the vortices have quantized circulation 2wnh/M, where M is the mass
of a particle in the fluid and n is an integer. Thus, having n = 0 implies no vorticity, while n = 1
corresponds to a singly quantized vortex, n = 2 corresponds to a doubly-quantized vortex, and
so on. The existence of such vortex lines was first predicted by Feynman in 1955 [50], where he
proposed that a critical flow velocity is necessary to nucleate such a quantized vortex state, just
as is the case for a phonon or roton. He predicted that the critical velocity for the formation of a

singly-quantized vortex of radius a in a cylinder of radius d should be given by

et f] 22

In the experiment [49], a series of critical velocities were measured, corresponding to dissipation
into vortex lines of various quantization, the lowest of which is in good agreement with Feynman’s
prediction (2.2). We note that the breaking of superfluid flow due to the excitation of rotons was
observed, as well, by drifting negative ions through superfluid He at sub-critical and super-critical
velocities. The ions, unlike the hard wall of the aperture, were not sufficiently intrusive so as to
nucleate free vortices. The mechanism for dissipation, though, is believed to be the excitation of a
pair of rotons instead of a single roton above the Landau critical velocity [51].

While quantized vorticity does not exist in classical fluids, it is known to exist in single-
particle quantum mechanical systems, for example, in the atom where the electrons have quantized
angular momentum. The existence of quantized vortices in a superfluid suggests that the superfluid
state may indeed be intimately connected with the phenomenon of Bose-Einstein condensation,
where a macroscopic number of bosons occupy the ground single particle state. As we will see,
quantized vortices manifest in BECs due to the single-particle nature of the condensed state, and
are intimately related to the presence of superfluidity in cold Bose gases. Indeed, such phenomena

are used as a “smoking gun” of superfluidity in these systems.
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2.1.3 Superfluidity and Bose-Einstein Condensation

In 1956, Roger Penrose and Lars Onsager devised what remains today as perhaps the most
fundamental theoretical criterion for superfluidity and Bose-Einstein condensation, linking the two
in a before unseen way. They noticed that every such system must possess long-range order [52], that
is, the single-particle density matrix or one-body correlation function p(l)(x7 x') of the superfluid
'

must not vanish in the limit |x — x| — oo, and instead approach a finite value

lim M (x,x) = pe, (2.3)

[x—x'|—oc0
where p. is the condensate number density of the system. This criterion is equivalent to saying that a
macroscopic number of bosons in the fluid occupy the momentum state with ik = 0, corresponding
to the lowest energy state of homogeneous space. Thus, the criterion for superfluidity proposed
by Penrose and Onsager is simply that a finite fraction of the fluid be Bose-condensed. When
introducing the methods we use to treat the BEC in this thesis (in chapters 3 and 4), we return to
this point and show that the criterion for long-range order is satisfied by these methods.

Today, much of the physics of superfluid *He remains elusive, due primarily to its very high
densities (p ~ 2 x 10?22 cm™3) and strong interactions, resulting in very small condensate fractions
pe/p ~ 0.1 and large depleted fractions. However, significant scientific advances in the more recent
decades have provided the scientific community with a clean, reproducible and controllable tool
with which to study superfluidity and other phenomena in ultracold matter. Specifically, the advent
of laser and magnetic cooling and trapping, together with other cooling techniques (evaporative
cooling) allowed scientists at JILA at the University of Colorado and NIST [1] and at MIT [2] to
realize Bose-Einstein condensation of dilute alkali atom vapors for the first time in 1995. While
interesting in and of themselves, as they were the coldest known samples of matter to exist in the
universe, these dilute BECs have since proven to be useful tools from which much can be gained
regarding the knowledge of cold matter. In section 2.3, we discuss some of the basic physics behind
such cooling and trapping techniques, and present some key results that are relevant for the work

in this thesis. First, we discuss in more detail the phenomenon of Bose-Einstein condensation in an
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ideal, non-interacting Bose gas, pointing out some finite-size effects that are associated with putting
the system with finite particle number into a trap. While the theory formulated in chapter 3 is
meant to describe a zero-temperature Bose gas, the following treatment of an ideal gas at finite
temperatures gives insight into the nature of the phenomenon of Bose-Einstein condensation and
motivates the pursuit of the ultracold regime by showing clear, analytic results for the temperature

dependence of this phenomenon.

2.2 The Ideal Bose Gas

An ideal gas of non-interacting bosons is just an ensemble of non-interacting one-body sys-
tems. For the case at hand, we consider an ideal gas of N bosons with mass M in a harmonic

trapping, or external potential U (x),

T

1
U(x) = §M (w2z? + w§y2 +w?2?). (2.4)

We discuss how such a potential can be realized for a sample of atoms or molecules in section 2.3.1.

The energy spectrum of a single-particle in this harmonic potential is well-known to be
Cngnyn, = h (nxwx + nywy + nzwz) + €o, (25)

where n; are integers specifying the energy level in the ™" coordinate and ey = %h(wx + wy + w;)
is the ground state energy. For simplicity, we take w, = w, = w, = w, so the trap is spherical, and
define and state vector | = (Ng, Ny, nz), SO [ describes a direction and magnitude in the discrete
Hilbert space of a single particle in a three-dimensional (3D) harmonic oscillator. Now, the energy
eigenvalues for this system can be written as ¢ = thr[Z] + €¢g. With the degeneracy factor
g = %(l + 1)(I 4+ 2) of the spherical harmonic trap, meaning that there are g; ways that a single

particle can achieve the energy ¢;, the canonical partition function for this system can be written

as

ZN(T,N) = Z exp [—ﬁZgleml] , (2.6)
7 ]
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where 8 = 1/kpT, kp is the Boltzmann constant and the total particle number is given by N =
Y11, where ny is the state occupation number, corresponding to n; bosons occupying a state
with energy ¢;. This restriction on the total particle number N makes calculating any physical
observables or thermodynamic quantities with (2.6) very difficult, and motivates the introduction
of the grand canonical ensemble, where the constraint of fixed particle number is replaced by the
constraint of fixed chemical potential, y. This means that the system under consideration stays in
thermal equilibrium with a surrounding environment at the cost of exchanging particles with the
environment [53], that is, the system is in chemical equilibrium.

The grand canonical partition function is calculated by taking the Laplace transform of the

canonical partition function (2.6),

=(T), ) = i PN 70 (T, N) = ﬁ (1 - eﬁW—fl))_gl : (2.7)
N=0 =0

from which the grand canonical potential can be calculated,
0o
I(T,u) = —kpTInZ(T, n) = k:BTZgl In [1 — eﬁ(“_el)}. (2.8)
=0
From this grand canonical potential, the average particle number in the non-interacting thermal
Bose gas can be calculated by taking the partial derivative of (2.8) with respect to the chemical
potential at fixed temperature,
OTI(T, >
(N) = <%>T - ; ST (2.9)
It is easy to identify the occupation number (n;) = g;(e®(©=#) — 1)=1 from this result, which is
just the Bose-Einstein distribution [4] weighted by the degeneracy factor g;. For this result to be
physical, we restrict pu < €g, so that the occupation numbers can not take on negative values. Thus,
the chemical potential must be less than or equal to the ground state energy in the non-interacting
Bose gas. Also, notice that as u — €g, the ground state occupancy ng becomes arbitrarily large,
implying that this is suitable criteria for the emergence of a condensate. So, we expect that u — €

corresponds to T' — T, where T, is the critical temperature for Bose-Einstein condensation.



16

We can calculate this critical temperature T, by considering the number of excited, non-
condensed bosons in the system, given by taking the sum over all [ > 0 in Eq. (2.9). To simplify
this process, we go to the thermodynamic limit where the energy level spacing becomes very small
and the degeneracy becomes large and can thus be approximated by g; ~ [2/2. Additionally, we
rescale the ground state energy to be zero. Transforming the sum in Eq. (2.9) into an integral, we

see that the number of excited bosons is given by

1 12dl

From our criteria discussed above, the critical temperature is determined by setting ¢ = 0 and

Ne, = N, giving

k;ff = <%>;’ (2.11)

where ((x) is the Riemann-Zeta function [54] and ((3) ~ 1.2. This result (2.11) can be used in

Eq. (2.10) to show how the condensate fraction scales as a function of temperature [55]

U (%)3 (2.12)

Thus, we see that the condensate fraction grows with an inverse cubic behavior as a function of
temperature below the critical temperature 7,.. The condensate fraction is plotted in figure 2.2
as a function of temperature, shown by the black dashed line. The thermodynamic limit result
tells us that for T > T, there is a negligible fraction of the bosons occupying the ground state,
and no condensate exists. However, for T' < T, there is a macroscopic, non-negligible ground state
occupation corresponding to the presence of a condensate. As forementioned, this was precisely
the prediction that Einstein made in 1925 [4].

The effect of indistinguishability in Bose-Einstein condensation can be seen in a clever way.

Recall that the thermal de Broglie wavelength of any massive body at temperature T is given by

2mh?
M =\ 3 (2.13)

We can define the phase space density v as the number of bosons occupying the volume element

/\ti v = ”)‘3137 where n is the real-space number density. For a thermal gas, this phase space



17

0.8 ¢
\\
0.7t~ e N=100 1
06l  Foe. o N =500 ]
05 TN N = 1000
e ?\\ e N =2000 |
= 0.4 | AN - = = Thermodynamic Limit 1
50.3 » = 2, ]
= \\
02 | \ |
A Y
=
01 | £ ]
LR
L L L ‘t s ° ’ ’
0 07 08 09 1 11 12 13 14
T/T.

Figure 2.2: The condensate fraction Ny/N as a function of temperature for the ideal Bose gas in
a spherically symmetric harmonic trap. The black dashed line is the thermodynamic limit result,
and the dots are results from the Metropolis Monte Carlo algorithm for various particle numbers,
as indicated in the legend. Notice that larger particle numbers in the Monte Carlo simulations
exhibit better agreement with the thermodynamic limit result.

density is small as the characteristic de Broglie wavelengths of the bosons are much smaller than
their average spacing. However, for an ultracold gas, we expect this phase space density to become
large and correspond to the BEC transition when v ~ 1. Indeed, for a homogeneous Bose gas in a
box, the BEC transition occurs when v = ((3/2) & 2.612 [55]. Thus, below the critical temperature
for BEC the wave functions of the bosons in the thermal system are sufficiently large that they
become comparable to the average interparticle spacing, corresponding to the formation of a BEC.
This perspective on the BEC phase transition clarifies why the critical temperature T is greater for
higher densities. It is also interesting to note that the phase transition to BEC is purely statistical
and not energetic, like the superfluid to Mott insulator transition of atoms on an optical lattice [56].

To obtain an estimate for the critical temperature of a dilute BEC, consider N = 50 x 103
bosons in a spherical trap with frequencies w = 27 x 200 Hz. These are numbers that, as we will
see in section 2.3.1, are typical for modern BEC experiments. Such system parameters result in,
from Eq. (2.11), a critical temperature of T, ~ 330 nK, which is about a factor of 6 x 10~% smaller

than the critical temperature (lambda-point) of liquid helium.
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Before proceeding to discuss the techniques that led to the realization of the ultracold regime
and the Bose-Einstein condensation of a dilute Bose gas, it is important to note the “finite size”
corrections that are present in the real physical system, which is not well-represented by the ther-
modynamic limit. To investigate the effects that finite size has on the condensate fraction and the
critical temperature of a Bose gas, we compute the harmonic oscillator state occupations exactly in
the canonical ensemble (Eq. (2.6)) using the Metropolis Monte Carlo method for particle numbers
of N = 100, 500, 1000, 2000. For details on this Monte Carlo algorithm, we refer the reader to [57].
As one expects, the finite size effects are more pronounced for smaller particle numbers, for example,
N = 100, though the condensate fraction for NV = 2000 is very close to the analytic thermodynamic
limit results. Finite size effects were also studied in [58], where a first order correction in finite
size predicts precisely what the Monte Carlo results show, that the condensate fraction and the
critical temperature are decreased in finite systems. The role of interactions in the Bose-Einstein
condensation of a trapped, finite sample was first considered in [59] where repulsive (attractive)
interactions were found to decrease (increase) the condensate fraction and the critical temperature
for condensation. Indeed, the presence of a trapping potential and repulsive interactions makes the

realization of a BEC more difficult, as lower temperatures must be reached for these cases.

2.3 Bose-Einstein Condensation of Trapped Gases

To reach the ultracold nK regime that is necessary for the Bose-Einstein condensation of
dilute gases, a variety of experimental techniques were developed and employed that utilized the
nature of the atom’s interactions with magnetic and optical fields. In this section, we discuss some
of these techniques and the underlying physics that is involved. For a more detailed account, we
refer the reader to [60] and [61]. Additionally, we discuss a few early experimental and theoretical
results that are important for the work presented in this thesis, particularly, the realization of

Bose-Einstein condensation in a trap and the demonstration of quantized vortex states in BECs.
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2.3.1 Experimental Techniques

The cooling of a gaseous atomic sample typically begins in a Zeeman slower, where cooling
from hundreds of Kelvin down to the u-Kelvin range is possible. The Zeeman slower relies on the
Doppler effect that is present in a sample of atoms moving relative to a beam of laser light. If the
laser frequency w is tuned properly, the atoms moving opposite the direction of the laser light in
a certain range of velocities will absorb more photons, as the light is more “blue” for these atoms.
By conservation of momentum, this slows the atoms down and, upon spontaneous emission, the
atoms end up slower, and thus cooler, on average. A problem encountered with this technique is
that the cooling is limited as the atoms slow to a certain velocity, below which photon absorption is
critically suppressed. To counter this problem, a Zeeman slower uses an inhomogeneous magnetic
field along the direction of the laser propagation in order to shift the resonant frequency of the
atom as a function of space via the linear Zeeman effect, making the laser cooling process more
efficient. This allows the atoms to slow to very small velocities and still “see” laser light that is
resonant with the atomic transition. The laser cooling technique was developed and demonstrated
successfully by William D. Phillips and others, for which they shared the Nobel Prize in Physics in
1997 [5, 62].

While laser cooling can produce a very cold, K sample of atoms, sub-uK temperatures are
necessary to achieve BEC, as was discussed in the previous section. To achieve these temperatures,
experimentalists developed evaporative cooling methods for trapped atoms. The basic idea of
evaporative cooling is to effectively lower the walls of the trap at higher energies that correspond
to atoms at super-critical temperatures, so that these atoms can leave the trap and only the cooler
atoms remain. This can be achieved, for example, in magnetic traps by flipping the spin of high-
energy atoms with an RF pulse. Indeed, evaporative cooling allowed experimentalists to lower
the temperature of their atomic samples sufficiently to achieve BEC. For a review of evaporative
cooling, see [63].

As suggested, the linear Zeeman effect describes the interaction of an atom with an applied
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magnetic field and the linear Hamiltonian of the interaction can be written as
Hj(x) = —p; - B(x) (2.14)

where p, is the magnetic moment of the atom in state ¢ and B(x) is the applied magnetic field
that, in general, can vary throughout space. The magnetic moment can be nontrivial to calculate
and depends on both electronic and nuclear structure. We leave out a detailed discussion here,
and instead direct the reader to [64] or [60], but note that the result of such an interaction is the
splitting of the hyperfine levels of the atom (used in the Zeeman slower). Additionally, if B(x) is
not homogeneous in space, the linear Zeeman shift results in a spatially varying potential for the
atoms. Such a potential can be used to trap atoms if the magnetic field B(x) possesses a potential
maximum or minimum in space. However, there are two important considerations related to such
trapping, one being that the achievable magnetic fields in a laboratory are typically much less than
a Tesla and the magnetic moment of an atom is typically on the order of 1-10 Bohr magnetons,
up = eh/2M., resulting in maximum trap depths of less than a Kelvin. The other important
consideration is that a magnetic field can not possess a local maximum in a current-free region [65],
so only “low field seeking states” with p; > 0 can be magnetically trapped.

Magnetic trapping has other limitations as well. For example, magnetic traps, by their
nature, distinguish between magnetic substates and shift their energy levels, effectively trapping
the different states in different potentials. However, it is possible to trap atoms (and molecules) in
purely optical fields where all Zeeman substates “feel” the same trapping potential. Such optical
potentials allow for the investigation of the spin or magnetic degrees of freedom in a quantum gas
because the potential is effectively the same for all corresponding substates. The optical trapping
of atoms utilizes the AC Stark shift, which describes the energy shift of an atom in an oscillating
time-dependent field. In the dipole approximation (valid when the wavelength of the laser is much
greater than the size of the atom, which is automatic for optical transitions), the AC Stark shift of

the atom in its ground state is given in second-order perturbation theory by

Vy(x) =~ 5Relaw)] [{€(x )P (215)
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where w is the laser frequency, £(x,t) is the magnitude of the electric field as a function of space

and time and «a(w) is the electric polarizability [55],

o) =23 el P (216)

Here, the sum is over all excited states e with energies E., (e|d-é€|g) are the dipole matrix elements
between the ground and excited states and € is a unit vector in the direction of the electric field £.
If the laser frequency w is tuned near the resonance E. — E,, all other excited states in the sum
in (2.16) can be neglected to a good approximation. In this case, we can define the dipole matrix
element d = (e|d - €|g) and the splitting A = (E, — Ey) — hw, where the term 1/A dominates the
expansion of the energy-dependent coefficient in (2.16) when the laser is tuned near resonance, and
write

o —. (2.17)

For A < 0, corresponding to a laser that is “blue” detuned from the dipole transition, the potential
energy shift (2.15) has a maximum where the optical field has a maximum intensity. For A > 0,
corresponding to a laser that is “red” detuned from the dipole transition, the potential energy shift
has a minimum where the optical field has a maximum intensity. Thus, focusing laser light to
achieve an intensity maximum can be used to attract (red-detuned) or repel (blue-detuned) atoms
from the high intensity region.

Regarding the time averaging of the field in Eq. (2.15), there are two important cases to
consider, one where there is a single propagating laser and one where there is a laser reflected back
onto itself, or a retro-reflected laser. Without loss of generality, we consider a laser that propagates

in the z-direction. The electric field of the single propagating laser can be written as

E(x,t) = E(p)eZe ™t (2.18)

which has the time averaged intensity [(£(x,t))¢|> = |Eo(p)[?.

If we assume that the laser has a
Gaussian beam profile in the radial direction, then |£y(p)|? is Gaussian, as well. Thus, we see that

proper focusing of laser light can result in intensity maxima with Gaussian profiles that can trap
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or repel atoms. We can write the field for the retro-reflected laser as
E(x,t) = E(p)etZe ™t + &5 (p)e ket (2.19)

This field has the time-averaged intensity |(€(x,t)):|? = £2(p) cos? kz, taking the form of a standing
wave pattern, or a one-dimensional (1D) lattice with spacing 27 /k. This result is easily extended
to both two-dimensions (2D) and three-dimensions (3D), correspond to 2D and 3D optical lattice
potentials. While the relevant optical lattice geometry for the work in this thesis is 1D (see chap-
ter 8), there is much interest in the 2D and 3D geometries, as well, for studying quantum degenerate
systems. For a review of the physics of ultracold bosons in optical lattices, see [6] and for a review
of dipolar bosons in optical lattices, see [8].

The typical depths of optical traps that utilize the AC Stark shift are ~ pK, and are thus
much more shallow than typical magnetic traps. However, this depth is still much greater than the
characteristic critical temperatures for BEC, so such optical traps can still hold condensates and
atoms and molecules that are pre-cooled to the sub-uK range. As a result, optical traps for dilute
BECs are well-approximated by harmonic traps of the form (2.4). Trapping by purely optical means
has proven particularly useful in recent experiments on “spinor” BECs, where homogeneous applied
magnetic fields split the degeneracy of the magnetic sublevels and spin-exchange interactions lead
to novel spin-density phases of these quantum gases. Such experiments have been performed on
F =18%Rb and F =1 *Na (both with 3 spin components), and more recently on F = 3 2Cr in
Paris [66] (with 7 spin components). Additionally, purely optical traps are important when using
Fano-Feshbach resonances to control the strength of the short-range interactions in BECs, as these
resonances can exhibit strong magnetic field dependence. We discuss such resonances further in

section 6.1, as they are directly relevant to the results presented therein.

2.3.2 Key Results

As mentioned in section 2.1.3, the cooling and trapping techniques described above allowed

researchers at JILA [1] and MIT [2] to achieve nearly pure Bose-Einstein condensates for the first
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Figure 2.3: Images from the first BEC experiments of 8’Rb at JILA (left) and 23Na at MIT (right).
From left to right in each image, surface plots are shown of velocity distributions and real-space
distrubutions, respectively, at temperatures just above, at, and below the critical temperature for
BEC. The sharpening of the distribution below the critical temperature provides evidence BEC

formation. Figures used with permission of E. A. Cornell from [67] (left) and W. Ketterle from [68]
(right).

time in 1995. Images of the emergence of the BECs at JILA and MIT are shown in figure 2.3. The
JILA image on the left shows the velocity distribution of the Bose gas as a function of temperature,
and the MIT image on the right shows the real-space distribution of the Bose gas as a function
of temperature. One clearly sees a peak in the right-most image in both cases, signifying the
macroscopically occupied Bose-Einstein condensate.

The realization of BEC, together with novel trapping techniques and methods to control
two-body interactions, which we discuss in detail later, gave both experimentalists and theorists a
tool with which to study a seemingly endless field of ultracold phenomena and quantum matter.
While this field is still growing today as researchers are working towards, for example, the creation
of degenerate molecular gases and degenerate quantum gases with novel interactions, such as the
dipole-dipole interaction discussed for the remainder of this thesis, it is important to first note a
couple of very important results that demonstrated, for the first time, the novel superfluid nature
of the dilute BEC.

Recall from the discussion in section 2.1.2 that quantized vortices are direct signatures of
superfluidity. Thus, the observation of quantized vortex states in a dilute BEC provides direct

evidence of superfluidity in this system. This is precisely what was done, for the first time, by the
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JILA group in 1999 [69]. By clever spatial and temporal control of the optical pumping of 8"Rb
between two spin states, angular momentum was imparted to the BEC in order to nucleate a vortex
state. Images from this experiment are shown in the top part of figure 2.4, where the vortex is
present in one spin component in (a) and has been transfered to the other spin component, and is
thus no longer seen in (c¢). The presence of vorticity implies the presence of angular momentum, or
circulation, which is characterized by a phase wrapping of a quantum mechanical wave function.
For quantized vorticity, the phase wrapping A¢ must occur in integer units of 27, A¢ = 2wn where
n is an integer. In the experiment [69], phase interference was used to confirm the presence of the
singly-quantized vortex

In 2001, the MIT group succeeded in realizing and imaging multiple vortex states in a dilute
BEC, where the vortex density was sufficiently high to create a vortex lattice, showing for the first
time the presence of bulk vortex matter in a quantum degenerate system, with a lifetime of tens
of seconds [70]. To impart angular momentum to their BEC, the group used two blue-detuned
lasers, which form repulsive Gaussian potentials via the AC Stark shift, and rotated them through
the cloud. Images from this experiment are shown in the bottom part of figure 2.4, where the
images from left to right show an increase in the laser precession frequency and thus more vortices
in the BEC. Beyond the fact that the vortices (with the same circulation) form a lattice, it is
interesting that many singly-quantized vortices form instead of one or a few multiply-quantized
vortices. Indeed, multiply-quantized vortices can be, depending on the shape and interaction
strength in the BEC, dynamically unstable to the formation of multiple singly-quantized vortices.
This point was demonstrated by the JILA group in [71], where a blue-detuned laser was used
to create a density minimum in a BEC with vortex matter, wherein the vortices combined to a
multiply-quantized state, then decayed back into the lattice of singly-quantized vortices.

We have just pointed out a couple of the more interesting, relevant results from the early
BEC experiments here, though many more exist [72, 73, 67, 68]. Having seen that nearly pure
Bose-Einstein condensates of dilute atomic vapors are realizable in the laboratory setting and that

their superfluid properties have been demonstrated, we now turn our attention to the presence of
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Figure 2.4: Top image: Image of a singly-quantized vortex in a single spin component of a 8’Rb
BEC at JILA. In (a), the vortex is present, in (b) it is being transfered to the other spin component,
and in (c) it absent, having been transfered to the other spin component. Figure reprinted with
permission from [69]. Bottom image: Images of vortex lattice structures in the 23Na BEC at MIT.
The leftmost (rightmost) images correspond to less (more) angular momentum transfered to the
BEC, resulting in fewer (more) vortices in the BEC. Figure reprinted with permission from [70].
Both images are from experiments that played a key role in demonstrating the superfluid nature
of the dilute BEC.

interactions in these systems, in particular, the dipole-dipole interaction.

2.4 Dipolar Interactions in Ultracold Bose Gases

Since the first BEC experiments, many other atomic species have been Bose condensed,
including hydrogen [74], lithium [3], potassium [75], cesium [76], ytterbium [77], calcium [78],
strontium [79], chromium [14] and most recently, dysprosium [17]. The latter two species, unlike
the others, have significant permanent magnetic dipole moments, as indicated in table 2.1. While
there is a plethora of rich physics that exists, and presumably has yet to be discovered, in quantum
degenerate gases of the other atomic species, the presence of large dipole moments in Cr and Dy
sparks particular interest, as interactions between such dipoles have been predicted to lead to new
physics related to, for example, novel states of quantum matter and quantum phase transitions [8].

Additionally, there has recently been a strong push towards the realization of a quantum

degenerate gas of heteronuclear molecules. A significant achievement in this line of research was
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marked when the Jin/Ye collaboration at JILA managed to create a motionally ultracold gas of
fermionic KRb molecules in their ground rovibrational state via the novel STIRAP process [24],
though quantum degeneracy (marked by the Fermi temperature) has remained elusive. For more
information on the STIRAP process, we refer the reader to [80]. Other groups have adopted this
technology, and researchers now have a cold sample of bosonic KRb molecules [26] in their rovi-
brational ground state, and bosonic RbCs is promisingly close [81]. Heteronuclear polar molecules,
unlike dipolar atoms with permanent magnetic dipole moments, are electrically polarizable and can
develop very large electric dipole moments when polarized in an applied field. This polarizabilty,
actually, is given by the zero-frequency value of the AC polarizability «(0) from Equation (2.16).
The zero-frequency behavior of the AC Stark shift is referred to, appropriately, as the DC Stark
shift. These molecules, however, saturate at sufficiently large fields to a maximally attainable dipole
moment dy.x. Maximum dipole moments for some heteronuclear molecules are given in table 2.1.
For a review of the physics related to ultracold polar molecules, see [7].

Besides having potentially large dipole moments, which can induce, for example, long-range
coupling in optical lattice models, polar molecules have other important characteristics that allow
them to be used for studying other rich, more complicated systems with a high level of control. For
example, recent work has proposed using polar molecules to simulate quantum magnetism, where
the rotational degrees of freedom map into spin degrees of freedom [82]. Additionally, it has been
theorized that, at large enough densities and in reduced dimensions, dipolar quantum gases can
be used to realize and study self-assembled crystals [83] (see section 4.2.5 for more details). Also,
because some heteronuclear polar molecules are chemically reactive, the high level of quantum state
control and ultracold temperatures allow for the study of ultracold, highly controlled atom-molecule
and molecule-molecule chemical reactions [7]. It has also been proposed that cold polar molecules
could be used as qubits in quantum computing algorithms [84].

In this work, we are most concerned with the effect of the dipole-dipole interaction in a Bose-

Einstein condensate of dipolar constituents. For two permanent dipoles with dipole moments d;
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‘ Species ‘ Dipole Moment ‘ agqq (ag) ‘ Reactive? ‘ Reference ‘
8TRb 1 up 0.71 N [85]
22Cr 6 up 15.36 N [85]
164Dy 10 pp 134.57 N [85]
4IK®Rb 0.57 Debye | 3.940 x 103 Y [86]
8TRb!%3Cs |  1.25 Debye | 3.257 x 10* N 87, 88]
Z2Th!%0 3.89 Debye | 3.556 x 10° N 89, 90]

Table 2.1: Dipole moments, characteristic dipole lengths of candidate atomic and molecular species.
For the molecules, the dipole moment specifies the maximum achievable dipole moment. Because
41K8Rb is chemically reactive, it is labeled as such.

and dg at positions x; and xg, respectively, the interaction potential is given by (in cgs units) [91]

d1 . d2 — 3(n . dl)(n . dg)
|x1 — Xa|?

Va(x1,%2) = Vg(x1 — x2) = : (2.20)

where n is the unit vector in the direction of x; — x3. The dipole-dipole interaction (ddi) is
anisotropic and long-range, the explicit meaning of which is explained in section 3.4.2. Thus,
the interaction potential changes magnitude and sign depending on the relative orientation of the
dipoles. As we will see, this feature plays a very important role in the physics of BECs with
dipolar interactions, or dipolar BECs, leading to new, novel physics even when the BEC is dilute.
Though the interaction potential (2.20) is proportional to the product of the dipole moments, the
theory that we formulate in the next two chapters shows that the strength of the ddi is actually
characterized by the dipole “coupling,” g4 = 4nh%aqq/M, where M is the mass of a dipolar atom

or molecule and a4 is the characteristic dipole length of a species with dipole moment d,

Md?

R (2.21)

add =

Dipole lengths for various atomic and molecular species are given in table 2.1. For highly dipolar
molecules, such as RbCs, the maximum achievable dipole lengths are on the order of tens of
thousands of Bohr radii. We motivate the definition of this dipole length (with the factor of 3 in
the denominator) in chapter 4.

As forementioned, experimental groups have succeeded in creating Bose-Einstein condensates

of atomic Cr (in Tilman Pfau’s group in Stuttgart and in Oliver Gorceix’s group in Paris) and atomic
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Dy (in Benjamin Lev’s group at the University of Illinois and Stanford), and strong dipolar effects
have been demonstrated in all experiments. In the following two chapters, we develop a working
theory for dipolar BECs, and motivate the introduction of relevant physical parameters therein,
such as the condensate wave function, or order parameter of the ultracold Bose gas. Once this
object, and others, are better motivated and understood, we return to discuss recent experimental
results on dipolar BECs in detail. Now, having gained an appreciation for the physics of ultracold
Bose gases and BECs, as well and the motivation for understanding the role that the ddi plays in
the Bose condensed state, we turn our attention to the characterization of an ultracold Bose gas in

the presence of interparticle interactions, in particular, dipole-dipole interactions.



Chapter 3

Zero-Temperature Field Theory for Bosons

3.1 Second-Quantized Field Theory

The goal of this chapter is to derive a working theory for a gas of interacting dipolar bosons at
zero temperature (7'=0). A common and fruitful approach to such an end (for finite temperature,
as well), involves the language of second-quantization. In this framework, one describes a many-
body system by keeping track of single-particle state occupations instead of a full many-body wave
function ®n({x;}). Thus, the theory is quantized “twice” if the full many-body wave function,
which obeys the many-body Schrédinger equation Hy®y({x;}) = E®n({x;}), is considered to
be quantized “once”. Here, Hy is the Hamiltonian describing N = ), N; interacting particles at
coordinates {x;} = {x¢,x1,...}.

To motivate the definition of a quantized field, consider the separable coordinate representa-

tion of the many-body wave function ® for a system of bosons,

(I)N({Xz}) = %Z(ﬁob{o)(ﬁl(xl) (31)
P

where there are IN; bosons occupying the state ¢;(x) and > p indicates that the sum should be
taken over all possible permutations of the product of single-particle wave functions ¢;(x) [92].
The set of single-particle wave functions {¢;} is assumed to be complete and orthonormal so that
[ dx¢f(x)p;(x) = 6;; and Y, ¢i(x)¢F(x') = 6(x — x’). Because we are dealing with bosons, the
wave function (3.1) is symmetric with respect to all permutations P. Now, consider the matrix

elements of the operator O = >, 0; where 6; operates only on functions of the coordinate x;. The
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only non-zero matrix elements of this operator are those corresponding to all N; — N; (diagonal) or
those corresponding to the occupation of some state 7 being decreased by unity while the occupation
of some state j is increased by unity, or N; — N; — 1 while simultaneously N; — N; + 1 so the
total particle number N = ). N; is conserved [93].

Such behavior can be captured by introducing the Bose creation and annihilation operators,
dj. and a;, respectively. These operators are defined by their their action on a many-body state
in the occupation number, or Fock representation, |®y) = |Ng, Ni,...,N;,...), corresponding
to Ny particles occupying state ¢g(x), Ny particles in the state ¢;1(x), and so on, and by their
commutation algebra. These many-body occupation number states are defined to be orthonormal
so that (®n/|®n) = dn/n. The action of the annihilation operator a; on |® ) reduces the occupation

of the state ¢;(x) by unity,

ai|No, N1,...,Nyi,...) = /Ni|No, N1, ..., Ni — 1,..), (3.2)

and the action of the creation operator dj on |®y) increases the occupation of the state ¢;(x) by
unity,

al|No, N1, ..., Niy...) = /Ny + 1[No, N1, ..., Ni 4+ 1,...). (3.3)

The factors of v/N; and y/N; + 1 are defined so that the annihilation of a particle from state ¢;(x)
with occupation number N; = 0 gives the result a;|...,N; = 0,...) = 0 and does not allow for
unphysical negative occupation numbers. Additionally, it is straightforward to see that the number
operator N; is diagonal in the occupation number basis and has eigenvalue IV;. The number operator

is expressed in terms of the creation and annihilation operators as INV; = dj.&i,

ala|No, N1, ..., Ni,...) = al/Ni|No, Ny, ..., N; —1,...)

= (N; = 1) + 1/N;|No, Ny, ..., (N; — 1) +1,...)

= Ni|No, N1, ..., Ni, ..., (3.4)

so the occupation number of the state ¢;(x) is just given by (®x|N;|®n) = N;.
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The Bose creation and annihilation operators satisfy the commutation relations
[aaﬂ - (3.5)
(@i, a;] = [al,af] <o, (3.6)
so the many-body states are properly symmetrized. At this point, we introduce the vacuum field
of our occupation number basis, |0), which is defined so that a;|0) = 0 for all 7. Starting with

this vacuum state, we can create a state with a given configuration by successive application of

appropriate creation operators,

) = \/No!Nﬂl. N (o)™ (o)™ ()™ 100 (3.7

While the use of creation and annihilation operators in the occupation number representation
provides a clean and natural toolset to work with many-body systems, it is often advantageous to
work in the coordinate representation when the objects of interest are related to, for example, the
spatial density of the system. A direct connection between the occupation number representation

and the coordinate representation can be made by defining the Bose field operators,
bx) = 3 e (3.8)

P = ér(xal, (3.9)
where, again, {¢;(x)} is a complete, orthonormal set of single particle wave functions. By multi-
plying Eq. (3.8) by ¢7(x) and Eq. (3.9) by ¢;(x) and integrating over all x, we arrive at the inverse

relations
m:/wwwww (3.10)
if = [ ! (x)60) (3.11)

Using these inverse relations, the commutators of the field operators are found to be

960,61 ()] = 6 = x) (3.12)
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(960, 9(x)] = [ (x), 91 ()] = 0. (3.13)
The number operator for the total number of particles in the system, N = > N; can be written in

terms of the field operators,

N = /dxzﬁ(x)zﬁ(x), (3.14)

where we have used the completeness of the set {¢;(x)} to arrive at this result. Unlike the annihi-
lation and creation operators which annihilate and create a particle in a well defined single-particle
state, the field operators (3.8) and (3.9) annihilate and create, respectively, a particle at position

X.

3.1.1 Many-Body Hamiltonian in Second-Quantization

Recall that the system under consideration is an ultracold, dilute gas of interacting bosons.
The dilute character of the gas allows us to truncate the interactions at the two-body, or binary
level due to the fact that the probability of two particles interacting in a dilute gas overwhelms the
probably of three particles doing so. Thus, in terms of the Bose field operators, the many-body

Hamiltonian can be expressed as

H= / dxipt (x) HD (x / dx / dx' )T (%)t (x)V (x — x') ) (x') ) (x), (3.15)

where V(x—x') is the two-body interaction potential and HY (x) is the single particle Hamiltonian

~ h

AW (x) = i V2+U( ), (3.16)

where M is the mass of a single boson and U (x) is the external, or trapping potential. The factor of
1/2 in the interaction term corrects for a double counting that is inherent in the integration. This
Hamiltonian operator (3.15) can be expressed in terms of the creation and annihilation operators
by substituting Eqgs. (3.8) and (3.9) in for the Bose field operators, giving

H = ZaTHfj aj+ = Z alalVijmarar, (3.17)
Jkl
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where H Z-(jl) are the matrix elements of the single particle Hamiltonian

HY = / st (x) T ()5 (x) (3.18)

and Vj;; are the interaction matrix elements
Viikl = /dx/dx'(bl*(x)qﬁj(x')V(x—x’)qﬁk(x')qﬁl(x). (3.19)
3.2 The Bogoliubov Approximation

The diagonalization of the Hamiltonians (3.15) and (3.17) is quite difficult as they are written
in full generality. However, a significant simplification can be made by restricting the system
of bosons that these Hamiltonians describe to the ultracold regime. Here, ultracold refers to
temperatures T' < T, where T, is the critical temperature for Bose-Einstein condensation. In this
regime, the number of bosons occupying the condensed state ¢o(x) is macroscopic and overwhelms
the occupation of any excited states corresponding to ¢;(x) with i # 0, that is, the condensate
fraction ng = No/N ~ 1 and the excited fraction nex = ), 20 Vi /N < 1. To a good approximation,

we can treat the condensate part of the field operator as a c-number and write the field operator as

A

U (x) = (U(x)) + ¢(x) = v/ Nogo(x) + @(x) (3.20)

where (¥(x)) is a low-temperature ensemble average of the field operator and ¢(x) corresponds to
the excited, non-condensed states, or the so-called quantum fluctuations
p(x) =) $i(x)a;. (3.21)

i#0

This decomposition of the field operator was first proposed by Bogoliubov [94], and amounts to re-
placing the creation and annihilation operators of the condensate field by the root of the condensate
occupation number Gy = &2; = +/Np. An important consequence of this Bogoliubov approximation
is that the number operator N no longer commutes with the Hamiltonian (3.15) and particle num-
ber is no longer conserved. This motivates the introduction of the grand-canonical Hamiltonian
K=H- ,uN where p is the chemical potential of the system and acts as a Lagrange multiplier to

conserve particle number on average [53].
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Using the Bogoliubov decomposition (3.20), we express the grand-canonical Hamiltonian K
perturbatively in orders of the condensate occupation Ny as K = Ko+ Ki + Ko + ... where K;
contains the terms that are i order in the quantum fluctuations ((x). The zeroth order term K

is given by

= [ {60 s} onlo0) + 52 [ [ ax3(x)56¢)V x - x)on(x )0 (). (322)

An equation governing the chemical potential and the condensate field ¢(x) is derived by enforcing
that Ko be a minimized with respect to small variations in the condensate field ¢{j(x). This ensures

that K vanishes and results in the equation

o (x) = {ﬁ(l)(x) + No / dx' ¢5(x" )V (x — x')qbo(x')} do(x). (3.23)

This Eq. (3.23) is the non-local Gross-Pitaevskii equation (GPE) and is the governing equation for
the condensate field ¢o(x), commonly referred to as the condensate wave function. The second term
on the RHS of the GPE is the mean-field potential, Up¢(x). It emerges by taking the mean-field
(¥(x)) in the Bogoliubov approximation (3.20), and has the form of a classical potential that is felt
by all particles in the system, both condensed and excited, due to the presence of the condensate.

The GPE (3.23) was derived independently by Gross [95] and Pitaevskii [96] in 1961. It
provides a self-contained and fruitful description for the fully condensed, zero temperature state
of a system of dilute bosons. While the chemical potential p is given by the condensate wave
function ¢g(x) through the GPE, the stationary condensate wave function itself must be calculated

by minimizing the zeroth order part of the Hamiltonian (3.15),

20— [ axai () + 3L [ dx [ a6V (x = X)nx)in(). (324)

This energy functional (3.24) is therefore known as the Gross-Pitaevskii energy functional. Mini-
mization of (3.24) corresponds to the minimization of (3.22), the only difference between the two
being a global shift by the chemical potential u. Additionally, it is important to note that the GPE
and the energy functional (3.24) remain unchanged by any global phase shift of the condensate wave

function ¢y (x), so we see that this system possesses a U(1) symmetry that is spontaneously broken
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in the BEC phase. It was pointed out by Goldstone [97, 98] that systems with such symmetry,
here corresponding to a rotation of the condensate phase, necessarily possess some long-wavelength,
arbitrarily low-energy mode known as the Goldstone boson (i.e., the theory must have a gapless ex-
citation spectrum). We will see that the theoretical formulation of quantum fluctuations presented
here is consistent with Goldstone’s theorem and results in a gapless excitation spectrum.

The next non-zero term in the expansion of K is the second order term f(g, given by
Ky = [ dx¢'(x) {Eﬂl)(x) — M} G(x) + % / dx / dx'V(x — x')
x {6 ()8! (% )60 (x )0 (x) + @' ()65 (x )@ (x )0 (x) + B (x)65 (%' )0 (x )2 ()
+ 65021 (x) 90 (X))@ (%) + G (x)9* (X ) ()2 (x) + 65 (x)2 (x)(x ) () }
~ o - NO / /
— [ axd (o ar 000 + 5 [ ax [ axvix-x)
x {021 ()0 (x )b (x) + 26 () 2(x') 95 (X )0 () + ()P )5 (X )5 (x) |, (3.25)

where Hgp(x) is defined so that Hgp(x)¢o(x) = 0 (see Eq. (3.23)) and we have assumed that
that the interaction potential V(x — x’) has the even symmetry V(x — x’) = V(x’ — x). Note that
K, is not diagonal in the quantum fluctuation operators o(x). However, this expression can be

diagonalized by transforming these operators [99],

px) =Y [ui(x)l;i — v (x)bf] . (3.26)
i#£0
To make the transformation canonical, the creation and annihilation operators IBI and IBZ must obey

the Bose commutation relations (3.5) and (3.6), from which the normalization condition for the

u;(x) and v;(x) wave functions are derived to be

[ i s ) = o7 () o)) = B (3.27)

Interestingly, the only constraint on these functions is that they are normalized relative to each
other while their magnitudes are otherwise unconstrained. It is precisely this fact that allows the

canonical Bogoliubov transformation (3.26) to diagonalize the quantum fluctuation Hamiltonian

A

K.
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Indeed, inserting the transformation (3.26) and its conjugate into (3.25) allows us to write
KQ as
Ky = hwblb;, (3.28)

i#0
where the energy eigenvalue w; is given by

hw; = /dx [ HGP( Jui(x) + vi*(x)ﬁ(;p(x)vi(x) + No/dx/V(x -x) {gbo(x)uf(x)(bg(x’)ui(x/)
+ 95 (x)v; (%) do (X )vi(X') 4 do(x)u; (%) do (X )vi(X') + ¢ (x)v; (x) 5 (x Yus (x') }] - (3.29)

Enforcing that the off-diagonal elements of K» vanish is achieved by enforcing that the creation

and annihilation operators obey the commutation relations [100]
[Kg, ZA)Z} = —w,f)i (330)

|:K2, ZA)I] = w,l;j (331)
From these relations, the functions u;(x) and v;(x) are found to obey the Bogoliubov de Gennes

(BdG) equations,
wiui(x) = Hap(x)ui (x) + No / dx'V(x — x') { ¢ (x")ui(x) + do(x")vi(x) } do(x (3.32)

—hwivi(x) = Hgp(x)v;(x) + No / dx'V (x — x') {5 (x )vi(x") + do(x")us (x') } do(x (3.33)
For a non-interacting system, solutions to Egs. (3.32) and (3.33) correspond to the single-particle
system where the w; are the single-particle energies and the u;(x) are the single-particle excited
states, while [dxv}(x)v;(x) = 0. When interactions are present, however, the v;(x) play an
important role in this theory and the the solutions no longer correspond to single-particles, but
instead correspond to quasiparticles. The quasiparticle picture, while perhaps unintuitive, is the
natural language with which to describe dilute Bose gases at low temperatures T ~ 0 as the
Hamiltonian for the system is diagonal in this representation. The functions w;(x) and v;(x) are
therefore referred to as quasiparticle wave functions.
Egs. (3.32) and (3.33) are linear in the quasiparticle wave functions wu;(x) and v;(x), and

thus account for quasiparticle-condensate interactions while neglecting quasiparticle-quasiparticle
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Figure 3.1: The diagrammatic representation of the interaction part of grand canonical Hamiltonian
Kint. The dashed lines represents the condensate, the solid lines represent excited quasiparticles
and the squiggly lines represent interactions. The first diagram shows the 0™ order contribution
to the interaction energy given by condensate-condensate interactions. The remaining diagrams
(a)-(f) represent the next to leading order contribution to the interaction energy from quasiparticle-
condensate interactions. (a) and (b) show quasiparticles scattering off of the condensate (direct
terms) and (c)-(f) show interactions that absorb and expel quasiparticles from the condensate
(exchange terms).

interactions. However, in a dilute gas at approximately zero temperature, the latter interactions
may be neglected as the total quantum depletion (see section 3.2.3) is very small. The quasiparticle-
condensate interactions, on the other hand, are non-negligible and are characterized by two types
of terms. One is a “direct” term that describes a quasiparticle scattering off of the condensate,
and the other term is an “exchange” term that describes a quasiparticle scattering into or out
of the condensate. The interaction parts of the grand canonical Hamiltonian K are represented
diagrammatically in figure 3.1 and such direct and exchange terms are identified therein.

It is convenient to write the BAG equations in the matrix form,
H agp + C+X X* U U
= hw (3.34)
—-X* —Hgp —C - X v v

where the C' and X operators represent the direct and exchange terms, respectively, and we have
neglected the spatial dependence of the operators and quasiparticle wave functions. The direct

operation of C on a quasiparticle wave function u;(x) is given by
[é’ul} (x) = No/dxgbg(x/)V(x —x") o (x')u; (%), (3.35)

and the exchange operation of X on a quasiparticle wave function u;(x) is given by

[Xus] (x) = No / x5 (x )V (x — % s () o (). (3.36)
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Then, in practice the quasiparticle wave functions u;(x) and v;(x) can be obtained simultaneously

with the energy eigenvalues w; via diagonalization of the 2 x 2 BAG Hamiltonian in Eq. (3.34).

3.2.1 Long-Range Order

Recall that in section 2.1.3 we discussed the criterion laid out by Penrose and Onsager that
superfluids, and BECs, must possess long-range order, given in terms of the single-particle density
matrix in Eq. (2.3). Here, we show that long-range order is indeed present in the Bogoliubov
decomposition given by Eqgs (3.20) and (3.26) by calculating the single-particle density matrix

explicitly,

o (x,x') = (\i’Jr (x)\i/(xl)>
= ((VAeit0 + 610) (VNao(x) + o)

= Nogj(x)do(x') + (¢ (x)p(x')), (3.37)

where the terms that are linear in the quantum fluctuation operators ¢(x) vanish. If we consider
a homogeneous system in a cubic box of volume V', we can use a plane wave basis (which we
return to in the next chapter), ¢y (x) = 1/v/Ve**. In this case, lim‘x_x/‘qoo@ﬁ(x)gb(x’)) =0 and

limx /|00 @5 (X)P0(x") = 1/V, so we see that

lim oM (x,x) = No/V, (3.38)

|x—x/|—00

so the single-particle density matrix asymptotes to the condensate density in the Bogoliubov de-

composition, thus satisfying the criterion of long-range order.

3.2.2 Symmetry in the Bogoliubov de Gennes Equations

Note that if we can write ¢f(x) = ¢o(x), the BAG equations (3.34) are unchanged under the
exchange of u «+» v* and w «» —w. Because of this symmetry, the solutions come in pairs of (u,v*)T

with eigenvalue w, the positive-norm solution, and (v*,u)T with eigenvalue —w, the negative-norm

solution. Thus, we can transform the u and v quasiparticle wave functions u = %( f—g) and
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v %( f+g) and end up with an equivalent form of the BdG equations. Squaring these transformed

BdG equations results in a diagonal form [101, 102],

(ﬁgp v é) <ﬁgp +C 2)2) F=u2f (3.39)
(ﬁgp +C 2)2') (ﬁgp v é) g=uwlg. (3.40)

To obtain just the energy eigenvalues w, it is sufficient to solve just one of these equations while
both (3.39) and (3.40) must be solved to gain information about the quasiparticle wave functions.
For example, diagonalization of (3.39) gives the eigenvalues w and the eigenvectors f while a matrix
inversion of (3.40) gives the eigenvectors g. With knowledge of both f and g, the quasiparticle wave

functions v and v can be reconstructed.

3.2.3 Quantum Depletion

The Bogoliubov transformation (3.26) mixes the single-particle creation and annihilation op-
erators, and it is therefore useful to define a new ground state (vacuum) in terms of the quasiparticle

annihilation operator instead of the single-particle annihilation operator,
b;|0) =0, (3.41)

so the state |0) is defined as a quasiparticle vacuum, or the state that is devoid of quasiparticles,
corresponding to a pure condensate. The number of particles in this ground state can be calcu-
lated by taking the expectation value of the number operator in this state. In the Bogoliubov

approximation, the number operator takes the form,
N = Nog§(x)60(x) + v/No (#5(x)6(x) + 60 (x)21(x)) + ¢ (x)(x). (3.42)

and applying the canonical transformation (3.26) to (3.42) gives
N = Nogs ()0 (x) + v/No Y (#6(x) [ua(x)bs = vf (B} | + do(x0) [ui ()b - vs(x0)br )
i#0

+ Z {uf(x)u] (X)i);ri)] — uz*(x)v]*(x)i)w — ui(x)v (x)bib; + Ui(x)v]*-(x)l;,f)q . (3.43)
i,j#0
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When taking the vacuum expectation value, we use the fact that (0|0) = 1 and <0|ng 0) = (0[bs]0) =0

to arrive at the result

O1N[0) = Np+ 3 / dxcvt (x)vi (%), (3.44)

i#0
The second term in this expression is known as the quantum depletion. This term gives the number
of particles that are forced out of the condensate at zero temperature into excited quasiparticle
states, and was first calculated by Lee, Huang and Yang for a gas of bosons at T' = 0 with hard-
sphere interactions [103]. It is worth emphasizing that this is a zero temperature result. At finite
temperature, thermal energy manifests in the occupation of excited quasiparticle states so the

annihilation of a quasiparticle from a thermal many-body state does not result in zero as is the

case for the ground state, defined in Eq. (3.41). Thus, terms like (333,> # 0 in a Bose gas at 7' > 0.

3.3 Time-dependent formulation

So far, we have neglected any time-dependence in the formulation of our low-temperature field
theory. In general, the field-operators can be time-dependent \i/(x) — \i/(x,t), and their equation

of motion is given in the Heisenberg picture by
ihd, U (x,t) = [U(x,t), K ()]
= {ﬁm —p+ / dx' 0T (x/, 1)V (x — x') ¥ (¥, t)} W(x,t). (3.45)

The decomposition of the field operator from Eq. (3.20) can now be inserted into Eq. (3.45) to derive
an equation for the condensate field ¢g(x,t). At ultracold temperatures, however, we employ the
perturbative approach and keep only the leading order terms in Ny, which amounts to neglecting
terms that are of cubic order or greater in the quantum fluctuations. In practice, we take a T'=0
ensemble average of Eq. (3.45) and note that (p(x,t)) = (¢7(x,t)) = 0 to arrive at an equation for
do(x,1),

h2

ihat¢0(x7 t) = {_m

V24 U(x)— p+ Ny / dx' ¢ (%', )V (x — x') o (X, t)} do(x,t).  (3.46)
This equation is known as the time-dependent Gross-Pitaevskii equation, and it governs the real-

time evolution of the condensate field ¢o(x,t). The stationary solution to this equation corresponds
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to the time-independent condensate field with time-dependent phase qﬁo(x)e_i”t/ . where ¢o(x)
obeys the GPE (3.23).
Additionally, in section 3.2 it was shown that the Hamiltonian K> is diagonalized by the
introduction of quasiparticle operators. Thus, the time evolution of the quasiparticles is given
simply by their energy eigenvalues w;,
plxt) =" [ui(x)e—w/ﬁz}i N (3.47)

i#0
It is easy to show that the insertion of (3.47) into the equation of motion for the field operator (3.45)
results in the BdG equations (3.34). Additionally, formulating the quantum fluctuations in this
time-dependent form reveals important information regarding the stability of the dilute Bose gas.

Manipulation of the BdG equations (3.32) and (3.33) results in the condition

(wi — wy) /dx [uf (x)u;(x) — v (x)v;(x)] = 0. (3.48)

However, the normalization condition (3.27) says that the integral part of this expression must
be equal to unity, so (w; —w}) must be zero. This is only guaranteed when w; is purely real. If
w; has a non-zero imaginary part, Eq. (3.48) can not hold unless the u;(x) and v;(x) functions
are not normalizable, i.e., they diverge relative to each other. Indeed, one sees directly from the
time-dependent form of the quantum fluctuations in Eq. (3.47) that any Imfw;] # 0 results in
quasiparticle wave functions whose norms diverge exponentially, signifying a dynamical instability.

Thus, solutions to the BAdG equations give us a criterion for dynamic stability [104],
Im|w;] = 0. (3.49)

It was shown rigorously in reference [104] that the emergence of complex eigenvalues in the BAG
equations coincides with the degeneracy between a positive-norm solution and a negative-norm
solution. Ref. [105] also confirmed this claim using a two-mode approximation. At the point of
degeneracy, the real parts of the positive-norm and negative-norm eigenvalues become identical as
their imaginary parts emerge that are identical in magnitude and opposite in sign. This is seen

explicitly in the solutions to the BAG equations that are presented in chapter 5.
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3.3.1 First-Quantized Theory - Alternative Derivation

In this section we present an alternative derivation of the Gross-Pitaevskii equations, both
time-independent (3.23) and time-dependent (3.46), the Gross-Pitaevskii energy functional (3.24)
and the BdG equations (3.34). First, we notice that the energy functional (3.24) describes the
energy of a pure condensate field ¢o(x) in the presence of two-body interactions. We can write the
first-quantized Hamiltonian for a system of N such bosons as

ety - S [ o | -
H({xi}) =) SV HUx) +) Vi(xi —x;), (3.50)

i=1 i<j

and we can write the symmetrized wave function of the pure condensate, where every particle

occupies the exact same wave function ¢o(x), as

N

U ({xi}) = H¢0(Xi)- (3.51)

1=1

Such an approximation to the zero-temperature Bose system is known as the Hartree approxi-
mation. The energy per particle of such a system is then given by the expectation value of the

Hamiltonian (3.50) in the state (3.51),

E . .
v -1I [ () B () ¥ (). (3:52)

Subsequent integration over the coordinates x; results in an energy functional that is identical
to (3.24), but with the Ny that multiplies the mean-field interaction term replaced by N—1 [106, 55].
Here, Ny and N refer to the same number, being the number of particles in the condensate. Such
a result is intuitive, actually, because although such a mean-field theory is meant to describe a
large number of bosons in the condensate, the limit that N — 1 should produce no interactions,
as a particle can not interact with itself in the way we consider here. Thus, we adopt the factor
of N — 1 for the parts of this thesis where trapped, finite Bose gases are considered. At any rate,
the difference between N and N — 1 is typically negligible for current BEC experiments, where
condensate particle numbers are on the order of tens of thousands.

The time-independent Gross-Pitaevskii equation is derived in this first-quantized theory by

introducing the chemical potential as a Lagrange multiplier to conserve particle number on average,
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in the grand canonical theory, and enforcing that §E — ud N = 0. The result is, again, identical
to Eq. (3.23), but with Ny — N — 1. Similarly, the time-independent Gross-Pitaevskii equation is
derived by writing out the time-dependent Schrédinger for the many-body wave function ¥, which
we now generalize to the time-dependent form W({x;},¢). Projecting out all coordinates except for
one gives the time-dependent GPE, Eq. (3.46), but, again, with Ny — N — 1.

In the first-quantized approach, the elementary excitations are treated as small perturbations
to the ground stationary state, in this case, the condensate wave function ¢g(x)e~***. Using the

time-dependent GPE, we write
¢0(X7 t) = [¢0(X) + 519(X7 t)] e—iut’ (353)

where § < 1 and

I(x,t) = Z [u;(x)e ™™ + vf (x)e™] . (3.54)

Plugging the form (3.53) into the time-dependent GPE and linearizing about the small parameter
d results in the BAG equations (3.34), but, of course, with Ny replaced with N — 1. While this
first-quantized method is seemingly identical to that of the second-quantized method introduced
earlier in this section, the first-quantization does not allow one to easily go beyond this perturbative
approach, whereas the second quantization allows for such treatment, for example, of self-consistent
treatments of thermal and quantum fluctuations. An example of such methods are the Hartree-
Fock Bogoliubov methods, developed by Allan Griffin [107], which have been proven fruitful in

describing thermal Bose gases.

3.4 Two-body Interactions

To complete our theoretical description of an ultracold, dilute gas of interacting bosons, we
now treat the two-body interactions. In the theory presented here, the effect of these interactions
emerge in the interaction matrix elements V;;z; given in Eq. (3.19). While we are primarily interested
in the dipole-dipole interaction (ddi), which is discussed in section 3.4.2, the treatment of short-

range interactions in dipolar Bose gases is necessary for a complete description of this system.
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3.4.1 Pseudopotential for Short-Range Interactions

As discussed in section 2.2, the transition to BEC occurs when the thermal de-Broglie wave-
lengths of the bosons become comparable to their mean spacing, or when n%)\dB ~ 1 where n is the
density of the gas. To satisfy the diluteness criterion that is used to truncate the Hamiltonian (3.15)
at the binary level, we enforce that the average distance between the bosons is much greater than
the characteristic length scale on which they interact. For isotropic, short-range interactions (such
as the Van der Waals interaction), an appropriate interaction length scale is set by the s-wave
scattering length ag;. Thus, the diluteness criteria takes the form n%as < 1. Our conditions for

condensation and diluteness tell us that the ultracold, dilute Bose gas must obey the condition

Qs

< 1. (3.55)
AdB

This condition can be used to greatly simplify the interaction matrix elements (3.19) if we enforce
that all states exist below a certain energy cutoff F., so the characteristic wave numbers k; of
all states are such that k; < 2m/as [108]. Since the two-body interaction changes on a length
scale much smaller than those of the condensed and low-lying quasiparticle states with energies
hw; < Ecut, which change on a length scale ~ 27 /k;, the short-range interaction matrix elements

can be simplified by using the shape-independent approximation,
Viih = [[ax [ ax6160s 6 WVatx - X )y
~ g [ ax6 0650 0n 010 (3.56)

where, for isotropic interactions, the two-body potential is just V.(|x — x'|) and

g= /deC(x) = V(0). (3.57)

This result motivates the introduction of a pseudopotential V,(x — x’) = gd(x — x’) for the short-
range interaction. The coupling constant g can be determined by identifying the zero-energy
solution of the Lippmann-Schwinger equation for the two-body wave function with the known

low energy threshold result ¢(r) = 1 — %, where a is the s-wave scattering length. Using the Born
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approximation in this process allows one to identify the form of Eq. (3.57), thus g is given by
4mh?aBorn /M where apom is the Born approximation for the s-wave scattering length [55]. The
Born approximation, however, does not take into account the high-momentum behavior of the two-
body wave function in the vicinity of |x — x| ~ 0 where the two-body potential is strong [109].
Indeed, such information is automatically lost in the many-body theory when the single-particle
wave functions are assumed to have the separable form (3.1). However, this problem is overcome
by replacing the Born approximation to the zero-energy T-matrix with the full T-matrix, which
amounts to replacing agom with the true s-wave scattering length a, to give the proper short-range
pseudopotential
B Arh2a,

Vox —x')=gé(x —x) = i §(x —x). (3.58)

The true s-wave scattering length can be obtained either empirically or through some calcu-
lations that treat the close-coupling of the two-body wave function. For example, an approximate
analytical formula for the scattering length of atoms interacting via the Van der Waals force was
derived in [110], and a delta-function pseudopotential of the form (3.58) was found to reproduce
the correct scattering behavior of two bosons with hard-sphere interactions, where the scatter-
ing length is simply the radius of the hard-sphere [111, 103]. Additionally, this pseudopotential
was used therein to calculate for the first time the zeroth-order (mean-field) energy, the quantum
depletion and the first-order beyond mean-field energy (energy due to quantum fluctuations at zero-
temperature) of a dilute BEC. However, to calculate this beyond mean-field energy (the so-called
LHY energy correction) the authors used a corrected form of the pseudopotential (3.58) to first-
order beyond the momentum-independent approximation (3.58), given by iterating the T-matrix
solution of the Lippman-Schwinger equation to next order. This momentum-dependent pseudopo-
tential provides a first-order account of higher energy scattering processes above the cutoff F .

It is also interesting to note that the momentum dependent pseudopotential (3.58) is auto-
matically on-shell (k = k’). At the mean-field Bogoliubov level that is employed in this thesis, it is

sufficient to use the on-shell transition matrix elements, while higher-order theories that, for exam-
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Figure 3.2: Geometry of the dipole-dipole interaction for dipoles that are polarized by an external
field in the z-direction, corresponding to the interaction potential in Eq. (3.59).

ple, include quasiparticle-quasiparticle interactions, necessitate the calculation of off-shell elements.
One such theory is that of Beliaev [112, 113], which uses the momentum-dependent form of the
scattering amplitude to calculate the beyond mean-field corrections to the quasiparticle spectrum
of a Bose gas [114]. Nevertheless, the pseudopotential (3.58) is appropriate for the dilute BEC that

is discussed here.

3.4.2 Dipole-Dipole Interactions

We now turn our attention to the ddi which, unlike the interactions considered in the previous
section 3.4.1, is anisotropic and long-range. In particular, we consider the interaction between two
dipolar bosons that are polarized in an external field. If this polarizing field points in the z-direction
and the dipole moments are given by dy and ds, the two-body potential for this interaction can be

written as (in cgs units)

Co(0,9) dhd 1 — 3cos? Ox_x/
x—xP T x—xP

(3.59)

where Co(0, ¢) is the reduced spherical harmonic [115] and 6 is the angle between the polarizing
field and the vector separating the two dipoles x —x’. This ddi potential is given by taking dy = dy
in the more general expression (2.20). The geometry of the ddi given in Eq. (3.59) is shown in
figure 3.2.

Unlike short-range interactions that are oc 1/r% when they are of the Van der Waals type,
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the ddi goes as o< 1/73, which gives this interaction very special properties. This can be seen by
considering the long-range contribution to the low-energy threshold behavior of the elastic scattering

phase shift for the I*" partial wave for a potential oc 1/ [116],
tan &; o« Ak?HL + BES72 (3.60)

The elastic cross-section is proportional to sin? §;/k?, so for I > 0 and s = 3 (corresponding to
the ddi) the first term vanishes at zero energy while the second term is constant. Thus, at low
energies the scattering of dipoles is independent of k& and is dominated by the 1/r3 part of the
two-body potential for all partial waves [ > 0. As a result of this long-range behavior of the ddi,
the Born approximation works well to describe low-energy dipole-dipole scattering for non-zero
partial waves [117]. For the s-wave part, a pseudopotential similar to (3.58) can be used where
the s-wave scattering length is now dipole dependent, as = as(dy,ds) [118, 119, 120, 121]. It was
shown in [122] that this pseudopotential treatment of the s-wave part of the ddi is sufficient for an
accurate description of low-energy dipolar collisions in a BEC, and the Born approximation works
well for the [ > 0 partial waves as long as the strength of the ddi is sufficiently weak [123].
Thus, we take our two-body interaction potential to be

o1 —3 €082 Oy

Vix—x)=gi(x —x)+d (3.61)

|x —x'|3
where we have assumed that d; = ds = d and a; is the full s-wave scattering length characterizing

the low-energy two-body collisions. This potential has a well-defined Fourier transform V (k) [124],

V(k) =g+ %cﬂ (3 cos? O — 1), (3.62)

where 6}, is the angle between the dipole polarization and the wave vector k. We give the details
of the calculation of this momentum-space ddi in Appendix B for dipoles with arbitrary spatial
polarization. Indeed, the second term in this momentum-space interaction potential (3.62) describes
dipole-dipole interactions for any uniform polarization, and not just polarization in the z-direction.
We refer to the first term in this potential (3.62) as a “contact” potential due to its delta-fu