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Zhang, Chen (Ph.D., Physics)

Scattering at Ultracold Temperature: from Statistics to Dimensionality

Thesis directed by Prof. Chris H. Greene

In this dissertation, we study the few-body ultracold Bose-Fermi mixture and quasi-1D scat-

tering at ultracold temperature. Degenerate quantum gases have attracted enormous attentions

during the past two decades. They have opened new platforms of quantum simulation, preci-

sion measurement and quantum chemistry. The scattering properties of degenerate quantum gases

are the first things to study in order to gain insight into various novel phenomena at ultracold

temperatures.

To address the role of quantum statistics at ultracold temperature, we study the spectrum

and dynamics of a few-body Bose-Fermi mixtures. In particular, we focus the dynamical evolution

of a few-body Bose-Fermi mixture and concentrate on its universal behavior at large inter-particle

scattering length. We predict the molecule formation efficiency in many-body Bose-Fermi mixtures

by mapping this critical observable in few-body calculations. We also propose that a the quantum

beat experiment could be used to measure the energy of the lowest Efimov trimer at unitarity.

To address the role of dimensionality, we study confinement induced resonances and similar

phenomena in general transverse confining potentials. Well-separated energy scales in different di-

mensions allow the creation of reduced dimensional systems at ultracold temperatures. We develop

a general framework to regularize the low-energy quasi-1D scattering phase shift associated with a

zero range interaction.

Lastly, we discuss future prospects for the study of an ultracold Bose-Fermi mixture, and

scattering in reduced dimensional systems of a more general topology.
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Chapter 1

Introduction

1.1 Brief History of Modern Atomic, Molecular and Optical (AMO) Physics

Emergent phenomena from ensembles of interacting particles are intriguing. Knowledge of

individual particle’s structure and dynamics is not enough to predict the behavior of many-particle

systems. The pursuit of unraveling how particles interact with each other and how they form matter

with diversified structures and dynamics have pushed forward the development of new branches

of physics. As probing techniques have developed, the structures and dynamics of matter can be

directly observed and controlled on a larger range of space-time and a broader range of energy

scales. In the scope of atomic, molecular and optical physics, ultracold quantum gases are the

cornucopia to explore emergent phenomena.

From the perspective of modern atomic molecular and optical physics, advances in laser

technology have allowed for the precise manipulation of matter at the single atom and molecule

levels. Although the idea of using light to manipulate the motion of atoms started since the era

of Maxwell [MAJ88, Leb01, NH01] in the early 1900s, the light sources back to that time delayed

active explorations in this direction due to the lack of monochromaticity and coherence. Einstein

foresaw stimulated emission as early as 1917 [Ein17]. However, the invention of laser was in the

1960s [Maint], several decades after the original work of Einstein. Lasers subsequently became

important probing tools to understand the structure of individual particles. In the meantime,

the variety of lasers have paved the way for realizing manipulation of the mechanical motions of

particles with light. One of the research directions is to reduce the average kinetic energies of atoms
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and molecules using laser fields. The techniques of laser cooling of atoms to the quantum regime

have developed rapidly since then.

In addition to the light pressure exerted on particles, the gradient of the electromagnetic

(EM) field also exerts significant forces on charged or neutral particles moving inside an EM field.

The gradient forces of the laser field can capture atoms in the valleys or nodes of a standing EM

wave or at least change the paths of an atomic beams [Ash70]. Hansch et al. proposed laser cooling

of trapped neutral atoms [HS75] in the 1970s. At nearly the same time, Wineland et al. proposed

laser cooling of ions in ion traps [WDW78]. Achievements in laser cooling a large variety of atomic

species followed these seminal experiments [WDW78, NHTD78, BFAP78]. These two classes of

experiments (ion trap and neutral atom trap) became the basis of candidate systems for realizing

quantum computing in from the perspective of atomic molecular and optical physics [CZ95]. (Of

course there are candidate systems that are based on low temperature materials such as quantum

dots [LD98] and topological quantum computing devices [NSS+08]. Even hybrid systems combining

all those elements have been proposed.)

Cooling beyond the Doppler limit was realized by Chu et al. [CHB+85] and Philips et al.

[LWW+88] independently in the late 1980s. Microkelvin optical molasses with cold atomic gases

were created in both their sets of experiments. Later, the velocity-selective coherent population

trapping method enabled the experimentalist to cool the atomic ensemble below the temperature

corresponding to the recoil photons from a laser, allowing experiments to reach the nK and pK

regimes [AAK+88]. Atom trapping techniques were also revolutionized by the discovery of the

magneto-optical trap by Wiemann [MSRW90]. These experimental breakthroughs in the cooling

and trapping of neutral atoms eventually led to the Bose-Einstein condensation (BEC) of atoms

[BSTH95, PAEC95, DMA+95]. BEC is a new phase of matter in which a macroscopic number of

atoms are in the same quantum mechanical ground orbital. This happened over 70 years after the

first prediction of the BEC by Bose and Einstein in the 1920s. In fact, there are a considerable

number of qualitative differences in the experimental realizations of those first few BECs from the

non-interacting BEC predicted by Bose and Einstein.
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Soon after the realization of quantum degenerate Bose gases, efforts were put into the exper-

imental realization of the quantum-degenerate Fermi gas [DJ99, TSM+01]. Next, the BCS-BEC

crossover was realized in two-component Fermi gases [ZSS+04, BAR+04, RGJ04]. (BCS in the

context of two-component Fermi gas refers to the Bardeen-Cooper-Schrieffer type momentum pair-

ing mechamism for two fermions with opposite spins). Strongly interacting Bose-Fermi mixtures

were created during the same period [RRMI02a]. The boom in explorations of interacting quantum

degenerate gases of different statistics resulted from the development of atom-atom Fano-Feshbach

resonance [CGJT10]. The development of techniques to control strong and stable magnetic fields

played a pivotal tole in the precise control of the interparticle interaction strength at ultracold

temperatures by scanning across the magnetic Feshbach resonances. The physical reason is that

the interactions are, in general, short-range potentials possessing a van der Waals tail [PS04]. The

van der Waals tails converge the fine and hyperfine split of internal atomic energy levels, which in

turn can be controlled by an external the magnetic field.

The tunability of the interaction strength between ultracold atoms opened the door towards

performing quantum simulation in degenerate quantum gases. For example, the BCS-BEC crossover

in two-component fermions is the first quantum simulation experiment to explore the long-standing

question (since 1950s) [Fey57] of the interrelation between superconductivity and superfluidity.

This discovery made ultracold atoms gases a popular playground for exploring novel phases of

matter. Studies of the quantum phases in ultracold atomic ensembles have not only been limited

to simulating phenomena in electron gases in materials, but also have been extended to the atomic

nucleus, e.g. simulating dynamics of the QGP(quark-gluon plasma) in Bose-Fermi mixtures.

Exploring and simulating exotic many-body phases and phase transitions has become a major

subfield of ultracold quantum gases. A second direction towards the exploration of non-trivial single

particle behaviors also became feasible as the magneto and optical control over atoms in quantum

gases developed. Although research is still in the embryonic stage of simulating gauge fields that

follow nontrivial gauge transformations, developments in this direction have been exciting during

the past few years [DGJbuO11, LCJG+nt].
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A gauge regards simply to a convention for getting rid of redundant degrees of freedom in

the electromagnetic potential (A, ψ) in classical EM theory [Jac02]. Gauge theories were later

discovered to be fundamentally important in high-energy [Gro92] and condensed matter physics

[Kle89]. Generally speaking, the word ”gauge” simply refers the redundant degrees of freedom

in the system. As a consequence, the Lagrangian of the system is invariant under a continuous

group of local transformations, referred as gauge transformations. The invariance under such

transformations is referred as gauge symmetry. The transformation operations form a Lie group,

and the generators of the group together with the commutation relations form the Lie algebra.

Each group generator corresponds to a vector field, namely, the gauge field. The quantization of

such fields gives rise to quanta, namely, the gauge bosons.

How are these concepts from elementary particles related to ultracold atoms and why are they

important? In an intuitive manner, the universality of physics laws across a wide range of energy

scales is the beauty of theoretical physics. Physicists realized this fact even from Newton’s era, after

finding that the motion of objects moving on earth and planets moving in space follow the same

Newtonian law of motion. Nowadays, explorations into much wider space-time and energy regimes

are confirming this universality. By looking at the energy scales and length scales of electron gases

in solid state materials and elementary particles in the LHC (the large hadron collider), it is hard to

imagine that the effective theories that describe their behaviors could share any similarity. However,

some of emergent the phenomena in exotic condensed matter systems resemble what happens in

the high energy world. (Nonabelian gauge theory for spin-orbit interaction e.g. [BM13].)

What is special about gauge fields in the context of ultracold quantum gases? The interpar-

ticle interactions (coupling of fields) in neither high energy physics nor condensed matter physics

share the high controllability that is possible in AMO physics. This unique aspect gives ultracold

quantum gases the potential to be engineered to exhibit and simulate non-trivial gauges that are

proposed but not directly measured in other physical systems. From a theoretical viewpoint, to

understand and design the quantum simulation in ultracold quantum gases, ab initio calculations

starting from the elementary particle level and phenomenological theory are complementary to each
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other. The state-of-the-art in manipulating dilute ultracold atoms offers the opportunity to bridge

theories from different perspectives, and therefore shed more light on creating new states of matter

that are beyond the scope of previous theories.

1.2 Research Frontiers of Few-Body Physics in AMO

Between many-body physics and single-particle physics is the so-called few-body physics. The

definition of a few-body system varies. Strictly speaking, the definition of a few-body system is

relative. For example, as the number of particles increases, the thermal dynamical limit is reached.

However, as the control of coherence properties of particles have developed, macroscopic systems

have been seen to exhibit coherence and fluctuations as well. This is the beauty of emergent

phenomena, in which we can see how it builds up from fundamental blocks and clusters, namely

the few-body systems.

Few-body systems exhibit novel phenomena in many branches of physics, e.g. nuclear physics,

high energy physics as well as atomic and molecular physics. One example is the Efimov states

discovered in three-body systems. Efimov states, an exotic class of three-body bound states, were

first proposed by Efimov in the context of three identical non-relativistic bosons in nuclei [Efi70b].

In this particular set up, each interparticle interaction does not support two-body bound states.

Although the prediction of Efimov states was originally raised in the context of solving the three-

body nonrelativistic Schroedinger equation in the 1970s, the impact of Efimov states goes far beyond

that, both theoretically and experimentally.

The first detailed connection between Efimov physics and three-body recombination at ultra-

cold temperatures was a theoretical study [ELG96] that showed Efimov resonances and interference

minima, which were later observed in ultracold 133Cs [KMW+06, KFM+nt]. Although none of the

experimental observations of Efimov resonances have been directly in a nucleus, it sheds light on

our understanding of the nature of three-body bound states in the nuclei level. From a theoretical

point of view, Efimov states are one of the few scenarios that build connections between differ-

ent theoretical methods. For example, the scattering theory describes Efimov states as a series of



6

bound states whose energies scale geometrically in hyperspherical picture. The hyperangular wave

functions are the same for the whole series of bound states, whose energies scaled by a factor of

exp(−2π/s0) in size. The number of hyper radial nodes increase by one in the sequence of Efi-

mov series. Hyperradial wave function for Efimov states formed in three identical boson system is

plotted in Fig. 1.1.

However, scattering theory in the hyperspherical picture is not the only theoretical approach

that can be used to understand Efimov states. One other approach is the renormalization group

(RG) theory [Wil83]. In the RG nomenclature, the geometrically-scaled bound state originates from

poles of the differential equation of RG flow of the effective three-momentum coupling constant in

a quadratic boson Lagrangian. The existence of poles in RG flow equation indicates that the

continuous-scaling symmetry of a unitary gas (when the two-body scattering length diverges) has

to be broken. The consequence of breaking the continuous scaling symmetry in an Efimov scenario

is a discrete-scaling symmetry in a three-body system.

The discrete scaling symmetric bound states in a stable three-body system imply that a

new length scale must emerge, which corresponds to the cutoff in energy. This length scale is set

by the so-called three-body parameter, which sets the binding energy for the lowest Efimov state

that avoids Thomas collapse. What was discussed above is not the end of the story in the world

of Efimov states. Active studies are heading into larger clusters and in clusters systems where

spin-orbit couplings take place. Although the prediction of Efimov states occurred earlier than the

theoretical conceptualization of renormalization group in critical phenomena by Wilson [Wil83],

the renormalization group approach shows a non-trivial interpretation from the point of view of

modern field theory, which is complementary to the hyperspherical approach, and vice versa.

The research into Efimov states is not limited to identical bosons, but also extends to het-

eronuclear systems [WWDG12]. One reason is that for heteronuclear systems, the scaling parameter

s0 depends on both the mass of each particle and the quantum statistics of the particles. In nuclei,

elementary particles that interact strongly could also be either bosons or fermions, and their masses

could be strongly dependent on energy. Thus, the studies of few-body heteronuclear systems could
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Figure 1.1: Hyperradial wave functions for Efimov states formed in a three identical boson system.
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result in a systematic understanding of bound states and resonances in a wide range of interact-

ing systems. Experimentally, adiabatic approaches to unitarity in ultracold quantum gases always

suffer from three-body losses.

Thus to study the formation and decay of Efimov states, the current experiments are limited

to observing the three-body resonance position and the atom-dimer resonance position. However,

neither of these points directly indicates the bound state energy of the Efimov trimer, nor do they

directly test the discrete scaling symmetry of the few-body system at unitarity. Interestingly, two

recent experiments [TJGJ+14, HSGH14] succeeded in measuring beyond the first Efimov resonance,

thus they are the first evidence of discrete-scaling symmetry in few-body systems. However, the

quench technique of the magnetic field (two-body scattering length) makes possible to measure

the bound state energy of the Efimov states at large scattering lengths. These types of quench-

ing techniques share similar logic as some high-energy experiments (e.g. the creation of QGP),

where measurement of the fast strong interaction is inferred from the slow and long-wavelength

asymptotes, and the strong interaction regime is generated by collisions at large energies.

1.3 Outline of This Thesis

This thesis focuses on the few-body approach to describe the dynamics of ultracold quantum

gases. My thesis covers two topics, one is about scattering and bound states in ultracold Bose-Fermi

mixture and the other is about quasi-1D scattering with general transverse confinement.

1.3.1 Ultracold Bose Fermi Mixtures

Bose-Fermi mixtures possess important roles from both many-body and few-body point of

view. From the many-body physics point of view, Bose-Fermi mixtures in optical lattices are de-

scribed by Bose-Fermi Hubbard model [TW00, JBC+98, LSBF04, OdMF+04]. Rich phase transi-

tions are predicted in the large parameter space of the tunnelings, nearest-neighbor interactions and

on-site interactions [KS03, KS03, AIE03, MWH+04, CEI04, PTVHR06, TSH08, TSH09, MJP09,

CWZ10, AWT+12, STBH11a, Cra11]. Experimental studies of the quantum phases in Bose-
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Fermi mixutre in optical lattices, include Mott insulator-superfluid transition [GSM+06, OOH+06,

SIT+nt, HGK+11], disorder and Anderson localizations [SPLnt]. Few-body subsystems are the

starting point of exploring exotic many-body phases [WBB+11], like polaron excitations etc

From the quantum chemistry point of view, creating fermonic dipolar molecules and loading

them into optical lattices is another approach to studying the quantum phases that are emerging

from anisotropic interactions [NOdM+08, YMG+nt]. These heteronuclear molecules are fermonic,

which potentially allows for experimental studies of a molecular Fermi sea in the quantum degen-

erate regime. The weakly bound heteronuclear molecules can be transferred to their ro-vibrational

ground state, which has a much larger dipole moment than weakly bound Feshbach molecules

[NOdM+08, WPA+12].

However, studying ultracold quantum gases in optical lattice is not the only way to investigate

the the many-body physics in degenerate quantum gases. Without optical lattices, the Bose-

Fermi mixture exhibits an even richer collective excitation spectrum and non-equilibrium dynamics.

Traditionally, the dynamics of Bose-Fermi mixtures in the weakly interacting regime are described

by the effective equation of motion of the quantum gases, namely the Bose-Fermi Gross-Pitaevskii

equation. However, both the collective excitations and single-particle excitations play an important

role in the dynamics of Bose-Fermi mixtures in general. In the hydrodynamic theory, elementary

excitations in gases or liquids are classified into collisional excitations (short lifetime) and long-

wave-length excitations (longer lifetime). However, in ultracold quantum gases, the distinction

between those two regimes is not so clear. Intriguing behaviors show up in both adiabatic and

quench dynamics.

Few-body systems are the building blocks for dilute quantum gases. Theoretical under-

standing of the three-body system with short-range potential has been well developed[JRFG04,

BHvK00, BH06]. The theoretical understanding covers three-body systems where the pairwise in-

teraction are zero-range [BH06, RMG10] or finite-range or with a long-range van der Waals tail

[WDEG12, WWDG12]. However, a large part the parameter space of studies into four-body sys-

tems is still open, compared to the level of understanding in three-body systems. The exploration
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of four-body problem started in nuclear physics [BB36] dated back to 1930s, and was extensively

explored in the quantum chemistry community [HS06, Kup97] in the 1990s and later. Studies from

the few-body perspective have been into ultracold quantum gases after the realization of BEC-BCS

crossover [RvSD+11].

One striking finding in the four-boson system is that the bound states in this system are

attached to the three-boson bound state. The Faddeev-Yakubovsky equations approach [YTDF06,

FTD+11, HYT+11, HYT+12, FHY+13, FDH+13] in momentum space and the hyperspherical

potential approach [vSDGnt] in real space have both realized this subtly. However, there are

qualitative and quantitative discrepancies among the existing theories, which is still a topic of

active research. These studies indicate that no four-body parameter is needed, thus the three-body

parameter is probably a unique length scale that determines cluster bound states(three-, four- and

so on). The absence of four-body parameter may be one starting point to study how the microscopic

and macroscopic length scales in many-body systems emerge and connect to one another.

In my thesis work, the energetics of few-body Bose-Fermi mixtures are systematically studied.

Based on the energy spectra of four-body Bose-Fermi mixtures, the time evolution of the few-body

system in both the adiabatic and quench limits is studied. Effective scattering properties of the

various subsystems in four-body Bose-Fermi mixtures are studied, including the effective trimer-

fermion (BBF-F) and dimer-dimer (BF-BF) scattering.

1.3.2 Quasi-1D Confinement Induced Resonances

While quantum statistics play a fundamentally important role in ultracold collisions, the

dimensionality and curvature of space-time could also play important role in low energy scatter-

ing. When the dimensionality and metric tensor of the space in which particles live are neither

three-dimensional nor Cartesian, even non-interacting particles exhibit peculiar behaviors. One

example is electrons moving in a two-dimensional space. The dispersion relation of the electrons is

drastically different from the three-dimensional case, exhibiting Dirac cone in the band structure

rather than a parabola that are in their 3D counterparts. Another example is identical particles



11

moving in one-dimensional space. Because of the 1D geometry, the original definition of bosons

and fermions in terms of permutation symmetry in wave functions are drastically different from

their 3D counterparts, resulting in a boson-fermion duality in 1D systems.

However, strict 1D and 2D systems are not possible experimentally, so the practical exper-

imental technique for exploring low-dimensional physics is creating a reduced dimensional system

in ultracold atoms or in solid-state materials. In the context of solid state materials, reduced di-

mensional systems are achieved in layer of of chemical composite or quantum wire or quantum dot

structures. The transport properties in these reduced dimensional material setups are measured to

examine the structure of the reduced-dimensional systems. In ultracold atomic systems, quasi 1-D

and quasi 2-D systems are achieved by adjusting the trapping geometry and temperature. Instead

of transport properties, exotic behaviors of reduced dimensions in ultracold atoms are measured by

time-of-flight or in situ image experiments.

Particularly for one-dimensional systems, solvable models have been worked out in the 1950s

and 1960s for many-body [Gro63, Gir60, Gir65, Dod70, McG64]. Many of these conclusions can be

connected to theoretical explorations from the mathematics community into the nature of scattering

in a space of arbitrary dimensions [Ada71], dating even farther back in time.

However, for a long time, the creation and observation of reduced dimensional systems were

hampered by limits on existing experimental techniques. Later, after laser cooling and trap-

ping techniques were developed for ultracold atomic gases [GWO00], many experimental quasi-

1D and quasi-2D [GBM+01, GVL+01, BSM+07, SCE+12] quantum systems were realized and

a number of theoretically-predicted novel behaviors were observed. In quasi-1D fermionic 40K

[MSKE03, GSM+05a] and bosonic 87Rb [GVL+01], various properties from pure-1D theory have

been confirmed. By tuning the ratio(s) of trapping frequencies in different directions (ωρ/ωz e.g.),

the shape of an ultracold gas can be engineered and varied continuously from a nearly isotropic

3D geometry to a quasi-1D or quasi-2D geometry. Cross-dimensional effects have been observed

[EM04, LCB+10] and also theoretically studied [Nis10, GDB12a]. These phenomena in low-

dimensional systems have recently been reviewed by [MVR12, DMBO11, YOW08, BDZ08, Pos06].
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After achieving success in creating reduced-dimensional systems, physicists began to explore

the scattering properties of atoms, hoping to find additional tunability of interactions in ultracold

gases. The confinement-induced resonance(CIR) is one such useful tunability of particular interest.

From an experimental point of view, the CIR adds another way to manipulate and control low-

dimensional systems. Dunjko et.al [DMBO11] has reviewed developments related to CIR for a

variety of systems. The CIR is unique in the sense that the system exhibits the unitarity limit at a

non-resonant value of the 3D scattering parameters (i.e. the scattering length for s-wave, and the

scattering volume for p-wave).

The CIR in a harmonically transverse-confined quasi-1D system was predicted theoretically

by Olshanii [Ols98], and later extended to fermions by Granger and Blume [GB04]. In realistic

atomic interactions, the incoming wave in the z-direction will not only couple to the s-wave (or

p-wave for fermions) component of the interaction, but also to higher partial waves components.

In the treatment of s-wave scattering, Olshanii [Ols98] derived the exact wave function and

phase shift for a regularized zero range potential that are associated with low energy s-wave scat-

tering. This problem can also be treated using Green’s function methods[BEKW98, MEGK04,

NTMJ07, ZZ11]. However for higher partial waves, different mathematical models of the zero-range

interaction are needed in the Olshanii treatment [IC06]. In an alternative treatment, Granger and

Blume [GB04] used the frame transformation method, in which the 3D phase shift information

directly determines the 1D reaction matrix K. Thus the frame transformation approach avoids

the need to design a zero-range model potential for higher partial wave scattering, which has some

conceptual advantages.

As the exeperimental techniques of laser trapping have grown in sophistication, various

confinement potentials beyond the harmonic trap have been realized, e.g. optical lattice traps

[HGM+09], uniform trap [GSG+13]. In these systems, a more general theory of CIR beyond a

harmonic trap is needed. Kim et. al gave a general description of a symmetric cylindrical hard

wall trap [KSS05] using a Green’s function method.

The goal of work in the second part of the thesis is to develop a systematic description of quasi-
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1D scattering in arbitrary transverse confinement. Specifically, we consider the situation in which

one light particle is scattered off an infinitely massive particle in the center of the confinement. We

apply the local frame transformation method [Fan81], and solve the divergence problem occurring

in this method. Because this divergence also arises in many other ananlytical and numerical

applications of this method, we believe that the systematic discussion presented here yields valuable

insights. To illustrate our implementation of the method, we treat the CIR in a square well

transversely-confined system as an example. The development of our regularization method can be

generalized to higher partial waves interacting through short-range potentials.



Chapter 2

Few-body Theory of Ultracold Bose-Fermi Mixtures

2.1 Introduction

Among all the ultracold mixtures of quantum gases, Bose-Fermi mixtures are unique in

many aspects. Table 2.1 enumerates the classifications of atomic mixtures and phases in different

interaction regimes.

Away from unitarity (|asc| � n−1/3, asc refers to the inter species scattering length, n is the

mean density of atomic gases), Bose-Fermi mixture can be described by a BEC interacting with a

Fermi sea. Interspecies interactions could result in depletion of the condensate and the deformation

of the Fermi surface [PSB05]. Naturally, zero-temperature phase transitions are expected at some

critical interaction strengths [AWT+12]. Theoretical studies focused on exotic phases in Bose-Fermi

mixtures in optical lattices are intensified particularly after the experimental realization of BEC

and degenerate Fermi gases [KS03, KS03, AIE03, MWH+04, CEI04, PTVHR06, TSH08, TSH09,

mixtures asc = 0− asc = 0+ asc = ±∞
Boson1 Boson2 weakly interacting

atomic condensate
weakly interacting
bosonic molecular
condensate

strongly correlated
Bose-Bose mixture

Fermion1 Fermion2 BCS weakly interaction
BEC of molecules

strongly correlated
Fermi-Fermi mixture

Fermion1 Boson1 weakly interacting
BEC and Fermi sea

weakly interacting
molecular Fermi sea

strongly correlated
Bose-Fermi mixture

Table 2.1: Table of ultracold quantum gas mixtures, classified by particle statistics. asc is the inter
species scattering length.
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MJP09, CWZ10, AWT+12, STBH11a, Cra11]. In addition, the experimental studies of the quantum

phases in Bose-Fermi mixtures in optical lattices focused on the exploration of the Mott insulator-

superfluid transition [GSM+06, OOH+06, SIT+nt, HGK+11], disorder and Anderson localization

[SPLnt].

Few-body subsystems are the starting point of studying exotic many-body phases [WBB+11].

The experiments on Bose-Fermi mixture in optical lattices conducted by Bloch et al. showed that

one single fermion imbedded in a few-body bosonic field can modify the effective boson-boson

interactions. The measurements of the few-body subsystem in each lattice site are the prerequisite

for realizing novel many-body phases.

Particularly in the regime 0 < asc � n−1/3, weakly bound Feshbach molecules can exist

in Bose-Fermi mixture. These heteronuclear molecules are fermonic, which potentially allows for

experimental studies of the molecular Fermi sea in the quantum degenerate regime. The weakly

bound heteronuclear molecules can be transferred into their ro-vibrational ground states, that have

much larger dipole moment than the Feshbach molecules [NOdM+08, WPA+12]. As a consequence,

the interactions between ro-vibrational ground state molecules are long-range (∼ r−3) and highly

anisotropic. The electronic dipole-dipole interaction between the molecules can be controlled by

external electric field. This unique feature of controllability makes fermonic dipolar molecules

promising candidate to study quantum magnetism. Although the experimentally realized fermonic

molecular gases have not yet reached the deep quantum degenerate regime (T∼ 1.0TF ), magnetic

quantum phases have already been observed [YMG+nt]. (Use of the electric dipole moments of

the dipolar molecule in order to study quantum magnetism lies in the fact that the magnetic

dipole moment is much smaller than the electric dipole moment particularly in heteronuclear alkali

molecules.)

In the unitary regime (a ∼ ±∞), the Bose gas and the Fermi gas exhibit strong correla-

tions. This regime imposes several challenges on the theoretical and experimental investigations.

Theoretically, a fundamental question that rises is how to properly describe the inter-particle inter-

actions in the unitary regime. In the few-body picture, it is clear that the bound state energies of
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any two-body system that interact through realistic potentials are well defined when the two-body

scattering length diverges. The bound state emerges at a = ∞, and grows as ∝ −a−2
sc . In the

many-body mean field theory, the interparticle interaction energy is characterized by the scattering

length. Without proper modification to the first order mean field theory, this Hamiltonian may

not have a definite energy. Various renormalization mechanisms of summing scattering amplitude

and perturbation expansion techniques of correlation functions have been derived to approach the

unitary regime [LH12]. Another technical challenge is that although many existing theoretical

methods are capable of solving the ground state of a many-body system at any given interparticle

interaction strengths, excited states are usually difficult to treat.

Experimentally, approaching the unitary regime in ultracold Bose-Fermi mixtures is chal-

lenging too. The reason is that both the Feshbach molecular states and atomic states can decay

into low-lying bound states through three-body recombination, resulting in enormous atom losses

from either magnetic or optical traps [SZS+04, EGS01]. Similar issues are manifested also in the

realization of strongly interacting bosonic systems. Thus, the experimental approaches to study

unitary regime in Bose-Fermi mixture can be grouped into two categories. One method is ramping

the quantum gases across unitary. The other method is quenching the system to unitarity and

quenching back within short enough time-of-stay at unitarity [MKG+13]. (Note that, for some

cases, some atomic mixtures are easier to realize than others due to their special molecular struc-

ture near unitarity [HWC+12].) In summary, both the quantum statistics and the nature of the

anisotropic inter-particle interactions make Bose-Fermi mixtures an intriguing system to study.

This chapter of the thesis will focus the study of the few-body Bose-Fermi mixture, in terms

of their scattering properties and bound state properties. We also study the dynamics of few-

body Bose-Fermi mixtures, both in the adiabatic limit and the quench limit. The main numerical

methods are briefly introduced and discussed at the beginning of the chapter. Next comes the

discussion of few-body systems. Two-body and three-body systems in Bose-Fermi mixture are

compared with existing theoretical results. They set the foundations to explore four-body system

and beyond. Following that is the discussion of four-body systems. Dynamical evolutions of the few-
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body systems are also presented and discussed, focusing on interpreting and proposing experimental

observations of unitary Bose-Fermi mixtures.

The structure of the chapter is as follows:

(1) Brief introduction and review of correlated Gaussian basis functions and hyper spherical

methods.

(2) Discussion of the spectra and dynamics of two- and three-body systems in a Bose-Fermi

mixture.

(3) Discussion of the spectra and dynamics of four-body systems in Bose-Fermi mixture.

(4) Summary and outlook.

In Fig. 2.1 we provide the schematic representation in the structures of the study of the

few-body Bose-Fermi mixtures. This chapter has used verbatim paragraphs from [ZvSG12].

2.2 Method

2.2.1 Correlated Gaussian Basis

In this section, the standard correlated Gaussian basis functions are briefly introduced. A

more complete collection of correlated Gaussian matrix elements expressions can be found in Ap-

pendix A of Suzuki’s book [SV98]. The eigenstates of the few-body systems (three-body and

four-body) are expanded on the correlated Gaussian basis.

The correlated Gaussian basis function has the general form:

fklm(x) = (
∑
i

vixi)
2k+lYlm(v̂) exp(−1

2
xTAx), (2.1)

where x are a set of spatial vectors written in Jacobi coordinates (Jacobi vectors), v =
∑

i vixi,

vi are a set of C-number, A is a positive definite matrix, the power 2k + l refer to the inner

product (
∑

i vixi) · (
∑

i vixi) to the k + l/2 power. The Jacobi coordinates constitutes a unitary

transformation of the particles’ spatial coordinates: x = Ur, r = {r1, · · · , rn}, where n is the

number of particles.
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Figure 2.1: A diagrammatic scheme of the theoretical investigations in the three-body problem in
ultracold Bose-Fermi mixture.
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In this thesis, each basis function is generated by randomly selecting interparticle distances

{dij}. A matrix in each basis is transformed from the random set of {dij} subsequently. Hence

the selection of the Jacobi tree structure, does not affect the results. More details with respect to

Jacobi tree definition can be found in Rittenhouse’s Ph.D thesis [Rit09].

The interparticle distances vector are defined as follows (for an n-particle system):

r12

r13

...

...

rn−2,n−1

rn−1,n


=



1 −1 0 · · · · · · · · · 0

1 0 −1 · · · · · · · · · 0

...
...

...
...

...
...

...

0 · · · · · · · · · 1 −1 0

0 · · · · · · · · · 0 1 −1





r1

r2

...

rn−1

rn


n(n-1) elements n×(n(n-1)) matrix T n elements

(2.2)

In matrix notation {rij} = T{ri}. The interparticle distance vector enters the quadratic inner

product in the exponential function in a quadratic form, thus resulting in the following expression:

xTAx = rTUTAUr = yTDy, (2.3)

where y = {rij}, D = diag(d−2
ij ). Thus the A matrix and the randomly generated interparticle

distance vectors are connected through the following relation:

A = (UT )−1T TDTU−1 (2.4)

Most matrix elements (overlap, kinetic energy, potential energy and interpaticle interactions) of

the correlated Gaussian basis functions have analytical expressions, which significantly reduce the

time consumed on numerical optimization. Suzuki [SV98] gave a more complete collection of matrix

elements between basis functions having arbitrary angular momentum L, arbitrary number of nodal

nodes L.

The Hamiltonian H of the interacting few-body Bose-Fermi mixture in an isotropic harmonic
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trap has the following general form:

H = −
∑
i

~2∇2
i

2mi
+

1

2
miω

2r2
i +

∑
iB ,jF

V (riB − rjF ) (2.5)

The eigenfunctions of the few-body system are expanded in the correlated Gaussian basis:

ΨKLM (r =
∑
j

Cjf
j
KLM (x), (2.6)

in which fKLM is a correlated Gaussian basis function, K is the number of radial nodes, L is the

total angular momentum, M is the magnetic quantum number of the total angular momentum.

The corresponding eigenvalue problem for calculating the Cj vectors is:

HC = EOC. (2.7)

H is the Hamiltonian matrix, Hij =< f i|H|f j >. O is the overlap matrix, Oij =< f i|f j >.

Exact diagonalization of the generalized eigenvalue problem gives eigenvalues and eigenstates of

the few-body system.

2.2.2 Hyperspherical Coordinates and Hyperspherical Correlated Gaussians

The method of correlated Gaussian basis expansion provides us with eigenstates and eigenen-

ergies of a variety of few-body systems with enough accuracy as it is demonstrated in Suzuki’s book

[SV98] and a recent review by Varga et. al. [MBH+13]. However, the multidimensional wave func-

tions of a few-body system are hard to visualize. One way to understand the structure of a few-body

eigenstate (configuration) is calculating the pair-correlation functions for this state. A generic pair

correlation function has the form of Eqn. 2.8

ρij(r) =

∫
ΠN
i=1dri|Ψ(r1, r2, · · · , rN )|2δ(3)(ri − rj − r) (2.8)

However, this definition of a pair correlation function indicates that it will not help to understand

the scattering of one configuration into another, nor the elastic scattering within one channel.

Thus, to have a convenient and efficient description of the scattering procedures of the few-

body systems, a new coordinate system is desirable. Ideally, the new coordinate system should be
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able to capture the structure of all the asymptotic channels of the few-body system, and should

allow for describing transitions between channels during the scattering process.

The hyperspherical coordinates have been shown to be one of the best coordinate systems

to describe a few-body scattering processes. An adiabatic representation in these coordinates was

first proposed by Macek in 1968 to study the auto-ionizing states of helium [Mac68]. The key

idea of the hyperspherical coordinates is to characterize the internal motion of a few-body system

(center of mass motion removed) using a single length (hyperradius R) and several angles (hyper-

angles Ω). All the channels asymptotically at large hyperradii correspond to the system’s different

breakup thresholds. Each interparticle distance can be represented by the hyperradius multiplied

by trigonometric functions of hyperangles. For example, in a three-body system {r1, r2, r3}, in the

hyperspherical representation
√
m12|r12| =

√
µR sinα,

√
m12,3|r12,3| =

√
µR cosα. Table 2.2 shows

some simple Jacobi tree structures.

The hyperangles are considered as the fast variables while the hyperradius is the slow one

in the few-body system asymptotically. Thus the hyperradial and hyperangular degrees of free-

dom are adiabatically separated. Transitions between different configurations are characterized by

nonadiabatic couplings between different configurations.

The criteria of “fast” and “slow” variables are not strictly appropriate in all regions, espe-

cially in the region where all particles are close to each other. Nevertheless, although the adiabatic

separation concept does not work well, numerical methods that do not assume strictly adiabatic

evolution are developed to solve the few-body problem, e.g. DVR basis (discrete variable rep-

resentation). Jia Wang’s Ph.D thesis has a more detailed description of the implementation of

DVR basis [Wan12]. In principle, the adiabatic representation is an exact recasting of the original

Schroedinger equation, since it is an expansion of the wavefunction onto a complete, orthonormal

set of hyperangular functions.

The squared hyperradius is defined as a mass weighted summation of the Jacobi vector xi
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R sinΑ R cosΑ

R sinΑ R cosΑ

R cosΑ sinΒ R cosΑ cosΒ

Jacobi tree of two Jacobi vectors Jacobi tree of three Jacobi vectors

R sinΑ R cosΑ

R cosΑ sinΒ R cosΑ cosΒ

R cosΑ cosΒ sinΓ R cosΑ cosΒ cosΓ

R sinΑ R cosΑ

R sinΑ sinΓ R sinΑ sinΓ R cosΑ sinΒ R cosΑ cosΒ

Jacobi tree of four Jacobi vectors, K type Jacobi tree of four Jacobi vectors, H type

Table 2.2: Jacobi Tree structure. Each leaf in the tree represents a Jacobi vector. Their lengths
are listed on the edge.
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norms:

µR2 =
∑
i

mix
2
i . (2.9)

The hyperradius is invariant under Jacobi tree rotations (Jacobi trees refer to different definitions

of the Jacobi vector sets for a few-body system, and Jacobi tree rotations refer to unitary transfor-

mations between different definitions of Jacobi vectors sets).

The Hamiltonian of an interacting few-body system in free space represented in the hyper-

spherical coordinate reads:

H = −
N∑
j=1

d∑
i=1

1

2mj

∂2

∂x2
j,i

+
∑
ij

V (rij) = H(R,Ω) = − 1

2µ

1

RNd−1

∂

∂R
RNd−1 ∂

∂R
+

1

2µ

Λ2

R2
+ V (R,Ω),

(2.10)

where i denotes the spatial coordinates and j denotes the index of the Jacobi coordinate, d is the

number of dimensions each particle lives in, and N is the number of Jacobi coordinates.

Λ is the grand angular momentum operator [Smi60]. It is a generalized angular momentum

operator involving both spatial angles and hyperangles.

Λ2 =
∑
p>q

−Λ2
pq,Λpq = xp

∂

∂xq
− xq

∂

∂xp
, (2.11)

in which p and q run over every degree of freedom in the system (Nd in total).

Usually the last two terms of Eqn. 2.10 together are called the adiabatic part (Had) of the

Hamiltonian:

Had =
1

2µ

Λ2

R2
+ V (R,Ω) (2.12)

The terms involving derivatives of the hyperradius act like the kinetic energy of particles moving

in the potential created Had.

Although the angular momentum introduced by the spatial dimensions or the hyperangles

appear indistinguishable in this definition in Eqn. 2.11, the rotational symmetry of interaction terms

and the permutational symmetry of particles in the Hamiltonian distinguish them. More details of

various definition conventions of hyperangles and details about how hyperangular momenta couple

to each other are discussed in Rittenhouse’s thesis [Rit09].
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With the property of asymptotically well separated hyperradius and hyperangular degrees of

freedom, it is straight forward to consider the adiabatic evolution of the system in the hyperradial

potential. This concept also shows up in the usual molecular Born-Oppenheimer approximation

(BO), where the “fast” motion is the electronic degrees of freedom. Integrating over the electronic

motion results in an effective potential for the nuclear motion. The potentials are calculated at every

spatial configuration of the nuclei. Thus the BO potential is often a multi-dimensional potential

surface, rather than a simple potential curve.

One difference between BO approximation and hypersherical approximation is that, BO sepa-

rates slow and fast motion solely based of mass ratio of the electrons and nuclei. The hyperspherical

approximation does not rely on the smallness of a mass ratio of the particles in the system. Thus,

whereas the BO approximation fails in systems where particles have comparable masses, the hyper-

spherical adiabatic representation still works, at least in principle, provided nonadiabatic couplings

are fully incorporated.

The hyperspherical Gaussian method uses the correlated Gaussian basis to compute the

eigenstates of the adiabatic part of the Hamiltonian Had in Eqn. 2.12.

HadCad = EOadCad,Ψn(R,Ω) =
∑
i

(Cad)
n
i f

i, (2.13)

in which (Had)ij = 〈f i|Had |f j〉Ω, (Oad)ij = 〈f i| I |f j〉Ω. Here the brackets〈| |〉Ω mean integrations

are carried out only over the hyper angular degrees of freedom.

The eigenvalues of Had are referred to as hyperspherical potentials {un(R)} and the eigen-

states {Ψn(R,Ω)} are referred to as the corresponding eigenfunctions. Ideally, with the full knowl-

edge of the hyperspherical potentials and their corresponding eigenstates, the Nd-dimensional few-

body problem is reduced to a set of coupled 1D ODEs for the Fn(R).

Ψ =
∑
n

Fn(R)Ψn(R,Ω). (2.14)

Practically, the hyperspherical potentials and channels are solved numerically. As a conse-

quence, the numerical accuracy of E is determined by the number of converged potential curves
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and channels of Had. The solution of F needs first and second order derivatives of the channel func-

tions, this imposes even higher demand of the numerical accuracy of the number of the converged

hyperspherical potentials. So efficient numerical basis functions are needed.

2.2.3 Stochastic Optimization

With the analytical expressions of matrix elements at hand, we still have to face extensive

numerical challenges in solving the eigenvalue problem efficiently. One reason is that for interacting

few-body systems, the range of interactions, the size of bound states and other length scale of

the system (trap length e.g.) could be quite distinct. An extensive number of basis functions

characterizing different length scales are expected. Appropriate selection and optimization of a

relatively small set of basis functions are important.

The selection of the parameters in each correlated Gaussian basis function can be categorized

into two main approaches. One is selection from desired configurations, e.g. trimer or atom-dimer

configurations in three-body systems, dimer-dimer and atom-trimer configurations in four-body

systems. The other is starting from a completely random configuration, stretching or squeezing at

one or more of the dijs. Both methods raise trials in optimizations, and the criteria to test the

trials is whether they give lower energy compared to the existing basis in addition to their linear

independence from the rest of the basis.

The test can be done either by adding basis functions, or by replacing each basis function

with one which provides a more converged energy. Keep adding basis may not be on the right track,

because it would bring in more numerical difficulties in diagonalization of a large initial basis set.

So a trial-select algorithm are implemented in OpenMP to test replacements rather than increment

of an initial basis. Tens of trials are carried out simultaneously by using multi-CPUs, and their

corresponding Hamiltonian matrix elements and overlap elements are stored. The eigenenergies are

calculated for each trial. Finally the trial gives the lowest eigenenergies is selected to replace the

old one.

Although finding the eigenenergies for each trial seems to be a diagonalization at first glance,
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this procedure in fact only involves a root finding. The time cost of a diagonalization and a root

finding are drastically different, which is part of the reason why this trial-select method works

efficiently.

The root finding algorithm works as follows. We assume that there are n existing basis

functions (in a practical calculation, this number is the number of correlated Gaussian basis, from

100-5000), and the first basis function needs optimization. The sub Hamiltonian matrix (generated

by the 2nd-nth basis) is already diagonalized. Matrix elements of each trial of the 1st basis are

calculated and stored. To find the eigenvalues of each trial is equivalent to find the root of the

following polynomial:

det



An,n An−1,n An−2,n An−3,n · · · · · · A2,n A1,n

An−1,n bn−1 0 0 · · · · · · 0 0

An−2,n 0 bn−2 0 · · · · · ·
...

...

...
... 0

...
...

... 0 0

A2,n 0
... · · · 0 0 b2 0

A1,n 0 0 0 0 0 0 b1


= 0

⇒ Πn−1
i=1 bi(An,n −

n−1∑
i=1

A2
n−i,n
bn−i

) = 0,

(2.15)

in which

Aij = Hij − εOij , bi = εi − εOii, (2.16)

ε is the eigenvalue corresponding to one of the trial basis functions, εi is the eigenvalue of the sub

Hamiltonian. Finding the n roots of the above polynomial is much faster than solving eigenvalue

problem for each trial function. And the root finding calculation can be easily adapted to a large

number of trial functions by parallelization without costing significant computation time. Details

of this rooting finding process are also in Suzuki’s book [SV98].
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2.3 Two-body and Three-body States in an Isotropic Harmonic Trap

As we mentioned in the introduction of this chapter, the purpose of this section is to provide

a solid understanding on the two-body and three-body systems, which in the future are essential

conceptual paradigms to understand the dynamics of the four-body systems at ultracold temper-

atures. In this section, the numerical calculations are benchmarked by comparisons with existing

analytical and numerical results in the literature.

2.3.1 Adiabatic Spectrum of Two-body States in an Isotropic Harmonic Trap

Two trapped particles interacting through a zero-range interaction has a well known solution

by Busch et al. [BEKW98]. The reasons to elaborate the two-body system are as follows:

The first reason is that Busch’s study assumed a regularized zero-range potential in his

study. However, in the present thesis we employ various short-range model potentials. Comparison

between the two-body analytical result and result from model potentials help us to decide the

boundaries of the universal regime of the scattering lengths that the model potentials provide.

The second reason is that Busch’s study does not cover any higher partial wave bound states

in a harmonic trap. At some point, higher partial wave bound states are needed [HGS02, KB04].

Numerical model potentials would help to extract the relation between the bound state energy and

higher partial wave scattering parameters.

The wave function for zero-range interaction V (r) =
2πasc~2

µ
δ(r)

∂

∂r
(r×) in a 3D isotropic

harmonic trap is [BEKW98]:

ψν(r) = exp(− r2

2a2
ho

)Γ[−ν]U(−ν, 3

2
,
r2

a2
ho

), Eν = ~ω(2ν +
3

2
),

Γ[−ν]U(−ν, 3

2
,
r2

a2
ho

)Expansion around r → 0⇒
√
π(

1

r
− 2Γ[−ν]

Γ[−1
2 − ν]

+ (−3

2
− 2ν)r + o(r)2),

(2.17)

in which ν denotes the radial quantum number, U is the Tricomi’s (confluent hypergeometric)
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function.

U(a; b; z) =
Γ[1− b]

Γ[a− b+ 1]
M(a, b, z) +

Γ[b− 1]

Γ[a]
z1−bM(a− b+ 1, a− b, z)

M(a, b, z) =
∑∞

n=0

a(n)zn

b(n)n!
=1 F1(a; b; z)

U(a; b; z) = −(b+ az)Γ[−b]
Γ[1 + a− b]

+
z1−bΓ[b− 1]

Γ[a]
+ · · · .

(2.18)

The relation between the scattering length and ν is determined by:

aho
asc

=
Γ[−ν]

Γ[−ν − 1
2 ]
. (2.19)

Integer ν corresponds to asc = 0 and half-odd-integer values of ν corresponds to asc =∞.

A comparison between eigenenergy from the analytical expression and model potential cal-

culation is shown in Fig. 2.2. In the universal regime near asc ∼ ±∞, agreements between the two

curves are good. However, deviations due to the finite range effect of the model potential show up

at small asc on both sides of the unitarity.

Two important positions on the spectrum are asc = 0 and asc = ±∞, the reason is that

the wave functions and energies in these two positions are not dependent on asc. Although in

the two-body sector the results are relatively simple, extension to a few-body system or even a

many-body system may not be that straight forward. Table 2.3 summarizes the properties of

two-body eigenstates at these two points. Fig. 2.2 shows wave functions corresponding to some

non-interacting and unitary two-body states in an isotropic 3D trap.

The wave functions for ν = n+
1

2
states have a 1/r divergence near r = 0. This is consistent

with the boundary condition interpretation of the zero-range potential:
(ψr)′

(ψr)
= − 1

asc
. Infinite asc

implies zero logarithmic derivative of the scaled wave function near the origin. Although for s-wave

two-body scattering, no other parameters of the short-range potential are needed to determine

the bound state energy, this conclusion is not always generally true for the higher partial waves.
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Figure 2.2: Two-body spectrum in a 3D isotropic harmonic trap. The green dashed line is from the

analytical expression
aho
asc

=
Γ[−ν]

Γ[−ν − 1
2 ]

, the red solid line is from an attractive short-range Gaussian

model potential calculation. The short-range potential that has been used in this spectrum is
V (r) = V0 exp(− r2

2d20
), where d0 = 0.01aho.

asc = 0 (ν = 0) asc = ±∞ (ν = 1
2) asc = ±∞ (ν = 3

2)

Feature Non-interacting Molecular Branch Atomic Branch

Wave function
near r → 0

exp(−r2/2) exp(−r2/2)Γ[−ν](− 1

2r
+ r +

O(r))

exp(−r2/2)Γ[−ν](
3

4r
− 3r +

O(r))

Energy
3

2

1

2

5

2

Energy of nearby
states

3

2
+
asc
aho

Aν
1

2
+
aho
asc

Bν
5

2
+
aho
asc

Bν

Table 2.3: Properties of the two-body system in the non-interacting and the unitarity.
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Figure 2.3: Two-body wave functions correspond to quantum number ν = −1

2
, 0,

1

2
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, 3. The

red solid line represents the harmonic trap. Eigenenergies E = ~ω(2ν +
3

2
) are listed on the right

hand side of the figure. The wave functions are plotted using the same color as the energy.
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For a three-body system, even s-wave bound states needs additional boundary conditions in the

hyperadius to determine the bound state energy.

2.3.2 Adiabatic Spectrum of Three-body States in an Isotropic Harmonic Trap

To understand the few-body scattering processes in ultracold Bose-Fermi mixtures, the start-

ing point is the three-body system. Extensive theoretical works have been done in three-body

systems, both homonculear and heteronuclear, various mass ratios, zero-range and long range in-

teractions. Jesen, Nielsen, Fedorov and Garrido et al. developed a systematic description of the

three-body system in the context of nuclear physics [ZDF+93, NFJG01, NFJ98, JCF+99, JRFG04].

Their series of works have focused on structures and reactions of the quantum halo, which refers

to clusters of particles with a radius extending well into classically forbidden regions.

So the purpose of this chapter is to compare my results to existing analytical, numerical

and experimental results. Stable and convergent three-body energetics serve as the numerical

prerequisites for understanding the scattering processes in four-body systems and beyond.

Since the ultracold experiments are often in the low-energy scattering regime, we limit our

calculation to the low partial waves (L = 0 and L = 1) in the total angular momentum. The weakly

bound states treated here are associated with a broad Feshbach resonance, as narrow resonances

are not considered. Losses due to relaxation and recombination into deep molecular states are not

considered within the scope of this thesis.

In Efimov’s early few papers, exotic trimer states were predicted [Efi70b, Efi70a, Efi73], the

so called Efimov states. Before the observation of three-boson Efimov trimers in ultracold quantum

gases [KMW+06, KFM+nt, PDH09, ZDD+nt], candidate systems to observe Efimov states were

proposed in [JRFG04, BHvK00] and nuclear scattering experiments have been interpreted in the

context of Efimov states [TZ94]. The helium trimer was observed in [CG86] in molecular potential

surface calculations. The authors proposed that the trimer states they found could be Efimov

trimers, based on their breakup energy thresholds. A hyperspherical theory was applied to identify

the homo- and hetero- nuclear Efimov trimers in helium later [ELG96].
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Nowadays, there are two main classes of theoretical methods to understand Efimov states.

One is functional renormalization group theory [BH06], as is discussed in the Introduction chapter.

The other is analytical and numerical hyperspherical theory. While there are many ways to theoret-

ically understand the three-body systems, a Green’s function method developed by Rittenhouse et

al. has been proved to be general and easy to implement [RMG10]. This method separates bound-

ary conditions in hyperangles and particle permutation symmetry. So the scheme of this method

works well for generic three-body systems. However, one limitation of this method is that it only

gives a simple analytical solution for zero-range pairwise interactions. The two-body potentials are

handled by Bethe-Peierls boundary conditions (− 1
ru

d(ru)
dr → α). This method does not predict the

bound state energies of Efimov states at unitarity unless an additional three-body parameter is

introduced.

Natrually, the question arises: How about finite-range interactions? In systems where two-

body interactions have van der Waals tails, it is shown that the bound state energy of homo-

and hetero- nuclear Efimov states have a universal relationship with the C6 coefficient of the van

der Waals potential, both experimentally and theoretically [WDEG12, WWDG12, Chi12]. The

motivation of particularly exploring van der Waals type potentials is that they represent the typical

interaction form found in ultracold atoms [CGJT10].

Interestingly, the shape of the pairwise interaction potential does not affect the universal

scaling factor s0 (the scaling factor is defined as from the eigen energies of the Efimov states at

unitarity: E(n) = E0exp(−2nπ/s0)), although it can affect the formation position of the lowest few

Efimov states. So the Green’s function method [RMG10] can be widely applied to all system with

short-range interactions, and is not limited to pure zero-range interactions. The independence of

scaling factor s0 to details of the interaction potentials manifests Efimov states’ universal behavior.

As long as the interactions are nearby a resonance, details of the interactions should not affect the

universal scaling behavior.

Before diving into calculations, some estimations of the three-body systems in a Bose-Fermi

mixture are presented below. Table 2.4 summarizes estimations of the ground state energies of
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Ground State Energy

Three-body System angular momentum asc ∼ 0− unitarity asc ∼ 0+

BBF 0 3 2 EBBF
BBF 1 4 3 EBF + 5

2

FFB 0 5 ? EBF + 3
2

FFB 1 4 3 EBF + 5
2

Table 2.4: Perturbative estimation of ground state energies for different three-body systems in a
mixture of fermionic K and bosonic Rb in an isotropic harmonic trap, frequency ω. Unitarity means
that the two-body l = 0 asc diverges to ±∞. All the energies are in units of ~ω.

different configurations from the perturbation perspective. Among all listed systems, Efimov states

are only allowed in BBF L=0 configuration for KRb. In the non-interacting limit (unbound atoms)

and in the molecular limit (dimer+atom), the configurations and energies could be estimated by a

simple symmetry argument. While in the unitary limit, for some cases, the strong couplings between

the three particle do not allow estimations based on the energetics of the two-body sectors.

Fig. 2.4 is a collection of the three-body system’s energy spectrum as a function of the inter

species scattering length. In the limits asc ∼ 0+ and asc ∼ 0−, the three-body systems show

excellent agreement with the estimations in Table 2.4. In the unitary regime, detailed discussions

are presented for each systems below.

The model potentials that we employ in this section are the Gaussian short range model

potentials V (r) = V0 exp(− r2

2d20
) and V (r) = Vi exp(− r2

2d2i
) + Vo exp(− r2

2d2o
), namely the attractive

Gaussian and the repulsive core Gaussian. Thus, we do not expect the absolute value of the

three-body bound state energies to have universal behavior, in contrast with those discovered with

systems having van der Waals long-range interactions.

The BFF system is expected to have a relatively simple energy spectrum. So the BFF of the

part calculation is used as a simple check. In the BFF system, the atom-dimer scattering is the most

important scattering process. In Petrov’s earlier work and in a recent experimental observation

in the Grimm group, a repulsive atom-dimer interaction is observed in the L = 0 channel, and

a attractive atom-dimer interaction is observed in the L = 1 channel. Grimm et al. identify the
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Figure 2.4: Spectrum of FFB and BBF total angular momentum L=1− and L=0+. Orange line: the
Efimov trimer state, Red line: the two-body spectrum of one boson and one fermion in an isotropic
harmonic trap. Red dashed line: the spectrum from zero-range two-body potential. Blue lines:
the class of dimer-fermion, the green lines: the trap bound states. In this calculation, the boson
is 87Rb, the fermion is 40K. The short-range model potential is V = V0 exp(− r2

2d20
), d0 = 0.01aho.

The spectrum is diabatized from the pure adiabatic spectrum, so that unphysical sharp avoided
crossings are eliminated.
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Figure 2.5: The spectrum for the BBF system, overlapping spectra of L = 0+ and L = 1−

symmetries. Dashed lines: L=0 spectrum; solid lines: L=1 spectrum.
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Figure 2.6: The spectrum for the FFB system, overlapping spectra of L = 0+ and L = 1− symme-
tries. Dashed lines: L=0 spectrum; solid lines: L=1 spectrum.
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attractive interaction as the dominant mechanism in their experiments [JZC+13].

The BFF system in KRb is expected to be much simpler than BBF. One argument is that

the Pauli repulsion between the fermions forbids the formation of a three-body bound state for

mass ratio below mB/mF = 8.17. The Born-Oppenheimer and hyperspherical approximation do

not show big differences in this case. The spectrum of both L = 0 and L = 1 BFF systems are

shown in Fig. 2.3.2.

On the contrary, the BBF system has a richer spectrum in terms of three-body bound states.

For the 87Rb87Rb40K case, the geometrical scaling constant s0 ≈ 0.653, meaning exp( πs0 ) ≈ 122.85.

(For three identical bosons, this number is ≈ 22.7.) Table 2.5 lists the values of s0 for some

heteronuclear systems [DE06a].

Besides geometric scaling in binding energies at unitarity, Efimov states have other signatures

both in spectrum and hyperspherical potential curves. The positions (on interparticle scattering

length asc axes) at which each Efimov trimer become bound also follow a geometric scaling rule.

The scaling factor is exp(−π/s0). In terms of determining the scaling factor, these trimer formation

positions are equivalent to observing the eigenenergies at unitarity. The reason is that they are also

affected by the harmonic trap. In general, an ultracold mixture system with larger scaling factor

poses more challenges in observing the scaling factor experimentally and numerically.

Can we determine more precisely the scaling factor from short-range model potential calcula-

tions? Yes, by examining the asymptotic behavior of the hyperspherical potentials. In hyperspher-

ical potentials, determining where a three-body system supports Efimov states is more direct. The

criteria is the hyperspherical potential curve has an attractive R−2 tail with the coefficient s2
0 +1/4.

This is expected even in the WKB picture. An attractive R−2 potential at unitarity provides us

with the number of bound states from the quantization condition of the WKB potential.

The hyper spherical potential curve is also generated from correlated Gaussian basis. Unfor-

tunately, the integrals of correlated Gaussian basis over hyperangles do not have analytical expres-

sions in general. von Stecher have implemented the integration over hyperangles numerically. K. M.

Daily showed that the integrals for even spatial dimensions have full analytical expressions, while
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Trimer s0 exp(π/s0)

174Yb2
6Li 2.246 4.05013

133Cs2
6Li 1.983 4.87569

87Rb2
6Li 1.633 6.84704

41K2
6Li 1.154 15.216

23Na2
6Li 0.875 36.2483

87Rb2
40K 0.653 122.856

133Cs2
87Rb 0.535 355.006

41K2
87Rb 0.246 351759.

Table 2.5: Table of heternuclear Efimov state scalling factor.

for odd spatial dimensions would involve at least one dimensional numerical integration [DG14].

2.3.3 Quench Dynamics of Three-body Systems in an Isotropic Harmonic Trap

A long standing question about experimental observations of Efimov states, at least from the

theoretical point of view is, whether it is possible to directly measure the bound state energy of an

Efimov trimer. Unlike measuring the binding energy of a Feshbach molecule, the Efimov trimer’s

binding energy is not directly related to the interparticle scattering length. This comes from the

fact that determination of the three-body parameter strongly depends on the short-range detail

(the short-range cut off in hyperradius) of the hyperspherical potential.

Another challenge is that even if we know the exact functional form of the three-body pa-

rameter as a function of the two-body potential, accessing the unitary regime and staying there

long enough to do a photo-dissociation type measurement of the Efimov trimer’s binding energy is

difficult and suffers from atomic losses.

However, the quantum beats experiment inspire us to consider, whether we can transfer the

measurement of bound state energy to the measurement of the oscillation period of a quantum

beat between different eigenchannels of the three-body system. The observable in the quantum

beat experiment below is the number of atoms remaining in the ground state of a weakly repulsive

BEC gas. The quantum beat can be qualitatively viewed as an oscillation between Efimov states

at unitary and all unbound states at unitarity in the three-body system. As we will show below,
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this quantum beat experiment work. In Fig. 2.7, we point out the critically important interparticle

scattering lengths in the spectrum of a three-body system in the quantum beat experiment scheme,

depicted in Fig. 2.8.

An example of the quantum beat oscillation is presented in Fig. 2.9 and Fig. 2.10. The low-

frequency oscillation is from the trap frequency, which is ω = 1, the period is in the unit t = 2π
ω .

The high-frequency oscillation is from the binding energy of the lowest Efimov trimer at unitarity.

In this oscillator unit for this particular pairwise interaction potential, this energy is−44.0~ω. The

distinction of the fast and slow oscillations of the quantum beat enable us to infer the bound state

energy of deep Efimov trimers at any given scattering length after its formation.

Fig. 2.10 shows that the contrast of this quantum beat is controlled by the time at ahold.

By tuning the time that the system stays at ahold, the best contrast scheme can be chosen. The

quantum beat experiment is in principle a sequence of sudden projections of between the sets of

eigenstates of different Hamiltonian. So in contrast to the adiabatic dynamics, the quench dynamics

is not only able to measure the ground state energies, but also able to measure properties of excited

states. However, as a trade off, the quench system is no longer guarantee to be in a thermal

equilibrium. So the micro canonical ensemble average we apply before may not be legitimate any

more.

Particularly for the quench sequence, the sudden change of the wave function can be viewed

as projections to eigenstates at different scattering lengths.

Ψ(a(j), t) =
∑
ν

c(j)
ν ψν (2.20)

The three-body system is prepared to be an eigenstate of nearly noninteracting boson gas, thus is

described by the lowest oscillator state in the trap. After the quench to ahold, the system is allowed
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Figure 2.10: A collection of quantum beat profiles predicted that display interference in ramps
between an Efimov trimer at unitarity and a weakly interacting three-body system. Different
curves start with different holding times at ahold.
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to evolve at ahold for thold.

Ψ(ahold, t = 0) = Ψ(a = 0, t = 0) =
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉ψν(ahold)

Ψ(ahold, thold) =
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉ψν(ahold)e
iEν(ahold)thold

=
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉
∑N

µ=1 〈φµ(±∞)| |ψν(ahold)〉φµ(±∞)eiEν(ahold)thold

(2.21)

Then the system will stay at unitarity to time tevolve.

Ψ(ahold, thold + tevolve) =
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉ψν(ahold)e
iEν(ahold)thold

=
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉
∑N

µ=1 〈φµ(±∞)| |ψν(ahold)〉φµ(±∞)eiEν(ahold)tholdeiEµ(±∞)tevolve

=
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉
∑N

µ=1 〈φµ(±∞)| |ψν(ahold)〉∑
ν′ 〈φµ(±∞)| |ψν′(ahold)〉ψν′(ahold)eiEν(ahold)tholdeiEµ(±∞)tevolve

(2.22)

Then the system is quenched back following a reversed order of the ramping procedure described

above.

Ψ(ahold, thold + tevolve + thold) =
∑N

ν=1 〈Ψ(a = 0, t = 0)| |ψν(ahold)〉
∑N

µ=1 〈φµ(±∞)| |ψν(ahold)〉∑
ν′ 〈φµ(±∞)| |ψν′(ahold)〉ψν′(ahold)eiEν(ahold)tholdeiEµ(±∞)tevolveeiEν′ (ahold)thold

(2.23)

This series of quenches can also be described by transformation between basis set and unitary time

evolutions in the matrix formalism, which is much more succinct.

G = U(a = ahold → a = 0)T (ahold, thold)U(a = ±∞→ a = ahold)T (±∞, tevolve)

U(a = ahold → a = ±∞)T (ahold, thold)U(a = 0→ a = ahold)

Ψ(thold + tevolve + thold) = GΨ(t = 0)

T (a, t) = diag(exp(iEi(a)t))

(2.24)

In this wave, we can see that during the quench dynamics, the initial state goes through a non

unitary transformation as well as unitary time evolution. The phase difference accumulated during

these quench steps give rise to oscillations of amplitude in different eigenstates of a = 0 as we

change the time that the system stays at unitarity.



43

2.4 Four-body States in an Isotropic Harmonic Trap

2.4.1 Review of Research in Four-boson Systems

As we discussed in the last section of this chapter, three-body systems interacting through

short-range potentials have been well understood both analytically and numerically. However, the

level of understanding in four-body system is not as high as the three-body systems.

First of all, why we would like to address four-body systems? Arguments from the few-body

and many-body community vary.

From a simplistic viewpoint in renormalization group (RG) theory of a spin-zero bosonic

field, the four-body bound states correspond to the four-momentum coupling. RG theory in many

systems predicts that this coupling is always irrelevant in describing the phase transitions and

many other critical phenomena. However, calculations from RG show that four-body bound states

in spin-zero bosonic systems should be present [HP07, PHM04, Pla09]. Besides the existence of

four-body bound states, another important conclusion is that unlike in the case of three-body

systems, four-body parameter that determines the cutoff length scale of the considered system is

not needed for an identical boson system. In other words, the three-body parameter is sufficient

to predict the four-body bound state energies. This conclusion is expected due to the fact that

each three-body bound state is associated with one or several four-body bound states in the four-

body spectrum. Although effective field theory provides essential insights on the energy spectrum

of four-body systems at unitarity, the early works from this perspective have not predicted the

full spectrum at all scattering lengths. Recently, functional RG theory attempted to predict the

positions of formation in the two-body scattering length and the decay of the four-body bound

states by assuming different pairwise interacting potentials [SM10].

However, the full spectrum of the four-boson system possesses more global and subtle struc-

tures. The corresponding energy spectra in Fig. 2.11 and Fig. 2.12 depict several important

conclusions, suggesting, however, several fundamental questions on the generic aspects of a four-

body system.
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Figure 2.11: Four-boson energy spectrum. From von Stecher et al. Nature Physics 5, 417 (2009)
[vSDGnt]. The spectrum is plotted on a log scale in energy, as a function of the inverse boson-boson
scattering length. The length unit of the spectrum is the extent of the short-range interpartice
interaction r0, and the energy unit of the spectrum is ~2/mr2

0. Dashed lines: Efimov trimer;
solid lines: tetramers attached to each Efimov trimer. The formation positions of the trimers
and tetramers are in the regime of a < 0, each indicating a three/four-body resonance. The
positions where trimer/tetramer curves merge into the dimer curve indicate dimer-atom/dimer-
dimer resonances.
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Figure 2.12: Four-boson spectrum. From Deltuva EPL (Europhysics Letters) 95, 4(2011) [Del11].
Thin lines: Efimov trimer; thick lines: tetramers attached to each Efimov trimer, dash-dotted line:
two dimer; dotted line: one dimer.
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Both of Fig. 2.11 and Fig. 2.12 are spectrum of a four-boson system near unitarity. However,

they do not exactly agree with each other. One main difference is that Deltuva suggested in Fig.

2.12 that in some high lying tetramer channels (four-body bound states), the tetramer forms at

some negative large scattering length, then dissociate to an atom-trimer state, then goes back to

a tetramer states again at some large positive scattering length. This feature was not observed in

von Stecher’s work, shown in Fig. 2.11.

Despite all the differences in Fig. 2.11 and Fig. 2.12, both of them present several features

of the four-boson system. In a four-boson system, there are two tetramer states attached to each

Efimov trimer state. Their energies possess a universal relation with the corresponding Efimov

state, Em4,1 ≈ 4.58Em3 and Em4,2 ≈ 1.01Em3 . The scattering lengths at which these two tetramer

states form are am4,1 ≈ 0.43am3 and am4,2 ≈ 0.90am3 .

Recall that the full spectrum of the three-boson system exhibits a universal geometric scaling

relation of the bound state energies and formation point of each Efimov trimer. This universal

relation contains two conclusions. Specifically, the universality exhibited by the three-boson system

includes: (1) at unitarity Em3 = 22.72Em+1
3 , m are counted from the lowest Efimov trimer in a

bosonic gas; (2) 1/am3 = 22.71/am+1
3 , am3 and am+1

3 refer to the formation position of the mth and

m+ 1th Efimov trimer.

In the full spectrum of the four-boson system, one might wonder whether the bound state

energies of the tetramer states have similar universal relations in both the bound state energies

and formation positions. Table 2.6 compares the bound state energy and formation positions of

the tetramer states with the bosonic Efimov trimer. These data are from calculations in [vSDGnt].

Hence, the same universal relations in both the binding energies and formation positions are ex-

pected for the tetramers as for the trimer states. However calculations in [vSDGnt] have shown

slight differences. Platter et al. have pointed out that the tetramer’s binding energies can be solved

through the Faddeev-Yakubovsky equations (FY eqns) [PHM04] for the four-boson system.

As we can see from Table 2.6, the four-body scaling factors that are extracted from the

binding energy at unitarity and from the formation position of the cluster states are not exactly
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E/Em3 a/am3

m+ 1th Trimer 22.72 1/22.7

mth Tetramer 1 4.58( 6= (0.43)−2 = 5.04) 0.43(6= (1/4.58)1/2 = 0.47)

mth Tetramer 2 1.01( 6= (0.90)−2 = 1.23) 0.90(6= (1/1.01)1/2 = 0.995)

Table 2.6: Table of comparison between trimer and tetramer energies in four-boson systems. Data
collected from [vSDGnt].

consistent with each other, but with a slight error.

The investigations into the universal relations of tetramers in the four-boson system are not

completed. Frederico, Hadizadeh, Yamashita, Tomio, Delfino et al. have solved the FY equation

for a four-boson system [YTDF06, FTD+11, HYT+11, HYT+12] and summarized the solutions

by different methods in their recent papers [FHY+13, FDH+13]. Although these calculations does

not scrutinize the accuracy of the ratios in Table 2.6, their interpretation of the functional form

of E4/E3 enrich our theoretical understandings of the four-body problem. Frederico, Hadizadeh,

Yamashita, Tomio, Delfino et al. proposed the functional of tetramer energy and trimer energy,

pushing forward the research of general four-body problem. The functional form they proposed is

as follows: √
(BN+1

4 −B3)/BN
4 = FN (B3/B

N
4 ), (2.25)

where Bs refer to the binding energy of the three- and four-body systems. F refers to the tetramer

scaling function in their theory. Frederico, Hadizadeh, Yamashita, Tomio, Delfino et al. have also

provided the relation of the formation point of trimer and tetramer [FHY+13, FDH+13]:

aTN3,N+1/a
−
N3

= A(aTN3,N/a
−
N3

), (2.26)

where as are the formation position of trimer/tetramer states, T refers to tetramer, − refers to

trimer, Ns are the index of the trimer/tetramer states. Their result is summarized in [HYT+11].

However, the theory in [HYT+11] assumes one of the tretramer state EN4,2 has identical energy

as the trimer EN3 . This assumption would contradict the findings in the work of von Stecher

[vSDGnt, vS10] and Deltuva [Del11].

Interestingly, the four-boson spectrum shows signatures of similarity in the position where
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the trimer-atom channels merge into the dimer-atom-atom channels as where the latter system

become bound. The dimer-atom-atom configuration can be perceived as a new three-body system.

Thus this system resonantes with the two-body system of a trimer and an atom. This position

can be viewed as a trimer-atom resonance. This feature is also found by Frederico, Hadizadeh,

Yamashita, Tomio, Delfino et al. in [YTDF06, FTD+11, HYT+11, HYT+12, FHY+13, FDH+13].

Note that these features can be experimentally observed. As the temperature of the bosonic gases

is lowered, these features should be visible if errors can be reduced in comparison with the earlier

experiments.

2.4.2 Heteronuclear Four-body Systems

In the active theoretical studies of four-boson systems, the difficulties in a generic four-body

system have already showed up, as discussed below. For a generic few-body system with zero-range

two-body interactions, the boundary conditions and permutational symmetries of the particles

are coupled together. Can we separate two-body boundary conditions from the permutational

symmetries? In the three-body sector, Rittenhouse et al. have achieved it using a Green’s function

method and tree rotations. The striking beauty of that method in the three-body problem is

that this method completely separates the boundary conditions and quantum statistics [RMG10].

However, the generalization of this method to a four-body system suffers from coupled boundary

conditions in the 2D hyperangular space (here the spatial angles are still trivially separated out,

the number of hyperangles that are not from true angular degrees of freedom is two.).

On the other hand, the FY equation approach has to impose symmetry of the particles before

numerical solution to reduce the dimension of the problem in momentum space. The functional RG

approach is essentially a field theory approach, thus boundary conditions no longer exist in their

Lagrangian. Instead, the quadratic term in the Lagrangian incorporates the two-body interactions.

Unlike in the case of the three-body system where there is only one hyperangle, a four-body

system has two hyperangles. A simple generalization of Rittenhouse’s method to four-body system

will result in a non-separable boundary conditions in the two hyperangular degree of freedoms,
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A-B A-C A-D A-B B-C C-D A-B B-C C-A

A B

C

D

A B

C

D

A B

C

D

Table 2.7: Table of configurations of three pairwise boundary conditions in a generic four-body sys-
tem. A B C D refer to different particles. We remark that they do not necessarily have permutation
symmetry.

independent of the number of pairwise interactions in the system. In order make a non-trivial

three-body system, at least two pairwise short-range interactions is required, which corresponds to

two boundary conditions in the hyperangle. On the other hand, in order to create a non-trivial

four-body system, the boundary conditions are more complicated, resulting in at least three two-

body boundary conditions. The configurations for three two-body boundary conditions are listed

in Table 2.7 and Table 2.8.

Table 2.7 and Table 2.8 show that in order to form a four-body bound state, a minimum

number of 3 pairwise interactions are necessary, while 4 pairwise interactions are sufficient. Six

pairwise interactions are automatically turned on in a four-boson problem due to the permuta-

tion symmetry of the particles. The four-identical-boson system certainly has a higher symmetry,

however it may not be the simplest non-trivial four-body system in terms of correlations.

Particularly in a Bose-Fermi mixture, the most interesting non-trivial four-body systems

include BBFF, BFFF, BBBF if pairwise interactions between boson and fermions are in the unitary

regime. BBBF [WLvSE12] and BFFF [CMP10] systems are non-trivial because the resulting four-

body Efimov related bound states are predicted to exist in both of them.
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A-B A-C A-D B-C A-B B-C C-D A-C

A B

C

D

A B

C

D

Table 2.8: Table of configurations of four pairwise boundary conditions in four-body system. A B C
D refer to different particles. We remark that they do not necessarily have permutation symmetry.
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However, the calculation of Wang et al [WLvSE12] was carried out in the BO approximation

framework, and did not predict accordingly any of the mass ratios that have been in experimen-

tally realized in the ultracold quantum gases (LiCs, KRb, NaK). The calculation of Castin et al.

predicted a mass ratio (13.384 < M/m < 13.607, the heavier is a fermion) at which a four-body

Efimov state can exist. This mass ratio is still different from any experimentally realized atomic

species. A numerical solution of the BBBF system will help to clarify the range of validity of the

BO approximation in [WLvSE12] and compare its predictions with the corresponding experimental

realizations of possible four-body resonances in LiCs mixtures [TJGJ+14].

Fig. 2.13 from Wang et al. [WLvSE12] showed the BBBX spectrum in the BO limit, where

mB/mX > 30. Wang et al. predicted that there is only one tetramer bound state in BBBX system,

and the Em4 /E
m
3 ≈ 4.342. Numerical calculations in Wang’s work suggests this ratio is independent

of the mass ratio as long as mB/mX > 30. One immediate question is whether this conclusion

applies to systems beyond BO approximation, in which mB/mX is not necessarily that small. One

more fundamental question about four-body systems is whether the existence of a second tetramer

state in the four-boson system is accidental or it is a consequence of bosonic permutation symmetry

or particle-particle correlations. These questions are still open, both for theory and experiments,

stimulating the interest of ultracold gas community.

While the BBBF and BFFF systems are important from the few-body perspective, the BBFF

system is important in both few-body and many-body viewpoints. In the BBFF system, the BBF

trimer states play an important role in scattering processes. Moreover, because the BF molecules

(BF) are fermonic, in L = 0+ BBFF system, only one fermonic Feshbach dimer is allowed in the

regime asc > 0. On the other hand, in L = 1− BBFF system, two BF Feshbach dimers are allowed

in the molecular regime of the spectrum. As a consequence, unlike the identical bosons, Bose-

Bose mixtures, Fermi-Fermi mixtures, the ground states of BBFF system are different in different

scattering length regimes. Mapping the dynamical evolutions from the few-body to the many-body

BBFF systems needs knowledge of both the L = 0+ and L = 1+ spectra.

In the remainder of this chapter, our studies in BBFF in KKRbRb will be presented. Pre-
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Figure 2.13: The BBBX spectrum in the BO approximation, from Wang et al. Phys. Rev. Lett.
108, 073201 (2012) [WLvSE12]. H in the plot denotes the heavy bosonic particle, L denotes the
other light particle X.
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liminary studies of BBBF in LiCsCsCs will also be presented afterwards.

2.4.3 Spectra and Dynamics of a Bose-Fermi mixture (KRb)

In this subsection, studies of spectra and dynamics of RbRbKK systems are presented. Two

total angular momentum states are considered, namely L = 0+ and L = 1−. The structure of this

subsection is as follows:

(1) the adiabatic energy spectra as a function of interspecies scattering length are presented;

(2) the P-matrix analysis and adiabatic time evolution of the BBFF system across a broad

Feshbach resonance are presented. This adiabatic time evolution is employed in order to mimic the

magneto association of the weakly bound KRb molecules;

(3) the effective trimer-atom and dimer-dimer scattering parameters are extracted from the

energy spectra;

(4) the hyperspherical potential curves are presented. The hyperspherical potentials consti-

tute a complementary test to determine whether the system supports four-body Efimov states.

The first and the second point are also discussed in our published work [ZvSG12]. The third

and fourth point are in preparation for publication.

The few-body Hamiltonian which corresponds to a Bose-Fermi mixture is written as follows:

H =
∑
i

(
− ~2

2mi
∇2
i +

1

2
miω

2
0r2
i

)
+
∑
iB ,jF

V (riB ,jF ), (2.27)

where B refers to bosons, F refers to fermions, and the inter-particle interaction potential V are

attractive Gaussian or repulsive core Gaussian. The boson-boson scattering length is considered

to be much smaller than the trap length since the magneto association has been performed away

from any boson-boson Feshbach resonance, e. g. the KRb experiment by Olsen et al. [OPCJ09].

Thus, for simplicity, only noninteracting bosons are considered in this calculation.

The eigenfunctions and eigenenergies for the few-body Hamiltonian are determined by a

variational approach. The eigenfunctions are expanded in a correlated Gaussian basis as discussed

in the Methods section of this chapter. This method has been previously applied in the two-
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component fermion system [vSG07, Blu08, BR09, BD09, DB10, BD10a, BD10b, DB12, DRB12,

GDB12b, Blu12] and in the identical boson system [DvSG09a, vS11, vSG09].

Systems which involve many bosons are in general more difficult to treat numerically, because

the boson cluster states could have energies of very different scales. However, many-body fermionic

systems have an energy spacing comparable to the trap energy or two-body bound energy in most

of the cases. In this sense, the Bose-Fermi mixture system is also numerically challenging, because

cluster states like Efimov trimers, and tetramers have very distinct sizes. In the meantime, the

numerical methods are required to give good descriptions for Fermi sea of heteronuclear molecules.

After the determination of the adiabatic spectrum, the time-dependent Schrodinger equation

is solved numerically using the diabetic by sector method [vSG07].

Table 2.9 summarizes the allowed configuration for L = 0+ and L = 1− system.

With the optimization method discussed elsewhere in this chapter, a numerically convergent

basis functions are obtained. With the optimized basis set, the spectra are calculated as functions

of a−1
sc . Fig. 2.4.3 and Fig. 2.4.3 illustrate the spectra of BBFF system as functions of inverse

scattering length. Both spectra display a series of avoided crossing between the adiabatic level

concentrated especially near the formation position of Efimov trimer and near unitarity.

The diabatized spectrum preserves the important physical avoided transitions while the nar-

row ones are eliminated by ignoring the coupling between those channels at the crossing points.

A more quantitative way to describe each avoided crossing is to evaluate the changing speed

of eigenstates near that point, namely, the P -matrix elements between the two channels. The

P -matrix is the non-adiabatic coupling between two adiabatic states (denoted as i and j in the

following discussions):

Pij =< Ψi|
dΨj

dλ
>, (2.28)

where λ is the adiabatic parameter in the system. A narrow avoided crossing corresponds to a

narrow and sharply peaked P -matrix curve as a function of the adiabatic parameter, centered at

the crossing point. On the contrary, a wider avoided crossing corresponds to a broad and smooth
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L = 0+ L = 1−

trimer+atom Rb K

K

Rb

v v

dimer+atom+atom Rb K

K

Rb

v v

dimer+dimer Rb K

K

Rb

v

unbound atoms Rb K

K

Rb

v v

Table 2.9: Allowed configurations for the BBFF system. v means possible configuration.
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P matrix curve in the whole range of the adiabatic parameter. The diabatization procedure could

also be carried out by calculating the P matrix elements connecting each pair of adiabatic states

and selecting those that are sufficiently wide according to some quantitative criteria. However, this

method works only in principle, it is not so effective in practical calculations.

The adiabatic parameter can be anything that has time dependence and is smoothly changing

over the ramping procedure. We choose the inverse scattering length to be the adiabatic parameter

λ = a−1
sc . In the adiabatic limit, the Landau-Zener approximation is applied to interpret the time

evolution result. This approximation predicts that a transition from the adiabatic eigenchannel i

to j happens near the crossing point, and the probability of this transition is Tij = exp(−χij/χ).

χ is the rate of change of the adiabatic parameter with respect to time. χij is the characteristic

rate of change for channel i and j near the crossing point. The quantity χij is referred to as the

Landau-Zener parameter.

The nonadiabatic coupling controls the probability of transitions between adiabatic channels.

Clark has shown that if a transition has the form that can be approximated by the Landau-Zener

model, the P matrix element for the transition from channel i to j has a Lorentzian shape for

whose width, along with the corresponding eigenenergies, characterizes the Landau-Zener parameter

[Cla79]. The framework of a general adiabatic transition theory was originally coined by Dykhne

[Dyk62], and was later widely applied to many problems.

The important P matrices are evaluated numerically, and the fitted into Lorentzian shape to

obtain a simplified Landau-Zener prediction that we can compare with the time-evolution result.

The low-lying channels P matrices exhibit an approximately Lorentzian shape. However, the

couplings between high-lying configurations usually do not have Lorentzian shape at all. They can

be multi peaked and asymmetric near the transition point. Examples of important P matrices are

shown in Fig. 2.16 and Fig. 2.17. The indices of the channels (configurations) and of the P matrix

follow the definition in Table 2.10. Comparisons among Landau-Zener parameters that are fitted

from a incoherent sequential transition and that are calculated from the P -matrix are in Table

2.11. Incoherent transitions series refer to the scenario that after a sequence of transitions, the
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system Channels Final Probability Distributions

BBFF L = 0+ 1 (trimer+ atom) (1− T12)(1− T13)
2 (dimer+atom+atom) T12(1− T23)

3 (4 atoms) T12T23 + (1− T12)T13

BBFF L = 1− 1 (trimer+ atom) (1− T12)(1− T13)
2 (dimer+dimer) T12(1− T23)(1− T24)

3 (dimer+atom+atom) (T12T23 + (1− T12)T13)(1− T34)
4 (4 atoms) T12T23T34 + (1− T12)T13T34 + T12(1− T23)T24

Table 2.10: The final probability distribution after the time-evolution from asc ∼ 0− to asc ∼ 0+

across unitarity. The final probabilities are represented as sequences of Landau-Zener transitions.
Tij is defined as exp(−χij/χ), where χij is the fitted Landau-Zener parameter from the time-
evolution calculation, χ is the ramping rate of the adiabatic parameter χ = dλ

dt , λ = 1/asc.

final probability distribution into different configurations only rely on the transition probability at

each transition point (in the BBFF system, the two transitions points are the trimer formation and

unitarity).

In the BBFF system, there are two important transition regimes, formation point of trimer

and unitarity respectively. Thus, P matrix are expected to have peaky behavior near both of them.

This two-peak nature of the spectrum may potentially cause Stueckelberg type oscillation between

in the formation of dimer states.

To approximately connect our few-body calculation to various many-body experiments, we

construct a dimensionless ramping speed which has the density information of the system built in:

χ = M
~ρ |

dλ
dt |, in whichM is the total mass of the molecule, ρ is the density of boson-fermion pair in the

noninteracting system, and λ = (1/asc) is the inverse scattering length. This follows an analogous

procedure carried out by von Stecher [vS08] in his PhD thesis research. Our calculation provides

the probability distributions for creating various final states in a ramp across a Feshbach resonance

as functions of the dimensionless ramping speed χ. At the same time, χ could be extracted from

experimental data at each value of dB
dt , where B is the magnetic field, and our calculation predicts

the molecule formation at that ramping speed. The above definition of dimensionless ramping

speed is appropriate for a homogeneous system, however, we propose to use the peak density for

an inhomogeneous system analogously, such as an ultracold gas in a harmonic trap.
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Figure 2.16: Nonadiabatic coupling P -matrix for the BBFF L = 0+ system. The i j indices of the
P matrix follows the index definitions in Table 2.10.
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Figure 2.17: Nonadiabatic coupling P -matrix for the BBFF L = 1− system. The i j indices of the
P matrix follows the index definitions in Table 2.10.
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χ P-matrix(width) P-matrix (height) time-evolution

BBF L = 0+ χ12 1.18 1.12 0.98
χ23 22.4 47.8 19.9

BBFF L = 0+ χ12 1.57 1.89 2.06
χ13 11.7 110 19.1
χ23 11.8 371 43.3

BBFF L = 1− χ12 1.23 1.21 1.09
χ23 6.15 76.5 4.07
χ13 6.25 28.8 13.3
χ24 3.94 48.4 15.3
χ34 29.7 92.5 28.5

Table 2.11: Comparison of the Landau-Zener parameter fitted from the time-evolution and from
the P -matrix calculation. The indices follow definitions in Table 2.10.

In other words, the connection between the few-body and many-body system is realized by

solving a few-body problem in an artificial trap tight enough so that the peak density of the few-

body system is the same as the peak density of the many-body system. The rescaled oscillator

length depends on the peak density of the many-body system, namely aRSho = (ρ/ρexp)
1/3, where

ρ is the dimensionless peak density ρ = ρ ∗ (aho)
3 from the few-body calculation, ρexp is the peak

density measured in experiments. For our calculation, the ratio of the artificial trap frequency to

the experimental trap frequency ωart
ωexp

is around 30.

In our calculation, the following units are used: ~ = 1, the boson-fermion reduced mass

is µ = mBmF
mB+mf

= 0.5, the mass ratio is mB
mF

= 87
40 , boson mass mB = 1.5815, fermion mass

mF = 0.72988, total mass of the molecule is M = mB + mF = 2.31, the trap frequency is ω = 1,

the oscillator length of the boson-fermion relative motion is aho = ( ~
2µω )1/2 = 1, which is set to be

the length unit, and the time unit is 2π
ω . The number density ρ of molecules is defined such that:∫

ρd3r = N . For the experimental system, N is around 104 ∼ 105 [OPCJ09, Ols09], while for our

calculation, N is 2. The dimensionless peak density is ρ = 1.066.

The artificially tight trap can be related to the number ratio of the few-body system to

the many-body system. For typical experimental conditions, the temperature of the fermionic

atoms is around 0.2 ∼ 0.3TF , where the number of particles is large, around 104 to 105 [OPCJ09,

Ols09], so the density profile of the system can be described by the zero temperature Thomas-
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Fermi approximation [BB97]. The peak density of a zero temperature noninteracting Fermi gas in

an isotropic harmonic trap is proportional to N1/2, when the particle number of N is much larger

than 1. Thus the relation between the experimental trap frequency and the rescaled trap frequency

can be expressed in terms of the particle number ratio for the few-body calculation divided by that

in the many-body experiments, i.e.,
ωRSho
ωexpho

∼ (N2 )
1
3 . The temperature of bosons in the Bose-Fermi

mixture is around 1.1 ∼ 1.2Tc, which implies that the boson’s peak density has been tuned to

match the fermion’s peak density in the experiments under reasonable considerations. Therefore

the fermion peak density itself provides a reasonable approximation to the maximum number of

atom pairs near the center of the trap.

To relate our results to recent JILA experiments [OPCJ09], the Landau-Zener parameters

δ = χmol/χ for transitions into configurations with trimers, dimer, and atoms are cast in terms of

experimentally accessible variables. Since the trimer and the dimer are not distinguished experi-

mentally, we present one analysis for which the trimer formation is included and another analysis

where it is excluded from the count of molecules formed.

The adiabatic parameter in our calculation can be related to the ramping rate in experi-

ments, through an assumption that the dependence of the two-body scattering length a(B) on

the magnetic field is approximated in the usual manner as asc(B) = abg(1 + w
B−B0

), whereby

d(1/asc)
dt = (dB/dt)/(wabg). Here, the resonance is assumed to be sufficiently broad that, in the

ramping range of magnetic field, ω � B−B0, whereby the ramping speed d(1/asc)
dt can be simplified

to 1
abg

1
ω
dB
dt .

The molecule fraction in the strongly interacting limit is the most relevant quantity to com-

pare with experiments. For the present 4-body system, the molecular fraction is defined as the

probability of ending up in the dimer-dimer configuration (for the symmetries considered here, this

only occurs in the L = 1− case) plus half of the probability of ending up in the BF+B+F config-

uration following the ramp. If we also count each trimer as an experimentally detected molecular

bound state, the trimer probability should be added.

The lowest channel in the BBFF L = 0+ system is the ground state of the four-particle system
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in the asc ∼ 0+ limit, whose energy asymptotically approaches Etrimer plus the zero point energy

of the relative motion between the trimer and the fermion. On the other hand, the lowest channel

in BBFF L = 1− system in the asc ∼ 0− limit is the ground state of the four-particle system, where

its energy asymptotically approaches 11/2 oscillator energy quanta. In this system a two-dimer

configuration is allowed, potentially enhancing the formation rate of the fermionic dimers compared

to that for the BBFF L = 0+ symmetry. Because the dimers are identical fermions, the relative

angular momentum between two s-wave dimers must be odd, implies that states with nonzero total

angular momentum state can possibly be important for understanding experiments by Olsen et al.

[OPCJ09]. This is different from the bosonic case [PW06, IGO+04], where the L = 0+ symmetry

for four particles can already form two dimers, as well as the trimer and tetramer following a

magnetic field ramp.

The prediction of the molecule formation ratio as a function of the inverse scattering length

ramping speed χ is the strongest connection between our few-body calculation and the experimental

many-body observations. Fig. 2.18 shows the molecule formation ratio in the BBFF L = 0+ and

L = 1− systems. Although the L = 1− system has a higher upper limit for its molecule formation

ratio, the formation rates for the two symmetries are very similar at fast ramping speeds.

Various experiments have been carried out that have explored the maximum formation rate

of heteronuclear Feshbach molecules in recent years, including 6Li7Li [TSM+01, SKC+01], 6Li23Na

[HSD+02], 40K87Rb [RRMI02b, MRR+02, OPCJ09] and 6Li133Cs [MKS+02]. The highest conver-

sion through adiabatic magnetic field ramping across Fano-Feshbach resonance in 40K87Rb given

by JILA [OPCJ09, GIO+04] is around 36 percent of the minority (87Rb). Our calculation gives the

conversion rate as function of ramping speed in Fig. 2.18.

By comparing the Bose-Fermi mixture experiment to former experiments, we notice that in

both of the two-component Fermi gas experiments and in the single-component BEC experiments

[HTR+05, PW06, GIO+04], the formation rates of molecules (40K2, 87Rb2) are close to unity at

zero temperature and sufficiently slow ramping speed. Also, the formation rate as a function of

temperature was found to be well-described by a stochastic phase-space pairing model [HTR+05].
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Figure 2.18: The molecule formation percentage is depicted as a function of the dimensionless
ramp speed for (a) L = 0+ and (b) L = 1− BBFF systems. Since the trimer and dimer were not
distinguished experimentally, two separate analyses are presented here. In one analysis, a trimer is
counted as a molecule (dashed) and in the other analysis the trimer is excluded from the molecules
counting (solid).
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However, in Bose-Fermi mixtures the experimental conversion rate of 40K87Rb dimers has never

approached anywhere close to unity. The predicted molecule formation rate in the stochastic phase-

space pairing model is in general higher than the observed rate in magneto-association experiments

[OPCJ09]. In our few-body calculation, the possibility of trimer 40K87Rb2 formation provides a

way to potentially understand why the observed molecule formation rate might be reduced: the

trimer is more deeply bound than the Feshbach molecules, and might decay rapidly into one deeply

bound dimer if struck by another atom, or if it pre-dissociates prior to detection, in which case

the “spin flip” method for detecting the dimer [OPCJ09] would not be expected to detect a trimer

bound state.

Our few-body calculations could be directly applied to understand optical lattice experiments

when the tunneling between sites is small. Ideally, one boson and one fermion in one site is usually

desired for such experiments, and the presence of additional bosons is likely to introduce three-body

loss. However, our calculation suggests that within an appropriate sweeping speed range, the atoms

in a single site containing more than 2 particles could be directly converted into a molecular bound

state.

The Landau-Zener model yields a qualitative picture of the dynamical features of the trapped

few-body system. It also offers some quantitative predictions for the transition probabilities and

the characteristic range of ramping speeds that cause a change-over from a high rate of molecule

formation to a low rate. However, the question of whether a Landau-Zener function is the appro-

priate functional form to describe the molecule formation fraction in a large system is still under

debate [PTB+05, CHT+11]. Our Landau-Zener model (LZ) for three or four particles does not pre-

dict a single LZ function but rather a combination of different LZ terms that incoherently add up.

Owing to its formulation in terms of the adiabatic eigenfunctions, the Landau-Zener model could

identify each important transition into various possible final configurations reasonably well. Thus

the functional form we have devised as a “sequence of transitions” appears to be consistent with

our time dependent calculations. But a two-level Landau-Zener model cannot readily incorporate

the effect of other nearby levels that may couple to one of the two levels and the fact that even
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if other nearby levels do not contribute, the non-linear nature of the coupling is not captured in

the simple linear Landau-Zener hamiltonian, while the final probability is regarded as a sum of the

probabilities for transitions into all levels in each class, which is a limitation of the Landau-Zener

model for analyzing our numerical results.

2.4.4 Scattering Properties of an Efimov Trimer near Unitarity (KRb)

In the last subsection, based on the spectrum of a BBFF system and its subsystems, the

adiabatic evolution of a few-body Bose-Fermi mixture is discussed and compared to the magneto

association of Feshbach dipolar molecules. However, experiments could not directly probe the

trimer or tetramer bound state at unitarity back in 2009, when the experiments were performed.

Although the probing of an Efimov trimer’s scattering properties at unitarity is still challenging, the

few-body ultracold Bose-Fermi mixture at unitary is interesting from a pure theoretical perspective.

The duality between unitarity (asc ∼ ±∞) and the noninteracting system in the two-body

sector is relatively well understood. However, the generalization of this idea to a Bose-Fermi mixture

involves more characteristics of the system’s generic properties. In a unitary two-component Fermi

gas, the Fermi level sets the Fermi momentum kF , and the order parameter and thermal dynamical

quantities of the gas can be parametrized as a function of kFa. The two component Fermi gas

(where both spin have similar mass) is thus scaling invariant in the unitary limit. In a single

component Bose gas, this scaling invariance is broken by the existence of Efimov trimers in the

unitary regime. In a Bose-Fermi mixture, the relevant length scales include those from a bosonic

and a fermonic system, and the ones characterizing the boson-fermion interaction. In a unitary few-

body Bose-Fermi mixture, the characteristic length scales only include the density of each species

and the cluster states’ sizes (trimer, tetramer). Specifically in a BBFF system, since weakly bound

tetramer states do not exist, the low energy elastic scattering properties of the Efimov trimer is

ready to be studied.

To study the relation between the effective trimer-atom scattering length (BBF-F, referred to

as aat in the following discussion) and other length scales in the system, we performed calculations
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for the BBFF system using a variety of pairwise interaction potentials. To extract the three-body

parameter, we calculate the trimer’s binding energy in free space at unitarity using various two-

body model potentials. The three-body parameter κ is defined as − κ2

2m
= Etrimer, in which m is

the reduced mass of the three-body system m =

√
mBmBmF

mB +mB +mF
, Etrimer is the trimer’s binding

energy at unitary. The effective trimer-atom scattering length is extracted using the two-body in

an harmonic trap:

asc(ε) = aho
Γ[− ε

2ω
+

1

4
]

Γ[− ε

2ω
+

3

4
]
. (2.29)

One may naturally think that the four particles could form a BBFF cluster state through this weak

attractive interaction at unitarity. However, both the spectrum and the hyperspherical potential

indicate that BBFF does not form a four-body cluster in free space. The hyperspherical potential

curve of this system is in Fig. 2.19. The four-body system BBFF does not have an attractive 1/R2

behavior asymptotically in the atom-trimer channel. This already forbids the possibility of the

four-body Efimov state in the BBFF system. Furthermore, the potential well in the atom-trimer

channels is quite shallow. The term “shallow” means that a single channel calculation using this

potential well does not support any bound states. So it is a further confirmation of the standard

correlated Gaussian calculation that no four-body bound states will be supported in this system.

This is equivalent to saying that the atom-trimer (F-BBF) scattering is far away from resonance.

As a consequence, the lowest channel in the BBFF system at unitarity can be viewed as an Efimov

trimer interacting with a fermion through a short-range interaction potential, parametrized by a

zero-range effective atom-trimer potential. Fig. 2.20 depicts the universal relation between the

trimer-atom scattering length aat and the three-body parameter defined by the trimer’s binding

energy at unitarity.

In a few-body system, the trap length aho together with the particles number characterize

the density at unitarity. For a many-particle system, it is common to apply the local density

approximation to describe the in homogenous trapped system by using results from free space.

However, in our treatment the quantum fluctuations in space are captured by the eigenfunctions
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Figure 2.19: The hyperspherical potential curves of the BBFF L = 0+ system at unitarity. d0 is
the extent of the short-range two-body interaction potential.
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Figure 2.20: The universal relation between the trimer-atom scattering length aat and the three-
body parameter defined by the trimer’s binding energy at unitarity (aBF = ∞). The three-body

parameter κ is defined as − κ2

2m = Etrimer, in which m is the reduced mass of the three-body

system m =
√

mBmBmF
mB+mB+mF

, Etrimer is the trimer’s binding energy at unitary in the oscillator unit.

aho =
√

~
matω

, aBF is the boson-fermion scattering length. mat is the reduced mass of the trimer

and the remaining fermion mat = (mB+mB+mF )mF
mB+mB+mF+mF

.
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of the trapped gas, so no local density approximation is needed.

As is shown in Fig. 2.20, the relation between aho/aat and κaho is highly linear when κaho �

1. This suggests that in the deep trimer limit, the trap does not affect the bound state energy of

the trimer. In the shallow trimer limit, despite setting the density of the gas, the harmonic trap

also squeezes the trimer state’s size.

This observation is consistent with Castin’s earlier work on three-body in an harmonic trap

[WC06] and Kokkelmans’s later work [PK11]. In Castin’s work, he presented how the trimer’s

binding energy spectrum, especially the high lying trimers, are affected by the trap. Castin’s work

on three-body system employed similar formulations as that in bosonic Laughlin states, namely,

formulating the wave function in the following manner:

ψ = exp(− r2
i

2a2
ho

)Π1≤n<m≤3[(xn + iyn)− (xm + iym)]|η|, (2.30)

in which η characterizes the trap effect η =
Etrimer
~ω

. The limit η = ∞ is the free-space trimer

system. In this limit, the Whittaker functions proposed as eigenstates in a trap go back to the

BesselK functions, which describe the Efimov trimers in free space. Intuitively, we can imagine

that deep trimers are less affected by the trap, whereas high lying trimers are squeezed or even

destroyed by the trap. However, with only knowledge of the scaling factor, we cannot know the

critical size of the trimer that the harmonic trap exhibits significant modification to the energy

spectrum of the three-body system.

In the following, two methods can be employed to calculated the effective scattering length

between the Efimov trimer and the remaining fermion. One method is based on a perturbation

calculation in energy, assuming that the four-body system is in a weak 3D isotropic harmonic trap.

The other method involves directly calculating the scattering phase shift of the effective atom-trimer

scattering process, assuming that the four-body system is in free space.

The difference between these two methods is just like the difference between the variational

calculation of the energy and the boundary conditions (introduced in the next chapter, variational

R-matrix method). In the following discussion, we introduce the first one only.
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The method of the energy variational principle works as follows. For simplicity, this method

is demonstrated for the the total angular momentum L = 0 BBFF system in the following. The

variational trial wave function of the atom-trimer bound state in the harmonic trap is:

Ψ = Ψtrimer(1, 2, 3)Ψsc(R123, r4)−Ψtrimer(1, 2, 4)Ψsc(R124, r3), (2.31)

where the Ψtrimer is the Whittaker function from Castin’s work [WC06], Ψsc is the two-body wave

function in a 3D harmonic trap. The wave function Ψtrimer respect the boson-boson permutation

symmetry, because the hyperangular part sums over two Jacobi tree contributions. Thus, the

wave function only needs explicit antisymmetrization. The energy shift from the noninteracting

trimer-atom system is the effective trimer-atom interaction energy.

< Ψ|H|Ψ >

< Ψ|Ψ >
= Etrimer + Etrimer−atom (2.32)

Etrimer−atom = (N2 − 〈Ψtrimer(123)Ψsc(123, 4)| |Ψtrimer(124)Ψsc(124, 3)〉)−1

(〈Ψtrimer(123)Ψsc(123, 4)|Ek(123, 4) + V (1, 4) + V (2, 4) |Ψtrimer(123)Ψsc(123, 4)〉

− 〈Ψtrimer(123)Ψsc(123, 4)|Ek(124, 3) + V (1, 3) + V (2, 3) |Ψtrimer(124)Ψsc(124, 3)〉).

(2.33)

The trial wave function Ψtrimer−atom contains the effective trimer-atom scattering length. Thus, the

equation above relates the three-body parameter, the scaling factor s0 and the effective trimer-atom

scattering length through an algebraic equation.

2.4.5 Spectra and Dynamics of a Bose-Fermi Mixture (LiCs)

Besides the ultracold mixture of KRb, we also considered the ultracold mixture of LiCs.

Unlike KRb, LiCs has a much smaller scaling factor in the Efimov series. Thus LiCs mixtures

are experimentally favorable to observe the Efimov series. In this subsection, we will present the

LiCsCs Efimov spectrum calculated from short-range model potential interactions and compare to

the universal scaling factor s0 predicted in the zero-range range theory by Rittenhouse [Rit09].

The study of LiCsCs system is the starting point for studying LiCsCsCs system. First,

this system is one of the most promising candidates for observation of universal scaling behaviors
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of four-body cluster states. The reason is that the three-body subsystem of LiCs mixture has a

relatively small scaling factor, allowing observation of more than one Efimov states. Moreover, the

high-lying Efimov trimers are supposed to be more universal, suffering much less from the finite

range interaction details. Thus, this system is much better than KRb in terms of observing the

discrete scaling symmetry.

The scaling factor of LiCsCs system is s0 = 1.983, exp(−π/s0) = 4.87569. This suggests

at unitary, the energy scaling E(n)/E(n−1) = exp(−2π/s0) = 23.7724. From numerical model

potential calculations, the first trimer state always suffer from finite-range correction, however, the

second and the third trimer states already exhibit universal scalings, as is shown in Fig. 2.21 and

in Table 2.12, Table 2.13.

From the two types of short-range model potential calculations, we can see that both of them

give scaling factors close to that was predicted in the zero-range three-body solutions. However,

there are discrepancies, and these discrepancies are strongly model dependent. This issue may arise

in determining the four-body scaling factor as well, especially in the low-lying tetramer states.

With the three-body LiCsCs spectra in hand, we are ready to explore the four-body spectra

of LiCsCsCs. In the four-body spectra, we are aiming at resolving the following fundamental

questions:

(1) How many tetramer states can there be that are attached to each Efimov trimer?

(2) What is the scaling factor for each tetramer E(4,i,n)/E(3,n)?

(3) Does the scaling factor change as a function of the Efimov trimer index n?

2.5 Summary and Outlook

2.5.1 Summary

In this chapter, a study in the few-body theory of ultracold Bose-Fermi mixture is presented.

Based on the energy spectrum of few-body systems (three- and four-body), adiabatic evolution of

system is predicted. To connect the time evolution of a few-body system to its many-body counter



73

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

Zero-range Theory s0

0.010 0.012 0.014 0.016 0.018 0.020 0.022 0.024

23.0

23.2

23.4

23.6

width

s 0

Figure 2.21: s0 values extracted from various model potential calculations for the three-body LiCsCs
systems.

d0 E(3)/E(2) E(2)/E(1)

0.011 15.46(56) 23.49(61)

0.012 15.46(56) 23.49(62)

0.013 15.46(56) 23.49(62)

0.014 15.46(56) 23.49(61)

0.015 15.46(56) 23.49(62)

0.016 15.46(56) 23.49(61)

0.017 15.46(56) 23.49(61)

0.018 15.46(56) 23.49(61)

0.019 15.46(56) 23.49(61)

0.02 15.46(56) 23.49(62)

0.021 15.46(56) 23.49(62)

0.022 15.46(56) 23.49(63)

0.023 15.46(56) 23.49(63)

0.024 15.46(56) 23.49(65)

0.025 15.46(56) 23.49(78)

Table 2.12: The ratio of energies of first three Efimov trimer states calculated using attractive
Gaussian interactions V (r) = V0 exp(− r2

2d20
).
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d0i d0o E(3)/E(2) E(2)/E(1)

0.01 0.02 14.26(63) 22.95(85)

0.01 0.021 14.92(87) 23.06(65)

0.01 0.022 15.42(11) 23.14(48)

0.01 0.023 15.78(55) 23.20(92)

0.01 0.024 16.05(32) 23.25(37)

0.01 0.025 16.24(77) 23.29(13)

0.01 0.026 16.38(66) 23.32(15)

0.01 0.027 16.48(31) 23.34(61)

0.01 0.028 16.54(73) 23.36(67)

0.01 0.029 16.58(68) 23.38(42)

0.01 0.03 16.60(75) 23.40(34)

Table 2.13: The ratios of energies of the first three Efimov trimer states calculated using repulsive
core+attractive tail Gaussian interactions V (r) = V0i exp(− r2

2d0i2
) − V0o exp(− r2

2d0o2
). V0i, d0i are

the strength and width of the repulsive core, V0o, d0o are the strength and width of the attractive
tail.
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part, we map the density between these two system while controlling the universal dimensionless

ramping parameter χ. Although the few-body system is in principle a zero-temperature solution,

the finite temperature observables can be calculated from the micro canonical ensemble average of

energy eigenstates of the system.

Also based on the spectrum, specifically at unitary, the scattering properties of trimers are

discussed. By testing various short-range pairwise interaction potentials, we show that in the

unitary regime, the trimer-fermion scattering length has an universal relation with the three-body

parameter.

Although accessing the unitary limit adiabatically is challenging, quenching the inter particle

interactions by controlling external magnetic field opens the door to explore the unitary regime of a

degenerate quantum gas. The quenching experiments have not been implemented for a Bose-Fermi

mixture yet. However, we propose quenching experiments in Bose-Fermi mixture to directly probe

the bound state energy of the Efimov trimer states.

2.5.2 Outlook

As discussed in this chapter, the future directions of research in ultracold Bose-Fermi mixture

from a few-body perspective are pretty rich.

One direction is to explore systematically the structures and universal relations in terms

of the heteronuclear clusters. Research in this direction will potentially resolve the debate on

universalities in the tetramer bound state energies. Thus, more complete understanding in the

larger cluster systems emerge in dilute quantum gases in the unitary regime will potentially be

achieved.

Another direction is to explore the time adiabatic evolution of population balanced Bose-

Fermi mixture systems with more particles. Research in this direction can potentially give a

further understanding of how the many-body time scale emerges from a dilute system, beyond the

two-body Landau-Zener picture and the simple density mapping picture.



Chapter 3

Quasi-1D Scattering in General Transverse Confinement

3.1 Introduction

The study of quantum mechanical reduced dimensional systems was started by Bethe in the

early 1930s, in solving the one-dimensional(1D) Heisenberg spin chain model [Bet31]. After that,

a new breed of exactly solvable models have been extensively studied in 1D spin chain models

[Orb59, Wal59, dCP62, Gri64, YY66a, YY66b, YY66c]. Lieb and Liniger solved the 1D boson

delta function interaction problem [LL63] in 1963. Yang and Gaudin independently solved the 1D

fermion delta function interaction problem, by generalizing the Bethe ansatz [Gau67, Yan67] in

1967. The Calogero-Sutherland model and the Haldane Shatry-chain opened the door of fractional

quantum statistics in 1D system [Cal71, Hal88]. Those seminal works constitute the foundations

and incentives for the studies of 1D many-body physics. These advances in 1D systems were

reviewed in [CCG+11, GBL13].

In both many-body [Gro63, Gir60, Gir65, Hal81, DLO01] and few-body physics [Dod70,

McG64, GDB12a], the predictions suggest that quantum states in reduced dimensional systems

will show qualitatively different behavior from isotropic 3D systems in many nontrivial limits, e.g.

in the zero-temperature limit and in the thermodynamic limit.

However, for a long time, the realization and observation of reduced dimensional systems

were hampered by limits on existing experimental techniques. But the immense progress in laser

cooling and trapping techniques in ultracold atomic gases [GWO00] enabled the exploration of

reduced dimensional quantum systems. By adjusting the ratio(s) of trapping frequencies in dif-



77

ferent spatial directions (ωρ/ωz e.g.), the shape of an ultracold gas can be engineered and varied

continuously from a nearly isotropic 3D trapping geometry to a quasi-1D or quasi-2D geometry

[MSG+05a, GSM+05b, GVL+01]. Many experimental quasi-1D (Tonks-Girardeau gas [KWW04,

PWM+nt], super Tonks-Girardeau gas [HGM+09, KWW05], modification of three-body recom-

bination [TOH+04],) and quasi-2D [GBM+01, GVL+01, DRB+07, BSM+07, GZHCnt, SCE+12]

many-body quantum systems were realized and a number of theoretically-predicted novel behav-

iors were observed.

The major difference between the reduced dimensional systems (quasi-1D , quasi-2D) and

the pure low-dimensional systems are obviously the transverse dimensions. As a consequence,

the reduced dimensional systems can be tuned close to pure low-dimensional. While tuning the

trap geometry is a major knob, the temperatures and the short-range atomic potentials are also

important. However, the critical values of these parameters should be deduced by incorporating

the modified two-body scattering processes (by the trapping geometry and by the short-range

potentials) into the reduced dimensional many-body models.

In the perturbative interaction regime, the effective 1D coupling constant in the effective 1D

Hamiltonian is proportional to the the short-range interparticle scattering length in the s-wave

approximation. However, when some of the length scales in the system are approaching each other

in a quasi-1D (quasi-2D) systems, new resonant phenomena are expected. These resonances can

be viewed as intermediate steps of continuously adjusting the dimensionality of an ensemble of

quantum gas towards a pure 1D (or 2D) system. Thus, pure 1D and 2D models in general do not

cover this point. The confinement-induced resonance(CIR) is a generic phenomenon that emerges

from these quasi-1D (2D) systems.

From an experimental point of view, the CIR adds another way to manipulate low-dimensional

systems. From a theoretical point of view, the CIR shows how the the hierarchy of length scales

emerge from a competition between single particle dispersion relations and interparticle interactions.

Olshanii [Ols98] first stressed the concept of CIR in the context of two particles in an elongated

harmonic trap. Lieb [LSY03] gave a general discussion of the phases and thermal dynamics of bosons
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moving in a quasi-1D system, raising the concept of dimensional crossover. This concept has been

explored in ultracold quantum gases since then. In addition, cross-dimensional effects have been

observed [EM04, LCB+10] and theoretically studied [Nis10, GDB12a]. These phenomena in low-

dimensional systems have recently been reviewed by [MVR12, DMBO11, YOW08, BDZ08, Pos06].

Dunjko et.al [DMBO11] has reviewed developments related to CIR for a variety of systems.

The CIR is unique in the sense that the system exhibits the unitarity limit at a non-resonant value

of the 3D scattering parameters (i.e. the scattering length for s-wave, and the scattering volume

for p-wave).

The CIR in a harmonically transverse-confined quasi-1D system was predicted theoretically

by Olshanii [Ols98], and later was extended to fermions by Granger and Blume [GB04]. Using

realistic atomic interactions, the incoming wave in the z-direction will not only couple to the s-wave

(or p-wave for fermions) component of the interaction, but also to higher partial waves components.

Note that higher partial wave contributions to the CIR become increasingly important as the

scattering energy increases. To address this point, Giannakeas et.al [GDS12] recently developed a

method involving all partial waves, and pointed out a correction to the position of the s-wave CIR

that derives from the d -wave component.

In the treatment of s-wave scattering, Olshanii [Ols98] derived the exact wave function and

phase shift for a regularized zero range potential that are associated with low energy s-wave scat-

tering. This problem can also be treated using Green’s function methods. Implementation of an

eigenfunction expansion of the Green’s function for treating a bound state induced by a s-wave

zero-range potential was discussed in [BEKW98]. A similar eigenfunction expansion of Green’s

functions is embedded in Olshanii’s original work, although not explicitly emphasized. Later, a

systematic discussion of the Green’s function method and the corresponding Lippman-Schwinger

equation was presented in [MEGK04, NTMJ07]. Recently the Green’s function method was applied

to a s-wave zero-range interaction in asymmetric transverse harmonic confinement [ZZ11]. However

for higher partial waves, different mathematical models of the zero-range interaction [IC06, Der05]

are needed in the Olshanii treatment. In an alternative treatment, Granger and Blume [GB04] used
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the frame transformation method, in which the 3D phase shift information directly determines the

1D reaction matrix K. Thus the frame transformation approach avoids the need to design a zero-

range model potential for higher partial wave scattering, which has some conceptual advantages.

For example, a p-wave CIR was predicted, and later observed experimentally [dCDGC+06].

As the exeperimental techniques of laser trapping have grown in sophistication, various

confinement potentials beyond the harmonic trap have been realized, e.g. optical lattice traps

[HGM+09], uniform trap [GSG+13]. In these systems, a more general theory of CIR positions

beyond a harmonic trap is needed. Kim et. al gave a general description of a symmetric cylindrical

hard wall trap [KSS05] using a Green’s function method.

In this chapter, a systematic description is developed in order to understand the quasi-1D

scattering in arbitrary transverse confinement. The structure of this chapter is organized as follows:

(1) A brief introduction to the local frame transformation [Fan81] is presented, followed by

an introduction of numerical methods to solve the quasi-1D scattering problem we will employ in

the rest of this chapter.

(2) The general formalism of quasi-1D confinement induced resonances is presented, in which

we focus on solving the divergence problem occurring in the local frame transformation method.

(3) Example system 1: we consider the situation in which one light particle is scattered off

an infinitely massive particle located in the center of the confinement.

(4) Example system 2: we generalize the concept of CIR to a scenario in which a matter wave

interacts with lattice confined atoms, and we show that the system shares a common mathematical

structure as in quasi-1D CIR.

(5) A summary of this chapter.

Some of the following results are discussed in the publications [ZG13a, ZG13b].
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3.2 Methods

3.2.1 Local Frame Transformation

A physical system can often be divided into different regions in configurations space, where

the relevant scattering channels differ. In each region, different symmetries of the interactions and

the boundary conditions result in different sets of good quantum numbers.

Specifically, a quasi-1D system can be divided into two regions: r � a⊥ and |z| � a⊥, and

the characteristic length a⊥ of the transverse confinement is the relevant length scale to divide

this system’s configuration space (it is the oscillator length in the case of harmonic confinement,

and the box side length for the square well confinement), r is the distance from the scattering

center to the light particle, z is the distance in z-direction, which is the only asymptotic outgoing

direction. At large distance (|z| � L⊥) in any particular open channel (E =
~2k2

2µ
> Enx,ny

defines the term “open channel” with respect to its channel energy Enx,ny , in which (nx, ny) are

indices of the eigenstates (channels) in the transverse plane), the outgoing wave vector kz is an

asymptotically good quantum number. Thus the phase shift for each kz asymptotically approaches

to a constant. However, at very short range near the center of the confinement, where a scattering

event occurs, the interaction potential imposes its full 3D spherical symmetry. Fig. is an example

of the separation of length scales in a quasi-1D scattering process.

In order to connect the short-range scattering event and the large distance observables, we

need to project the scattering information near the spherically symmetric scattering center onto

the transverse channels yielding the quasi-1D scattering information in the z-direction. The deter-

mination of this projection is the starting point of the local frame transformation method.

The term “local” in this context was originally coined by Fano [Fan81] to distinguish this

method from the usual unitary class of frame transformations (FT) in [GJ85, JR98]. Unlike the

unitary frame transformation, local FTs are not unitary transformations. The two sets of eigen-

functions are actually solutions of the same Hamiltonian but with different boundary conditions.

The bottom line is that they satisfy two different PDEs (partial differential equations). Thus,
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the completeness of each set does not guarantee the transformation between them to be unitary,

because one defines this transformation on a fixed-energy shell.

Harmin have applied this method extensively in the static Stark effect, namely, half-scattering

of charged particles moving in external static EM field following an atomic photoionization event

[Har81, Har82c, Har82a, Har84, Har86]. Later, this method was extended and applied to sev-

eral scattering problems [Fan81, WRG88, Gre87], and in many cases it has resulted in excellent

agreement with experimental observations with higher efficiency than previous theories. Note that

whereas Zhao et al. [ZFDB12] claim to have identified a flaw in Fano’s technique for the transfor-

mation of the solution that is irregular at the origin, the present application is tested numerically

below and it exhibits no sign of any such discrepency.

Most of the early studies using local FT were applied in Stark or Zeeman effects, photo-

ionization, photo-detachment problems in atom/electrons moving in external field. In recent years,

interactions with a strong time-dependent laser field poses possible challenge to the local FT

method, both conceptually and numerically. Conceptually, the pulse frequency and pulse dura-

tion both sets relevant energy scale and length scale of the system. However, these scales does not

appear in spatial dimensions, the way they affect the matching point of the different regions may

need to be reconsidered. Numerically, the number of closed channels needed to reach a convergent

scattering amplitude in open channels might grow to a very large number or perhaps even diverge.

The local frame transformation is an approximation in treating scattering problems where

there are well separated length scales in the system. The exact symmetries of wavefunction in the

different regions of fields are not necessary, because the local FT only cares about the prevailing

symmetry in each region. However, it is not expected to work well in systems where all the char-

acteristic lengths are of the same order or magnitude. Unlike other adiabatic separation of degrees

of freedom, the local FT does not rely on the existence of one particular adiabatic coordinate.

In Fano’s FT theory of nonhydrogenic Stark effect [Fan81], the short-range part refer to the

non-hydrogenic core having spherical symmetry, the long-range refer to the region in parabolic
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coordinates η ∼ ∞. The transformation is from spherical to parabolic coordinates.

ξ = r + z = r(1 + cos θ), η = r − z = r(1− cos θ); (3.1)

The wave functions are defined as:

ψnm(F, ε; ξ, η, φ) = Nnεu1m(F, ε, βn; ξ)u2m(F, ε, 1− βn; η)e±imφ(2π)−1/2 (3.2)

Nnε are normalization constants of coordinate normalization, rather than the energy normalization

used elsewhere. u functions are the eigen functions for the two ordinary differential equation of ξ

and η, the βn and 1− βn are the corresponding quantum numbers, F is the external electric field.

Fano derived the FT theory from a K-matrix and Green’s function formulation.

Ψnm(F, ε; ξ, η, φ) = ψnm(F, ε; ξ, η, φ)+
∑
n′

∫ ∞
−∞

ψn′m(F, ε′; ξ, η, φ)
P

ε− ε′
N∗n′ε′ < n′ε′|K(so)

m (ε)|nε > Nnε

(3.3)

The second term of the above formula is often referred to as the irregular part of a scattering wave

function. In Fano’s theory, the irregular part was reinterpreted as two steps: (1) acting on the free

space solution sets by K-matrix; (2) acting on result from previous step the Coulomb-Stark Green’s

function.

G(CS)(r, r′) =
∑

n′,m

∫∞
−∞ dε

′ψn′m(F, ε′; ξ, η, φ)
P

ε− ε′
ψn′m(F, ε′; ξ′, η′, φ′)

= Trace(T (r)GT (r′))

(3.4)

in which Ts are operators. Green’s function in this case is tracing over quantum numbers. In

the above formula, the value of Green’s function is formulated as a trace in the quantum number

space. T operator corresponds to a vector in the quantum number space (m,n), and G operator is

a matrix in quantum number space.

Ψnm(F, ε; ξ, η, φ) = ψnm(F, ε; ξ, η, φ) +
∑

n′

∫ ∞
−∞

dε′ψn′m(F, ε′; ξ, η, φ)
P

ε− ε′
N∗n′ε′ < n′ε′|K(so)

m (ε)|nε > Nnε

(3.5)



83

in which W = N∗n′ε′ < n′ε′|K(so)
m (ε)|nε > Nnε. Fano argued that at η → ∞, ψnm oscillates so

rapidly as a function of ε′, so that its contribution vanishes except for ε′ ∼ ε. The TG part of the

operator in Green’s function reduced to:

G(CS)(r, r′) = π
∑
n′,m

χn′m(F, ε;χ, η, φ)ψn′m(F, ε;χ′, η′, φ′), η > η′, (3.6)

in which χ is 90 degree different than ψ. Thus the TG part in the scattering wave function is:

Ψnm(F, ε; ξ, η, φ) = ψnm(F, ε; ξ, η, φ) + π
∑

n′ χn′m(F, ε;χ, η, φ)N∗n′ε < n′ε′|K(so)
m (ε)|nε > Nnε

(3.7)

The K-matrix can also be derived in the spherical coordinate in the regime r →∞:

FF=0
l Ylm(θ, φ) = (f0

l (ε; r) + πg(ε; r)|Nlε|2 < lε|K(so)(ε)|lε >)Ylm(θ, φ), (3.8)

and it is diagonal in the spherical representation: < lε|K(so)(ε)|lε >= −π−1 tansl (ε)|Nlε|−2.

Transformation between the two coordinate sets will provide transformation of K-matrices.

ψnm(F, ε;χ, η, φ) = Nnε

∑
l

bnl(F, ε,m; r)Ylm(θ, φ) (3.9)

Up to this stage, the “local” approximation has not been applied yet. The two sets of eigenstates

do not obey the same PDE. Thus an arbitrary function, which obeys the full Hamiltonian, can

be expanded into both sets only within limited regime in space. This regime, intuitively, can be

defined by the regime that the two Hamiltonians are approximately the same, referred as “local”.

For example, for the case of nonhyrdogenic Stark effect:

bnl(F, ε,m; r) = alm(βn, ν)rl[1 +O(r)];

u1mu2m → (χη)m/2 = rm sinm θ as χ, η → 0;

f0
l (ε, r)→ rl as r → 0.

(3.10)

The “local” region refers to the common region of the above two. Fano’s arguments not only made

the idea of the frame transformation applicable, but also suggested the first order correction of this

idea.
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alm(βn, ν) = r−l
∫ 1
−1 d(cos θ) sin2m θPml (cos θ)F (−βnν +

1

2
(m+ 1),m+ 1,

r(1 + cos θ)

ν
)

F ((βn − 1)ν +
1

2
(m+ 1),m+ 1,

r(1− cos θ)

ν
).

(3.11)

The integration was not required over the whole space, but only over the angular degree of freedom.

This constraint makes the transformation mathematically valid. In Fano’s formulation, the χ and

ψ are referred to as solutions that have 90 degree phase shift with respect to each other. They are

later referred to as regular and irregular solutions. It is true that ψ is the regular solution because

it goes to 0 as r → 0. However, the definition of irregular might be ambiguous if only examining

the region r → 0. Fano’s original definition of χ is more appropriate in the context of local frame

transformation.

3.2.2 Eigenchannel R-matrix Method

The eigenchannel R-matrix approach is a variational method of solving the scattering phase

shifts or S-matrices. In stead of variationally calculating the energies of a bound state, this method

calculates the scattering phase shifts in different scattering channel(s) variationally [Gre83]. This

subsection follows conventions in Greene’s 1983 development in the context of atomic photoioniza-

tion in a strong magnetic field [Gre83].

The Ritz variational expression for the Schrodinger energy eigenvalue:

E =

∫
Ω
ψ∗
(
− 1

2m
∇2ψ + V ψ

)
dω∫

Ω
ψ∗ψdω

(3.12)

For a scattering problem, where we care about phase shift rather than the eigenenergy, boundary

conditions can be expressed as:

∂ψ

∂n
+ bψ = 0, (3.13)

where n refers to the normal unit vector of the reaction volume Ω, b is the negative of the logarithmic

derivative of the wave function on the boundary of the reaction volume. The reaction volume
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is defined as a volume outside which the interactions between the particle goes either zero or

asymptotic regime.

Thus, the Ritz variational expression for boundary conditions b is:

b =
E
∫

Ω ψ
∗ψdω − 1

2m

∫
Ω∇ψ

∗ · ∇ψdω −
∫

Ω ψ
∗V ψdω

1

2m

∫
Σ ψ
∗ψdσ

=
2m
∫

Ω ψ
∗(E − V )ψdω −

∫
Ω∇ψ

∗ · ∇ψdω∫
Σ ψ
∗ψdσ

(3.14)

If one chooses a trial basis function in the form of a linear combination of standard numerical basis

(Bspline in this thesis), the following equations arise: ψ =
∑

k ckyk.

b[ck] =

∑
kl

ckΓklcl∑
kl

ckΛklcl

Γkl =
∫

Ω (−∇yk · ∇yl + 2myk(E − V )yl) dω

Λkl =
∫

Σ ykyldσ

N =
∑

kl ckclΓkl, D =
∑

kl ckclΛkl

(3.15)

The variational principle for the scattering phase shift leads to the condition
δb

δck
= 0. These result

in a set of eigenvalue problem:

∂b

∂ck
=

∂N

∂ck
D − ∂D

∂ck
N

D[ck]2
= 0⇒ 1

N

∂N

∂ck
− 1

D

∂D

∂ck
= 0

(3.16)

∂N

∂ck
=
∑

l Γklcl;
∂D

∂ck
=
∑

l Λklcl;

∑
l Λklcl =

D

N

∑
l Γklcl =

1

b

∑
l Γklcl

(3.17)

Γc = bΛc (3.18)

If the scattering process has more than one open or weakly-closed channels, the boundary condition

b will be a diagonal matrix listing all the eigenchannel phase shifts.

The eigenchannel R-matrix approach is a numerically efficient method to solve a scattering

problem. One of the many reasons is that, the boundary of the reaction volume Ω can be chosen as
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small as several times the potential size, in a short-range potential scattering process. Compared

to a full diagonalization in solving eigenenergies, the R-matrix does not have the so-called “box

size” effect. Thus the box size in the scattering direction does not need to be as long as the spatial

extent of the scattering wave, but is only controlled by the range of the scattering potential.

The Γ and Λ matrix can be reordered into open and closed channel blocks as follows:Γcc Γco

Γoc Γoo


cc
co

 = b

Λcc Λco

Λoc Λoo


cc
co

 = b

0 0

0 Λoo


cc
co

 (3.19)

It breaks to two matrix equations:
Γcccc + Γcoco = 0 1©

Γoccc + Γooco = bΛooco 2©
(3.20)

1©⇒ cc = −Γ−1
cc Γcoco 3©

2©, 3©⇒ −ΓocΓ
−1
cc Γcoco + Γooco = bΛooco

(−ΓocΓ
−1
cc Γco + Γoo)co = bΛooco 5©

(3.21)

The eigenvalue problem of b is transformed from No+Nc dimensional into a simple No dimensional

problem. Nc is the number of closed channels, No is the number of open channels in the problem.

Although the No dimensional problem involves Γ−1
cc , this matrix inverse process can be re-

placed by a linear solver problem:

Γ−1
cc Γco = A⇒ Γco = ΓccA, (3.22)

in which A can be solved using a linear solver rather than calculating a full matrix inverse.
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By equating bz→R− and bz→R+ , we can find δ(k).

tan(δ(kz)) =
−kz
b
− tan(kzR)

1− kz
b

tan(kzR)

(Odd Parity)

tan(δ(kz)) =

b

kz
− tan(kzR)

1 +
b

kz
tan(kzR)

(Even Parity),

(3.23)

kz =
√

2×mass× (Energy − Threshold1) is the momentum above the given threshold.

3.2.3 B-Spline Basis

To solve both the channel functions and the scattering functions, a basis expansion method

is applied. In the numerical part of this chapter, B-spline basis functions are implemented to find

the solutions of model potentials.

In this subsection, a brief introduction of B-spline basis will be presented. After defining the

B-spline basis, the focus of this subsection is their advantages in solving the quasi-1D scattering

problem that occurs in this chapter. More details on B-spline basis and their applications can be

found in De Boor’s book [DB78]. An iterative B-spline algorithm is publicly available for computer

codes.

B-spline basis functions are a set of non-orthogonal piecewise polynomials spread in the region

of interest. The input of B-spline basis can be well controlled, by inputing the support points. The

number of basis functions, the highest order of the polynomials are also input. Each B-spline basis

function does not oscillate in sign. These properties make B-spline basis functions flexible with

respect to working regimes and numerically stable.

B-spline basis functions are defined in terms of polynomials of order k:

p(x) = a0 + a1x+ ...+ ak−1x
k−1 (3.24)



88

Each B-spline basis function and its derivatives Df , · · · , Dnf that are continuous on a given region

a < x < b are called class Cn. C0 means only f is continuous and C−1 means f is not continuous.

Consider an interval I = [a, b] divided into l subintervals Ij = [ξj , ξj+1] by a sequence of l+ 1

points ξj (Breakpoints) in a strict ascending order:

a = ξ1 < ξ2 < ... < ξl+1 = b. (3.25)

Knots are a squence ti, t1 ≤ t2 ≤ ... ≤ tm, µ is the multiplicity.

t1 = t2 = ... = tµ1 = ξ1;µ1 = k

tµ1+1 = ... = tµ1+µ2 = ξ2,

...

tp+1 = ... = tp+µi = ξi; p = µ1 + µ2 + ...+ µi−1

...

tn+1 = ... = tn+k = ξl+1;µl+1 = k;n = µ1 + ...+ µl

(3.26)

Different boundary conditions (zero value, zero derivative, open boundary) are handled by

fixing the two B-spline functions with nonzero function value or derivative on each boundary, or in

the case of open boundary conditions, not fixing them at all..

Expansion of wave function:

f =
n∑
i=1

ciBi (3.27)

In the B-spline code given by de Boor, the function as is denoted bvalue(t,bcoef,n,k,x,jderiv).

bcoef: b coefficient sequence, length n.

djf

dx
=
∑
i

bcoef(i, j) ∗ b(i, k − j, t) (3.28)

where

bcoef(i, j) =


bcoef(i, 0) j = 0

bcoef(i, j − 1)− bcoef(i− 1, j − 1)

ti+k−j − ti
∗ (k − j) j > 0

(3.29)
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B1
i = 1 ti ≤ x < ti+1

B1
i = 0 other wise

(3.30)

For k > 1, Property of B-spline basis:

Bk
i (x) =

x− ti
ti+k−1 − ti

Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x) (3.31)

DBk
i (x) =

k − 1

ti+k−1 − ti
Bk−1
i (x)− k − 1

ti+k − ti+1
Bk−1
i+1 (x) (3.32)

Since B-spline basis functions are highly localized, the region of numerical integrations are

limited to several nearby basis rather than any pair of basis functions. This property results in

several numerical advantages of B-splines:

(1) Both the Hamiltonian and the overlap matrices in solving for the bound state energies

are banded: HC = EOC.

(2) Both the Γ and Λ matrices in solving for the phase shift are banded too.

(3) Multi-dimensional system can be solved by using a direct product of several 1D B-spline

basis sets, which results in even more sparse banded matrix. Because of its sparsity, this banded

matrix eigenvalue problem is suitable for sparse solvers.

Banded matrix storage can minimize computational needs for memory. Algorithms are also

developed particularly for banded matrices, which are faster than dense matrix algorithms. More-

over, numerical linear dependence in the overlap matrix is in general weaker than that from dense

matrices occur with a correlated Gaussian basis.

3.3 Confinement Induced Resonances in General Transverse Confinement

In this section, both the eigenfunction expansion and the frame transformation method are

employed to solve for the quasi-1D scattering amplitude, in the presence of generic transverse

confinements. Then two example systems are discussed and compared.
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3.3.1 General Formalism

The quasi-1D Hamiltonian is:

H = − ~2

2µ
(
∂2

∂x2
+

∂2

∂y2
) + Vtrap(x, y)− ~2

2µ

∂2

∂z2
+ V (r). (3.33)

For an s-wave short-range interaction:

H = − ~2

2µ
(
∂2

∂x2
+

∂2

∂y2
) + Vtrap(x, y)− ~2

2µ

∂2

∂z2
+

2πasc~2

µ
δ(r)

∂

∂r
(r×), (3.34)

The trapping potential Vtrap determines the threshold and the characteristic length scale of the

confinement a⊥. We will see later in the comparison between the eigenfunction expansion method

and the frame transformation method, the short-range interaction form is only required in the

former one.

3.3.1.1 Eigenfunction Expansion Method

In the following, we first reformulate Olshanii’s 1998 paper into a general scattering problem

with a transverse confinement that fit into the goal of this chapter. The effective 1D Hamiltonian

H1D, coupling constant g1D, quasi-1D scattering amplitude f1D, effective 1D transmission coeffi-

cient T1D and scattering phase shift tan(φ1D) are derived using the eigenfunction expansion method.

The pole(s) of the effective 1D coupling constant give the location(s) of CIR in the corresponding

quasi-1D system.

In the following, a one-open-channel scattering problem is considered first for simplicity.

Then a trivial generalization to multi-open-channel scattering is presented.

The asymptotic wave function for a one-open-channel quasi-1D scattering problem has the

general form:

Φ = φ00(x, y)(eikz + f00e
ik|z|) +

∑
i∈closed

fiφi(x, y)e−ki|z|, (3.35)

in which (0, 0) refers to the energetically lowest channel, i refers to channels with quantum numbers

(ix, iy).
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By applying Hamiltonian operator on the proposed form of the wave function HΦ = EΨ, fi

can be calculated.

(Hxy +Hz + V )Φ = E00φ00(x, y)(eikz + f00e
ik|z|) +

∑
i∈closed fiEiφi(x, y)e−ki|z|

+
~2k2

2µ
φ00(eikz + f00e

ik|z|)− ~2

2µ
2ikδ(z)φ00f00e

ik|z|

+
∑

i∈closed−
~2k2

i

2µ
fiφie

−ki|z| +
~2

2µ
2kifiδ(z)φie

−ki|z| + V Φ,

(3.36)

in which Hxy contains the kinetic energy operator in the xy-plane and trapping potential in the

xy-plane. Hz is usually the kinetic energy operator in the z-direction, since here we only consider

transverse trap. The regular terms (terms without δ function or η function) cancel, the remaining

terms are:

V Φ− ~2

2µ
2ikδ(z)φ00(x, y)f00e

ik|z| +
~2

2µ

∑
i 2kifiδ(z)φi(x, y)e−ki|z| = 0

V Φ =
2π~2asc

µ
δ3(r)

∂

∂r
(rΦ)

(3.37)

After integrating over the xy degrees of freedom in Eqn. 3.37, we obtain a set algebraic equations

of fs. For the open channel:∫
dxdyφ00(x, y)V Φ− ~2

2µ
2ikδ(z)N2

00f00e
ik|z| = 0

⇒ φ00(0, 0)
2π~2asc

µ
δ(z)

∂

∂r
(rΦ)

∣∣∣∣
x=0,y=0

− ~2

2µ
2ikδ(z)N2

00f00e
ik|z| = 0

⇒ f00 =
1

2ikN2
00

φ00(0, 0)4πascη; η =
∂

∂r
(rΦ)

∣∣∣∣
x=0,y=0,z=0

(3.38)
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For the closed channels:∫
dxdyφi(x, y)V Φ +

~2

2µ
2kiδ(z)fiN

2
i e
−ki|z| = 0

⇒ φi(0, 0)
2π~2asc

µ
δ(z)

∂

∂r
(rΦ)

∣∣∣∣
x=0,y=0

+
~2

2µ
2kiδ(z)fiN

2
i e
−ki|z| = 0

⇒ fi = − 1

2kiN2
i

φi(0, 0)4πascη

(3.39)

The wave function is thus determined:

Φ(x = 0, y = 0, z) = φ00(0, 0)(eikz +
1

2ikN2
00

φ00(0, 0)4πascηe
ik|z|)−

∑
i

1

2kiN2
i

φ2
i (0, 0)4πascηe

−ki|z|

(3.40)

The value of η is determined self-consistently from the wave function:

η =
∂

∂z
(zΦ(0, 0, z)) = φ00(0, 0)(1 +

1

2ikN2
00

φ00(0, 0)4πascη)−
∑

i

1

2kiN2
i

φ2
i (0, 0)4πascη

η(1− φ00(0, 0)24πasc
2ikN2

00

+ 4πasc
∑

i

1

2kiN2
i

φ2
i (0, 0)) = φ00(0, 0)

⇒ η =
φ00(0, 0)

(1− φ00(0, 0)24πasc
2ikN2

00

+ 4πasc
∑

i

1

2kiN2
i

φ2
i (0, 0))

⇒ f00 =
φ00(0, 0)4πasc

2ikN2
00

φ00(0, 0)

(1− φ00(0, 0)24πasc
2ikN2

00

+ 4πasc
∑

i

1

2kiN2
i

φ2
i (0, 0))

⇒ t00 = 1 + f00 =

1 + 4πasc
∑

i

1

2kiN2
i

φ2
i (0, 0)

(1− φ00(0, 0)24πasc
2ikN2

00

+ 4πasc
∑

i

1

2kiN2
i

φ2
i (0, 0))

⇒ g1D =
f00

f00 + 1

2~2ik

2µ
, tanφ00 = −g1D

k

µ

~2

(3.41)

After simplifying the normalization coefficients Ni and transverse wave functions φi(0, 0), a much
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simpler form of the transmission t00 can be derived as a dimensionless function of
asc
a⊥

and ka⊥:

1 + f00 =
1 +

asc
a⊥

Λ̃(ε)

1− asc
a⊥

1

a⊥ik
+
asc
a⊥

Λ̃(ε)
. (3.42)

Poles of denominator of t00 corresponds to 1 +
asc
a⊥

Λ̃ = 0. The function Λ̃ refer to summation over

all the closed channel (i) contribution to η, weighted by the momentum above threshold ki. In the

formula of g1D we have to emphasis that g1D can be only described using a single number when

there is only one open channel. In cases where more than one channels are open, g1D is in general

an interaction matrix. In the perturbative limit, g1D is proportional to the K-matrix.

For completeness, the eigenfunction method can also be used to solve for the bound state

energies and the multi-open-channel scattering amplitudes or S-matrices.

For the bound state problem:

1 = − ∂

∂z

(
z2πasc

∑
i φ

2
i (x = 0, y = 0)

1

N2
i

e−ki|z|

ki

)∣∣∣∣∣
z→0+

. (3.43)

For multi-open-channel scattering problem, if the incoming wave has only (0, 0) component, but

the outgoing waves have all the energetically allowed components:

fi = s0,0

2π

a⊥iqi

asc
a⊥

1 +
asc
a⊥

Λ(ε)− asc
a⊥

∑
i′

2π

a⊥iqi′

, (3.44)

in which i denotes the two-dimensional quantum number that labels the scattering channel (ix, iy),

qi refers to the magnitude of momentum above each threshold Ei, qi =
√

2µ(E − Ei), i′ in the

summation denotes the open channel indices.

3.3.1.2 Frame Transformation Method

Unlike the eigenfunction expansion method for computing the asymptotic eigenstates for the

quasi-1D Hamiltonian, the frame transformation method directly calculates poles of the quasi-1D

reaction matrix K1D,Phys from the 3D reaction matrix K3D, as discussed in the first section of this

chapter. We will first present how the transformation from K3D to K1D comes up in matching
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the wave functions in the “local” region, where the full solutions of the scattering problem can be

expanded in both Hamiltonians approximately in the context of quasi-1D scattering in a waveguide.

Subsequently, we will show how the closed channel elimination poses a constraint on the quasi-1D

reaction matrix K1D to give a physically convergent solution in the asymptotic regime z → ±∞.

The eigenfunctions at short distance rc � r � a⊥ can be represented as linear combinations

of non-interacting channel functions:

Ψlmε(r) =
∑
l′m′

Fl′m′εδl,l′δm,m′ −Gl′m′εK3D
l′m′,lm(ε), (3.45)

where the reaction matrix K3D encapsulates all the information about the short-range scattering

caused by the potential, l is the orbital angular momentum quantum number, m is the orbital

magnetic quantum number. F and G are the energy-normalized regular and irregular solutions in

spherical coordinates for a given scattering energy ε:
Flmε(r) = Ylm(r̂)flε(r) f =

√
2k

π
jl(kr)

Glmε(r) = Ylm(r̂)glε(r) g =

√
2k

π
nl(kr),

(3.46)

f and g are the energy-normalized spherical Bessel functions, f is regular at r → 0, g is irregular at

r → 0, and they oscillate as r →∞ with a π/2 difference in phase. The z-parity quantum number

of the solutions is (−1)l−m, which is important to keep in mind, since later the 3D solutions will

be projected onto outgoing waves in the z-direction.

The 2D isotropic harmonic confinement is a special case, in which the m quantum number is

conserved in both the spherical and cylindrical symmetries, so there is no need to explicitly specify

m [GB04]. However, for a 2D transverse trap in general, all l− and m−values might be coupled.

In the unitary limit, of course, with short-range interactions, the lowest one or two partial waves

for each symmetry are expected to dominate the scattering observables.
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The regular ψ and irregular χ eigenfunctions at large distances a⊥ � |z| are:

ψnx,ny ,q(r) = φnx,ny(x, y)(πq)−
1
2


cos(qz), πz = +1

sin(qz), πz = −1

χnx,ny ,q(r) = φnx,ny(x, y)(πq)−
1
2


sin(q|z|), πz = +1

−sign(z) cos(qz), πz = −1

(3.47)

where nx, ny are quantum numbers in the transverse plane. For example, in the square well cross

section case, the eigenstates in the transverse plane for the even parity, of immediate interest here,

are 2
L cos( (2nx+1)π

L x) cos(
(2ny+1)π

L y). The confinement in the x− y plane forces the scattered waves

to be asymptotically directed along either the positive or negative z-axis.

The evolution of the spherical wave function near the scattering center (rc ≤ r � a⊥) into an

asymptotic wave function at |z| � a⊥ on the fixed energy shell ε can be accomplished by projecting

the eigenfunctions near the scattering center onto the eigenfunctions relevant in the asymptotic

region:

ψnx,ny ,qnx,ny (r) =
∑

l,m Unx,ny ,qnx,ny ;l,m,εFlmε(r),

χnx,ny ,qnx,ny (r) =
∑

l,m (U−1)T nx,ny ,qnx,ny ;l,m,εGlmε(r),

(3.48)

U is the transformation matrix between the two sets of eigenstates, and the U matrix is energy

dependent, since the expansion is performed on an energy shell. The value of U -matrix elements,

as discussed in the last section, can be obtained by expanding the solution as a function of r. In the

following, we refer U as the first term in the expansion defined by Fano in his 1981 paper [Fan81].

The summation includes only solutions of the same z-parity. Two examples of U are shown in the

following section.

In the transformation of the “irregular” solution sets, the inverse of U -matrix is needed.

However, since the transformation is not unitary and have infinite dimension in principle, the

inverse of U -matrix may not have a legitimate definition by itself. Nevertheless, as will show below,

only the transformation of the regular solution sets is needed.
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The closed channel elimination can give a physical quasi-1D solution after eliminating the di-

vergent terms from closed channels. In the following, the closed channel elimination is demonstrated

in a quasi-1D scattering context.

The asymptotic wave function can be represented as a matrix notation:

Ψ = F −GK3D

=

(
Ψlm,l′m′

)
=

(
Flmδlm,l′m′

)
+

(
Flm

∑
la,ma δlm,lamaKlama,l′m′

)
.

(3.49)

Assume we have N channels, Nc of them are closed and No of them are open. The closed

channels needs to be fixed by closed channel elimination, otherwise there would be exponential

divergence in |z| → ∞. A wave function which respects the boundary conditions can be written as:

Ψi =
∑

j∈o ψj(x, y)[fj(z)δij − gj(z)K1D
ij ] +

∑
j∈c ψj(x, y)[fj(z)δij − gj(z)K1D

ij ]

Ψ = f − gK =

fo 0

0 fc

−
go 0

0 gc


Koo Koc

Kco Kcc

 =

fo − goKoo −goKoc

−gcKco fc − gcKcc


(3.50)

The physical solutions are pulled out from the full set of linear independent solutions of the system:

Ψphys = Ψ

Aoo
Aco

 =

 (fo − goKoo)Aoo − goKocAco

−gcKcoAoo + (fc − gcKcc)Aco

 . (3.51)

The part corresponds to closed channels is −gcKcoAoo + (fc − gcKcc)Aco. In this part, we need to

eliminate those having exp(k|z|) divergence. f and g rely on the definition of regular and irregular

functions and parities. So we follow the definition in the last page, and we give a general derivation

in the following. For regular closed channel functions, the exp(k|z|)’s coefficient is wc+, and for

irregular closed channel function, the exp(k|z|)’s coefficient is vc+, + refers to exp(k|z|) divergence,

c refers to closed channels.

Closed channel elimination requires:

−v+KcoAoo + (wc+ − vc+Kcc)Aco = 0⇒ Aco = (wc+ − vc+Kcc)
−1vc+KcoAoo. (3.52)

For Πz = 1, wc+ = 1, vc+ = i; for Πz = −1, wc+ = i, vc+ = −1. This imposes even more restriction
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on the open part of the physical wave function, resulting in:

Φ ∼ fo − go(Koo + iKoc(1− iKcc)
−1Kco). (3.53)

Thus the relation between K1D,Phys and the bare reaction matrix K1D is:

K1D,Phys = K1D
oo + iK1D

oc (1− iK1D
cc )−1K1D

co (3.54)

The pole of the physical quasi-1D reaction matrix K1D,Phys predicts the positions of the so called

confinement induced resonance (CIR). Since K1D
oc , K1D

co , K1D
oo are all non diverging functions of

energy, the only poles of the physical reaction matrix come from the zeros of 1 − iK1D
cc . Hence,

comes the mathematical requirement for CIR:

Det[1− iKcc(ε)] = 0. (3.55)

Kcc is a function of both the energy and the scattering information from the short-range scattering

center (asc for zero-range s-wave scattering e.g.).

In addition to all the general properties mentioned above concerning quasi-1D scattering,

the properties of the short-range potential can in some cases allow a further simplification of the

problem. If K3D is block-diagonal and only one angular momentum partial wave dominates the

3D scattering phase shift, a good approximation to the K matrix is K3D
lm,l′m′ = δl,l′δm,m′ tan δl,

K1D,Phys
oo (E) = K1D

oo [1−iλc(E)]−1, where λc = TrK1D
cc = tan δl

∑
closed channels(Unx,ny ,qnx,ny ;l,m,ε)

2

[GB04]. Under this single partial wave approximation, each pole of the physical K1D,Phys is deter-

mined by the vanishing of 1− iλc(E).

In general, the summation of squared transformation matrix elements can be expressed as

a summation over all closed channel quantum numbers (nx, ny as mentioned above) in the 2D

confinement portion of Hilbert space. Under the single partial wave approximation,

λc = tan δl

′∑
(Unx,ny ,q;l,m,ε)

2

= tan δl

′∑ 1

ka⊥
(εnx,ny − ε)

1
2 ,

(3.56)
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in which a⊥ is one characteristic length of the transverse confinement, εnx,ny is the threshold energy

divided by the characteristic energy in the system (usually associtated with the characteristic

length), ε is the total energy divided the same characteristic energy,
′∑

indicates the summation

over all (nx, ny) ∈ closed channels.

3.3.2 Confinement Induced Resonances in Cylindrical Harmonic Confinement

The purpose of this subsection is to demonstrate the frame transformation theory in the

simplest case, and to compare the outcome of this general formalism to existing results. Another

important purpose is to demonstrate how the divergence in the summation of closed channels U -

matrix elements come up, and how the regularization in this case is handled by the well known

Hurwitz zeta function. The next two chapters following the general formalism, but the regulariza-

tions of the divergence are handled differently.

Fig. 3.1 is a sketch of a quasi-1D system with azimuthal symmetry. As is discussed in the

general formalism of the local frame transformation theory, the region where the local FT is applied

is rc � r � a⊥. In this case, at the radius r we do the frame transformation, the energy normalized

even parity channel function in 2D geometry is:

ψHn,m,q(r) = (2π)−
1
2 eimφJm(

√
k2 − q2ρ)(πq)−

1
2 cos(qz), (3.57)

Eigenfunction in Eqn. 3.57 is not solution of a harmonically confined 2D particle. However, in the

region where local FT is applied, the transformation does not care about this issue at least in the

first order of r. The method to approximate Hermite polynomial solution by a Bessel J function is

already used in the context of Stark effect in magnetic field [Gre87]. The essence of the local FT is

to find the appropriate region within which two solution sets can expand the same function. Thus

within this region, the expansion and the reaction matrix should be insensitive to the boundary

conditions in either xy-plane or r. The harmonic trap term will matter in a higher order expansion

of the transformation as a function of r.
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Figure 3.1: A sketch of a quasi-1D system with azimuthal symmetry. In addition, the separation
of length scales in the system is also demonstrated.
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The energy normalized spherical wave function is:

Flm,k(r) = Ylm(θ, φ)

√
2k

π
jl(kr) (3.58)

The U -matrix elements we use are the special case for m = 0, l = 0. For the angle part of

the integration, formula 7.333 in [GR94] is applied.

Un,m=0,q;l=0,m=0,ε =

∫
dΩY00(r̂)ψHn,m,q(r)

j0(kr)
√

2k/π
=

√
1

ka⊥

(
k2

2~ω⊥
− (2n+ 1)

)− 1
4

. (3.59)

Interestingly, this expansion can also be understood as the transformation between the spherical

and cylindrical expansion of a plane wave eik·r.

In the treatments of this quantity λc(E) in 2D isotropic harmonic confinement [GB04,

GDS12], its expression takes one of the following forms as an infinite summation:

λl=1
c =

Vp
a3
⊥

∞∑
n=1

√
n+

3

2
− ε (p-wave)

λl=0
c =

as
a⊥

∞∑
n=1

1√
n+

3

2
− ε

(s-wave),

(3.60)

in which as is the energy dependent s-wave scattering length, Vp is the energy dependent p-wave

scattering volume, a⊥ is the characteristic length of the transverse trap, in the case of 2D isotropic

harmonic trap, a⊥ = aho =
√
~/µω. Moreover, in the s-wave case, Olshanii [Ols98] encountered

this same summation of squared transformation matrix elements, which is clearly divergent. A

regularization method is developed in the following paragraphs, motivated by other analyses that

have regularized different types of zeta functions in various contexts.

The relevant special function for the 2D isotropic harmonic oscillator confinement is the

Hurwitz zeta function. Observe that in the definition of the Hurwitz zeta function:

ζH(s, q) =

∞∑
n=0

1

(q + n)s
, (s > 1) (3.61)

the same functional form is present in the region s ∈ (1,∞) where the series is convergent. So the

analytical continuation of the Hurwitz zeta function from s ∈ (1,∞) to s ∈ (−∞, 1] can potentially



101

regularize the divergent summation and yield a physically relevant value. A similar spirit has been

implemented in the calculation of the Casmir force between two infinitely large planes and between

other shapes of conductors [PMG86, MSSvS03]. The extensive work on the Hurwitz zeta function

in the mathematics community suggests a way to develop the regularization in general. For the

present quasi-1D scattering system, we implement a regularization procedure that has been utilized

in the mathematics community. The summation can be viewed as the following limit process:

ΛH(ξ, ε) =
∂

∂ξ

(
ξ
∞∑
n=0

exp(−ξ
√
n+ 1 + ε)√

n+ 1 + ε

)∣∣∣∣∣
ξ→0

. (3.62)

This summation is not uniformly convergent, which means that interchanging the order of taking

the limit ξ → 0 and summing over all terms might not be justified. For any finite ξ, the convergence

of the summation is guaranteed by the exponential suppression at large n. For ξ = 0, however,

the summation assumes the same form encountered in the l = 0 case. The divergence in the local

frame transformation approach can be viewed as having originated in an unjustifiable interchange

of the order of these two operations.

Olshanii et.al [Ols98, DMBO11] encountered the same divergence problem while solving

for the scattering amplitude in the open channel. They treated the divergence as follows. The

summation in Eq. 3.62 can be expanded as a power series in ξ (where ξ = z
L⊥

) near the energy of

the lowest threshold, giving:

ΛH(ξ, ε) = F (ξ) + Λ̃H(ξ, ε). (3.63)

Here F is the integral approximation of the summation right at threshold, F (ξ) =
∫∞

0 dν exp(−ξ
√
ν)√

ν
=

2
ξ =

∑∞
s=1

∫ s
s−1 dν

exp(−x
√
ν)√

ν
, which exhibits the divergence with respect to ξ. Λ̃H is the regular,

physically relevant part of ΛH . At an arbitrary scattering energy, the integration approximation

becomes
∫ N

1 dν exp(−ξ
√
ν+ε)√

ν+ε
= 2

ξ (exp(−ξ
√

1 + ε)−exp(−ξ
√
N + ε)). Thus the summation in Eq.3.62
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can be cast as:

ΛH(ξ, ε) =
2

ξ
+ Λ̃H(ξ, ε)

=
2

ξ
− 2

ξ
+ 2

exp(−ξ
√

1 + ε)

ξ
+ limN→∞(−2

ξ
(exp(−ξ

√
1 + ε)− exp(−ξ

√
N + ε)) +

∑N
n=1

exp(−ξ
√
n+ ε)√

n+ ε
)

=
L−1(ε)

ξ
+ Λ̃H(ξ → 0+, ε) + terms that vanish at ξ = 0,

(3.64)

in which:

Λ̃H(ξ → 0+, ε) = lim
N→∞

N∑
n=1

1√
n+ ε

− 2
√
N + ε. (3.65)

The present study applies a more general concept to the divergent summation that has been de-

veloped in the mathematics community. Our treatment does not rely on the s-wave nature of the

scattering, and can be directly deduced from the frame transformation result. The following illus-

tration of our method is developed specifically for the square transverse trap geometry with hard

walls, because there are two quantum numbers in a general separable 2D confinement, and the 2D

square well trap is a more general example with quite different characteristics than geometries for

which this type of analysis has previously been worked out. In addition, we show that the isotropic

2D harmonic oscillator geometry (ωx = ωy = ωρ) is a special case in our treatment.

We benchmark the regularization method in two different ways:

(1) Compare with the mathematical definition of the Hurwitz zeta function, as is shown in

the regularization formula Eqn. 3.65.

(2) Compare with the scattering calculations and bound state calculations as have been done

in much previous work [GB04, DLO01].

To test our proposed regularization method, we have first applied it to the Hurwitz zeta

function summation. This test has verified that it gives the same numerical value for every tested

value of q and s in agreement with other definitions [AS64, GR94] of the Hurwitz zeta function,

analytically continued into the region s ∈ (−∞, 1].
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Figure 3.2: A sketch of a quasi-1D system with a square well transverse confinement. In addition,
the separation of length scales in the system is also demonstrated.

Both of the comparisons show that our general regularization formalism is working for cylin-

drically symmetric confinement, which encourages us to apply it to more general confinements.

3.3.3 Confinement Induced Resonances in Square Well Transverse Confinement

In this subsection, we apply the local frame transformation theory to a quasi-1D system with a

square well transverse confinement. The focus of this subsection is to demonstrate the regularization

of closed channel contributions from a general 2D transverse confinement. The regularization result

is then compared to a numerical study of quasi-1D scattering in the single-open-channel scenario.

Fig. 3.2 is a sketch of a quasi-1D system with a square well transverse confinement. In this

case, at radius r where the frame transformation is performed, the energy normalized even parity

channel function is:

ψnx,ny ,q =
2

L⊥
cos(

(2nx + 1)πx

L⊥
) cos(

(2ny + 1)πy

L⊥
)(πq)−

1
2 cos(qz) (3.66)
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We use the spherical expansion of a plane wave to get the U -matrix elements:

exp(ik · r) =
∑

lm i
l4πY ∗lm(k̂)Ylm(r̂)jl(kr),

cos(kxx) cos(kyy) cos(qz)

=
1

8
(eikxx+ikyy+iqz + eikxx−ikyy+iqz + eikxx+ikyy−iqz + eikxx−ikyy−iqz

+e−ikxx+ikyy+iqz + e−ikxx−ikyy+iqz + e−ikxx−ikyy−iqz + e−ikxx+ikyy−iqz)

=
1

8

∑
j e

ikj ·r

(3.67)

The energy normalization delta function δ(E −E′) comes into the following integration as well, so

the on-shell U -matrix elements can be obtained by dividing out the delta function.

Unx,ny ,q;l=0,m=0,ε =

∫
dΩY00(r̂)ψnx,ny ,q(r)

j0(kr)
√

2k/π
=

1

4L⊥

∑
j

∫
dΩY00(r̂)(r)eikj ·r

j0(kr)
√

2k/π

=
2

L⊥

√
1

2πkqnx,ny
=

√
4

kL⊥

(
k2L2

⊥
4π2

− (nx +
1

2
)2 − (ny +

1

2
)2

)− 1
4

(3.68)

The summation of squared U -matrix elements for the 2D square confinement geometry is:

(nx,ny)6=(0,0)∑
nx,ny≥0

1√
(nx +

1

2
)2 + (ny +

1

2
)2 − ε

. (3.69)

This sum, which must be evaluated before differentiation, takes the following form:

ΛE(ξ, ε) =
∂

∂ξ

ξ ′∑ exp(−ξ
√

(nx +
1

2
)2 + (ny +

1

2
)2 − ε)√

(nx +
1

2
)2 + (ny +

1

2
)2 − ε


∣∣∣∣∣∣∣∣
ξ→0+

=
1

4

∂

∂ξ

ξ ∑
nx,ny

exp(−ξ
√

(nx +
1

2
)2 + (ny +

1

2
)2 + ε)√

(nx +
1

2
)2 + (ny +

1

2
)2 + ε


∣∣∣∣∣∣∣∣
ξ→0+

−
exp(−ξ

√
1
2 − ε)√

1
2 − ε

.

(3.70)

The summation

′∑
is over all closed-channel quantum numbers in one quarter of the 2D (nx, ny)

plane.
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The number of points in one ring 1
2(2n− 1)2 < |n + (1

2 ,
1
2)|2 ≤ 1

2(2n+ 1)2 can be understood

as the density of states in the quantum number space, n = (nx, ny). The summation over all the

quantum numbers can be approximated by an integral over the density of states in the 2D quantum

number space, and this approximation can be used to separate out the nature of the infinite sum

singularity. The integral can be evaluated by changing to the polar plane:

∫ ∞
−∞

∫ ∞
−∞

dnxdny
exp(−ξ

√
(nx + 1

2)2 + (ny + 1
2)2 − ε)√

(nx + 1
2)2 + (ny + 1

2)2 − ε

= lim
N→∞

∫ (2N+1)
√
2

2

√
2

2

2πrdr
exp(−ξ

√
r2 − ε)√

r2 − ε
= lim

N→∞

N∑
n=1

∫ (2n+1)
√

2/2

(2n−1)
√

2/2
2πrdr

exp(−ξ
√
r2 − ε)√

r2 − ε

= lim
N→∞

2π

ξ
(exp(−ξ

√
1

2
− ε)− exp(−ξ

√
(2N + 1)2

2
− ε))

(3.71)

By using the series expansion of ΛE in terms of ξ, which has the same spirit of Eq. 3.64, we have:

4ΛE(ξ, ε) =
2π

ξ
+ (−2π

ξ
+

2π

ξ
exp(−ξ

√
1
2 − ε)) + lim

N→∞

[
(−2π

ξ
(e
−ξ

√
1
2
−ε − eξ

√
(2N+1)2

2
−ε)).

+

N∑
n=1

∑
1
2
<|n+( 1

2
, 1
2

)|2≤ (2n+1)2

2

exp(−ξ
√

(nx + 1
2)2 + (ny + 1

2)2 − ε)√
(nx + 1

2)2 + (ny + 1
2)2 − ε

)



(3.72)

The terms inside the limiting process lim
N→∞

can be rearranged as two parts, one of which is constant

as ξ → 0, while the other vanishes as ξ → 0.

4ΛE(ξ, ε) =
2π

ξ
+ 4Λ̃E(ξ → 0+, ε) + terms vanish at ξ → 0+ (3.73)

At this point, the form of the ΛE function resembles that of the ΛH function which arises for the

harmonic oscillator trap. The corresponding residual part is the regularized summation:

4Λ̃E(ξ → 0+, ε) =
∑N

n=1

∑
1
2
<|n+( 1

2
, 1
2

)|2≤ (2n+1)2

2

1√
(nx +

1

2
)2 + (ny +

1

2
)2 − ε

− 2π

√
(2N + 1)2

2
− ε.

(3.74)
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The ring region in {nx, ny} is demonstrated in Fig. 3.3. The definition of the term Λ̃E(ξ → 0+, ε =

0) is unique, because if one adds a term proportional to ξ, it will vanish as ξ → 0+, while the other

term 2π/ξ is the integral approximation to the summation at the threshold energy (ε = 1
2 in this

case), which also has a unique definition. For 2D harmonic confinement, by the way of contrast,

the summation over magnetic quantum numbers is trivially carried out due to the symmetry of

that problem. This analysis calculates the position of the CIR in this geometry to be:

as(ε)

L⊥
=

1

4ΛE(ξ → 0, ε)
. (3.75)

ΛE(ξ → 0, ε) turns out to be a special case of the Epstein zeta function [Eli94] (chapter 1, section

2.2, also briefly discussed below in the Appendix), as(ε) is the energy dependent 3D scattering

length. Many applications of the Epstein zeta function in physics are summarized in [KW10],

including its application in the zeta regularization method of high energy physics [Eli12, Haw77].

The generalized form of the Epstein zeta function [Eli94] in the first chapter is:

Z

−→g−→
h


ε

(s)φ = Z

g1 · · · gp

h1 · · · hp


ε

(s)φ =
∑∞

m1,··· ,mp=−∞
′[ψ(−→m +−→g ) + ε]−s/2e2πi(−→m,

−→
h ), (3.76)

in which p is a positive integer, −→g and
−→
h are p-dimensional real vectors, gi, hi ∈ R, −→m is a p-

dimensional integer vector, mi ∈ Z . φ(x) is quadratic form of vector x, φ(x) =
∑p

µ,ν cµνxµxν ,

in which c is p × p non-singlular symmetric matrix associated with ψ. The salar product of p-

dimensional vectors (−→g ,
−→
h ) =

∑p
ν=1 gνhν . ε is the “inhomogeneity” of the generalized Epstein zeta

function. The type of inhomogenous Epstein zeta function we use in this paper is the special case

when s = 1, p = 2, −→g = (−1
2 ,−

1
2),
−→
h = 0, namely:

Z

−1
2 −1

2

0 0


ε

(1
2)φ =

∑∞
m1,m2=−∞

′((m1 + 1
2)2 + (m2 + 1

2)2 + ε)−
1
2 , (3.77)

in which φ(x) =
∑2

µ=1 x
2
µ in our case.

Our predicted position of the CIR can be tested further by performing a variational R-matrix

scattering calculation for the square well 2D trap system using a set of B-spline basis functions.
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Figure 3.3: Plot of quantum numbers n = (nx, ny) that are summed over in the 2D integer plane,
shown as smaller circles (pink online). The ring region is defined by the range (2n − 1)2/2 ≤
|n + (1

2 ,
1
2)|2 ≤ (2n+1)2

2 , with n = 3. The large point (blue online) is at (−1
2 ,−

1
2).
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The CIR position for a zero-range 3D interaction is extracted by taking its limiting value from

finite range model potential calculations. Moreover, the leading finite range correction to the CIR

position is also extrapolated and compared with the prediction of effective range theory, in which

the scattering length and the effective range of a finite range model potential is defined in terms of

small energy expansion of the s-wave scattering phase shift − 1

as(E)
= − 1

as(0)
+
k2

2
reff .

For short-range interactions d0 � as(CIR), the numerical model calculations agree accurately

with the analytical prediction, as is shown in Fig. 3.4. The correction plotted versus the effective

range of the potential exhibits a linear behavior, and the slope agrees with the prediction from

a finite range expansion of the energy dependent scattering length. Some points deviate from

the linear relation, as in Fig. 3.4. The reason for this is that the width d0 of the interaction is

comparable to or larger than the CIR scattering length, which sets a new characteristic length scale

that limits the applicability of the “short” range model potential approximation: d0
as(CIR) � 1.

The dot plotted at reff = 0 in Fig. 3.4 is the prediction from the present regularized frame

transformation method, and it agrees with an extrapolation of the numerical calculation to a zero-

range potential. The intercept, which corresponds to the resonance position at zero energy, occur

in Fig. 3.4 occurs at
a⊥
as(0)

= 5.850(±0.005) from extrapolation of the numerical results, and at

5.864(±0.008) from the present regularized analytical summation. The slope of the extrapolation

line can be deduced from the low-energy effective range expansion of the s-wave scattering length:

− a⊥
as(E) = − a⊥

as(0) + a2
⊥
k2

2
reff
a⊥

, in which a⊥ is the width of the square well, and k2

2 = E is the first

threshold energy of the 2D confinement, as(E) is the energy dependent scattering length, reff is

the effective range of the potential, which usually changes very slowly with as(0).

In addition, the quasi-1D scattering phase shift recovers the behavior of the pure-1D scat-

tering phase shift at perturbative values of the 3D scattering length. Fig. 3.5 is our numerical

calculation for the square well transverse trapped system. The perturbative region |as| � L⊥ is

far away from the CIR region, and thus the closed channels in the transverse degree of freedom

becomes effectively “frozen” into the lowest mode.
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Figure 3.4: The CIR position obtained from finite range interaction model calculations is plotted
along with the extrapolation to zero range. The square dots (purple online) are from the potential

V = V0 exp(− r2

2d2
0

), while the circlar dots (blue online) are from the potential V = V0
1

cosh( rd0 )2
. The

x-axis is the effective range of the potential at the position of the CIR. The solid line (green online) is
derived from the effective range expansion of the 3D scattering length |a⊥as | = |

a⊥
as(0) |+a2

⊥E0
reff
a⊥

, E0

is the lowest threshold energy.The single point at reff = 0 (red online) is the predicted CIR position
from our regularized frame transformation method. The inset shows the pattern of convergence
to the analytical value, which is seen in the numerical calculation near

reff
a⊥
∼ 0.010 (the arrows

indicate the better converged numerical values of the CIR position). At larger values of the 3D
effective range, the numerical calculation begins to deviate from the analytical prediction. This
is because the range of interaction d0 in those calculations has become comparable to the CIR
scattering length, and hence the “short” range approximation of the model potential has become
less accurate.
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Figure 3.5: Plot of the quasi-1D scattering phase shift in the transverse square well trapped system,
as a function of the 3D scattering length as. The effective 1D interaction strength in this quasi-1D
system is g1D

a⊥E0
= π 4as/a⊥

1−ΛE( 1
2
E0)4as/a⊥

. ΛE(ε) is the regularized Epstein zeta function discussed in

the last section. E0 = ~2
2µ

4π2

a2⊥
. The strips of curves clustered together are calculations for a range

of energies in different regions of k: k ∼ 0.1, 0.01, 0.001. k denotes the momentum in z-direction,
and the scattering energy Ez = k2

2µ . The inset is the pure-1D scattering phase shift as a function of
g1D, which comes into the effective 1D Hamiltonian as Vint = g1Dδ(z).
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3.3.4 Lattice Induced Opacity in 2D Lattices

In this subsection, we will discuss a system that has similar mathematical structure to the

quasi-1D scattering amplitude in a square well wave guide. We begin with a discussion of an atomic

beam that scatters from an infinite 2D atomic lattice, as shown in Fig. 3.6. A quantum matter

wave transistor mechanism is proposed that is based on the transmission-reflection property of

a coherent matter wave. This mechanism relies on controlling the atom-atom interactions in a

reduced dimension scattering process that is shown in Fig. 3.7. In addition, a possible mechanism

for coherently controlling the peak scattering intensity into the angles that correspond to different

Bravais lattice vectors is discussed, in the framework of a series of Fano-Feshbach resonances. The

proposed mechanism could be a promising candidate for an atomtronic transistor using ultracold

atoms confined in a 2D optical lattice at an ultracold temperature.

The Hamiltonian that describes the atomic matter wave interacting with a 2D lattice of

tightly-trapped scattering centers reduces to:

H = −~2∇2

2µ
+
∑

(ix,iy)

V (r−Rix,iy), (3.78)

in which Rix,iy = a(ix, jy, 0), ix, jy ∈ Z represent the positions of the scatterers, and a denotes the

square lattice constant. Each scattering potential is approximated by a regularized delta function

V (r) = 2πasc
µ δ(r) ∂∂r (r·), where asc is the s-wave scattering length between a beam atom and each

scatterer.

For a “slow” atomic beam, in which only the lowest transverse channel of the 2D lattice is

energetically open, the quasi-1D scattering amplitude f0,0 in the lowest channel (0, 0) is calculated

analytically and regularized using the zeta-function regularization method developed in our preced-

ing work [ZG13a]. (We denote the reflection amplitude as f0,0, while the transmission amplitude
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Figure 3.6: Sketch of a beam of an atomic matter wave scattering from an infinite 2D square lattice
of fixed atoms. For simplicity, the incoming wave is restricted to be normal to the 2D optical lattice.
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is 1 + f0,0.) The asymptotic wave function for the scattered atomic matter wave is:

Ψ = eikz + f0,0e
ik|z|

+
∑

(nx,ny) 6=(0,0)

exp(−2π

a

√
n2
x + n2

y − ε)einxx+inyyCnx,ny ,

(3.79)

where k is the momentum of the incoming matter wave in the z direction, the corresponding kinetic

energy in the lattice recoil energy unit is ε = 1
E0

~2k2
2µ , E0 = ~2

2µ(2π
a )2. A Green’s function calculation

for a 3D optical lattice was carried out in [FBZ04]. Because we consider only a normal incoming

matter wave to the lattice plane, the Green’s function formulation is simplified to a coupled-channel

formulation. The scattering amplitude encapsulates contributions from all the closed channels,

turning out to be an Epstein zeta function [Eli94]:

f0,0 =
2πasc
a2ik

1

1− 2πasc
a2ik

+
asc
a

ΛE(ε)
, (3.80)

where

ΛE(ε) =
∂

∂z

z ∑
(nx,ny)6=(0,0)

exp(−2π|z|
a

√
n2x + n2y − ε)√

n2x + n2y − ε


∣∣∣∣∣∣∣
z→0

. (3.81)

The positions of resonances correspond to zeros of the transmission amplitude (1 + f0,0), which

gives asc
a = − 1

ΛE(ε) at resonance. At such a resonance there is vanishing transmission probability,

or in other words, “opacity’’ of the 2D lattice to the matter wave.

The mapping from the reduced dimensional system to a transistor works as follows. In

a transistor, the crux of the idea is to use a small tunable voltage to control a comparatively

large current. The atomic matter wave, of course, serves as the current from the emitter that is

experimentally implemented using two atomic reservoirs with different chemical potentials. The

tunable scattering length asc plays the role of the “control voltage’’. It is not literally a voltage, but

it exhibits every aspect that a “control voltage’’ element in an atomtronic circuit needs to have. This

inter-species scattering length can be tuned either very adiabatically or else quite diabatically by

controlling the ramping speed of the external magnetic field, which makes this reduced dimensional

system a candidate for gate operations. The energies where a resonance occurs lie between the
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lowest and the first-excited transverse mode(s) of the 2D lattice plane. This resonance happens at

a nondiverging value of the 3D inter-species scattering length asc, keeping the system from having

strong three-body losses.

The fact that the numerator of 1 + f0,0 is purely real makes it possible to find a complete

“shut down’’ of the transmitted matter wave. The f0,0 = −1 line is the white line in Fig. 3.7. This

corresponds to one case of the Fano-Feshbach theory, namely, the case in which a single bound

state is embedded in a single continuum. However if there are more than one continuum channels

present, the transmitted wave intensity can no longer be fully turned off, but only tuned to a local

minimum. Consequently, the signal-to-noise ratio of the transparency and opacity of the lowest

open channel deteriorates in the presence of multiple open channels.

Besides proposing the matter wave transistor scheme, we also estimate the temperature range

in which this matter wave transistor can work perfectly, meaning that the velocity spread in both

the transverse direction and the longitudinal direction is comparatively small to the recoil velocity

of the optical lattice v = 2π~
mL . Continuous atomic current from a BEC was demonstrated in

the output coupler [MAK+97]. A typical optical lattice constant ranges from 1.3µm to 9.1µm

[BBS+13], and an even smaller value has recently been achieved using a magnetic field and a type

II superconductor [RINS+13]. And the finite temperature will result in velocity spread in the atomic

beam ∆v ∼
√

2kBT/m [RWMC90, MAK+97], m is the atomic mass. The spread of the velocity

and the characteristic lattice velocity scale different with atomic mass. To achieve small relative

spread, lighter atomic spices are favored. For example, in the recent sub wavelength optical lattice

[RINS+13], ∆v/v can be as small as 3% for lithium BEC. However, the atomic velocity spread

∆v =
√

2kBT/m is an estimation of the upper bound. The noise in the longitudinal velocity

spread was reduced to 1/10 of this upper bound in by Bloch et.al in [MAK+97]. So the lattice

indued opacity can also be achieved in a traditional optical lattice with smaller recoil energy than

a sub wavelength optical lattice.

The discussion above implies that, for the quantum transistor proposed here, the temperature

criterion is determined by the kinetic energy of the incoming matter wave and its spread, such that
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Figure 3.7: This graph plots the quasi-1D transmission probability, |1 + f0,0|2, as a function of the
3D scattering length asc and the kinetic energy ε of the incoming atom for scattering in the case
of a single open channel. The energy unit in this figure is ~2π2

2ma2
. There are two regions in this

parameter space where the scattering amplitude is close to zero. However, only the one that is
associated with a negative 3D scattering length asc provides a usable lattice-size-induced opacity.
At positive values of asc, although there exists a region where asc and ε cooperatively result in a
small transmission amplitude, the tunability there is poorer than the negative asc region. This is
because in the region asc > 0, even tuning ε and asc over a large range does not significantly change
the transmission amplitude. f0,0 = −1 corresponds to the white line, and the f0,0 corresponds to
the deepest navy colored line.
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only the lowest channel in the 2D periodic lattice plane is energetically open. In multi-open-channel

quasi-1D scattering, no zero point of transmission in any single channel occurs, meaning no complete

opacity of any channel can be achieved. However, in the multi-open-channel scenario, a similar

confinement-induced opacity can be observed while the imaginary part of the complex transmission

amplitude hits zero. The scattering amplitude in a system having multiple open channels was

explained and classified by Fano [Fan61] as an example of multi-continuum resonances, nowadays

termed a Fano lineshape.

After discussing the single-open-channel case, a higher energy incoming atomic beam is con-

sidered. The discussion below assumes that the incident channel is the lowest transverse mode of

the 2D lattice plane ψ(z → −∞) = ψ0,0(x, y)eikz. The reason this case is singled out is that this

matter wave in the lowest mode is the easiest to implement experimentally. By increasing the kz

in the incoming wave, it is possible to excite higher modes in the xy-direction as outgoing waves.

We now demonstrate the inelastic scattering in a problem involving two open channels of the 2D

square lattice. Under the assumption that no modes in the excited channels exist in the incoming

beam, the general expression of the outgoing matter wave to a higher transverse mode is:

f0,±1 = f±1,0 = s0,0

2π
aiq

asc
a

1 + asc
a ΛE − 2π

aik
asc
a − 4 2π

aiq
asc
a

. (3.82)

In multi-open-channel scattering, as an analogue to the confinement-induced resonance in the single-

open-channel case, the zero point of 1 + asc
a ΛE causes a π phase jump of the outgoing wave into

(0,±1) and (±1, 0) with respect to the incoming wave, in which ΛE is the Epstein zeta function.

Moreover, the zero point of 1+ asc
a ΛE gives rise to a maximum inelastic scattering amplitude. Thus

for a given incoming wave vector perpendicular to the 2D lattice plane, a similar resonance can also

emerge in the inelastic scattering process by tuning the 3D scattering length. This process can be

viewed as a coherent matter wave beam splitter, in the sense that it creates phase-coherent waves

that propagate in different spatial directions. Therefore, this process is a class of the Kapitza-Dirac

type thin-grating diffraction, which was first realized in BEC scattering from a 2D optical lattice

[GLDE01], in which BEC atoms directly gain momentum from the counter-propagating laser that
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Figure 3.8: Sketch of a matter wave cavity utilizing two parallel 2D optical lattices where the
effective 1D interaction strength g1D for each of them is infinite.

forms the optical lattice. However, the configuration in this letter is different from that in the

approach of Gupta et.al [GLDE01]. In the present reduced-dimensional system, the number of

interference peaks is controlled by the incoming matter wave kinetic energy and the short range

interaction between atoms in the matter wave and atoms trapped in the 2D optical lattice. As a

result, it is possible to completely turn off the intensity of the perpendicular wave which cannot

occur in a traditional Kapiza-Dirac thin grating.

Since the s-wave interaction between atoms in the matter wave and those in the 2D lattice

of atoms can be described using a single effective 1D delta function in z: g1Dδ(z), it is possible

to make a matter wave cavity by placing two optical lattices separated by a certain distance Dz,

sketched in Fig. 3.8. The quasi-1D matter wave cavity can be simply described by two delta

function potentials in 1D:

H1D = − ~2

2µ

∂2

∂z2
+ g1Dδ(z −

Dz

2
) + g1Dδ(z +

Dz

2
). (3.83)

The cavity is realized by tuning the transmission coefficients of the 2D optical lattices outside the

region (−Dz
2 ,

Dz
2 ) to zero. By adjusting the distance between the two lattice planes, the standing

matter wave (kzDz = nπ, n = 1, 2, · · · ) can be created inside this cavity configuration. This matter

wave resonant cavity scheme can potentially be applied in matter wave interferometry experiments.

The high precision and controllability of atoms in matter wave interferometry should enable the

combination of matter waves and optical lattices to be implemented as an important precision

measurements platform [PWT+11, CCZ+12].
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The quasi-1D scattering process with a transverse confinement does, in principle, apply to

Fano-Feshbach resonance theory, but the resonance width is quite significant compared to the

assumption of an isolated resonance that was made in [Fan61]. This large width means each

individual resonance profile may deviate from the exact analytical expression derived by Fano

because of an influence from a series of cuts by transverse thresholds. However, the analytical

expression still preserves the asymmetric feature compared to a symmetric Lorentz line shape.

Quantitatively, this asymmetric feature is embedded in the piecewise Epstein zeta function for

different energy regions E ∈ (E0, E1), E ∈ (E1, E2) · · · .

In the expression of the Epstein zeta function, when the energy reaches each channel threshold

En, the divergent scattering cross section behaves like ∼ 1√
E−En

, while other terms vary much more

slowly. This diverging behavior reflects the fundamental origin of Fano-Feshbach resonance, namely,

the embedded bound state in a continuum. But the actual lineshape of observables is changed

because the near-threshold density of states is not flat as was assumed in the Fano formulation.

Quasi-1D systems with different transverse confinement spectra, exhibit qualitative similarity in

their resonance profiles, as is shown in Table. 3.1. This similarity comes from the mathematical

structure of the transmission probability. All of them have the general form of the zeta function,

namely

ξH(q, s) =

∞∑
n=0

1

(n+ q)s
(3.84)

is the Hurwitz zeta function that describes confinement-induced resonances in an isotropic trans-

verse harmonic trap. The quantity

ξE(q, s) =
∞∑

nx,ny

1

((nx − qx)2 + (ny − qy)2 + ε)s
, (3.85)

is the Epstein zeta function, describing both the square well waveguide [ZG13a] and the infinite 2D

square lattice, in which q = (qx, qy, ε) denotes the “shift’’ coming from the ground state mode of

system, the power s is determined by the partial wave expansion of the interaction potential that

is dominant in the relevant energy and symmetry of the system. For an s wave, the zeta function

parameter is s = 1
2 [Ols98] and for a p wave [GB04], s = −1

2 .
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The regularization method developed here works for both short range s and p wave scattering,

and in principle for higher partial waves as well. The d-wave, e.g., is essential in describing the

dipole-dipole interaction in a quasi-1D confinement geometry[GDS12, GCQZ13]. Mathematically,

the Epstein zeta function and the Hurwitz zeta function have very different origins in analytic

number theory. However, in describing the class of confinement-induced resonance phenomena,

their emergence is quite intuitive and naturally generalized from one to another.

3.4 Summary and Outlook

3.4.1 Summary

In this chapter, we present the development of the regularization technique for the effective

quasi-1D coupling constant and the quasi-1D scattering amplitude. The regularization technique

is developed in the framework of the local frame transformation, and generalize previous results to

general transverse confinements.

Subsequently, we apply this technique to systems with various transverse trapping potential.

The analytical regularization result agree perfectly with numerical calculation using variational

eigenchannel R-matrix approach. All of the three example systems we have calculated exhibit clear

structure of Fano-Feshbach resonance, although the width of the resonance is always larger than

the energy spacing in the transverse plane.

Up to now, the regularization technique we have developed has only been applied to s-wave

scattering processes. However, this method can be applied to p-wave scattering processes and more

exotic transverse traps without additional difficulty.

In the summation of formula of the effective 1D coupling constant, we can infer that the

asymptotic behavior of the transverse spectrum controls the diverging series. Thus, the essence of

this regularization technique is that we subtract the contribution associated with the deep closed

channels from the scattering amplitude or the effective 1D coupling constant.
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Table 3.1: Comparison of confinement-induced resonances in different systems. The transmission
probability for one open channel, in (from left to right) (i) two dimensional lattice (ii) square well
waveguide (iii) two dimensional isotropic harmonic trap. The transmission probabilities for the
case of one open channel are plotted. The units in each plot are the relevant system-characteristic
energy scale, namely ~2

2µ(2π
a )2, ~2

2µ(2π
L )2, ~ω⊥. a is the lattice constant, L is the size of the square

waveguide, and ω⊥ is the transverse trap frequency. Lighter colors correspond to less transmission,
and the thin white line locates the positions of confinement-induced opacities.
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3.4.2 Outlook

The regularization technique can be immediately applied to p-wave scattering in square well

wave guide or square lattices. In these systems, the group elements of the rotational symmetry

group of the p-wave state do not commute with the symmetry group of the lattice. This will result

in interesting nontrivial irreducible representations of the reaction matrix K, with implications for

the quasi-1D scattering amplitude.

Another direction of generalization is to include spin degree of freedom (spin-exchange scat-

tering, spin-orbit coupling) in the short-range interaction center. The spin-spin interaction in this

reduced dimensional system may introduce spin-momentum locking, just like what happens in the

spintronics devices.



Chapter 4

Summary and Outlook

In this thesis, we have covered two topics. One is the few-body ultracold Bose-Fermi mixture,

and the other is the quasi-1D scattering in elongated traps.

The quantum statistics of particles in a Bose-Fermi mixture enrich the spectrum and dynamics

of ultracold quantum gases, compared to their counterparts in identical bosons or two-component

fermions. In the study of ultracold Bose-Fermi mixtures, we have calculated the three-body and

four-body spectrum of KRb and the three-body spectrum of LiCs.

Based on the spectrum and the adiabatic eigenstates of the few-body systems, we have calcu-

lated the time evolution of the KRb system across a broad Fano-Feshbach resonance. Although the

spectrum shows complicated structures of avoided crossings that correspond to the Efimov trimer

formation and the Feshbach molecule formation, the time evolution of the few-body Bose-Fermi

mixtures can be parameterized as an incoherent sequence of two-level Landau-Zener transitions

between configurations. This leads to a simple description of the dynamics of quantum gases in

the magneto association processes.

Morever, we explore the Efimov trimer’s scattering properties at unitarity. The Efimov

trimer states can be viewed as bound states that break the continuous scaling symmetry of a

unitary Bose gas. A direct consequence is that the scattering properties of an Efimov trimer with

the remaining atoms in the quantum gas are solely determined by its own three-body parameter.

We have discovered a universal relation between the effective fermion-trimer (BBF-F) scattering

length and the three-body parameter of the Efimov trimer at unitarity.
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We also propose a quantum beat experiment that could be used to measure the binding

energy of Efimov trimer states at unitary, by applying a sequence of quenches of the interparticle

interaction strength. From the simulated quantum beat data, we identify the correspondence

between the oscillation periods and the trimer’s binding energy. This suggests an accessible way of

measuring the absolute binding energies of the Efimov series, thus yielding a more direct proof the

descrete scaling symmetry exhibited by a three-body system.

However, there are open questions with respect to the few-body theoretical description of the

ultracold Bose-Fermi mixture. We have studied the adiabatic time evolution of the four-body BBFF

system. By identifying the important Landau-Zener couplings between configurations, we have a

simplified model for describing the formation efficiency of the heteronuclear dipolar molecule. How

to generalize this scheme to a many-body system? At what range of ramping speed of the adiabatic

parameter, can we ramp the mixture of an BEC and an atomic Fermi sea to a molecular Fermi

sea? From the BBFF spectra that are presented in this thesis, we can already see a competition

between the cluster states (trimer, tetramer and so on) with the formation of a molecular Fermi

sea. Generalization of the correlated Gaussian method into larger number of particles in Bose-Fermi

mixtures will suddenly involve calculation of series of cluster states, so it is more challenging than

the two component Fermi gas and more rewarding for understanding the ground-to-ground state

transition between atomic states and molecular states.

Another class of open questions are raised immediately after the realization of ultracold Bose-

Fermi mixtures. Namely, the systematics of heteronuclear cluster bound states, BBBF , FFFB

and so on. In these systems, both the quantum statistics and the mass ratio poses challenges to

existing theories. However, the experimental advances in the heteronuclear Bose-Fermi mixtures

are pushing forward the frontier of studies into these questions. Precise control of the magnetic

field in traps offers more observables to study in these novel cluster states. What is their role in

the non equilibrium dynamics of a degenerate quantum gas? This question arises at the same time

as the development of quenching the interparticle interactions inside a BEC. Table 4.1 summarizes

the current stages of experimental realizations of few-body clusters.
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homonuclear heteronuclear

Efimov States(Three-Body) BBB BBB′ BBF BFF

X X X x

Four-Body and beyond BBBB any heteronuclear combination

X x

Table 4.1: Stages of few-body clusters.

In the study of the quasi-1D scattering, we have developed a regularization method of quasi-

1D scattering amplitude for generic transverse traps. We have applied the local frame transforma-

tion theory to derive the quasi-1D reaction matrix. From the local frame transformation theory,

we immediately see that the reason why this method and the previous zero-range model potential

work well. The reason behind the theories is that these quasi-1D system possesses clearly distinct

length scales. Although the local frame transformation is not unitary, the next order corrections

are small in these cases.

The regularization technique we developed relies only on the asymptotic behavior of the

functional form of the transverse energy spectrum in the quantum number plane. As a starting

point, we have tested our technique for the 2D isotropic harmonic confinement. We have reached

excellent agreement with existing theoretical works. Subsequently, we applied our technique to

a square well wave guide. Extrapolations of our numerical model potential R-matrix calculation

exhibits good agreement with the theoretical prediction of our proposed regularization technique.

We find that the transmission coefficient of a matter wave through a 2D atomic lattice have

a mathematical structure quite similar to that in the quasi-1D scattering process in a wave guide.

We propose a matter wave transistor mechanism based on this finding. A matter wave cavity is

also proposed that would use two parallel atomic lattice planes.

An immediate generalization of the regularization technique suggested by this work would be

to treat the p-wave reaction matrix inside a square well wave guide. In this system, the rotational

symmetry group of the p-wave scattering center does not commute with the symmetry group of the

wave guide. The resulting scattering matrix is reduced to a 2D irreducible representation rather

than a single effective 1D coupling constant. Thus the quasi-1D scattering phenomena in this



125

system are expected to be much richer that their s-wave counter part.

Another immediate generalization of the application would be to apply the regularization

technique to a short-range spin-dependent scattering center confined in a quasi-1D trap. Reduced

dimensional systems often break the rotational symmetry of the angular momentum, and thus

the spin rotational symmetry could be easily broken. This generic feature makes quasi-1D sys-

tems promising candidates for realizing spin-momentum locked currents, which are the essence of

spintronics.

Another class of prospective research directions for a quasi-1D scattering problem is the

implementation this two-body scattering information into a many-body quasi-1D system. As is

introduced in the beginning of the quasi-1D scattering chapter, many exactly solvable 1D models

have been predicted in the past century. So observing the evolution of the 1D quantum gases from

one phase to anther by adjusting the transverse confinement and the short-range interaction is

promising from both experimental and theoretical perspectives.

In quasi-1D systems, the fermionization of strongly interacting bosons has already been ob-

served, which leads to active discussions of gauge theories in 1D. For a pure 1D system, identical

particles exhibit strikingly different behaviors in quantum statistics from their 3D counter parts.

Interacting quasi-1D systems have the flexibility to be engineered into regimes that exhibit exotic

particle statistics.
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Esslinger. Bose-fermi mixtures in a three-dimensional optical lattice. Phys. Rev.
Lett., 96(18):180402, May 2006.

[GVL+01] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-
Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Real-
ization of bose-einstein condensates in lower dimensions. Phys. Rev. Lett., 87:130402,
Sep 2001.

[GWO00] Rudolf Grimm, Matthias Weidemuller, and Yurii B. Ovchinnikov. Optical dipole
traps for neutral atoms. Adv. At. Mol. Opt. Phys., 42:95 – 170, 2000.

[GZHCnt] Nathan Gemelke, Xibo Zhang, Chen-Lung Hung, and Cheng Chin. In situ observa-
tion of incompressible mott-insulating domains in ultracold atomic gases. Nature,
460:995–998, 2009/08/20/print.

[Hal81] F. D. M. Haldane. Effective harmonic-fluid approach to low-energy properties of
one-dimensional quantum fluids. Phys. Rev. Lett., 47:1840–1843, Dec 1981.



135

[Hal88] F. D. M. Haldane. Exact jastrow-gutzwiller resonating-valence-bond ground state
of the spin-1/2 antiferromagnetic heisenberg chain with 1/r2 exchange. Phys. Rev.
Lett., 60:635–638, Feb 1988.

[Hal06] Karen A. Hallberg. New trends in density matrix renormalization. Advances in
Physics, 55(5-6):477–526, 2006.

[Har81] David A. Harmin. Hydrogenic stark effect: Properties of the wave functions. Phys.
Rev. A, 24:2491–2512, Nov 1981.

[Har82a] David A. Harmin. Theory of the nonhydrogenic stark effect. Phys. Rev. Lett.,
49:128–131, Jul 1982.

[Har82b] David A. Harmin. Theory of the nonhydrogenic stark effect. Phys. Rev. Lett.,
49:128–131, Jul 1982.

[Har82c] David A. Harmin. Theory of the stark effect. Phys. Rev. A, 26:2656–2681, Nov 1982.

[Har84] David A. Harmin. Analytical study of quasidiscrete stark levels in rydberg atoms.
Phys. Rev. A, 30:2413–2428, Nov 1984.

[Har86] David A. Harmin. Precise theory of field enhancement of dielectronic recombination.
Phys. Rev. Lett., 57:1570–1573, Sep 1986.

[Haw77] S.W. Hawking. Zeta function regularization of path integrals in curved spacetime.
Comm. Math. Phys., 55:133–148, 1977.

[HCK+03] D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ertmer, and
J. J. Arlt. Measurement of the spatial correlation function of phase fluctuating bose-
einstein condensates. Phys. Rev. Lett., 91:010406, Jul 2003.

[HGK+11] J. Heinze, S. Götze, J. S. Krauser, B. Hundt, N. Fläschner, D.-S. Lühmann,
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