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Broad bandwidth, precision spectroscopy of the molecular ions of interest to the JILA

electron electric dipole moment experiment, HfF+ and ThF+, is necessary due to the lim-

ited amount of spectroscopic information available and the large theoretical uncertainties

in the energy level structure (thousands of wavenumbers). This thesis covers the develop-

ment of a novel spectroscopic technique, frequency comb velocity-modulation spectroscopy,

that provides high resolution, broad spectral bandwidth, ion discrimination and high sensi-

tivity simultaneously. Frequency comb velocity-modulation spectroscopy as well as single-

frequency velocity-modulation spectroscopy have been used to identify five rotational bands

of HfF+. This work discusses the first spectroscopic information for HfF+ which came

from our measurement of the 1Π1 −1 Σ+ (0,0) band recorded with single-frequency velocity-

modulation spectroscopy with a sensitivity of 3x10−7 Hz−1/2. The development of frequency

comb velocity-modulation spectroscopy allowed us to cover a thousand wavenumbers of spec-

tral bandwidth and to identify an additional four HfF+ bands. The achieved sensitivity for

frequency-comb velocity-modulation spectroscopy was 4x10−8 Hz−1/2 (spectral element)−1/2

with 1500 simultaneous detection channels spanning 150 cm−1 of bandwidth. For a 30 minute

acquisition time using 30 interleaved images to densely sample the whole spectrum, this cor-

responded to a 3x10−7 single-pass fractional absorption sensitivity for each of the 45,000

measurement channels. The spectroscopic information from all five HfF+ rotational bands

is presented and molecular constants for the 1Σ+, 3Π1, and 1Π1 states were extracted.
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Figures

Figure

1.1 An Electron EDM violates both time and parity invariance. The dipole mo-

ment of the electron must lie either parallel or anti-parallel to the electron’s

spin. Here the electron EDM is represented by the blue arrow labeled d and

also graphically by the charge separation on the sphere. The electron’s spin

is represented by the red arrow labeled s and graphically by the white arrow

representing a ring of current. Under a reversal of time, the sign of the spin

is reversed while the sign of the electron’s dipole moment stays the same.

Under a reversal of parity, the sign of the dipole moment is flipped while the

spin stays the same. The amount of CP-violation and thus T-violation given

CPT invariance required to give a non-negligible electron EDM cannot be

accounted for with the Standard Model. . . . . . . . . . . . . . . . . . . . . 2

1.2 Energy levels of HfF+ relevant to the eEDM experiment. Two different

schemes for spin readout, state selective photodissociation (a) and laser in-

duced fluorescence (LIF) (b), are shown. States shown as dashed lines includ-

ing the 1Σ+ ground state may be utilized for state preparation. The exact

energies of these states will help to determine the best method for spin readout. 7
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2.1 Qualitative sketch of the hollow cathode lamp apparatus. The glow from the

discharge at the center of the hollow cathode (orange square) is imaged into

the grating monochromator. As the AC motor scans the grating, the light at

different wavelengths is imaged onto the photomultiplier tube and recorded

by the oscilloscope. The cross-section of the cathode on the left shows the Hf

sleeve press fit inside the copper cathode with the HfF4 powder placed inside. 9

2.2 Fluorescence from the hollow cathode lamp versus frequency. Locations of

strong lines from the most likely atomic sources of fluorescence in this fre-

quency range as well as several HfF bands and one HfF+ band at 13,000 cm−1

are also shown and are offset for clarity. The position of both the band origin

and the R-branch band head are indicated for the HfF and HfF+ bands found

using other spectroscopic techniques. Note that a majority of the features

shown are not accounted for by the atomic lines published in the NIST strong

lines tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Regions of hollow cathode lamp spectra that contain known HfF+ (a) or HfF

(b) bands. Panel (a) shows data from hollow cathode lamp containing HfF4

in the region of the 1Π1 −1Σ+ (0,0) band of HfF+, which has a band origin

of ∼ 13002.3 cm−1 (cyan line) and an R-branch band head at ∼ 13005 cm−1

(dashed cyan line), as well as other unidentified bands. The feature at ∼

13,008 cm−1 is too blue to be the bandhead and lacks a sharp edge on the

blue side. Panel (b) shows a region containing three HfF bands identified

using laser-induced fluorescence in a supersonic beam (cyan lines) as well as a

strong argon line (red line) and many unidentified features. The dashed cyan

lines indicate the approximate location of the R-branch band heads for the

HfF bands, which show reasonable agreement with the data. . . . . . . . . . 12
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3.1 Optical layout for velocity-modulation spectroscopy. The light from the diode

laser is spatially filtered, is split and balanced by polarization optics, and

passes through the discharge in both directions before being focused onto the

balanced photodetector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Schematic of discharge electrode and endcap. (a) Side view of endcap with

water cooled electrode. The hollow stainless steel electrode is connected via a

glass-to-metal seal to the rest of the endcap with a wire spot welded into the

inside to provide the electrical connection. (b) Top view of endcaps showing

the Brewster angle windows and ultratorr connections to the central quartz

or alumina tube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Schematic of discharge electronics. A function generator drives two 2 kW

audio amplifiers at ∼10 kHz. Two homebuilt step-up transformers provide the

impedance matching for the discharge. For the diode laser VMS measurements

typical values were a discharge current of ∼100 mApk−pk and ∼22 Vrms across

the primary side of the transformer. . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Strength of hafnium line versus temperature. The 550 ◦C temperature nec-

essary to produce a reasonable vapor pressure of HfF4 is much lower than

initially expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Compilation of scans covering HfF+ band with isotope averaged fit (offset for

clarity). Note that the high rotational temperature (800 K) results in a large

number of lines present. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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3.6 (a) Confirmation of an Ω=0 to Ω=1 transition. The red arrows point to the

locations of the P(1) and Q(0) predicted by the fit. The visibility of the

R(0) and Q(1) lines confirms that the sensitivity is high enough to see the

P(1) and Q(0) lines if they were present. (b) Region of HfF+ band in which

isotope shifts cancel. In this region of the spectra the rotational isotope shift

is canceled by the electronic and vibrational isotope shifts. The difference in

energy for an electronic transition for 178HfF+ relative to 180HfF+ is given by

∆E = (1− µ180
µ178

)Erot+(∆T0,iso+∆ων,iso), where µ180 and µ178 are the respective

reduced masses, Erot is the rotational contribution to the transition energy,

and (∆T0,iso + ∆ων,iso) is the sum of the electronic and vibrational isotope

shift. From this we see that (∆T0,iso + ∆ων,iso) ∼ −0.04 cm−1, which matches

the structure seen in (a) where at the band origin Erot ∼ 0. . . . . . . . . . 27

3.7 Summary of wavelength ranges and time constants of scans taken with the

diode laser. All data was taken at a ∼ 100 mApk−pk discharge current with

a voltage drop of ∼ 1 kV across the discharge and a sensitivity of 3x10−7

Hz−1/2. No HfF+ bands other than the one spanning 12,950-13,000 cm−1

were identified in the wavelength range covered. The low current of these scans

compared to those in Chapter Four limited the size of the HfF+ absorption

signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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4.1 Qualitative sketch of a frequency comb velocity-modulation spectroscopy sys-

tem. Light from the frequency comb is coupled into a bow-tie ring cavity

containing an AC discharge tube. The AC discharge modulates the ions’

Doppler shift and thus the ion absorption signal. The transmitted light is

dispersed by a VIPA etalon and a grating to produce a 2-dimensional image

in which every comb tooth is resolved and detected. A fast demodulation

camera performs lock-in detection of each comb tooth at the discharge mod-

ulation frequency to recover ion-specific absorption signals across each comb

mode. (Figure courtesy B. Baxley(JILA).) . . . . . . . . . . . . . . . . . . . 32

4.2 Optical layout for frequency comb velocity-modulation spectroscopy. Light

from the frequency comb passes through λ/2 and λ/4 clean-up waveplates

and a optical isolator to achieve the appropriate polarization and prevent

back reflections to the comb. The two lenses are placed to match the mode

of the collimated comb light from the fiber to the mode of the optical cavity

at the input couplers (M1 and M4). Depending on the polarization of the

light before the polarizing beam splitter (set by a LCR) light travels either

clockwise or counter-clockwise through the cavity. M2 and M3 are 99.99%

reflectivity mirrors with a 100 cm radius of curvature, and M1 and M4 are

98% reflective flat input couplers. A translation stage and long travel PZT

on M4 coupled with a fast PZT on M2 allow for tuning of the cavity length

to match the free spectral range of the cavity to the repetition rate of the

comb. After traveling through the cavity, the outcoupled light passes through

the AOM (used for measuring the DC intensity on the lock-in camera) and

then to the imaging system. A glass wedge is used to pick-off a small amount

of the outcoupled light to measure the transmitted spectrum with a grating

spectrograph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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4.3 Full comb-spectrum and transmitted comb-spectrum measured with grating

spectrometer. The transmitted spectrum is less than the full comb bandwidth

due to the spectral filtering that results from the two Brewster angle windows

on the discharge tube. By using a grating to select different regions of the

full comb spectrum for producing the locking signal, the spectral region of the

transmitted spectrum can be changed. . . . . . . . . . . . . . . . . . . . . . 39

4.4 Schematic of imaging system. The VIPA provides high resolution, 1 GHz, but

low free spectral range, 100 GHz. The grating resolves the 100 GHz FSR of

the VIPA. The first f = 50 mm cylindrical lens focuses the light into the VIPA

at the junction of the anti-reflective and high reflectivity coatings. After the

VIPA, the cylindrical telescope expands the beam to fill the grating. The

f=250 mm imaging lens then maps the differences in wavevector to differences

in position at the detector plane of the camera. The inset shows a picture of

the actual optics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Image of the transmitted comb light. The comb modes are spaced by the

repetition rate of the comb (2.97 GHz) in the vertical direction and by the

FSR of the VIPA (94 GHz) in the horizontal direction. The size of a comb

mode is the same as the pixel size and in the horizontal direction the grating

resolution was chosen such that each FSR is spaced by one pixel to fit the

maximum number of comb modes on the camera. Because of the spacing and

the chirp of the spacing due to the VIPA, comb modes are sometimes split

across more than one pixel as can be seen in the zoomed in portion of the figure. 44
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4.6 Sketch of selection of comb modes by spectrum generator code. In this simpli-

fied example, four comb modes fit within one free spectral range of the VIPA

and the free spectral range is not an integer multiple of four leading to the

chirp in the location in the VIPA direction. The red and blue circles represent

the comb mode locations. The number adjacent to that comb mode represents

the frequency offset of that mode scaled by the repetition rate. The red circles

represent the locations of the comb modes which would be concatenated by

the spectrum generator code. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Data Analysis Part 1. (a) The DC intensity is shown as the initial 2-dimensional

image, which is then fit to obtain the comb mode positions as shown in red

circles over part of the image. This fit calibrates the DC intensity as a func-

tion of the comb frequency, which is shown on the right. An additional 10

kHz amplitude modulation was applied to the transmitted light to measure

the DC intensity. In (b) the signal at 10 kHz (with only the discharge modu-

lation) is shown for one image. The red circles on the two-dimensional image

are the positions of the comb modes determined from the global fit to the DC

intensity in (a). Note the bright and dark pixels, which represent the spectral

signature of nitrogen absorption. The difference between the clockwise and

counterclockwise signal extracted from the fit for one image is also shown with

the points spaced by the repetition rate of the comb. The running median

plotted with the data is subtracted from each image before they are interleaved. 50
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4.8 Data Analysis Part 2. The resulting processed spectrum (blue) from all the

images (each processed similarly but with stepped cw laser frequency) is shown

in (a). The predicted positions from molecular constants reported by Collet

et al. [4] for the (4,2) N+
2 band (red) are also shown in (a). The full recorded

spectrum was acquired in 20 images with 1500 simultaneous channels in less

than one hour, with a sensitivity of 3 x 10−7 fractional absorption per detec-

tion channel. The zoomed-in panels (b) show three different portions of the

spectrum with data points indicating the actual sampling period. . . . . . . 51

4.9 Repetition rate of the frequency comb during data acquisition. Each flat

plateau occurs during a measurement of the 1500 simultaneous channels. The

repetition rate is then stepped by scanning the cw laser such that each comb

mode with frequency fn = f0 +nfrep is scanned over 3 GHz to fully sample

the spectrum. As n ∼ 105, stepping frep by 30 kHz steps the comb mode

frequency by 3 GHz. In the lower panel, the fluctuation of frep during a single

measurement is shown. The 200 Hz drift in frep corresponds to a maximal 300

kHz uncertainty in the comb modes not locked to the cw laser, which is well

below the 30 MHz resolution of the wavemeter. . . . . . . . . . . . . . . . . 54

4.10 Noise contributions as a function of the power in a comb mode. The HfF+

data was acquired with comb mode powers ranging from 1 nW to 20 nW.

The sensitivity of the system is given by the fractional noise divided by a

factor of 30 due to the enhanced path length. The values for the camera noise

and technical noise are for switching rapidly, ∼ 3X s−1, between clockwise

and counterclockwise directions of propagation as single direction measure-

ments stopped averaging down at ∼ 1 Hz bandwidth. (Actual time to switch

directions is ∼ 1 ms, 300 ms is the time for data acquisition.) . . . . . . . . . 55
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4.11 Fluorescence from the discharge as a diagnostic tool. The light from the center

of the discharge tube passes through the mirror if it is below ∼ 700 nm and is

focused into a fiber connected to the grating spectrometer. (a) N2 signature

versus a He only discharge. The sharp spikes in the He only case are atomic He

transitions. Note the suppression of the He fluorescence when large amounts

of N2 are present. The clear N2 signature can also be used when checking

for leaks as it is quite distinctive albeit smaller even for significantly lower

partial N2 pressures. (b) Spectral signature the corresponds to the presence

of HfF+ is the broad background lifting off of the baseline. The additional

sharp features are mostlhy atomic transitions of fluorine. . . . . . . . . . . . 58

4.12 Schematic of the system. An 18 W Coherent Verdi pumps both the CW

Ti:Sapphire laser, used as a frequency reference, and the 3 GHz repetition

rate Ti:Sapphire comb. The CW laser is read by a wavemeter with an ac-

curacy of 30 MHz. The comb is referenced to the CW laser via a beatnote

with a single comb tooth. Feedback to the comb’s repetition rate is achieved

through the pump power (high bandwidth and small range) and through the

comb cavity length (low bandwidth and large range). 95% of the comb light

and 5% of the CW light are combined in a fiber which is coupled to the

enhancement cavity. Liquid crystal retarders and a polarizing beam splitter

are used to select the direction of light propagation around the enhancement

cavity while maintaining all locks. The enhancement cavity is locked to the

comb. Cavity transmitted light is dispersed by the 2-dimensional imaging sys-

tem, qualitatively sketched in Fig. 4.6, and recorded by the lock-in camera,

which demodulates each pixel at the discharge modulation frequency. The

CW light serves as a reference marker on the lock-in camera image. . . . . . 59
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4.13 Full spectral region scanned with HfF+ present. There are four HfF+ bands

that have been identified so far and these are highlighted in Figure 4.14. The

isolated sharp features are most likely due to atomic transitions. The increased

fractional signal at both edges is due to the camera noise starting to be the

dominant noise source due to the decrease in comb power at the edges of the

comb bandwidth. This summary plot was generated by interpolating multiple

scans onto a 0.001 cm−1 grid and then averaging them together. . . . . . . . 61

4.14 Region of spectrum with HfF+ lines with smaller regions showing the char-

acteristic velocity-modulation lineshape. Fits to the bands identified are dis-

cussed in Chapter Five. In the lower plots, the structure surrounding the

strongest lines is due to additional HfF+ molecular absorption. The fractional

sensitivity measured without HfF+ present is 3x10−7. . . . . . . . . . . . . . 62

4.15 Improvement of signal-to-noise ratio as a function of splitting ratio. The

signal-to-noise ratio improves dramatically as the intensity for the two direc-

tions of propagation becomes more similar as long as common-mode technical

noise dominates the noise. If the single direction measurements are dominated

by the shot-noise, the signal-to-noise ratio for coherent subtraction is the same

as single direction propagation. If the camera noise begins to dominate due

to the decrease in power as the splitting ratio approaches 50%, the signal-to-

noise ratio will decrease. The challenge of achieving a splitting ratio of better

than 52%/48% also limits the gains in signal-to-noise ratio improvement. . . 64
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4.16 Comparison of coherent subtraction and single direction measurements The

signal to noise for coherent subtraction (using a 52/48 beam splitter) sur-

passes that of single direction measurements by a factor of 10 in cases where

we have sufficient optical power to dominate over the camera readout noise.

Both measurements of a single N+
2 line were made with the cw Ti:Sapphire

laser. The dashed lines are a calculation of the expected lineshape. The

slight modification in the lineshape for the coherent subtraction is due to

an additional differential phase shift of approximately π/20 between the two

counter-propagating beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 (a) Data and fits to the four HfF+ bands identified with frequency comb

velocity-modulation spectroscopy. Linestrengths for the fit positions are scaled

by isotopic abundance, by an approximate rotational temperature of ∼ 640

K, and by an overall transition strength to match the measured fractional

absorption. (b) Region of the recorded spectra containing the 1Π1−1Σ+(0, 1)

band as well as at least three other HfF+ bands with the fit for the 1Π1−
1Σ+(0, 1) band offset for clarity. (c) All five isotopes of HfF+ are present and

resolved for transitions with ∆v 6= 0. The additional structure with HfF+

present (blue) consists of lines belonging to the other HfF+ bands while the

red line (HfF+ absent) shows the level of sensitivity of the system in this

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Residuals from the fit to the 1Π1−1Σ+(0, 1) band of 180HfF+. The fit spans

∼100 cm−1 reaching J values as high as 70 due to the high rotational temper-

ature. This fit provides high accuracy in the determination of the molecular

constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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6.1 Identified and predicted HfF+ rotational band locations from 11,000 to 15,000

cm−1 (909-668 nm) for up to v′ and v′′ equal to 3. The relative intensity is

scaled by the predicted dipole moment, by thermal factors assuming an ap-

proximate vibrational and electronic temperature based on a rotational tem-

perature of 640 K, and by the Franck-Condon factors. The relative intensities

for the four bands measured with frequency comb velocity-modulation spec-

troscopy agree with the experimental data and the uncertainty in the relative

intensity for bands with no experimental data is a factor of 3-4. The color

of the point indicates the lower state of the band, either 1Σ+ (blue) or 3∆1

(red), while the shape of the point indicates the upper state of the band. The

five identified HfF+ bands discussed in Chapter Five are shown in green with

the outline bolded. For those bands which arise from states for which no

experimental information about molecular constants exists, crude error bars

for the energy uncertainty have been added. The gray region represents the

spectral-range covered and relative sensitivity with frequency comb velocity-

modulation spectroscopy. Even with the four bands of HfF+ accounted for

in the spectral region covered with the frequency comb, we still have ∼100

lines unidentified in the 12,100 to 12,200 cm−1 corresponding on this scale

to a relative intensity of 2x10−3. While we have been unable to assign these

lines due to the overlapping bands, it is possible that they belong to a fifth

HfF+ band such as the 3Σ+
0 −3 ∆1 band predicted 1000 cm−1 to the blue or

the 3Π2− 3∆1 band shifted up from the predicted relative intensity currently

off the lower edge of what is plotted here. . . . . . . . . . . . . . . . . . . . . 79



Chapter 1

Introduction

”At first sight, the search for an edm in a molecule would seem unprofitable.” – Sandars,

1967 [5]

1.1 Electron EDM as a probe of physics beyond the Standard Model

The existence of an electron electric dipole moment breaks both time invariance and

parity invariance, as shown in Figure 1.1. The size of the electron EDM predicted by the

Standard Model is tiny, while various extensions to the Standard Model predict values that

are more than 10 orders of magnitude larger [1]. (See Table 1.1 for a list of predicted

values.) Because of this, electron EDM measurements do not have a Standard Model back-

ground that needs to be accounted for. This is in contrast to experiments such as the parity

non-conservation measurements using cesium, where there is a non-zero Standard Model

component [6]. The zero background nature of the electron EDM in the Standard Model

combined with the current predictions for the extensions to the Standard Model mean that

a reduction in the current limit (1.05x10−27 [9]) by an order of magnitude or two would put

serious constraints on those models.

Most electron EDM experiments using atoms and molecules are conducted in the same

way. (A summary of the state of electron EDM experiments is given in R. Stutz’s thesis [7].)

An electron spin resonance experiment to determine the spin-flip frequency is performed

between two spin states with an electric and usually a magnetic field present. The sign of
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Figure 1.1: An Electron EDM violates both time and parity invariance. The dipole moment
of the electron must lie either parallel or anti-parallel to the electron’s spin. Here the electron
EDM is represented by the blue arrow labeled d and also graphically by the charge separation
on the sphere. The electron’s spin is represented by the red arrow labeled s and graphically
by the white arrow representing a ring of current. Under a reversal of time, the sign of the
spin is reversed while the sign of the electron’s dipole moment stays the same. Under a
reversal of parity, the sign of the dipole moment is flipped while the spin stays the same.
The amount of CP-violation and thus T-violation given CPT invariance required to give a
non-negligible electron EDM cannot be accounted for with the Standard Model.
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Model delectron [e-cm]

Standard Model < 10−40

Canonical CP Violation 10−26

Left-Right Symmetric 10−26 − 10−28

Higgs dynamics > 10−27

Supersymmetry < 10−27

Table 1.1: Summary of predictions of electron EDM values for various extensions to the
Standard Model. [1]

the magnetic field or electric field is then flipped and the splitting between the two spin

states is measured again; if there is a permanent electron EDM, the spin-flip frequency is

different for the magnetic and electric fields configured as parallel versus antiparallel [8]. In

this type of experiment the sensitivity figure-of-merit is Eeffτ
√
N , where Eeff is the electric

field the electron experiences, τ is the spin resonance coherence time, and N is the number

of spin-flips that can be measured in a reasonable amount of time. Recent results from the

Hind’s group with YbF have lowered the current limit to 1.05x10−27 e-cm [9] from the limit

of 1.6x10−27 e-cm on the electron EDM that was set by the Cummins group in 2002 using a

Tl beam [10].

1.2 The Advantage of Molecular Ions and the JILA eEDM experiment

To improve upon the current limit, the figure-of-merit Eeffτ
√
N must be increased.

In 1967, Sandars first proposed using molecules for EDM measurements due to the very

large effective electric fields that could be achieved [5]. While molecules offer the prospect of

greatly increased effective electric fields, the additional complexity of their rich structure also

poses additional experimental challenges. A number of experiments are currently underway

using neutral polar diatomic molecules [9, 11, 12, 13, 14], and very recently, the Hinds group

set a new limit on the electron EDM using YbF [9]. A table of recently completed and

ongoing eEDM experiments, Table 1.2, demonstrates different approaches to improving the
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Table 1.2: Comparison of recent and ongoing eEDM experiments (ongoing experiment val-
ues often represent order of magnitude estimates). The figure-of-merit for evaluating the
sensitivity of an eEDM experiment is Eeffτ

√
N , where Eeff is the effective electric field on

the unpaired electron, τ is the coherence time, and N is the number of measurements that
can be counted in some reasonable experimental integration time.

location ref species Elab [V/cm] Eeff [V/cm] τ [s] N [1/s] eEDM limit [e-cm]

Berkeley [10] Tl 1.23x105 7x107 2x10−3 109 1.6x10−27

Amherst [15] Cs 4x103 4.6x105 1.5x10−2 - 5.5x10−26

LBNL [16] Cs 105 107 1 109 1.9x10−22

Texas Cs 105 107 1 - -

Penn State [17] Cs 105 107 1 - -

Yale [11, 18, 19, 20, 21] PbO 10 2.5x1010 8x10−5 - -

Imperial [8, 9] YbF 7x104 2.9x1010 10−3 - 10.5x10−28

Oklahoma [12, 22, 23] PbF 7x104 2.9x1010 - - -

ACME [13, 24] ThO 102 1011 2 x 10−3 105 -

Michigan [14] WC - 5.4x1010 10−3 - -

JILA [25] HfF+-ThF+ 5 3-9x1010 0.2-1 ∼10 -

figure-of-merit for experiments using both atomic and molecular systems.

To achieve large, i.e. GV/cm, effective internal electric fields, the molecule must be

polarized. For some molecules, such as YbF, rotational states of opposite parity must be

mixed to fully polarize the molecule, leading to a requirement of kV/cm lab electric fields [8].

The lab electric field needs to fully polarize a molecule does not necessarily need to be that

large. Molecules with an electronic state containing closely spaced levels of opposite parity

due to the coupling of the electronic angular momentum to the rotation of the molecule,

Ω-doubling, can be fully polarized in fields as small as a few volts per cm [26].

The presence of Ω-doubling offers another key advantage over atomic systems – an

internal chop. First realized by DeMille in their use of the 3Σ+ state of PbO [11], the upper

and lower manifold of the Ω-doublet have an identical Zeeman splitting as long as the g-

factors are not significantly impacted by mixing with different higher lying states. However,

the splitting due to the electron’s electric dipole moment interacting with the effective electric

field is equal in magnitude for both the upper and lower manifolds, but opposite in sign.

Molecular ions offer the additional promise of long coherence times since they are
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easier to trap than neutral molecules. As long as the molecule has the desired ground state

or long-lived metastable state, a given molecule can be interrogated for longer than in a

beam experiment, although at the cost of a reduction in number of spin-flips measured

simultaneously (N). (See Table 1.2.) For molecular ions, a state which is polarizable with

only a few volts per cm is necessary due to the additional challenges of working in a trap

with rotating fields that limit the electric fields that can be applied. Meyer et al. took the

constraints of working with molecular ions into account and proposed using molecular ions

with 3∆1 ground states or low-lying metastable states, specifically HfH+, HfF+ and PtH+

[26]. Further consideration of 3∆ state molecules has also led to the proposal to use ThF+

[24]. Since HfF+ and ThF+ have been successfully created and trapped, the JILA eEDM

experiment has chosen to work with these two species [25, 7]. Many additional technological

challenges that come with doing precision measurements using molecules inside an ion trap

are discussed in Leanhardt et al. [25] as well as Stutz [7].

1.3 The Trouble with Molecular Ions: The Need for Spectroscopic Infor-

mation

One of the challenges in using molecular ions for precision measurement is a lack of

available spectroscopic data. For the eEDM experiment, multiple states will be needed for

state preparation and spin readout. Figure 1.2 shows a schematic of some of the energy

levels of interest for HfF+. Knowledge of the exact energies of these states will guide design

choices for other aspects of the eEDM experiment. For example, if the 3Φ2 of HfF+ state is

too low in energy, the quantum efficiencies of photomultiplier tubes (PMTs) will make using

laser-induced fluorescence impractical.

When this work was begun, no experimental data existed for either HfF+ or ThF+. Re-

cent work using pulsed-field-ionization zero-kinetic-energy measurements (PFI-ZEKE) from

the Heaven group has provided information about the lowest lying states of HfF+ [3] and

ThF+. Theoretical calculations exist for the states of HfF+, but due to the challenges of
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including so many electrons in the calculations, the uncertainties are thousands of wavenum-

bers [2, 27]. We chose to focus on HfF+ first rather than ThF+ due to the fact that the

states of ThF+ are even less certain.

The large theoretical uncertainties in the energy levels of HfF+ and ThF+ coupled

with the need for information about multiple electronic states necessitates a method of

spectroscopy that covers a broad spectral bandwidth. The requirement for sufficient signal

strength to cover a wide spectral range in a reasonable amount of time puts a lower limit

on the number of ions needed. As a result, spectroscopy of HfF+ or ThF+ needs to occur in

an apparatus other than the experimental apparatus for the electron EDM measurement as

the latter was designed for precise control of a small population of ions [25, 7]. Furthermore,

many methods of producing molecular ions also produce their neutral counterparts often in

high concentrations. Spectroscopic tools that discriminate between ionic and neutral species

reduce crowding of the spectrum and prevent strong neutral transitions from overwhelming

weak ionic signals. With molecular transitions, the ability to resolve individual rotational

lines is key to state identification, and thus high resolution is needed.

1.4 Overview of Thesis

Chapter Two briefly covers our unsuccessful attempt to perform low-resolution spec-

troscopy without any ion-discrimination using a hollow cathode lamp of HfF+. Chapter

Three discusses velocity modulation spectroscopy and our first measurements of electronic

transitions in HfF+. Chapter Four details our development of a novel spectroscopic tech-

nique that provides high-resolution, broad spectral-bandwidth, ion-discrimination and high

sensitivity. Chapter Five summarizes our current knowledge about the structure of HfF+

and its implications for the JILA eEDM experiment. Chapter Six concludes the thesis.
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Figure 1.2: Energy levels of HfF+ relevant to the eEDM experiment. Two different schemes
for spin readout, state selective photodissociation (a) and laser induced fluorescence (LIF)
(b), are shown. States shown as dashed lines including the 1Σ+ ground state may be utilized
for state preparation. The exact energies of these states will help to determine the best
method for spin readout.



Chapter 2

Spectroscopy with a Hollow Cathode Lamp

Hollow cathode lamp (HCL) spectroscopy provides very broad spectral bandwidth

with a minimal amount of technological investment. After the need for a method of ion

spectroscopy outside of the electron EDM measurement apparatus was realized, these prop-

erties made HCL spectroscopy an appealing choice. An initial attempt at spectroscopy of

HfF+ was therefore conducted by resolving the emission from the hollow cathode lamp with

a grating monochromator. Four thousand wavenumbers around 14,500 cm−1 were scanned

with a resolution of ∼ 0.6 cm−1 (0.04 nm) to search for transitions arising from HfF+.

Although transitions were seen that corresponded to locations of Hf and possibly HfF tran-

sitions, the remaining unassigned features proved too complicated to extract the locations

of transitions of HfF+. A restrospective comparison of the data with a now known HfF+

transition illustrates this difficulty. (See Figure 2.3 and associated discussion.)

A schematic of the system is shown in Figure 2.1. A hollow copper cathode was placed

in a glass tube with a stainless steel anode on either side. In order to minimize contamination

of the spectra with copper lines and to avoid damage to the copper cathode, a hafnium sleeve

was press fit inside the copper cathode and then a small amount of HfF4 powder was added.

The discharge heats the HfF4, creating a sufficient vapor pressure, which is then ripped apart

to form HfF, HfF+, as well as Hf and Hf+. (With the hafnium sleeve absent, atomic copper

and atomic copper ion transitions were both observed in the emission spectra.) Argon was

continually flowed through the discharge cell with a pressure of approximately 750 mtorr.
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1 A
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Hf sleeve

HfF4

H O2

Figure 2.1: Qualitative sketch of the hollow cathode lamp apparatus. The glow from the
discharge at the center of the hollow cathode (orange square) is imaged into the grating
monochromator. As the AC motor scans the grating, the light at different wavelengths is
imaged onto the photomultiplier tube and recorded by the oscilloscope. The cross-section of
the cathode on the left shows the Hf sleeve press fit inside the copper cathode with the HfF4

powder placed inside.
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Four 100 ohm ballast resistors each capable of handling 50 W were used to provide a total

ballast resistance of 100 ohms with the capacity to handle 200 W in order for the discharge

to run stably at 350 V with 1 A of current. The large amount of power dissipated required

water cooling of the copper cathode.

The fluorescence that passed through the exit slit of the monochromator was collected

with a photomultiplier tube (Hamamatsu R3896). The slits on the monochromator were

closed as far as possible to achieve the highest possible wavelength resolution, 0.04 nm. An

external motor was connected to the handle of the monochromator to scan it in a controlled

fashion and the PMT output was recorded with an oscilloscope. The NIST table of strong

atomic lines for argon, helium, and copper were used to calibrate the monochromator leading

to a frequency accuracy of ∼1.5 cm−1 (0.1 nm).

The complete frequency range scanned over is shown in Figure 2.2. In the spectral

region covered, numerous transitions from argon, singly charged argon, fluorine, hafnium,

and zirconium (the most significant contaminant in the hafnium sleeve) listed in the NIST

strong lines tables are present, yet they account for only a fraction of the total features

observed. One of the challenges of doing spectroscopy this way is that there is no way to

discriminate between the signal from neutral molecules and atoms, such as HfF or Hf, and

ionic molecules and atoms, such as HfF+ or Hf+. Furthermore, the low resolution, 0.04

nm, prevents resolution of individual rotational transitions for a given molecular electronic

transition and makes discrimination between atomic lines and molecular bandheads difficult.

Figure 2.3 shows two separate regions of the recorded spectra that illustrate some of

the challenges in assignment of the measured lines. In Figure 2.3 (b), the locations of the

band origins of two HfF bands (solid cyan line), obtained using laser induced fluorescence of

a beam of HfF at a later date, allow for the tentative identification of the peaks immediately

to the blue as the R-branch band head of those transitions (dashed cyan line). The high

rotational temperatures expected in the discharge suggest that most prominent feature will

be due to the band head, in this case of the R-branch to the blue (dashed cyan line), and not
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Figure 2.2: Fluorescence from the hollow cathode lamp versus frequency. Locations of strong
lines from the most likely atomic sources of fluorescence in this frequency range as well as
several HfF bands and one HfF+ band at 13,000 cm−1 are also shown and are offset for
clarity. The position of both the band origin and the R-branch band head are indicated for
the HfF and HfF+ bands found using other spectroscopic techniques. Note that a majority
of the features shown are not accounted for by the atomic lines published in the NIST strong
lines tables.
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Figure 2.3: Regions of hollow cathode lamp spectra that contain known HfF+ (a) or HfF (b)
bands. Panel (a) shows data from hollow cathode lamp containing HfF4 in the region of the
1Π1 −1Σ+ (0,0) band of HfF+, which has a band origin of ∼ 13002.3 cm−1 (cyan line) and
an R-branch band head at ∼ 13005 cm−1 (dashed cyan line), as well as other unidentified
bands. The feature at ∼ 13,008 cm−1 is too blue to be the bandhead and lacks a sharp
edge on the blue side. Panel (b) shows a region containing three HfF bands identified using
laser-induced fluorescence in a supersonic beam (cyan lines) as well as a strong argon line
(red line) and many unidentified features. The dashed cyan lines indicate the approximate
location of the R-branch band heads for the HfF bands, which show reasonable agreement
with the data.
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the Q-branch around the band origin (solid cyan line). Despite the identification of these

features, in the 300 cm−1 spanned by the plot in Figure 2.3, there are still approximately

nineteen features unassigned.

Looking backwards from our velocity-modulation experiments (See Chapter 3), in Fig-

ure 2.3 (a), we can also examine the frequency range of the data for the 1Π1−1Σ+ (0,0) band.

Although multiple features are present around 13,000 cm−1, there is not a band present that

corresponds to the HfF+ band whose band origin is indicated by the solid cyan line and

whose R-branch band head is indicated by the dashed cyan line. The lack of a bandhead

near the HfF+ bandhead in the HCL data suggests that the sensitivity in these scans was too

low to measure electronic transitions of HfF+, especially since the 1Π1−1Σ+ (0,0) transition

is one of the strongest [2]. The gain and integration time per point were chosen such that

the many unassigned features did not saturate the PMT and thus could have been increased.

Increasing the sensitivity would not have reduced the forest of unassigned features and so

only small windows of the spectral region covered would yield additional information.

Although the hollow cathode lamp provided broad spectral coverage quickly with some

evidence for HfF production, the low resolution and lack of ion-specificity made this a poor

spectroscopic tool for identifying electronic transitions of HfF+. These measurements high-

lighted the need for ion-specific, high resolution, and high sensitivity measurements across a

broad spectral range. Chapters three and four discuss our attempts to answer this need.



Chapter 3

Velocity-Modulation Spectroscopy with a Diode Laser

One of the great challenges of spectroscopy of ionic molecules is the presence of

abundant neutral species. The development of velocity-modulation spectroscopy (VMS) in

Richard Saykally’s group [28] overcame this problem by providing ion-specific spectroscopy

as well as high sensitivity. Over the past thirty years, this technique has been used and

refined by many groups to achieve high sensitivity for the study of a wide range of molecular

ions in the visible and infrared [29].

To achieve high sensitivity and ion specificity, velocity-modulation spectroscopy relies

on the modulation of the ions’ drift velocity in an alternating current discharge. The mod-

ulation of the drift velocity of the ions relative to a laser passing through the sample of

ions results in a modulated Doppler shift and thus in a modulated absorption. After lock-in

detection at the discharge frequency, the absorption signal has a dispersive-looking lineshape

with the zero-crossing at the transition frequency. The characteristic lineshape of velocity

modulation spectroscopy can be seen in Figure 3.6 (b).

The ionic and neutral species are both produced at twice the discharge frequency by the

creation of the discharge every half cycle. Asymmetries in the discharge configuration can

result in a non-negligible absorption signal from neutral molecular and atomic transitions at

the discharge frequency. Counter-propagating beams can be used to remove this common-

mode absorption signal as well as other common-mode technical noise as the sign of the

demodulated ion absorption signal depends on the instantaneous velocity of the ions relative
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to the direction of propagation of the laser.

3.1 Experiment Design

Velocity-modulation requires the detection of absorption in a laser that passes through

the sample of ions modulated by an alternating-current discharge. Figure 3.1 shows the

optical layout of our system to achieve this. A SDL diode laser tunable from 769 - 792 nm is

split with a polarizing beam cube such that it passes through the discharge in both directions

with the beams crossing in the center of the discharge. Each beam is then focused onto a

balanced photodetector (ThorLabs PDB130A). Polarization optics are used to balance the

power of the beams to approximately one part in a thousand. The difference signal between

the two beams is demodulated at the discharge frequency (10 kHz) with a SRS lock-in

detector and the analog output is recorded by the computer. The wavelength for each point

was recorded by a wavemeter that was occasionally calibrated against the rubidium D2 line

at ∼780 nm.

To further reduce the noise caused by background drifts and electrical and optical

pick-up from the discharge, we implemented a double demodulation scheme following Lan,

Tholl, and Farley [30]. A chopper wheel running at 10 Hz was added to the optical path.

The difference signal was then first demodulated on one lock-in at the discharge frequency

(10 kHz) with a short enough time constant (1 ms) to be insensitive to the chopper wheel.

That demodulated signal was then fed to a second lock-in detector and demodulated at the

chopper frequency of 10 Hz with the time constant set to reach the desired sensitivity (0.3 -

10 s).

A key component of a velocity-modulation spectroscopy scheme is the discharge as it

both produces the sample of interest and provides the modulation of the ions’ drift velocity.

The discharge apparatus consists of a center tube made of either alumina or quartz to with-

stand the oven temperature and of two endcaps each housing an electrode. (See Figure 3.2.)

The center tube is housed within an oven for the production of a sufficient vapor pressure



16

f =
 2

5 
m

m

f = 20 mmf = 20 mm

f =
 5

0 
m

m

PBS

Chopper
Wheel

10 mm pinhole
3 mm pinhole

ISO
l/2

BS

Thorlabs
PDB130A

Wavemeter

SDL

Figure 3.1: Optical layout for velocity-modulation spectroscopy. The light from the diode
laser is spatially filtered, is split and balanced by polarization optics, and passes through the
discharge in both directions before being focused onto the balanced photodetector.
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of HfF4. Several generations of endcap and electrode designs were tested before the final

configuration was settled upon. The discharge assembly needed removable endcaps so that

the HfF4 could be place inside the central tube. (The initial oven could only accommodate

a straight tube.) Concerns about needing to clean or replace the windows on the endcaps

also motivated a design in which the endcaps were easy to remove. Based on previous design

attempts, we knew the electrode surface needed to be far enough from the glass of the endcap

to prevent melting of the glass from localized heating due to the discharge. Water cooling of

the electrode was also needed to prevent excessive heating of the glass-to-metal seal and to

prevent sputtering of the stainless steel. The endcaps also needed connections for the helium

buffer gas that needed to be continuously flowed through the system.

To meet these requirements, a hollow stainless steel electrode with a wire spot-welded

to the inside was connected via a glass-to-metal seal to a glass flange (Figure 3.2 (a).) The

glass portion of the electrode can then be clamped to the endcap to achieve a seal that holds

vacuum. The stainless electrode is one inch in diameter and the BK7 glass tube of the endcap

that surrounds it is 2 inches in diameter to provide a sufficient distance between electrode

and glass. The two inch diameter BK7 tube was then fused onto a two inch diameter tube

in a tee configuration; the matching diameter was chosen to ensure the robustness of the

endcap. The two inch diameter tee is then tapered down to a half inch outer diameter tube

on either end so that it can be attached to the central discharge tube and to reduce the

probability of the window getting coated. At the window end of the endcap, a 3
8
” thick piece

of BK7 is attached with a high temperature wax (Crystalbond). On each endcap there are

also two threaded connectors for the gas flow. On both endcaps, gas flows in on the connector

closest to the window to help keep it clean. On one endcap, the second gas connection serves

as the main inlet and on the other, it serves as the outlet. (See Figure 3.2 (b).)

A schematic of the discharge electronics is shown in Figure 3.3. A function generator

drives two 2 kW commercial audio amplifiers at ∼10 kHz. Two homebuilt step-up transform-

ers with a turn ratio of 25:1 provide the impedance matching to drive the ∼ 2kΩ discharge
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Figure 3.2: Schematic of discharge electrode and endcap. (a) Side view of endcap with water
cooled electrode. The hollow stainless steel electrode is connected via a glass-to-metal seal
to the rest of the endcap with a wire spot welded into the inside to provide the electrical
connection. (b) Top view of endcaps showing the Brewster angle windows and ultratorr
connections to the central quartz or alumina tube.
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given the 8 Ω output impedance of the audio amplifiers. (The impedance matching is imper-

fect due to changes in the discharge impedance from the initial design.) The transformers

on the secondary side are wired such that the voltage drop from each electrode to ground

is one-half the voltage drop across the discharge. 100 Ω ballast resistors are used on the

discharge side as well as two sense resistors of 1 Ω that are used to monitor the discharge

current. A low value of 100 mApk−pk was chosen due to a concern that higher currents would

result in the HfF+ molecules being ripped into their atomic constituents. (Later measure-

ments discussed in Chapter 4 used much higher currents ranging from 250 to 500 mApk−pk.)

For these measurements the voltage across the primary side of the transformers was ∼ 22

Vrms leading to a voltage drop of ∼1.1 kV across the discharge.

3.2 Characterizing the System

Since no electronic transitions of HfF+ had been measured at the time of the design of

the velocity-modulation system, a previously studied N+
2 band as well as a neutral hafnium

transition were used for testing. Production of N+
2 ions allowed for determination of the

discharge settings and for the phase of the lock-in detection. Multiple lines from the (7,4)

A2Πu−X2Σ+
g band previously recorded by Collet et al [4] and Liu et al [31] were measured

as a first test of the system. The N+
2 lines enabled us to test everything except for the

production of HfF4 vapor and thus HfF+ with the oven.

In order to characterize the oven performance, we used a transition in neutral hafnium

at 784.8 nm. In order to be able to see a neutral transition, we rely on concentration-

modulation instead of the velocity-modulation of the ions. Since the discharge is responsible

for producing the HfF, HfF+, Hf and Hf+ from the HfF4 vapor, the abundance of these

species and thus the absorption from them is modulated at twice the discharge frequency

(2x10 kHz). Asymmetries in the discharge may even produce a concentration-modulation

signal at the discharge frequency, which is suppressed by using counter-propagating beams

as the concentration-modulation is common mode between the two beams. To deliberately
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Figure 3.3: Schematic of discharge electronics. A function generator drives two 2 kW audio
amplifiers at∼10 kHz. Two homebuilt step-up transformers provide the impedance matching
for the discharge. For the diode laser VMS measurements typical values were a discharge
current of ∼100 mApk−pk and ∼22 Vrms across the primary side of the transformer.
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Figure 3.4: Strength of hafnium line versus temperature. The 550 ◦C temperature necessary
to produce a reasonable vapor pressure of HfF4 is much lower than initially expected.

measure the absorption from the concentration-modulation of hafnium at twice the discharge

frequency, we therefore must detect only one of the beams rather than the difference of the

counterpropagating beams. The strength of the hafnium line was then measured as a function

of oven temperature to determine the appropriate operating temperature of 550 ◦C as shown

in Figure 3.4. As one source quoted a sublimation temperature of HfF4 of 968 ◦C [32] and we

could not obtain a vapor curve, we purchased an oven capable of reaching 1500 C anticipating

a need for high temperatures to produce a reasonable vapor pressure of HfF4. The much

lower temperature of 550 ◦C eventually allowed for the use of more compact home-built

ovens. These temperature measurements were later repeated with one of the HfF+ lines to

confirm that the optimal operating temperature for HfF+ measurements was the same as for

Hf.

The sensitivity of the velocity-modulation system was characterized both with and

without the discharge running. With the discharge off, the fractional noise was 8x10−8Hz−1/2;

while with the discharge on, the fractional noise is 3x10−7Hz−1/2. This corresponds to ap-

proximately a factor of 5 above shot-noise with the discharge off and a factor of 20 above

shot-noise with the discharge on. The fractional noise with the discharge off is most likely
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due to air currents. For most of the data shown here, the discharge tube was located 17

inches above the optics table in the high temperature oven resulting in air currents being

particularly problematic. Pick-up at the discharge frequency causes offsets on the lock-in

that fluctuate and thus the noise with the discharge running is greater. For all of the noise

measurements, the noise was greater than the noise-equivalent-power of the detector (15

pW/
√
Hz).

3.3 First Experimental Data of HfF+ Spectra

Scans with the diode laser were started after the system had been characterized with

N+
2 and Hf starting with the wavelength region around 770 nm. HfF4 was loaded into the

bottom of the central discharge tube and the oven was heated to 550 ◦C. Helium buffer

gas was flowed through the discharge continuously such that the total pressure was 5 torr.

For these scans, the discharge current was ∼ 100 mApk−pk and the voltage drop across the

discharge was ∼ 1 kV. A series of lines with first-derivative lineshapes characteristic of ions

was seen near 13,000 cm−1. The lines disappeared when the oven was turned off, which

meant it was not due to one of the N+
2 bands located in this wavelength range. This series

of lines was tentatively identified as belonging to a HfF+ band, which was confirmed by the

fit.

Figure 3.5 shows the scans covering the HfF+ band. 60 cm−1 of bandwidth was covered

with rotational transitions with up to J=50 seen as the discharge plus the oven results in

a relatively high temperature. The high rotational temperature provides many lines for the

fit. Subsequent scans were acquired to see the band origin with higher sensitivity. High

sensitivity around the band origin was necessary to identify the low J lines, which have low

thermal population, so that the values of Ω could be assigned to the upper and lower states.

The electronic states of HfF+ can be approximated as Hund’s case (a) or in the case of

strongly spin-orbit mixed states, Hund’s case (c) [26]. As described in Ref. [35], for Hund’s

case (a), the interaction of the nuclear rotation (N) with the electronic motion, both spin
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(S) and orbital (L), is very weak while the electronic motion is coupled very strongly to

the internuclear axis. For Hund’s case (a), both the orbital angular momentum (L) and the

spin (S) process around the internuclear axis with projection Λ and Σ respectively along the

internuclear axis with Ω = Λ + Σ. The total angular momentum, J, is then given by the

coupling of the electronic motion (L + S) to the nuclear rotation (N). Since J cannot have

values smaller than Ω, for a given Ω, J = Ω, Ω + 1, Ω + 2,... As the rotational energy is

proportional to J(J+1) and transitions from one vibronic state to another are only allowed

for J = 0,+/ − 1, examination of rotational bands for the presence of transitions for low

values of J can thus lead to identification of the value of Ω for the upper and lower states

[35].

Hund’s case (c) is very similar to Hund’s case (a) except that in this case the interaction

between L and S is stronger than the interaction with the internuclear axis [35]. In Hund’s

case (c), Λ and Σ are not well-defined quantum numbers but rather L and S couple to form

the resultant vector Ja, which has a projection Ω along the internuclear axis. Ja couples to

the nuclear rotation to form the total angular momentum, J as in case (a). Again as in case

(a), J cannot be smaller than Ω, leading to J = Ω, Ω + 1, Ω + 2,... and giving us the same

tool to identify Ω for the upper and lower states from a rotational band [35]. Despite the

strong spin-orbit mixing for some of the states of HfF+ and ThF+ such as the 1Π1 and 3Π1

[64], we still denote all of the states using the molecular term symbol, 2S+1ΛΩ, as if Λ is a

good quantum number.

As hafnium has five isotopes with relative abundances of 35.10%(180), 13.63%(179),

27.30%(178), 18.6%(177), and 5.21%(176) [33], we expected to see some isotope structure in

the measured spectrum. Initially, when this data was acquired, we did not anticipate seeing

the odd isotopes due to the hyperfine structure washing out the lines. Later measurements

discussed in Chapters 4 and 5 demonstrated that the hyperfine splittings are small enough

that we see all five isotopes.

The presence of multiple isotopes allows us to determine the change in vibrational



24

12,950 12,960 12,970 12,980 12,990 13,000 13,010
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-6

Frequency [cm
-1

]

F
ra

ct
io

n
a

l A
b

so
rp

tio
n

 

 

data

P

Q

R
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present.
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quantum number with some assumption of reasonable vibrational energies. In this case,

∆v = v′− v′′ = 0 as there is no sign of vibrational isotope splitting for ∆v > 0, where v′ and

v′ are the vibrational quantum numbers of the upper and lower states respectively . Because

∆v = 0, we did an isotope averaged fit rather than fitting to lines from only one isotope of

hafnium, i.e. 180HfF+, as only in portions of the spectra was there partially resolved isotope

structure. For part of the spectrum, the electronic, vibrational and rotational isotope shifts

cancel or nearly cancel resulting in a single lineshape. (See Figure 3.6 (b).) Attempts to fit

the lineshapes and to extract the positions of each individual isotope were unsuccessful.

Lines belonging to the P (J′′-J′=1), Q (J′′-J′=0) and R (J′′-J′=-1) branches were iden-

tified. All three branches were then fit to the following:

E(J ′′, J ′) = ν0 +(B′− P
2
∗(p+2q))J ′(J ′+1)+D′J ′2(J ′+1)2−B′′J ′′(J ′′+1)−D′′J ′′2(J ′′+1)2

(3.1)

where P = −1 for ∆J = 0 and P = 1 for ∆J = +/−1, ν0 is the energy difference between the

v = 0 levels of the electronic states, B′ and B′′ are the rotational constants of the upper and

lower states respectively, (p+2q) is the Ω-doubling of the upper state (this parameterization

is discussed in Ref. [34]), and D′ and D′′ are the respective anharmonic distortion terms

of the upper and lower state. Higher order Ω-doubling terms were not included as D′ was

already consistent with zero. The values obtained by the fit are given in Table 3.1 and the

locations of the P, Q, and R branches from the fit are shown graphically in Figure 3.5 along

with a compilation of the data. The values for B′′ and B′ are consistent with the species being

HfF+ as opposed to a species with the mass of N+
2 . The rotational constant in wavenumbers

is given by

B =
h

8π2cµr2
e

(3.2)

where h is Planck’s constant, µ is the reduced mass, c is the speed of light in cm/s and re is

the equilibrium bond length [35]. Petrov et al. [2] had calculated values of re ranging from

1.78 to 1.87 Å for different electronic states of HfF+, leading to values of B ranging from
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Table 3.1: Isotope averaged values of fit of line positions with 1σ errors.

parameter value [cm−1]

B′′ 0.30489(10)

B′ 0.28117(10)

D′′ 1(1) x 10−7

D′ 1(1) x 10−7

(p+2q) 3.55(2) x 10−4

ν0 13002.229(3)

0.281 to 0.310 cm−1. A more detailed comparison with theory follows in Chapter 5.

The presence or absence of low J lines allows for the determination of Ω for the upper

and lower state. If the R(0) line is present, Ω′′ = 0 and Ω′ ≤ 1. If the P(1) line is missing,

then Ω′ > 0. Additional confirmation comes from looking at the Q(0) and Q(1) line locations.

If Q(0) is missing, Ω′′ > 0 or Ω′ > 0 and if Q(1) is present, Ω′′ ≤ 1 and Ω′ ≤ 1. The region of

the spectrum containing the low J lines is shown in Figure 3.6. With R(0) and Q(1) present

and P(1) and Q(0) missing, Ω′′ = 0 and Ω′ = 1.

From comparison with theory [2], it would initially appear that the Ω′′ = 0 and Ω′ = 1

transitions is the 3Π1−1Σ+ (0,0) transition since the predicted value for T0 is only 300 cm−1

away from the theory prediction. However, the sign of the Ω-doubling corresponds not to

the 3Π1− 1Σ+ transition, but to the 1Π1− 1Σ+ transition [64]. The identification of more

states of HfF+ as discussed in Chapter 4 led to the confirmation that this is actually the

1Π1−1Σ+ (0,0) band. The structure of HfF+ as identified so far is discussed in Chapter 5.

3.4 Extending Velocity-Modulation Spectroscopy

The fact that the 1Π1−1Σ+ (0,0) is 2100 cm−1 from the predicted value [2] highlights

one of the limitations of doing VMS with a cw laser when there is no prior spectroscopic

information. Even with cw lasers that are relatively easy to scan, it takes a long time to

cover several thousand wavenumbers of bandwidth. With the diode laser, we sampled small
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Figure 3.6: (a) Confirmation of an Ω=0 to Ω=1 transition. The red arrows point to the
locations of the P(1) and Q(0) predicted by the fit. The visibility of the R(0) and Q(1)
lines confirms that the sensitivity is high enough to see the P(1) and Q(0) lines if they were
present. (b) Region of HfF+ band in which isotope shifts cancel. In this region of the spectra
the rotational isotope shift is canceled by the electronic and vibrational isotope shifts. The
difference in energy for an electronic transition for 178HfF+ relative to 180HfF+ is given by
∆E = (1 − µ180

µ178
)Erot + (∆T0,iso + ∆ων,iso), where µ180 and µ178 are the respective reduced

masses, Erot is the rotational contribution to the transition energy, and (∆T0,iso + ∆ων,iso)
is the sum of the electronic and vibrational isotope shift. From this we see that (∆T0,iso +
∆ων,iso) ∼ −0.04 cm−1, which matches the structure seen in (a) where at the band origin
Erot ∼ 0.
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regions of the accessible bandwidth as is shown in Figure 3.7, but did not fully cover the

wavelength range of the laser. The sampling approach was made to try to leverage the high

rotational temperature, which results in each band covering ∼100 cm−1 with lines spaced

by less than 0.5 cm−1. By sampling the spectrum in non-contiguous 1 cm−1 sections, we in

effect gain information about a much wider frequency range as we would see multiple lines

if there is a band in the vicinity. However, once potential lines are seen, the whole band still

needs to be scanned out. Instead of pushing to cover a wider energy range with cw lasers, we

switched to frequency comb velocity-modulation spectroscopy which is discussed in Chapter

Four.
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Chapter 4

Development of Frequency Comb Velocity-Modulation Spectroscopy1

The application of optical frequency combs to a variety of spectroscopic techniques

has resulted in ultrahigh sensitivity systems with simultaneous high resolution, absolute fre-

quency accuracy, and spectral bandwidth, all with dramatic reduction in data acquisition

times [37, 38, 39, 40, 41, 42, 43]. Compared to broadband incoherent light sources or tun-

able cw lasers, frequency combs offer both broad spectral bandwidth and spectrally narrow

lines with well-defined frequencies given by fn = f0 + n ∗ frep set by only two parame-

ters, the carrier-envelope-offset frequency, f0, and the repetition rate, frep [44]. Applications

of direct frequency comb spectroscopy have included breath analysis [45], tomography of

supersonically-cooled molecular jets [46], demonstration of high-sensitivity molecular fin-

gerprinting with ammonia [42] and detection of impurities in semi-conductor specialty gases

[47]. The development and use of these spectroscopic techniques has been focused on neutral

atomic and molecular species as opposed to ionic species. Prior to the research discussed be-

low, no techniques have been capable of ion-specific high-sensitivity modulation spectroscopy

on every parallel detection channel over a broad spectral range [36]. The integration of veloc-

ity modulation spectroscopy [29, 28] and cavity-enhanced direct frequency comb spectroscopy

[39, 43] provides a way to achieve very broad spectral bandwidth ion-sensitive spectroscopy

without sacrificing high-resolution or high-sensitivity.

1Portions of this chapter have been previously published in Sinclair et al. [36].
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4.1 Overview

High resolution spectroscopy of molecular ions is typically performed using velocity-

modulation spectroscopy (VMS), first demonstrated in Saykally’s group [29, 28]. Velocity-

modulation spectroscopy achieves high sensitivity via lock-in detection of the absorption

signal from a laser which passes through a sample of ions with a modulated Doppler shift

due to an alternating current discharge [28]. Although recent experiments have pushed

to higher sensitivity [48, 49] as well as higher accuracy [50, 51], these systems still rely

on slow scans of continuous wave (cw) lasers. In addition, broad spectral bandwidth has

been achieved via emission spectroscopy [52, 53], but without the methods of enhancing

sensitivity of the current experiment. Velocity-modulation spectroscopy of HfF+ including

some of the limitations was discussed in Chapter Three. Cavity-enhanced direct frequency

comb spectroscopy has demonstrated broad simultaneous bandwidth with high resolution

and high sensitivity [39, 43], and thus is an ideal candidate to integrate large instantaneous

bandwidth with high-resolution VMS by enabling lock-in detection simultaneously on every

comb tooth.

To integrate these two powerful spectroscopic techniques, several key features are

needed, as sketched in Figure 4.1. An alternating-current discharge tube for the produc-

tion and modulation of molecular ions must be placed within an optical enhancement cavity,

with the cavity length actively stabilized such that the frequency comb light can be coupled

into the cavity. The cavity needs a ring geometry to provide a single direction of propagation

of the light relative to the instantaneous motion of the ions, which enables lock-in detection

at the discharge frequency (10 kHz). For frequency accuracy that is not limited by the

imaging system resolution, the imaging system must be able to resolve each individual comb

mode. Finally, the detector used must be able to demodulate the intensity of each comb

mode at the discharge frequency of 10 kHz to recover the absorption signal. The design

considerations as well as the acquisition of a thousand wavenumbers of the spectra of HfF+
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Figure 4.1: Qualitative sketch of a frequency comb velocity-modulation spectroscopy sys-
tem. Light from the frequency comb is coupled into a bow-tie ring cavity containing an
AC discharge tube. The AC discharge modulates the ions’ Doppler shift and thus the ion
absorption signal. The transmitted light is dispersed by a VIPA etalon and a grating to
produce a 2-dimensional image in which every comb tooth is resolved and detected. A fast
demodulation camera performs lock-in detection of each comb tooth at the discharge mod-
ulation frequency to recover ion-specific absorption signals across each comb mode. (Figure
courtesy B. Baxley(JILA).)
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are both discussed in this chapter. The analysis of the HfF+ bands measured is discussed in

Chapter Five.

4.2 Experiment Design

4.2.1 Cavity Design

To increase the effective absorption path length, a ring cavity was placed around the

discharge tube. The ring geometry provides a well defined direction of propagation of the

laser relative to the instantaneous velocity of the ions and allows for the use of counter-

propagating beams for additional noise suppression. The existence of the discharge tube

inside the cavity places limitations on the achievable finesse. Additionally, the presence of

the discharge tube windows causes spectral filtering of the comb bandwidth coupled into the

cavity due to group velocity dispersion.

For the cavity, a bow-tie configuration was chosen as shown in Figure 4.2. On either

side of the approximately 1 meter discharge tube are 100 cm radius of curvature mirrors.

On the short arm of the bow-tie are the flat input and output couplers with 98% reflectivity.

The higher the finesse, the more sensitive the system but issues of intra-cavity losses and

group velocity dispersion become more problematic. The reflectivity of the input couplers

was chosen as a compromise between matching the losses due to the Brewster angle windows

to maximize the transmitted intensity and maximizing the finesse. The ratio of cavity-

enhanced signal to single-pass absorption signal for a ring cavity is given by F/π, where F

is the cavity finesse. The finesse of the cavity is given by

F =
π
√
grt

1− grt
(4.1)

where grt = R
√
Tcav is the probability a photon makes one round trip (round trip gain), R is

the reflectivity of the input couplers, and Tcav is the transmissivity of the Brewster windows
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[54]. The ratio of transmitted intensity to incident intensity is given by

Itrans
Iinc

=
(1−R)2Tcav

(1−R
√
Tcav)2

(4.2)

[54]. For the current system Tcav ∼ 0.97 due to imperfect alignment of the Brewster angle

windows on the discharge tube and thus F ∼ 88 and Itrans/Iinc ∼ 32%. Itrans/Iinc has

been measured to be ∼ 30% with the single-frequency reference laser (thus avoiding issues

of spectral filtering for the measurement).

The free spectral range (FSR) of the cavity, ignoring intra-cavity dispersion, is given

by FSR ≈ c/L, where c is the speed of light and L is the length of the cavity. We wanted to

match every comb mode, spaced by 2.97 GHz, to every 25th cavity resonance, which resulted

in a cavity FSR of ∼119 MHz. By making the bow-tie as compact as possible, we achieved

the required optical path length of 254 cm. Fine tuning of the cavity length to match the

comb’s repetition rate is achieved via mounting one input coupler on a translation stage.

Additional, finer control is possible via a long-travel (80 µm) piezoelectric transducer (PZT)

on the translation stage. The long-travel PZT has enough range to keep the cavity length

and thus the FSR matched to the repetition rate of the comb as the repetition rate is scanned

to fully sample the spectrum.

Once the required optical pathlength and desired cavity configuration were known,

we wanted to confirm that we had designed a stable resonator and to calculate the radius

of curvature and beam diameter of the cavity mode at different locations of the cavity.

Knowledge of the radius of curvature and beam waist at the input coupler is necessary for

matching the incident light to the cavity mode. We also wanted to know the size of the beam

at the focus inside the discharge tube as well as at the two curved mirrors to get a sense of

the size of the beam through the discharge region.

The so-called ABCD matrices and the q-parameter of the beam can be used to calculate

the waist and radius of curvature of the beam as a function of position. The beam waist,
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ω(z), at a given position, z, is given by

−Im(q) =
λ

πω2(z)
=

1

B

√
1− (

A+D

2
)2 (4.3)

where λ is the wavelength of the light, and the radius of curvature at a given position, z, is

given by

Re(q) =
1

R(z)
=
D − A

2B
(4.4)

[54]. For any point in the cavity, we can also define a quantity m = (A+D)/2, where if −1 ≤

m ≤ 1, the resonator is stable. In order to find the q-parameter, the ABCD matrix can

be calculated by using the propagation through a medium with index of refraction n with

length d,

1 d
n

0 1

, and the reflection from a spherical mirror with curvature R,

1 0

2
R

1

,

where R is positive if the center of curvature lies in the positive direction of the incident ray

propagation. For example, the ABCD matrix for the focus between the two curved mirrors

is given by:

A B

C D

 =

1 1
2
Ldisch

0 1


1 t

nfs

0 1


1 1

2
(L1− Ldisch)− t

0 1


 1 0

−2
R


1 L2

0 1


1 L3

0 1


1 L2

0 1


 1 0

−2
R

1


1 1

2
(L1− Ldisch)− t

0 1


1 t

nfs

0 1


1 1

2
Ldisch

0 1


where Ldisch = 101 cm is the length of the discharge tube; t=0.1 cm is the thickness of

the window; nfs = 1.5 is the index of refraction of fused silica at 800 nm; L1=110 cm is

the distance between the two curved mirrors (M2 and M3 in Figure 4.2); R=100 cm is the

radius of curvature of the two curved mirrors; L2 = 67 cm is the distance between the curved

mirror and the input coupler; and L3 = 7 cm is the distance between the two input couplers.

From this we get that the beam diameter at the waist at the center of the discharge tube

is ∼250 µm, at the curved mirrors it is ∼615 µm, and at the waist between the two input
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Table 4.1: Distances between optical elements in enhancement cavity and between the mode-
matching optics and the enhancement cavity. Optical elements are labeled in Figure 4.2.

Optical elements Distance [cm]

M2 and M3 110

M1 and M2 67

M3 and M4 67

M1 and M4 8

f=70 mm lens and f=50 mm lens 17

f=50 mm lens and PBS 47

PBS and M1 44

PBS and M4 44

couplers it is ∼500 µm. Also, the value of m = −0.92, so the resonator is stable.

To couple light into one mode of the cavity, both the beam waist and radius of curvature

of the incident beam must be matched to the waist and radius of curvature of the cavity

mode at the input coupler. ABCD matrices were used to calculate the propagation of the

beam from the collimated output of the fiber to the input coupler. Matlab’s ability to solve

systems of nonlinear equations was utilized to determine the appropriate distances for two

lenses to be placed before the cavity by matching the real and imaginary parts of the q-

parameter of the cavity to the incident light at the input coupler. Both lenses needed to

go before the beamsplitter so that the beam would be well matched to the cavity for both

clockwise and counterclockwise propagation. (See Figure 4.2.) Two lenses were needed due

to the space constraints and the very gentle focus to match the two parameters.

One of the additional complications of this system is the presence of astigmatism. With

the bow-tie cavity, the angle of incidence for the curved mirrors is 15◦ and thus the effective

radius of curvature in the tangential plane (plane of incidence) is given by Re = Rcos(θ),

while in the sagittal plane (perpendicular to the plane of incidence) it is given by Re =

R/cos(θ). For θ = 15◦ and R=100 cm, Re = 104 cm in the sagittal plane and Re = 97

cm in the tangential plane. Additionally, the optical path through the Brewster window is



37

IS
O

f=70 mm

f=50 mm

breadboard

l/2

l/4

M1

M2M3

M4

grating
monochromator

AO
M

FC

FC

FC = fiber collimator
ISO = Faraday isolator
AOM = acousto-optic modulator
LCR = liquid crystal retarder

M1, M2, M3, M4 = cavity mirrors
Polarization optics for controlling clockwise vs 
counterclockwise propagation not shown

FC
PBS

LCR

LCR
LCR

LCR

imaging 
system

comb + 
cw ref

Figure 4.2: Optical layout for frequency comb velocity-modulation spectroscopy. Light from
the frequency comb passes through λ/2 and λ/4 clean-up waveplates and a optical isolator
to achieve the appropriate polarization and prevent back reflections to the comb. The two
lenses are placed to match the mode of the collimated comb light from the fiber to the mode
of the optical cavity at the input couplers (M1 and M4). Depending on the polarization of
the light before the polarizing beam splitter (set by a LCR) light travels either clockwise or
counter-clockwise through the cavity. M2 and M3 are 99.99% reflectivity mirrors with a 100
cm radius of curvature, and M1 and M4 are 98% reflective flat input couplers. A translation
stage and long travel PZT on M4 coupled with a fast PZT on M2 allow for tuning of the
cavity length to match the free spectral range of the cavity to the repetition rate of the comb.
After traveling through the cavity, the outcoupled light passes through the AOM (used for
measuring the DC intensity on the lock-in camera) and then to the imaging system. A glass
wedge is used to pick-off a small amount of the outcoupled light to measure the transmitted
spectrum with a grating spectrograph.
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different in the two planes, but this is a smaller effect than the difference in effective radius

of curvature. Despite this difference, the incident light is mode-matched to the cavity using

spherical lenses and as a consequence there will always be some coupling into higher-order

modes. With a single-frequency laser, i.e. no spectral filtering, 85-90% of the light is coupled

into the lowest order mode (TEM00).

In order to determine the spectral bandwidth of the frequency comb that can be coupled

into the cavity simultaneously, we need to reconsider the free spectral range of the cavity

taking intra-cavity dispersion into account. The free spectral range of the cavity is given by

FSR(ω) =
c

L+ c ∂φ
∂ω

(4.5)

where c is the speed of light, L is the optical path length of the cavity and ∂φ
∂ω

is the intra-

cavity dispersion [55, 56]. The variation of the FSR as a function of frequency is then given

by

∂FSR(ω)

∂ω
= −FSR(ω)2 ∂

2φ

∂ω2
(4.6)

where ∂2φ
∂ω2 is the group delay dispersion (GDD). The variation in the cavity FSR is non-

negligible primarily due to the presence of the discharge tube windows inside the cavity. The

discharge tube windows are 1 mm thick fused silica, which has a group velocity dispersion

(GVD) of 36 fs2/mm at 800 nm. The fused silica windows replaced the BK7 windows

described in Chapter Three to reduce the window thickness from 3 mm to 1 mm. Using the

GVD for fused silica at 800 nm, an initial FSR of 120 MHz, and a 1 MHz cavity linewidth,

the change in frequency for a cavity resonance to be a cavity linewidth away from the bare

cavity resonance occurs across a ∼ 6 THz spectral width. As is shown in Figure 4.3, ∼ 6.5

THz (15 nm at 830 nm) of the full comb spectrum is transmitted through the cavity. (By

using a grating to select the portion of the full comb bandwidth for locking the frequency

comb to the cavity, different 6.5 THz portions of the full comb bandwidth can be coupled

into the cavity.) As is discussed in the next section, the imaging system has a spectral

bandwidth of ∼ 4.4 THz (10 nm at 830 nm) so this is sufficient.
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Figure 4.3: Full comb-spectrum and transmitted comb-spectrum measured with grating
spectrometer. The transmitted spectrum is less than the full comb bandwidth due to the
spectral filtering that results from the two Brewster angle windows on the discharge tube.
By using a grating to select different regions of the full comb spectrum for producing the
locking signal, the spectral region of the transmitted spectrum can be changed.
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4.2.2 Imaging System

The cavity-transmitted light is coupled via fiber to a two-dimensional lock-in imaging

system designed for massively parallel detection. A 1 GHz resolution crossed-dispersion

system consisting of a titled VIPA etalon [57, 58] and a grating is used to resolve each

individual comb mode [40, 45]. A Heliotis C2 “smart pixel” lock-in camera [59, 60], which

uses a combination of CCD and CMOS technology, is used to demodulate and read out

each pixel at the discharge modulation frequency. The lock-in camera uses a microlens array

to achieve close to a hundred percent filling factor even though the active area is only ten

percent of the total area. The use of the microlens array also makes the camera sensitive

to horizontal tilt and thus careful alignment of the camera is required. A schematic of the

imaging system is shown in Figure 4.4.

A VIPA is a high resolution element that consists of a plate with an entrance stripe with

an anti-reflection coating, a highly reflective coating above the entrance stripe (R≥99.9%),

and an exit surface that is partially reflective (R∼99.6%). Unlike a usual etalon, all incident

wavelengths are transmitted. Similar to an etalon, the VIPA generates repeating mode

orders with the free spectral range set by the plate thickness (94 GHz for this experiment).

A grating is then used to resolve overlapping mode orders of the VIPA, and thus only requires

a resolution at the level of the VIPA FSR. A detailed discussion of the design considerations

for a VIPA etalon and grating crossed-dispersion system is found in Chapter 6 of M. Thorpe’s

thesis [56]. In this system, the first VIPA used was designed for 100 MHz resolution and thus

was coated for F ∼ 1000. Due to the technical challenges of constructing a high resolution

VIPA, the actual resolution was only on the order of 1 GHz, but alignment through it often

resulted in aberrations and in a low efficiency of ∼ 1%. With a second VIPA designed for 1

GHz resolution (F ∼ 100), alignment was much easier and 10% of the light is transmitted

through the VIPA.

The imaging system was designed with the goal of placing a comb mode onto a single
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Figure 4.4: Schematic of imaging system. The VIPA provides high resolution, 1 GHz, but
low free spectral range, 100 GHz. The grating resolves the 100 GHz FSR of the VIPA.
The first f = 50 mm cylindrical lens focuses the light into the VIPA at the junction of
the anti-reflective and high reflectivity coatings. After the VIPA, the cylindrical telescope
expands the beam to fill the grating. The f=250 mm imaging lens then maps the differences
in wavevector to differences in position at the detector plane of the camera. The inset shows
a picture of the actual optics.
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pixel, which has dimensions of 86.3 x 50 µm, and of spacing the comb modes in the grating

(horizontal) direction by every other pixel to maximize the total number of comb modes

imaged while retaining the ability to individually resolve them. In the VIPA (vertical)

direction, prior experience led us to choose an imaging lens with f ∼ 250 mm so that one

FSR nearly fills the vertical direction of the camera. In the grating (horizontal) direction,

the beam diameter after the VIPA is 2 mm, leading to a bi = 5 mm beam diameter after the

horizontal telescope. The beam diameter at the focus on the lock-in camera is then given by

bcamera = 4λ
π

fimaging

bi
= 4∗800nm

π
250mm
5mm

≈ 51 µm. When measured using a conventional CCD

camera with 13 x 13 µm pixels, the horizontal width was found to be ∼ 65 µm. In the VIPA

direction, the width was found to be ∼ 50 µm.

The maximum resolution of a grating is given by ∆λ = λ/N , where λ is the wavelength

of the light and N number of grating lines illuminated. At 800 nm, given the 1800 lines/mm

pitch of the grating and a 5 mm diameter beam, the maximum resolution is ∼ 42 GHz,

which is sufficiently below the VIPA free spectral range of 94 GHz. To place the comb

modes separated by one FSR on every other pixel, necessitates a 172.6 µm spacing for

modes spaced by 0.22 nm at a center wavelength of 800 nm. The grating equation gives the

angle of the first order off of the grating as follows:

sin(β) = Gλ− sin(α) (4.7)

where G is the grating pitch of 1800 lines/mm, λ is the wavelength of the light, and α is the

incident angle. From this we get that the change in angle as a function of wavelength is

∆β ≈ G

cos(β)
∆λ (4.8)

. Using ray-tracing matrices, the position from the center axis is given by

xf = fimagingG∆λ/cos(β) (4.9)

where fimaging is the focal length of the imaging lens, di is the distance from the grating to

the imaging lens, ∆λ is the change in wavelength, and β is the angle of the first order off of
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the grating. Given fimaging = 250 mm, G=1800 lines/mm, and ∆λ = 0.22 nm, an angle of

β = 55◦ is needed to produce xf = 172.6 µm. From the grating equation, for λ = 800 nm,

this requires an angle of incidence of 38◦. Using the CCD camera, the comb modes had a

horizontal spacing of ∼ 170 µm and a vertical spacing of ∼ 200 µm.

After the characterization with the conventional CCD camera, the comb light was then

imaged onto the lock-in camera by applying a well-calibrated 10 kHz amplitude modulation

to the light using the AOM shown in Figure 4.2. The resulting image of the incident comb

light is shown in Figure 4.5. As can be seen in Figure 4.5, the chirp in the VIPA spacing

results in some comb modes spanning more than a single pixel. The identification of the

center of each comb mode and resulting summing scheme are discussed in the following

section on spectrum generation.

A calibration of the lock-in camera was performed by measuring the shot-noise with

both a LED and the cw Ti:sapph laser. In both cases, the light was modulated at 10

kHz as the lock-in camera does not measure the DC intensity. Since the readout noise is

non-negligible, the noise in counts is the sum in quadrature of the readout and shot-noise

contributions,

noise =

√
σ2
readout +

1

C
N (4.10)

where σreadout is the readout noise, C is the calibration factor in photons per count and N

is the number of counts measured in a single frame. From this, C, the calibration factor, is

3000 photons per count.

Additionally, the maximum number of cycles of demodulation that the camera can

perform at 10 kHz is limited to 150. Above this, the camera reads a lower value of the power

than it should. Issues of camera saturation arising from 10 kHz electrical pickup necessitated

running at between 10 and 50 demodulation cycles per frame so this was not a limitation on

the acquisition of data. At 10 cycles of demodulation at 10 kHz, saturation occurs at 100

percent modulation depth with ∼ 800 pW on a pixel.
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Figure 4.5: Image of the transmitted comb light. The comb modes are spaced by the
repetition rate of the comb (2.97 GHz) in the vertical direction and by the FSR of the VIPA
(94 GHz) in the horizontal direction. The size of a comb mode is the same as the pixel
size and in the horizontal direction the grating resolution was chosen such that each FSR is
spaced by one pixel to fit the maximum number of comb modes on the camera. Because of
the spacing and the chirp of the spacing due to the VIPA, comb modes are sometimes split
across more than one pixel as can be seen in the zoomed in portion of the figure.
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4.2.3 Generating a Spectrum

Once a series of images each with comb modes spaced by 2.97 GHz but stepped by 100-

200 MHz are acquired, the absorption signal for each comb mode must be extracted from each

image and then that information is interleaved to produce a conventional looking velocity-

modulation spectrum. The two stages of generating a spectrum are identifying the location

of each comb mode on an image and putting the absorption signal from that location into

the spectrum. In order to construct a spectrum from the data, the LabView data acquisition

program records for each data image acquired: the signal at the discharge frequency (10

kHz) for both clockwise and counterclockwise propagation, a “chopper” image produced by

applying a well-calibrated 10 kHz amplitude modulation to the transmitted light for both

clockwise and counterclockwise propagation, the wavelength of the cw reference laser from

the 30 MHz accuracy wavemeter, and the repetition rate of the comb from a frequency

counter. For the data and “chopper” images, the data acquisition program averages over

the number of frames and sets of frames taken by the camera, but not the number of

demodulation cycles. The “chopper” images allow for the identification of the location of

each comb mode as well as the determination of the DC intensity for each comb mode and

thus the fractional absorption.

To identify the locations of each comb mode on an image, a global fit to the grid formed

by the pixels is used. A global fit is necessary instead of simply counting by a fixed number of

pixels from a given starting location due to the chirp in the comb mode spacing. (See Figure

4.5.) The fit starts with a small region and the fit region is expanded to eventually include

the whole image for higher polynomial orders. For the full image, in the VIPA direction, the

fit to the comb mode positions is quartic and in the grating direction, the fit to the comb

mode positions is quadratic. For each region, the fitting program maximizes the sum of the

weighted intensity of each predicted mode averaged over the number of predicted modes in

that region. The weighting function consists of a quadratic arch centered on the predicted
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comb mode location to minimize issues of comb modes split across two pixels. A portion of

the global fit is shown in Figure 4.7 (a).

Once the location of each comb mode is known for the first image of the scan, all of

the information acquired by the data acquisition program discussed above, in addition to

the following, is utilized by a data analysis program to generate the spectrum. In order to

compute the appropriate DC intensity, the modulation depth for the AOM that applies the

10 kHz modulation needs to be determined. Since the data acquisition program does not

average over the number of demodulation cycles, the number of demodulation cycles2 for

both the data images and the “chopper” images must be input. The output from the global

fit program is passed to the data analysis program as a 3-dimensional array of positions

on the grid formed by the pixels where first dimension corresponds to an integer VIPA row

index, the second dimension corresponds to the grating column index and the third dimension

corresponds to the pixel location in either the VIPA or grating direction. As more than one

FSR of the VIPA fits onto the camera, the pixel from which we start counting a single FSR

can be chosen to avoid portions of the camera that have lower incident power or a poorer

fit. In order to determine the absolute frequency of a given comb mode, the position of the

cw reference laser on the first image and the value of the beatnote frequency between the cw

reference laser and the frequency comb are input. From previous measurements, we know

the sensitivity of the camera (∼3000 photons/count) and the FSR of the VIPA (94 GHz).

The analysis program first extracts the appropriate number of comb spots from the

global fit output and condense that 3-dimensional array output into a 2-dimensional array

of size Lx2, where L is given by the number of comb modes per FSR times the number of

columns in the grating direction that contain a full FSR. For each grating column, the code

starts counting from the first spot that is above the user-input starting pixel. Because the

code draws a flat line from which to start counting, it is important to keep track of whether

2For our specific Heliotis lock-in camera, the actual number of demodulation cycles is two less than the

nominal value entered into the control program.
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the first comb mode location above the start pixel for a given column is above or below the

first comb mode location for the previous column. The nuances of keeping track of the comb

modes are illustrated in Figure 4.6. Once this operation is completed, the index of the array

of grating (x) and VIPA (y) locations corresponds to the relative frequency of each comb

mode.

The analysis code also calculates the distance between each neighboring comb mode in

the grating (x) and VIPA (y) directions for the first image. For the last comb mode location

in each FSR it uses the distance between the previous mode and that mode. Rather than

run the global fit code for each individual image, the locations for each subsequent image are

interpolated using the distance between comb modes in the first image. The interpolation

maps the frequency step taken by the cw laser to a step in pixel position via the following

for the mth comb mode:

xfinal,m =
∆f

frep
∗
√

∆x2
m + ∆y2

mcos(arctan(
∆ym
∆xm

)) + xinitial,m (4.11)

yfinal,m =
∆f

frep
∗
√

∆x2
m + ∆y2

msin(arctan(
∆ym
∆xm

)) + yinitial,m (4.12)

where ∆f = fcw,final − fcw,initial, fcw is the frequency of the cw reference laser, frep is the

repetition rate of the comb, ∆xm = xinitial,m+1− xinitial,m, ∆ym = yinitial,m+1− yinitial,m, and

m is the index of the comb mode.

For the first image it is also necessary to determine the absolute frequency of one comb

mode in addition to the relative frequencies of all the modes determined earlier. To do this,

the comb mode at index n that is located closest to the cw laser spot is found. The frequency

difference between that comb mode and the cw laser is just the beatnote frequency, fbeatnote.

Frequencies can then be assigned for every data point. The frequency of the mode with

index m, for image i, is given by

fi,m = (m− n) ∗ frep,i + fcw,i + fbeatnote (4.13)
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Figure 4.6: Sketch of selection of comb modes by spectrum generator code. In this simplified
example, four comb modes fit within one free spectral range of the VIPA and the free
spectral range is not an integer multiple of four leading to the chirp in the location in the
VIPA direction. The red and blue circles represent the comb mode locations. The number
adjacent to that comb mode represents the frequency offset of that mode scaled by the
repetition rate. The red circles represent the locations of the comb modes which would be
concatenated by the spectrum generator code.
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where fcw,i is the frequency of the cw laser for that image and frep,i is the repetition rate of

the comb for that image.

The intensity for a given comb mode is determined by the sum over one to four pixels

depending on the center of the mode with respect to the center of the pixel. If the center of

the comb mode is in the left half of the pixel, the intensity is summed over that pixel and

one pixel to the left in the grating direction. Likewise, if the center is in the right half of

the pixel, the intensity is summed over that pixel and one pixel to the right in the grating

direction. If the center is in the bottom 40% of the pixel, the intensity is summed over that

pixel and one pixel below in the VIPA direction, and if the center is in the upper 40% of the

pixel, the intensity is summed over that pixel and one pixel above in the VIPA direction.

If the center is in the middle 20% of the pixel, just that pixel is summed over in the VIPA

direction. The intensity at 10 kHz and the DC intensity are then given by the resulting

double sum. After summation over the appropriate number of pixels, the intensity at 10

kHz is normalized by the DC intensity.

After normalizing the intensity, a running median is calculated for each image to remove

noise that is common across neighboring comb teeth. The width of the range over which to

calculate the median is determined via a user input and is typically 6 comb modes. Note

that this is for each image, so that those 6 comb modes would span ≈ 18 GHz, which is

much wider than any features we are trying to retain. The raw data and running median

are shown for a test of our system with a N+
2 band in Figure 4.7. Note that the high

points in Figure 4.7 (b) correspond to N+
2 absorption and are not removed by the median

subtraction. After median subtraction, the spectra with ∼ 3 GHz spacing for each image

are interleaved together. At this point, additional smoothing across neighboring frequencies

can also be applied, which now reflects smoothing across points from different images. The

final product as well as several intermediate steps of the spectrum generation are shown in

Figures 4.7 and 4.8.
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Figure 4.7: Data Analysis Part 1. (a) The DC intensity is shown as the initial 2-dimensional
image, which is then fit to obtain the comb mode positions as shown in red circles over
part of the image. This fit calibrates the DC intensity as a function of the comb frequency,
which is shown on the right. An additional 10 kHz amplitude modulation was applied to
the transmitted light to measure the DC intensity. In (b) the signal at 10 kHz (with only
the discharge modulation) is shown for one image. The red circles on the two-dimensional
image are the positions of the comb modes determined from the global fit to the DC intensity
in (a). Note the bright and dark pixels, which represent the spectral signature of nitrogen
absorption. The difference between the clockwise and counterclockwise signal extracted from
the fit for one image is also shown with the points spaced by the repetition rate of the comb.
The running median plotted with the data is subtracted from each image before they are
interleaved.
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Figure 4.8: Data Analysis Part 2. The resulting processed spectrum (blue) from all the
images (each processed similarly but with stepped cw laser frequency) is shown in (a). The
predicted positions from molecular constants reported by Collet et al. [4] for the (4,2) N+

2

band (red) are also shown in (a). The full recorded spectrum was acquired in 20 images with
1500 simultaneous channels in less than one hour, with a sensitivity of 3 x 10−7 fractional
absorption per detection channel. The zoomed-in panels (b) show three different portions of
the spectrum with data points indicating the actual sampling period.
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4.2.4 Control of the Frequency Comb

A cw Ti:sapphire laser serves as a frequency reference for stabilizing the comb and

provides a marker on the two-dimensional spectral image. The cw laser is locked to its

internal reference cavity, and feedback to the comb’s repetition rate locks a comb mode to

the cw laser. The comb mode referenced to the cw laser is controlled by acting on both

the comb laser cavity length (slow feedback via a PZT) and the pump power (fast feedback

via an acousto-optic modulator) [61, 62]. The comb is not fully fixed because only one

degree of freedom is locked, because the feedback mostly drives the repetition rate, the offset

frequency is essentially left free running. The enhancement cavity is then locked to the comb

via a dither lock (at 50 kHz) using the spectrally filtered reflection from the cavity. The

enhancement cavity length is controlled by both a fast PZT mounted directly to one of the

cavity mirrors following Briles et al [63] to achieve high bandwidth and a slow, long travel

PZT mounted inside a translation stage to keep the cavity length in range of the fast PZT.

We found it critical to feed forward a 10 kHz compensation voltage onto the lock of the

enhancement cavity to compensate for the 10 kHz electrical pickup from the discharge, an

effect seen in other cavity-based velocity-modulation experiments [51] as well. A detailed

schematic of the optical layout is shown in Figure 4.12.

In Figure 4.9, the repetition rate of the comb is shown over the acquisition of multiple

images to form a fully sampled spectrum. Since a single comb mode with frequency, fn =

f0 +n ∗ frep, is locked to the cw laser, the repetition rate change gives a measure of the drift

of the carrier-offset-frequency, f0, which is left free-running. From the noise in frep during a

single measurement (lower panel Figure 4.9), we can determine the amount of uncertainty

in the frequency of a comb mode that is m modes away from the comb mode that is locked

to the cw laser. With 1500 comb modes in a single image and the cw reference always on

the image as a marker, the maximal uncertainty is ∼ 300 kHz for a comb mode that is 1500

comb modes away from the fixed reference given the 200 Hz level fluctuations in frep, which
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is well below the 30 MHz resolution of the wavemeter used to determine the frequency of

the cw laser.

To achieve this level of quietness of f0, control of the air currents around the pump

beam and control of the cooling water flow through the comb laser were both necessary. A

box was placed around the pump beam to reduce air currents. Appropriate cooling water

flow further reduced the fluctuations in the repetition rate from 1-2 kHz to 100-200 Hz over

the course of a measurement. A flow gauge and valve were installed on the chiller for the

comb. The flow was lowered until the noise on frep when a comb mode was locked to the

cw laser was no longer reduced. Reducing the flow too much causes inadequate cooling and

long-term thermal drifts. Minimizing the drift in the offset frequency is necessary not only

for accurate wavelength metrology, but also to keep the transmitted spectrum the same over

the course of a measurement, especially over the timescale of switching directions.

4.3 Noise and the Sensitivity of the System

With the discharge running, 10 kHz electrical pickup, while minimized as much as

possible by placement and isolation of the discharge electronics, remains a problem. A

10 kHz compensation voltage is fed forward onto the lock of the enhancement cavity to

compensate for this. Despite this, residual 10 kHz noise from the discharge is present on

the cavity transmitted light due to incomplete cancelation by the feed-forward mechanism

resulting in baseline offsets. These offsets arise from frequency-to-amplitude-noise conversion

in the enhancement cavity. Since the offsets have common values across neighboring comb

modes, they are removed by subtracting the median value across a number of neighboring

comb modes. This method of rejecting common mode noise, inherent in this comb-based

spectroscopy, is not available for conventional cw systems.

The technical noise in our current system, due to incomplete common-mode noise

rejection, lies above the readout noise on the camera, which in turn lies above the shot-noise

limit. A summary of the relative contributions of the technical, camera, and shot-noise for
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Figure 4.9: Repetition rate of the frequency comb during data acquisition. Each flat plateau
occurs during a measurement of the 1500 simultaneous channels. The repetition rate is then
stepped by scanning the cw laser such that each comb mode with frequency fn = f0 +nfrep
is scanned over 3 GHz to fully sample the spectrum. As n ∼ 105, stepping frep by 30 kHz
steps the comb mode frequency by 3 GHz. In the lower panel, the fluctuation of frep during
a single measurement is shown. The 200 Hz drift in frep corresponds to a maximal 300 kHz
uncertainty in the comb modes not locked to the cw laser, which is well below the 30 MHz
resolution of the wavemeter.
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Figure 4.10: Noise contributions as a function of the power in a comb mode. The HfF+

data was acquired with comb mode powers ranging from 1 nW to 20 nW. The sensitivity
of the system is given by the fractional noise divided by a factor of 30 due to the enhanced
path length. The values for the camera noise and technical noise are for switching rapidly,
∼ 3X s−1, between clockwise and counterclockwise directions of propagation as single direc-
tion measurements stopped averaging down at ∼ 1 Hz bandwidth. (Actual time to switch
directions is ∼ 1 ms, 300 ms is the time for data acquisition.)



56

varying comb mode powers is shown in Figure 4.10. Note that the sensitivity of the system is

given by the fractional noise divided by F/π ∼ 30 as discussed earlier. Initial measurements

of the noise with the light traveling in a single direction of propagation through the cavity

did not average down for bandwidths below 1 Hz. Similar problems were seen in the camera

noise as measured across different pixels with no light incident on the camera. By rapidly

switching between clockwise and counterclockwise beam propagation through the ring cavity

via polarization control and subtracting the two images, we are able to reduce the impact of

drifts in the gain of each individual pixel on long time scales, remove other common mode

noise, and further increase the rejection of neutral molecular signals while retaining the ion

absorption signals.

Our achieved sensitivity is 3 x 10−7 single-pass fractional absorption for each mea-

surement channel, with 1500 simultaneous channels covering 150 cm−1, corresponding to

4 x 10−8 Hz−1/2 (spectral element)−1/2 absorption sensitivity. One full spectrum, consist-

ing of 30 interleaved images takes 30 minutes to acquire. For other high-accuracy cw-laser

velocity-modulation experiments using cavity-enhancement, the sensitivity is ≈ 10−5 [51],

which is much lower than our current sensitivity due to the additional common-mode noise-

suppression discussed earlier. We note that for a cw laser system to achieve the same level

of sensitivity across the spectral bandwidth we cover in a single acquisition, it would need a

sensitivity of 4 x 10−8 Hz−1/2 and the ability to scan across 150 cm−1 continuously.

4.4 A Thousand of Wavenumbers of HfF+

As a diagnostic tool, the fluorescence from the plasma in the discharge tube was imaged

behind one of the high reflectivity cavity mirrors into a fiber collimator leading to a grating

spectrograph (OceanOptics). The spectral region of fluorescence imaged was limited to

wavelengths below the coating curve of the cavity mirror. By looking at the changes in

fluorescence, we could tell when the oven was running low on HfF4. Additionally, this was

a more sensitive test of small leaks than the pressure gauge on the system due to the easily
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identified N2 signature. The spectral signature of a Helium-only discharge, a discharge with

∼ 10% N2 present, and a discharge with the oven hot with HfF4 present can be seen in

Figure 4.11.

For the following spectra, a 2.5 meter long bow-tie enhancement-cavity with a finesse

of 100 surrounds a 1 meter long discharge tube, which is driven at 10 kHz with ≈ 400

mApk−pk. The discharge tube contains HfF4, which is heated to 800 K, and helium buffer

gas is flowed through the discharge tube such that the total pressure is 5 torr. A Gigaoptics

3 GHz repetition rate Ti:saphhire comb is coupled into the 120 MHz free-spectral-range

enhancement-cavity traveling either clockwise or counterclockwise around the bow-tie cavity,

with every 25th cavity resonance matched to a comb mode. Spectral filtering of the cavity

due to group velocity dispersion (GVD) limits the transmitted bandwidth to 300 cm−1. The

windows on the discharge tube are at Brewster’s angle to minimize intra-cavity loss and are

thin to reduce GVD. A schematic of the system is shown in Figure 4.12.

A summary of the entire spectral region covered with multiple scans is shown in Figure

4.13. Multiple overlapping scans, taken across the whole region, were interpolated onto

a 0.001 cm−1 grid and then averaged together. For each scan, the fluorescence from the

discharge tube was monitored to ensure that HfF+ was present. Additional scans with the

oven off were taken in the regions in which molecular bands were seen as an initial check that

they arose from HfF+. From Figure 4.13, two obvious bands can be seen as well as a number

of isolated sharp features that are most likely atomic transitions. In the region with the two

obvious bands, we have identified four different HfF+ bands as shown in Figure 4.14 with ∼

150 as yet unidentified presumably HfF+ lines in the same region as the four identified bands.

The fits to all four bands are discussed in detail in Chapter Five. The lower panels in Figure

4.14 show the characteristic velocity-modulation lineshape of the HfF+ lines. The structure

around the strong lines is not the noise floor but additional HfF+ lines. The fractional noise

for the region with the HfF+ bands was 4x10−8 Hz−1/2 (spectral element)−1/2 as can be seen

in Figure 5.1 in Chapter Five.
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Figure 4.11: Fluorescence from the discharge as a diagnostic tool. The light from the center
of the discharge tube passes through the mirror if it is below ∼ 700 nm and is focused into
a fiber connected to the grating spectrometer. (a) N2 signature versus a He only discharge.
The sharp spikes in the He only case are atomic He transitions. Note the suppression of the
He fluorescence when large amounts of N2 are present. The clear N2 signature can also be
used when checking for leaks as it is quite distinctive albeit smaller even for significantly
lower partial N2 pressures. (b) Spectral signature the corresponds to the presence of HfF+ is
the broad background lifting off of the baseline. The additional sharp features are mostlhy
atomic transitions of fluorine.
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Figure 4.12: Schematic of the system. An 18 W Coherent Verdi pumps both the CW
Ti:Sapphire laser, used as a frequency reference, and the 3 GHz repetition rate Ti:Sapphire
comb. The CW laser is read by a wavemeter with an accuracy of 30 MHz. The comb is
referenced to the CW laser via a beatnote with a single comb tooth. Feedback to the comb’s
repetition rate is achieved through the pump power (high bandwidth and small range) and
through the comb cavity length (low bandwidth and large range). 95% of the comb light
and 5% of the CW light are combined in a fiber which is coupled to the enhancement cavity.
Liquid crystal retarders and a polarizing beam splitter are used to select the direction of light
propagation around the enhancement cavity while maintaining all locks. The enhancement
cavity is locked to the comb. Cavity transmitted light is dispersed by the 2-dimensional
imaging system, qualitatively sketched in Fig. 4.6, and recorded by the lock-in camera,
which demodulates each pixel at the discharge modulation frequency. The CW light serves
as a reference marker on the lock-in camera image.



60

Although the scanned region covers from 11,700 cm−1 to 12,700 cm−1 no additional

HfF+ bands were seen outside the 12,100 to 12,300 cm−1 region. An additional unidentified

band was seen around 12,400 cm−1, but it was present with HfF+ absent (oven shut off). At

the edges of the scan range, the lower comb power resulted in higher fractional readout noise

and a less stable lock which caused the fractional noise to increase as can be seen in Figure

4.13. To increase the spectral bandwidth covered, the frequency comb would need to be

broadened and the intensity of each comb mode on the camera would need to be increased.

Different options for doing this are discussed briefly in Chapter Six.

4.5 Coherent Subtraction

An additional way to increase signal-to-noise is to use coherent subtraction; i.e., using

a balanced Sagnac-type interferometer as shown in the blue inset to Figure 4.16. With a

ring cavity, it is possible to have counter-propagating beams through the sample and to

cancel common-mode noise at the output of the dark port of the resulting interferometer.

The signal-to-noise using coherent subtraction increases as the splitting ratio approaches

50% between the two beams until camera readout noise or shot-noise dominates. Figure

4.15 shows the improvement in signal-to-noise ratio as a function of splitting ratio when the

common mode technical noise dominates the noise. We have tested coherent subtraction ver-

sus a single direction of propagation using a photodiode and single-channel lock-in detector

with our CW laser and demonstrate a factor of 10 gain in the signal-to-noise (Figure 4.16).

Coherent subtraction, unlike counter-propagating beams in a multipass cell, is sensitive to

phase as well as amplitude of the light field; thus, the resulting lineshape is dependent on

both absorption and dispersion and can vary if there are additional differential phase shifts

between the two directions. These phase shifts in effect change the relative sensitivity to

absorption and dispersion. We have made a simple model (dashed lines in Figure 4.16) that

reproduces the lineshape modification. In our current experiment, the power per comb mode

is too low for us to take advantage of this coherent subtraction approach, but this problem
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Figure 4.13: Full spectral region scanned with HfF+ present. There are four HfF+ bands
that have been identified so far and these are highlighted in Figure 4.14. The isolated sharp
features are most likely due to atomic transitions. The increased fractional signal at both
edges is due to the camera noise starting to be the dominant noise source due to the decrease
in comb power at the edges of the comb bandwidth. This summary plot was generated by
interpolating multiple scans onto a 0.001 cm−1 grid and then averaging them together.
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Figure 4.14: Region of spectrum with HfF+ lines with smaller regions showing the charac-
teristic velocity-modulation lineshape. Fits to the bands identified are discussed in Chapter
Five. In the lower plots, the structure surrounding the strongest lines is due to additional
HfF+ molecular absorption. The fractional sensitivity measured without HfF+ present is
3x10−7.
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could be overcome in the future by using either a more sensitive camera or a comb with

more power.

The lineshape simulations used to model the data in the coherent subtraction scheme

were done by applying a cosine modulation in time to the center frequency for both the ab-

sorption (assumed Gaussian lineshape) and dispersion terms (obtained via Kramers-Kronig)

and then taking the cosine transformation and selecting the appropriate modulation har-

monic. This was done at a variety of laser frequencies to generate the lineshape. The

amplitude and linewidth of the single direction simulation was scaled to the measured value

and this value was fed into the coherent subtraction simulation. The constant phase offset

(most likely due to the beamsplitter) added to the coherent subtraction simulation was cho-

sen to fit the measured lineshape (about π/20 radians). The beamsplitter intensity splitting

ratio between transmission and reflection was 52%/48%.
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Figure 4.15: Improvement of signal-to-noise ratio as a function of splitting ratio. The signal-
to-noise ratio improves dramatically as the intensity for the two directions of propagation
becomes more similar as long as common-mode technical noise dominates the noise. If the
single direction measurements are dominated by the shot-noise, the signal-to-noise ratio for
coherent subtraction is the same as single direction propagation. If the camera noise begins
to dominate due to the decrease in power as the splitting ratio approaches 50%, the signal-to-
noise ratio will decrease. The challenge of achieving a splitting ratio of better than 52%/48%
also limits the gains in signal-to-noise ratio improvement.
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Figure 4.16: Comparison of coherent subtraction and single direction measurements The
signal to noise for coherent subtraction (using a 52/48 beam splitter) surpasses that of single
direction measurements by a factor of 10 in cases where we have sufficient optical power to
dominate over the camera readout noise. Both measurements of a single N+

2 line were made
with the cw Ti:Sapphire laser. The dashed lines are a calculation of the expected lineshape.
The slight modification in the lineshape for the coherent subtraction is due to an additional
differential phase shift of approximately π/20 between the two counter-propagating beams.



Chapter 5

HfF+ Structure1

Currently, five different bands of HfF+ have been identified; one with single-frequency

velocity-modulation spectroscopy, discussed in Chapter Three, and four with the frequency

comb velocity-modulation system described in Chapter Four. The full spectrum acquired

with the frequency comb velocity-modulation system can be seen in Figure 4.13, with Figure

5.1 showing the four bands we have identified so far; the fifth band acquired with single-

frequency velocity-modulation spectroscopy can be seen in Figure 3.5 and Figure 3.6. Fur-

thermore, we have a collection of as yet unassigned lines in the midst of the other bands

in the frequency comb velocity-modulation data, indicating the presence of at least one

more band at around 12200 cm−1. As illustrated in Figure 5.1, the spectrum from about

12100-12300 cm−1 is extremely congested due to the presence of many bands, each with five

isotopes, and the high temperature of our oven, which results in observed J′′ values up to

about 70. The power of frequency comb velocity-modulation spectroscopy is demonstrated

by our ability to identify the overlapping 1Π1−1Σ+(0, 1) and 3Π1−1Σ+(3, 1) bands despite

the difference in linestrengths and an offset in band origin of only ∼1 cm−1. This chapter

will discuss the fits to each of the bands and the molecular constants that can be extracted

from them.

1Much of the discussion on the structure of HfF+ will be discussed in a forthcoming publication from

K.C. Cossel et al.
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Figure 5.1: (a) Data and fits to the four HfF+ bands identified with frequency comb velocity-
modulation spectroscopy. Linestrengths for the fit positions are scaled by isotopic abundance,
by an approximate rotational temperature of ∼ 640 K, and by an overall transition strength
to match the measured fractional absorption. (b) Region of the recorded spectra containing
the 1Π1− 1Σ+(0, 1) band as well as at least three other HfF+ bands with the fit for the
1Π1−1Σ+(0, 1) band offset for clarity. (c) All five isotopes of HfF+ are present and resolved
for transitions with ∆v 6= 0. The additional structure with HfF+ present (blue) consists of
lines belonging to the other HfF+ bands while the red line (HfF+ absent) shows the level of
sensitivity of the system in this region.



68

5.1 Fits to HfF+ Bands

We fit each band with the energy expression,

E(J ′′, J ′) =ν0 + (B′ − P

2
∗ (p+ 2q))J ′(J ′ + 1) + (D′ − P

2
∗ (pD + 2qD))J ′2(J ′ + 1)2 (5.1)

−B′′J ′′(J ′′ + 1)−D′′J ′′2(J ′′ + 1)2 (5.2)

where B′ and B′′ are the rotational constants for a given vibrational level of the upper and

lower state, D′ and D′′ are the centrifugal distortion terms for a given vibrational level of the

upper and lower state, (p + 2q) is the Ω-doubling of the excited state [34] with (pD + 2qD)

the next higher-order of the Ω-doubling, and P is a parity term with P = −1 for ∆J = 0

and P = 1 for ∆J = +/ − 1. A summary of the fitted constants for each band is given in

Table 5.1 and the molecular constants that can be derived for the states observed are given

in Table 5.2. For the bands for which the centrifugal distortion term is consistent with zero

due to a sufficiently large uncertainty, the corresponding higher-order term of the Ω-doubling

was not included in the fit.

All five isotopes of Hf were resolved for transitions with ∆v 6= 0 allowing for the

extraction of molecular constants for a particular isotope. The rich isotope structure also

yielded the change in vibrational quantum number for those bands. For the 1Π1−!1Σ+ (0, 0)

band, we were not able to fully resolve the isotope structure as discussed in Chapter Three.

Therefore, we fit to estimated line centers and scaled the fitted constants by the reduced

masses and isotopic abundances to obtain the final constants in Table 5.1. For this band we

were able to establish that ∆Ω = 1 since we observed an R(0) line but no P(1) line, as can

be seen in Figure 3.6. For the other four bands, the congestion of the spectrum prevented a

similar confirmation of the values of Ω for the upper and lower states.
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Figure 5.2: Residuals from the fit to the 1Π1− 1Σ+(0, 1) band of 180HfF+. The fit spans
∼100 cm−1 reaching J values as high as 70 due to the high rotational temperature. This fit
provides high accuracy in the determination of the molecular constants.

Table 5.1: Fitted constants for observed transitions in 180HfF+. Quoted uncertainties are
95% except for the 3Π1−1Σ+(3, 1) transition for which uncertainties are quoted at the level
for which the manual fit would noticeably fail. Note that the values for the 1Π1−1Σ+ (0,0)
transition were extracted from a fit to the average line positions as the individual isotopes
are not fully resolved as discussed in Chapter Three. ◦ 3Π1−1Σ+(3, 1) values assigned using
a manual fit due to challenges of determining the line centers of the weaker lines in the dense
spectrum. ∗Value fixed to the fitted value from the 1Π1− 1Σ+(0, 1) transition. +Isotope
averaged value with the error due to the uncertainty in the electronic isotope shift.

1Π1 ←1 Σ+(0, 1) 1Π1 ←1 Σ+(1, 2) 3Π1 ←1 Σ+(2, 0) 3Π1 ←1 Σ+(3, 1)◦ 1Π1 ←1 Σ+(0, 0)

ν0 [cm−1] 12217.369(2) 12136.012(3) 12304.400(3) 12216.87(1) 13002.229(6)+

B′′ [cm−1] 0.30335(3) 0.30180(5) 0.30481(4) 0.30335∗ 0.30474(20)

B′ [cm−1] 0.28115(3) 0.27973(5) 0.28096(4) 0.27958(20) 0.28104(20)

D′′ [10−7 cm−1] 1.88(8) 1.80(14) 1.78(12) 1.8(2) 1(2)

D′ [10−7 cm−1] 1.81(8) 1.74(14) 1.78(11) 1.8(2) 1(2)

(p+2q) [10−4 cm−1] 3.69(2) 2.68(4) -3.82(1) -3.8(2) 3.55(4)

(pD+2qD) [10−9 cm−1] 9.7(7) 7.4(14) -0.3(10) - -
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5.2 Molecular Constants

The molecular constants that can be derived from the fit values listed in Table 5.1 are

given in Table 5.2. These values enable the prediction of other transitions from the same

states as well as comparison with theory.

The electronic rotational constant is given by [35]

Be = Bν + αe(v +
1

2
), (5.3)

where Bν is the rotational constant for a given vibrational level and αe is the vibrational

correction and thus by measuring Bν for multiple vibrational levels, we can extract αe and

Be. Likewise, the electronic centrifugal distortion term is given by

De = Dν + βe(ν +
1

2
). (5.4)

The energy of an electronically excited state as measured from the minima of the potential

with a zero reference for the electronic ground state is given by

T0 = ν0 − ω′e(v′ +
1

2
) + ωeχ

′
e(v
′ +

1

2
)2 + ω′′e (v′′ +

1

2
)− ωeχe′′(v′′ +

1

2
)2 (5.5)

where ν0 is the band origin for a given transition, ωe is the vibrational constant, and ωeχe

is the anharmonicity term. Initially, it would seem that the (0,0), (0,1), and (1,2) bands of

1Π1 −1 Σ+ do not provide enough information to extract ωe and ωeχe for both 1Π1 and 1Σ+

states as well as T0 for the 1Π1 state. However, assuming a Morse potential,

ωeχe =
α2
eω

2
e

36B3
e

+
αeωe
3Be

+Be (5.6)

[35]. Using this assumption, we obtain the molecular constants given in Table 5.2. The

errors quoted represent the propagation of the statistical 95% uncertainty levels from the fit

assuming a Morse potential and thus do not reflect any model dependent errors.

The vibrational constant, ωe, can also be calculated from the relationship of the rota-

tional constant to the centrifugal distortion,

ωe =

√
4B3

e

De

(5.7)
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Table 5.2: Derived constants for observed states in 180HfF+. Values for T0 are given from the
minima of the potential not the lowest vibrational level. The error quoted is the statistical
error and does not include any model dependent systematics. The dominant source of the
statistical error is the uncertainty in αe. The model dependent error would arise from ωeχe
for which we see good agreement for the 1Σ+ state with a non-model dependent value.

1Σ+ 1Π1
3Π1

T0 [cm−1] 0 13046.3(3) 10933(3)

Be [cm−1] 0.30568(8) 0.28186(4) 0.28441(50)

ωe [cm−1] 791.1(1) 702.6(7) 713(1)

ωeχe [cm−1] 3.10(16) 2.70(15) 2.61(26)

αe [10−3 cm−1] 1.55(6) 1.42(6) 1.38(20)

[35]. From this definition of ωe we obtain 780(17) cm−1 compared to 791.1(1) cm−1 as

derived above for the 1Σ+ state, 719(22) cm−1 compared to 713(1) cm−1 for the 3Π1 state,

and 703(16) cm−1 compared to 702.6(7) cm−1 for the 1Π1 state. However, the uncertainty

in the centrifugal distortion from the fits causes the uncertainty in the vibrational constant

to be much greater than when it is calculated using the definition of ωeχe given in Equation

(5.6). The good agreement of our value of ωeχe for the 1Σ+ state using the Morse potential

assumption with that of the Heaven group [3] as shown in Table 5.3 supports the Morse

potential assumption, which allows us to achieve much more accurate values of the derived

molecular constants.

5.3 Comparison with Theory and Other Experimental Data

A comparison of some of the derived molecular constants with theoretical calculations

from Petrov et al. [2] is presented in Table 5.3. Initially, the predicted value of 12,686

cm−1 for the energy of the 3Π1 state led to the identification of the band at ∼ 13, 000

cm−1 measured using single-frequency velocity-modulation spectroscopy as the 3Π1 −1 Σ+

(0,0) band. However, if the band at ∼ 13, 000 cm−1 was the 3Π1 −1 Σ+ (0,0) band, the

Ω-doubling was expected to be negative as opposed to the positive value we measured [64].
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The additional data from the frequency comb velocity-modulation spectroscopy resolved

this confusion with the identification of the ∆v = 1 band at 12,217 cm−1 with positive

Ω-doubling and a higher energy upper state and the ∆v = 2 band at 12,304 cm−1 with

negative Ω-doubling and a lower energy upper state. The predicted energies of the 1Π1

and 3Π1 states are ∼1800 cm−1 above the predicted values, but the fine structure splitting

between the two agrees with the predicted values to within the uncertainty of the derived

energy from the fit. Preliminary theoretical calculations with a modified core potential shift

the manifold of Π states so that their positions more closely match the measured values

[64]. (This will be discussed further in a forthcoming publication from K.C. Cossel et al.)

Additional unpublished work from E.R. Meyer has shown similar discrepancies in the state

energies, but good agreement in Be and αe [65].

In addition to theoretical comparisons, in Table 5.3 molecular constants of the v = 0

level of the 1Σ+ state can be compared to the experimental results from Barker et al. using

pulsed-field-ionization zero-kinetic-energy measurements (PFI-ZEKE) to study the low-lying

states of HfF+ [3]. We find that values of Be, ωe, and ωeχe agree within the errors. The

agreement in ωeχe supports our assumption of a Morse potential for calculations of ωe, T0

and ωeχe. Due to directly measuring a large number of rotational lines for each HfF+ band,

our values of Be are considerably more precise. In addition to the 1Π1−1 Σ+ (0,0) and (0,1)

bands, we measure the energy of the v = 1 level of the 1Σ+ state relative to the v = 0 level

to be 784.841(6) cm−1, which is again consistent with the Heaven group’s value of 785.8(10)

cm−1 [3].

5.4 Isotope Shifts

For the stronger transitions, we can fit not only the 180HfF+ bands, but also those

corresponding to other isotopes of Hf. Tables 5.4 and 5.5 contain the fit values for multiple

isotopes for the 1Π1 ←1 Σ+(0, 1) band and the 3Π1 ←1 Σ+(2, 0) band, respectively. For the

rotational constants for the 1Π1 ←1 Σ+(0, 1) band, B′′179, B′′178, B′′177, B′179,B′178, and B′177 all
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Table 5.3: Comparison of derived molecular constants for 180HfF+ with the theoretical cal-
culations of Petrov et al. [2] and results from Barker et al. [3]. The theoretical values of Be

were computed from the equilibrium bond length.

this work theory [2] other exp [3] this work theory other exp

T0 [cm−1] Be [cm−1]
1Σ+ 0 0 0 0.30368(8) 0.3092 0.304(5)
3Π1 10933(3) 12686 – 0.2844(5) 0.2835 –
1Π1 13046.3(3) 14784 – 0.28186(4) 0.2805 –

ωe [cm−1] ωeχe [cm−1]
1Σ+ 791.1(1) 751 791.2(10) 3.10(16) – 2.95(20)
3Π1 713(1) 687 – 2.61(26) – –
1Π1 702.6(7) 679 – 2.70(15) – –
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scale with the ratio of reduced masses as expected to within the error. The uncertainty in

the values of D make comparison with the expected isotope shift impossible.

The ability to resolve all five isotopes of Hf for transitions with ∆v 6= 0 aids in band

identification as the vibrational isotope shift for ∆v = v′−v′′ = 2 versus ∆v = 1 is obviously

different. For those bands with sufficient signal strength and uncrowded spectral region, i.e.

1Π1 −1 Σ+(0, 1) and 3Π1 −1 Σ+(2, 0), we can fit to multiple isotopes and use the expected

vibrational isotope scaling to extract the electronic isotope shift. While only the 180HfF+

band was fit for the 3Π1−1 Σ+(3, 1) and 1Π1−1 Σ+(2, 1) bands, the vibrational isotope shift

seen is consistent with a ∆v = 2 and ∆ν = −1 transition respectively.

From the differences in band origin, we can extract information about the electronic

isotope shift of a transition by assuming that the vibrational isotope shift scales like the

ratio of the square root of the reduced masses, which is an extremely good approximation.

For a given isotope, the electronic energy

T0,i = ν0,i −∆ων,i (5.8)

where

∆ων,i = ω′e,i(v
′ +

1

2
)− ωeχ′e,i(v′ +

1

2
)2 − ω′′e,i(v′′ +

1

2
) + ωeχ

′′
e,i(v

′′ +
1

2
)2 (5.9)

and thus the electronic isotope shift relative to 180HfF+ is given by

∆T0 = T0,180 − T0,i = ∆ν0 − (1−
√
µ180

µi
)∆ων,180. (5.10)

For 178HfF+, from the 1Π1 −1 Σ+(0, 1) band, ∆T0 = −0.073(3) cm−1. From observing

the cancelation of the rotational isotope shift with the combination of the electronic and

vibrational isotope shifts for the 1Π1 −1 Σ+(0, 0) band as shown in Figure 3.6, the total

electronic and vibrational isotope shift of 178HfF+ relative to 180HfF+ was -0.04 cm−1. Using

the values for the vibrational constant and anharmonicity term, this results in an electronic

isotope shift of ∆T0 = -0.064(7) cm−1 of 178HfF+ relative to 180HfF+, which is consistent with

the shift found for the 1Π1 −1 Σ+(0, 1) band. For the 3Π1 −1 Σ+(2, 0) band, the electronic

isotope shift between 180HfF+ and 178HfF+ is ∆T0 = -0.048(4) cm−1.
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Table 5.4: Fitted constants for the 1Π1 ←1 Σ+(0, 1) band for four different isotopes of HfF+.
The 176HfF+ lines at 5.21% abundance were excluded from fitting due to their lower intensity.
Quoted uncertainties are 95%.

180HfF+ 179HfF+ 178HfF+ 177HfF+

abundance [%] 35.10 13.63 27.30 18.6

ν0 [cm−1] 12217.369(2) 12217.198(4) 12216.997(2) 12216.818(4)

B′′ [cm−1] 0.30335(3) 0.30350(6) 0.30369(5) 0.30387(7)

B′ [cm−1] 0.28115(3) 0.28129(7) 0.28146(4) 0.28163(7)

D′′ [10−7 cm−1] 1.81(8) 1.70(19) 1.87(9) 1.90(17)

D′ [10−7 cm−1] 1.81(8) 1.64(18) 1.80(9) 1.83(16)

2(p+2q) [10−4 cm−1] 3.69(2) 3.72(5) 3.68(2) 3.72(4)

2(pD+2qD) [10−9 cm−1] 9.7(7) 10.4(25) 9.2(8) 10.4(14)

Table 5.5: Fitted constants for the 3Π1 ←1 Σ+(2, 0) band for three different isotopes of HfF+.
The 179HfF+ lines at 13.63% abundance and the 176HfF+ lines at 5.21% abundance were not
fit. Quoted uncertainties are 95%. ∗ Values fixed based on expected rotational isotope shift.

180HfF+ 178HfF+ 177HfF+

abundance [%] 35.10 27.30 18.6

ν0 [cm−1] 12304.400(3) 12305.183(2) 12305.581(3)

B′′ [cm−1] 0.30481(5) 0.30519(4) 0.30531∗

B′ [cm−1] 0.28096(4) 0.28131(4) 0.28142∗

D′′ [10−7 cm−1] 1.78(12) 1.89(12) 1.80(8)

D′ [10−7 cm−1] 1.78(11) 1.88(11) 1.80(8)

2(p+2q) [10−4 cm−1] -3.82(1) -3.82(1) -3.84(2)

2(pD+2qD) [10−9 cm−1] – – –



Chapter 6

Conclusion

In this work, different spectroscopic techniques have been both unsuccessfully (hollow

cathode lamp spectroscopy) and successfully (single-frequency and frequency-comb velocity-

modulation spectroscopy) used to identify bands of HfF+. The first spectroscopic infor-

mation for HfF+ came from our measurement of the 1Π1 −1 Σ+ (0,0) band measured with

single-frequency velocity-modulation spectroscopy with a sensitivity of 3x10−7 Hz−1 as dis-

cussed in Chapter Three. Single-frequency velocity-modulation spectroscopy also enabled

the characterization of the discharge and oven system. The development of a new powerful

spectroscopic tool [36], frequency comb velocity-modulation spectroscopy (Chapter Four),

allowed us to cover a thousand wavenumbers of spectral bandwidth and to identify an ad-

ditional four HfF+ bands. The achieved sensitivity for frequency-comb velocity-modulation

spectroscopy was 4x10−8 Hz−1/2 (spectral element)−1/2 with 1500 simultaneous detection

channels spanning 150 cm−1 of bandwidth. For a 30 minute acquisition using 30 interleaved

images to densely sample the whole spectrum, this corresponded to a 3x10−7 single-pass

fractional absorption sensitivity for each of 45,000 measurement channels. Identification of

bands arising from multiple vibrational levels of the same electronic states of HfF+ enables

the prediction of additional 3Π1 −1 Σ+ and 1Π1 −1 Σ+ rotational bands with only a few

wavenumbers of uncertainty. The spectroscopic information from all five HfF+ rotational

bands was presented in Chapter Five. Molecular constants for the 1Σ+, 3Π1, and 1Π1 states

were extracted, which can be compared with theory as well as other experimental results for
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the 1Σ+ and which may lead to improvements in the theoretical predictions for electronic

states that couple well to the 3∆1 metastable state. The resolution of all five isotopes of

hafnium allows for examination of the isotope shifts and provides a confirmation that the

bands do in fact arise from HfF+.

As discussed in Chapter One, the science state of interest of HfF+ for the JILA eEDM

experiment is the metastable 3∆1 state, not the 1Σ+ ground state [25], and thus additional

survey spectroscopy of HfF+ is needed as all the bands currently identified arise from the 1Σ+

ground state. Figure 6.1 summarizes the five bands identified so far as well as the spectral

region currently covered with frequency comb velocity-modulation spectroscopy. The relative

intensity covered with the single-frequency velocity-modulation measurements is not shown,

but the relatively low discharge current of 100mAppk limited the strength of the absorption

signal. Additionally, Figure 6.1 shows the potential location and relative intensity of other

bands from 11,000 to 15,000 cm−1 with crude error bars representing the large theoretical

uncertainties for band locations. Theory values were taken both from Petrov et al.[2] as

well as recent preliminary work from Petrov et al.[64] and E.R. Meyer[65]. Work is on-going

both to use single-frequency velocity-modulation spectroscopy with a cw Ti:sapph laser to

sample portions of the spectral region from 11,000 to 15,000 cm−1 likely to contain states of

interest and to broaden the ti:sapph comb to cover 11,000 to 15,000 cm−1 with the required

power per comb mode. Since comb sources enable efficient non-linear optical generation,

which allows for spectral broadening and access to spectral regions ranging from the UV to

the mid-IR [66, 67, 47], modifications to the imaging system, such as an InGaAs camera, a

streak camera similar to Thorpe et al. [39], or an optical frequency up-conversion system,

would be all that would be required to push this technique even further to those wavelengths,

thus opening the door to even more applications.

The impetus for the development of frequency comb velocity-modulation spectroscopy

was the lack of experimental data on the electronic structure of molecular ions such as

HfF+ and ThF+, which are ideal for a highly sensitive search for the electron electric dipole
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moment [26]. Coupled with the large theoretical uncertainties (thousands of wavenumbers)

[27], the lack of experimental data necessitated broad survey spectroscopy to understand

and assign the molecular energy level structure. However, this technique has a wide range

of potential applications because broad bandwidth, precision spectroscopy of molecular ions

is of interest in precision measurement, astrochemistry, and physical chemistry. Beyond

molecules of interest to eEDM experiments, precision spectroscopy of molecular ions such as

H+
3 [48] and CH+

5 [68] can provide a test of ab initio theory and yield new insights into few-

body quantum dynamics, respectively. In astrochemistry, numerous ions and radicals have

been discovered in the interstellar medium and many more species have been hypothesized

[69, 70]. It is believed that the source of the unidentified diffuse interstellar bands, currently

the longest standing question in astronomical spectroscopy, is molecular (possibly ionic), but

accurate identification will require matching the spectra of candidate species to astronomical

observations over wide and often times disparate spectral windows [71, 72]. Additionally,

understanding the chemistry of molecular clouds in circumstellar gases has been enabled by

the identification of molecular ions in the laboratory [73]. Efficient survey spectroscopy of

molecular ions is thus of interest beyond the JILA electron EDM experiment.
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Figure 6.1: Identified and predicted HfF+ rotational band locations from 11,000 to 15,000
cm−1 (909-668 nm) for up to v′ and v′′ equal to 3. The relative intensity is scaled by
the predicted dipole moment, by thermal factors assuming an approximate vibrational and
electronic temperature based on a rotational temperature of 640 K, and by the Franck-
Condon factors. The relative intensities for the four bands measured with frequency comb
velocity-modulation spectroscopy agree with the experimental data and the uncertainty in
the relative intensity for bands with no experimental data is a factor of 3-4. The color of
the point indicates the lower state of the band, either 1Σ+ (blue) or 3∆1 (red), while the
shape of the point indicates the upper state of the band. The five identified HfF+ bands
discussed in Chapter Five are shown in green with the outline bolded. For those bands which
arise from states for which no experimental information about molecular constants exists,
crude error bars for the energy uncertainty have been added. The gray region represents
the spectral-range covered and relative sensitivity with frequency comb velocity-modulation
spectroscopy. Even with the four bands of HfF+ accounted for in the spectral region covered
with the frequency comb, we still have ∼100 lines unidentified in the 12,100 to 12,200 cm−1

corresponding on this scale to a relative intensity of 2x10−3. While we have been unable
to assign these lines due to the overlapping bands, it is possible that they belong to a fifth
HfF+ band such as the 3Σ+

0 −3 ∆1 band predicted 1000 cm−1 to the blue or the 3Π2 − 3∆1

band shifted up from the predicted relative intensity currently off the lower edge of what is
plotted here.
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Appendix A

Hollow Cathode Lamp Data

All data acquired with the hollow cathode lamp as discussed in Chapter Two are

plotted in 250 cm−1 segments. The first image is a summary of the spectral region covered.
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Appendix B

Velocity-Modulation Data

Single-frequency velocity-modulation spectroscopy data for the 1Π1 −1 Σ+ band as

discussed in Chapter Three are presented along with the line locations from the fit plotted

in 5 cm−1 segments. The first image is a summary of the spectral region covered. Additional

higher signal-to-noise scans were taken over select regions to determine the value of Ω′ and

Ω′′ through the presence or absence of the low J lines.
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Appendix C

Frequency Comb Velocity-Modulation Data

On the following pages, all of the data acquired with frequency comb velocity-modulation

spectroscopy with HfF+ present are plotted in 5 cm−1 segments. For the four HfF+ rotational

bands identified, the line positions from the fit are shown offset for clarity. The first figure

shows a summary of the spectral region covered and a summary of the region containing the

four identified bands. There are many unassigned weaker lines but at the time this thesis

was completed it was not clear whether these indicate the presence of yet another band, or

whether instead these lines are aliases from nearby high-intensity lines.
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