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The pursuit of better atomic clocks has advanced many fields of research, providing better

quantum state control, new insights in quantum science, tighter limits on fundamental constant

variation, and improved tests of relativity. This thesis describes the construction and characteriza-

tion of an 87Sr optical lattice clock with a state-of-the-art stable laser. The performance of an atomic

clock is typically gauged by two figures of merit: stability and total systematic uncertainty. Stabil-

ity is the statistical precision of a clock or frequency standard, and the total systematic uncertainty

is the combined uncertainty of all known systematic measurement biases. Several demonstrations

of clock stability are presented in this work, one of which was the first to significantly outperform

ion clocks. The most recent of these measurements resulted in fractional stability of 2.2× 10−16 at

1 s, which is the best reported to date. These stability improvements are used for two systematic

evaluations of our clock. The first full evaluation at 6.4 × 10−18 total uncertainty took the record

for best clock performance. The second evaluation used improved strategies for systematic mea-

surements, achieving a new best total systematic uncertainty of 2.1 × 10−18. With a combination

of accurate radiation thermometry and temperature stabilization of the measurement environment,

we demonstrate the first lattice clock to achieve the longstanding goal of 10−18 level uncertainty

in the formidable blackbody radiation shift. Improvements in the density, lattice ac Stark, and

dc Stark shifts were also a result of innovations that are described in this thesis. Due to the low

total uncertainty of the Sr clock, timekeeping based on this system would not lose a second in 15

billion years (longer than the age of the Universe), and it is sensitive to a gravitational redshift

corresponding to a height change of 2 cm above the Earth’s surface.
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Chapter 1

Introduction

1.1 Precision, Accuracy, and Systematic Uncertainty

Throughout the 20th century, physics research pushed the frontiers of technology and trans-

formed civilization. The quest for better technology continues to motivate numerous physics re-

search endeavors, which are driven by technological goals like renewable energy, quantum informa-

tion, and biomedical devices. Good technology must be compatible and interoperable across the

Earth if it is to meet the demands of the global economy. This means that measurements—which

are foundational to the design, construction, characterization, and assessment of technology—must

be internationally and precisely consistent.

Two figures of merit that describe the quality of measurements are precision and accuracy,

which are exemplified in Figure 1.1. Here I use the famous target analogy for these two concepts.

Figure 1.1 depicts different distributions of 70 holes shot into a target. The shooter’s precision

a) b) c) d)

Figure 1.1: a) The shooter is neither precise nor accurate. b) Accurate but not precise. c) Precise
but not accurate. d) Precise and accurate.
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is the width of the distribution, and the shooter’s accuracy is the distance between the center of

the distribution and the bullseye. Similarly, measurement outcomes occur in distributions, where

the precision is the width of these distributions, and the accuracy is how much the centers of the

distributions differ from some true value.1

Systematic uncertainty can also be explained with the target analogy. To quantify the

shooter’s performance, one must measure the accuracy of the distribution of holes. In Figures

1.1a or 1.1c, if one attempted to measure the difference between the center of the distribution

and the bullseye, this measurement would have uncertainty (known as the systematic uncertainty).

This is because of the inherent uncertainty in determining the center of the distribution. In Figure

1.1a, the distribution is wider than in Figure 1.1c, so there is more uncertainty in locating the dis-

tribution center and therefore more systematic uncertainty. This demonstrates a common feature

of measurements: better precision leads to better systematic uncertainty.

1.2 Metrological Standards

Modern, global technology often requires precise and accurate measurement instruments.

Precision is needed to resolve small changes in measured quantities. Accuracy is necessary to ensure

that measurements are reproducible and agree worldwide. In this case, high accuracy typically

entails that measurement instruments have been calibrated to high quality, internationally uniform

metrological standards.

Metrological standards are controlled systems that realize physical units. For example, a

temperature standard could be a water bath that is pressure and temperature controlled such that

it maintains liquid, solid, and gaseous phases of water all at once (since the Kelvin is defined as

exactly 1/273.16 the temperature of the water triple point). The worldwide uniformity of standards2

1 In principle, these quantities should be called the “imprecision” and the “inaccuracy”; however, I will be a bit
loose in making the distinction between “precision” versus “imprecision,” “stability” versus “instability,” etc. Much
of the clock literature is equally loose, and there is a good reason for this. These terms are used often in clock
publications, and it is a burden on careful readers to have to be concerned with things like whether “stability” makes
sense in its sentence instead of “instability.” In practice, it is often clearer to mostly use “stability,” “precision,” and
“accuracy,” and rely on the context to shed light on whether “instability,” “imprecision,” or “inaccuracy” is actually
meant.
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is ensured through the international Treaty of the Metre (or Metre Convention), which established

an international standards bureau as well as metrology conferences and committees of signatory

nations. Through these conventions, member states coordinate international metrology and, in

1960, formally established the International System of Units (SI). The SI is an evolving system

that updates its definitions when superior standards based on new systems become available.3

Metrology researchers continue to develop more precise standards in anticipation that these

improved systems will be needed as technology becomes more precise and more global.

The most precise standards are those of frequency, which define the SI second. Currently, the

definition of the SI second is “The duration of 9193631770 periods of the radiation corresponding

to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.”

Many member nations of the Metre Convention maintain one frequency primary standard, which

is a microwave resonator slaved to the ground state hyperfine transition in a cesium fountain [48].

Primary standards are compared with those of other member nations, and they can also serve

as local standards against which other frequencies can be measured. In the United States, the

Cs primary standard is located at the National Institute of Standards and Technology (NIST) in

Boulder, CO.

1.3 Timekeeping

One of the most critical applications of metrological standards is globally coordinated time-

keeping, which provides precise timing and synchronization for modern technology. Some of the

technologies that rely on precise timekeeping are GPS, secure communication, space navigation sys-

tems, power grid synchronization, and computer network timing. Timekeeping is based on clocks,

which are (at least) comprised of oscillators, counters, and references [56]. Examples of oscillators

found in clocks are pendulums (grandfather clocks), crystal resonators (quartz clocks), and elec-

2 Engineers often use the word “standards” differently. Here I use “standards” to mean only “metrological
standards.”

3 For instance, the SI meter was defined in units of wavelengths of a krypton transition. Later this definition was
updated to define length as “the distance traveled by light in a vacuum in 1/299792458 second” since the latter could
eventually be measured more precisely.
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tromagnetic waves (atomic clocks). A clock counts oscillator cycles, converting them to quantities

with temporal dimensions by equating a unit of time with a given number of oscillator periods

[56]. For instance, the resonators in many quartz clocks are laser trimmed until their fundamental

frequencies are 32768 Hz, and these clocks are designed to advance 1 second after 32768 oscillations

are counted.

Clock oscillator phase or frequency noise degrades timekeeping precision. For an oscillator

that can be expressed as A sin(ωt+φ), where A is a constant amplitude and ω is the (constant) base

frequency, allowing the phase offset φ to be a stochastic function of time describes both phase and

frequency noise [100]. If a clock considers 1 second to be exactly n oscillator periods, the oscillator

phase after n cycles is ωt + φ = 2nπ. This relation implies that, for a stationary phase noise

process, δt = δφ/ω (where δt is the root mean square (RMS) time signal noise, and δφ the RMS

phase noise). Therefore, good clock design means employing a phase-stable (small δφ) oscillator

with the largest possible base frequency.

To select the value of n correctly, one must measure the number of oscillator cycles in 1 s.

This is accomplished by referencing or calibrating the clock oscillator frequency to an accurate

frequency signal. Historically, this signal was often Earth’s rotational frequency (which could be

measured with sundials) [56]. Now, for cutting edge clocks that use large base frequency oscillators,

microwave or optical atomic clock transitions are used as reference frequencies.4

1.4 Atomic Time

A frequency standard is typically a referenced oscillator [100]. Therefore, in principle, a

frequency standard plus a counter yields a clock. The best clocks to date are atomic clocks, which

are based on frequency standards that use microwave or optical electromagnetic waves as oscillators

and atomic transitions as references. High performance atomic clocks exist mostly in academic and

government laboratories, such as NIST’s atomic clock that generates official US time (based on

their Cs primary standard) [48]. The Cs clock does not lose 1 s in 300 million years, in contrast to

4 Any transition used as a frequency reference in a clock is called that system’s clock transition.
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the high-quality quartz clocks found in marine chronometers, which lose & 10 s annually. Rather

than use better clocks for consumer timepieces, it is typically sufficient and cost effective to use

quartz clocks that are occasionally reset to official US time.

In practice, a Cs primary standard cannot run continuously, so many nations in the Metre

Convention utilize flywheels. In this case, a flywheel is an array of hydrogen masers, which pro-

vides the frequency that is counted to generate the official time of many countries, including the

United States [67]. To maintain accuracy and long-term precision, the maser arrays are periodically

calibrated to Cs primary standards.

Clocks around the world coordinate time by comparing with each other using clock signals

broadcast by GPS satellites [67]. Although GPS time signals are noisy, when two nations simulta-

neously compare their clocks with the same GPS clock, the difference between these comparisons

cancels the GPS signal. This yields a comparison between the clocks of both nations that is free of

GPS time signal noise.

1.5 Optical Clocks

Cs clocks are based on phase-stable microwave oscillators (ω ≃ 2π×9.2 GHz). However, with

the advent of phase-stable lasers [45], clock oscillators with frequencies of hundreds of THz are now

possible. Therefore, state-of-the-art atomic clocks are based on clock lasers, which are stable lasers

referenced to electronic clock transitions in atoms [93].

Advances in atom cooling and trapping also provide advantages for optical clocks and fre-

quency standards. Cold neutral atoms and atomic ions can be confined in (approximately) harmonic

potentials, where kBT < ~ωtr, with T the atomic temperature and ~ωtr the harmonic oscillator

energy spacing of the trap. This condition ensures that atoms occupy few motional states of the

potential. In this regime, it is possible to interrogate clock transitions in a manner that is free of

Doppler and recoil shifts, which cause systematic uncertainties in Cs clocks (since Cs clocks are

based on atoms in free flight).

Optical frequency standards are now a mature technology, outperforming standards based
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on microwaves. To realize an optical clock, one must also be able to count the cycles of optical

clock oscillators. Historically this was a difficult task, but in the 2000s this became possible with

self-referenced optical frequency combs [31]. The clock uncertainty introduced by the frequency

comb counter is currently negligible [97], so to make better clocks we seek to improve frequency

standards.

Two kinds of optical clocks have surpassed Cs: single-ion clocks and optical lattice clocks.

Ion clocks are less sensitive than lattice clocks to systematic effects that cause oscillator frequency

uncertainty. However, since lattice clocks use ∼ 103 atoms whereas ion clocks use only one, lattice

clocks have the advantage in terms of precision. This is because the standard quantum limit to

clock precision scales as 1/
√
N , where N is the number of atoms in the clock. Until the work

described in this thesis, ion clocks held the record for lowest total systematic uncertainty for a

number of years.

1.6 State of the Art Frequency Standards

When we talk about one frequency standard outperforming another, it is important to be

clear about how performance is gauged. To that end, it is useful to explain precision, systematic

uncertainty, and accuracy in the context of atomic frequency standards.

The precision of a frequency standard is also known as its stability, which in this case is the

uncertainty in the mean frequency due to clock oscillator phase or frequency noise, δν (also called

the “statistical uncertainty”). Although precision gets worse with increasing δν, clock performance

improves with larger values of the oscillator base frequency ν = ω/2π; therefore, a good measure

of a frequency standard’s performance is the stability in fractional units.

Systematic uncertainty arises because atomic frequency standards are typically based on bare

transition frequencies of atoms. Bare transitions are useful because their frequencies are universal,

yielding international agreement between frequency standards based on the same atom. In practice,

clock researchers must work perturbed transitions, which vary from laboratory to laboratory. Real

measurement environments have stray electric and magnetic fields, heat, and atomic interactions
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that introduce perturbations; however, it is possible to measure these systematic biases and then

correct for them. The uncertainties in measurements of these biases (or systematic shifts) are the

systematic uncertainties of the frequency standard. Adding all of these uncertainties in quadra-

ture yields the standard’s total systematic uncertainty, which is another important measure of a

frequency standard’s performance. Systematic shifts are often measured by studying small changes

in the clock oscillator frequency, so these measurements are negatively affected by poor stability.

As explained in Section 1.1, good precision often lends itself to good systematic uncertainty.

The accuracy of an atomic frequency standard is the degree to which its quoted frequency

conforms to the true number of oscillations per SI second of the atom’s bare frequency.5 For a

standard that is not based on Cs, accuracy can be achieved by comparing the standard’s frequency

with that of the Cs transition. This works fine for standards that have comparable or worse

performance than that of Cs systems, but for optical standards with total systematic uncertainties

that are orders of magnitude better than Cs, this is no longer a viable option. Any attempt to

compare optical and Cs standards would be severely limited by the Cs systematic uncertainty.

To improve upon the SI, timekeeping, and modern technology, there has been much discussion

in the atomic clock research community of redefining the SI second in terms of an optical frequency

[39]. To further this eventual goal, this thesis describes the first lattice clock to surpass all ion clocks

and take the record for best clock performance, achieving stability among the best ever reported

and demonstrating the lowest total systematic uncertainty to date.

1.7 Thesis Overview

This thesis describes the stability characterization and systematic evaluation of an optical

lattice clock based on a stable laser referenced to a transition in atomic strontium.6 This is

the second Sr lattice clock built by our team at JILA. I begin by discussing the physics of the

5 A corollary to this is that the Cs primary frequency standard has perfect accuracy within its systematic uncer-
tainty

6 This work will not discuss our frequency comb counter in detail, focusing instead on the strontium frequency
standard. This is because the counter does not limit clock performance, so any improvements to the clock must
come from the frequency standard. For this reason, this thesis often uses the word “clock” to refer to the strontium
apparatus even though a discussion of the counter will be notably absent.
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strontium lattice clock, covering cooling, trapping, and spectroscopy of this atom. Next, I describe

the second-generation lattice clock apparatus (Sr2) that my labmates and I built during my time

on the JILA strontium team. Then, I discuss the stability of the Sr2 frequency standard, which

was improved upon over previous results from Sr1 using a more stable laser. Lastly, I detail the

results of two systematic evaluations of Sr2. The initial evaluation was the first instance of a lattice

clock surpassing an ion clock, and the second evaluation reached a longstanding goal in the optical

clock community of low 10−18 level total systematic uncertainty.7

7 Fractional frequency units will be used throughout this thesis for both stability and total uncertainty. “Stability”
will refer to the statistical frequency uncertainty divided by the Sr clock transition frequency of 429.228 THz. “Total
systematic uncertainty” (or “total uncertainty” for short) will refer to the combined systematic frequency uncertainty
divided by the clock transition frequency.



Chapter 2

The Physics of the Strontium Lattice Clock

2.1 The Sr Atom

The strontium lattice clock is based on laser cooled Sr atoms trapped in an optical lattice,

which is a periodic potential generated by laser light. The Sr atom has four stable isotopes (Table

2.1), one of which is a fermion and the rest are bosons. Like other alkaline earth (Group II in the

Periodic Table) or alkaline-earth-like atoms, the bosonic isotopes all have zero nuclear spin.

Sr has two valence electrons, resulting in spin singlet and triplet angular momentum states.

This work often utilizes transitions between the 5s2 1S0 ground state and the 5s5p 3P0 or 5s5p 3P1

levels1 (Figure 2.1), both of which are forbidden by electric dipole selection rules. In the case of

the 1S0 →3P1 line, which violates the ∆S = 0 selection rule (where S is the total electron spin

quantum number), angular momentum state mixing due to the spin-orbit interaction allows for a

weak electric dipole intercombination transition [16].

In the bosonic isotopes of Sr, the 1S0 →3 P0 transition is still electric dipole forbidden,

1 Here I use Russell-Saunders notation, in which angular momentum states are written as 2S+1LJ , where S is the
total electron spin, L is the orbital angular momentum, and J is the total angular momentum. Since there are two
valence electrons, S = 0 or 1, where the S = 0 case is referred to as a “singlet” state and S = 1 is the “triplet.”

Isotope Abundance Nuclear Spin
84Sr 0.56% 0
86Sr 9.86% 0
87Sr 7.0% 9/2
88Sr 82.58% 0

Table 2.1: Stable isotopes of strontium.
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Figure 2.1: The Sr energy levels discussed in this thesis. All of the lasers used to access these levels
are represented by arrows.

and theory predicts that, for all practical purposes, it never decays [107]. In 87Sr, however, the

hyperfine interaction (that occurs because of the nuclear spin of 9/2) provides another state mixing

mechanism that allows the 1S0 →3P0 transition to take place [16]. The result is an ultranarrow

∼ 1 mHz linewidth electric dipole resonance, which is used as the strontium clock transition.

The 1S0 →3 P0 line is a good clock transition because it is naturally insensitive to stray

magnetic fields [16], which can cause unwanted systematic shifts of the clock transition. For J = 0

states, the transition’s first-order Zeeman shift is given by the nuclear g-factor gI , which is smaller

than the Landé g-factor gJ (that determines the magnetic sensitivity of J 6= 0 states) by a factor

roughly equal to the proton-to-electron mass ratio. The 1S0 →3P0 second-order Zeeman shift is

also an order of magnitude smaller than that of many prominent ion clocks and several orders of

magnitude smaller than that of the Cs clock transition [16].

2.2 Laser Cooling Sr

The source of the Sr atoms is an effusive oven that emits a hot atomic beam. To remove

enough kinetic energy from this fast moving beam to trap the atoms, laser cooling is employed.

Experiments that work with ultracold Sr typically use two laser cooling transitions: 1S0 →1P1
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Figure 2.2: The repumping scheme. Lasers are represented as colored, solid arrows and decays are
dashed arrows. The lifetimes of the decays are included next to the dashed arrows.

and 1S0 →3P1. The 1S0 →1P1 461 nm transition is fully allowed by electric dipole selection rules

and has a γ = 30 MHz linewidth. This transition is suitable for Zeeman slowing and 3D magneto-

optical trap (MOT) cooling to a Doppler-limited temperature [81] of hγ/2kB = 0.72 mK (where h

is Planck’s constant and kB is Boltzmann’s constant). The 1S0 →1P1 transition is not completely

closed since one in 4.9 × 104 decay events populates the 1D2 state (Figure 2.2) [124]. Most of this

population returns to the ground state through 1D2 →3P1 →1S0; however, one in 1.4× 105 decays

out of 1P1 results in shelving population in the metastable 3P2 state via 1P1 →1D2 →3P2.

To deal with this shelving, we use a 707 nm laser to drive the 3P2 →3S1 transition. The 3S1

state decays into the 3P manifold, so we also use a 679 nm laser to drive any population that decays

into the long-lived 3P0 clock state back into 3S1. Eventually all the shelved population returns to

the ground state through 3S1 →3P1 →1S0.

After the atoms have been cooled to their Doppler temperature on the 1S0 →1P1 transition,

we apply a second stage of 3D MOT cooling on the 1S0 →3P1 intercombination line. This transi-

tion has wavelength of 689 nm and a linewidth of 7.5 kHz [32], which implies Doppler and recoil

temperatures of 180 nK and 230 nK (respectively) [70]. In the 87Sr intercombination line MOT,
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Figure 2.3: The three hyperfine states of 3P1. The hyperfine levels are labeled by the difference
between the hyperfine transition frequency and the frequency of 3P1 in absence of hyperfine struc-
ture. Using the language of Reference [86], the two lasers used in 1S0 →3P1 cooling are the trapping
and stirring lasers. These lasers are portrayed as red arrows.

complexities arise due to an interplay between the nuclear spin, the narrow linewidth, and the fact

that the 1S0 and
3P1 levels have very dissimilar g-factors, leading to the lack of a trapping force for

some of the atomic spin magnetic quantum states mF [86]. This makes a traditional MOT based

on a single F → F + 1 hyperfine transition inefficient. A common solution to this problem is to

use a stirring laser operating on the |1S0, F = 9/2〉 → |3P1, F = 9/2〉 transition to randomize mF

states along with the usual F → F + 1 cooling laser driving the |1S0, F = 9/2〉 → |3P1, F = 11/2〉

transition [86]. After 500 ms of 461 nm MOT cooling and 260 ms of 689 nm MOT cooling, we

typically obtain samples of ultracold 87Sr at temperatures of a few µK.

2.3 The Magic Wavelength Optical Lattice

2.3.1 Optical Dipole Traps

Throughout both stages of laser cooling, an optical lattice is superimposed on the atom cloud

trapped by the MOTs. The lattice potential collects the coldest atoms throughout the cooling

process and retains them after the 689 nm MOT is shut off. Optical lattices utilize the ac Stark



13

energy shift Eac to provide a conservative trapping potential. The ac Stark shift of quantum state

n is given by [17]

Eac,n = −1

2
αn(ω)|~Eext(ω, t)|2, (2.1)

where αn(ω) is the atomic polarizability, ~Eext is an external electric field, and ω is the frequency

of the external field. As Equation 2.1 shows, for ω chosen such that αn > 0, Eac,n is negative and

it is energetically favorable for atoms to be positioned in the most intense regions of the electric

field. Tightly focused laser beams can therefore confine atoms to small regions of space. Since

lasers oscillate at frequencies of order 1015 Hz, which is much too fast to have a measurable effect

on the trap dynamics, |~Eext|2 in Equation 2.1 is replaced with its time average.

Lasers used for trapping are typically focused Gaussian beams [117],

~E(r, z) = ~E0
w0

w(z)
exp

[ −r2
w2(z)

− i(kz − ωt)− ik
r2

2Rc(z)
+ i tan−1

(

z

zR

)]

, (2.2)

where |~E0| is the peak electric field amplitude, w0 is the beam focal waist, w(z) = w0

√

1 + (z/zR)2,

Rc(z) = z
[

1 + (zR/z)
2
]

is the beam’s radius of curvature, zR = πw2
0/λ is the Rayleigh range,

k = 2π/λ, λ is the laser wavelength, and the unit vector ~E0/|~E0| is the laser polarization. This

expression is written in cylindrical coordinates, with z the axial direction and r =
√

x2 + y2 the

radial direction. The laser focus is located at r = z = 0.

The intensity of a harmonic complex electric field is given by [55]

I(r, z) =
ǫ0c

2
(~E · ~E∗) =

2P

πw2(z)
exp

( −2r2

w2(z)
,

)

, (2.3)

where the laser power P =
∫ 2π
0

∫∞
0 rI(r, z)drdθ, ǫ0 is the permittivity of free space, c is the speed of

light, and * denotes complex conjugation. Expressing Equation 2.1 in terms of this laser intensity

yields the potential for an optical dipole trap,

UODT (r, z) = − 1

2ǫ0c
αnI(r, z) = − αnP

πǫ0cw2
0

exp
{

−2r2

w2
0
[1+(z/zR)2]

}

[1 + (z/zR)2]
. (2.4)
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Figure 2.4: A retroreflected lattice. A laser traveling in the direction of ~k is focused with a lens.
A curved mirror retroreflects the light upon itself, generating periodic intensity fringes. These are
used as an array of atom microtraps.

2.3.2 Retroreflected Lattices

Retroreflecting a trap laser upon itself generates a one-dimensional standing wave known as

an optical lattice. A curved mirror is used to ensure that the beam foci of the incident and reflected

beams overlap (Figure 2.4). This creates intensity fringes that are used as a periodic trap potential.

Therefore, the electric field of the lattice is ~Elat = ~E(r, z) + ~E(r,−z), where ~E(r, z) is the expression

in Equation 2.2. This yields a trap potential Ulat of

Ulat(r, z) = −1

4
αn

~Elat · ~E∗
lat = − 4αnP

πǫ0cw
2
0

exp
{

−2r2

w2
0
[1+(z/zR)2]

}

[1 + (z/zR)2]
cos2

(

kz +
kr2

2Rc(z)
− tan−1(z/zR)

)

.

(2.5)

Each intensity fringe provides axial confinement within a length of λ/2. It is common to make the

approximations cos2
[

kz + kr2/2Rc(z)− tan−1(z/zR)
]

≃ cos2(kz) and 1 + (z/zR)
2 ≃ 1. For many

experiments based on ultracold atoms in optical lattices (including Sr2 and our first generation

Sr lattice clock, Sr1 [74]), these approximations are valid since, for typical beam parameters, the

effects of the neglected terms are negligible over the dimensions of trapped atom samples.

Using these approximations, the lattice potential is

Ulat(r, z) = −U0e
−2r2/w2

0 cos2(kz), (2.6)

where U0 = 4αnP/πǫ0cw
2
0 is the trap depth, defined as the difference between the asymptotic value
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Figure 2.5: The cavity lattice. Incident light is coupled into the cavity with a lens, forming a
standing wave in between the two mirrors.

of the potential and the potential minimum. Note that for the lattice, the trap depth is four times

greater than in the optical dipole trap case due to constructive interference.

To trap large numbers of atoms, it is desirable to choose the laser power P such that U0 is

several times greater than kBT , where T (again) is the sample temperature. In this regime, most

of the sample is located near the potential minimum, where the trap is approximately harmonic.

The trap frequencies are the radial and axial eigenfrequencies ωr and ωz at the minimum, which

can be derived using normal mode analysis [41],

ω2
r =

1

m

∂2Ulat

∂r2

∣

∣

∣

∣

r=0
z=0

=
4U0

mw2
0

(2.7)

ω2
z =

1

m

∂2Ulat

∂z2

∣

∣

∣

∣

r=0
z=0

=
2k2U0

m
, (2.8)

where m is the 87Sr mass. Since w0 is typically tens of microns, ωz/ωr = kw0/
√
2 ≫ 1. The axial

trap frequency is often expressed in terms of the lattice recoil energy Erec = ~
2k2/2m and the

lattice recoil frequency ωrec = Erec/~,

ωz = 2ωrec

√

U0

Erec
. (2.9)

2.3.3 Cavity Lattices

The lattice employed by the Sr2 clock uses an optical cavity to enhance the lattice power.

In this case, atoms are trapped in the fundamental transverse mode of a standing wave cavity
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(Figure 2.5). The cavity is symmetric, meaning that the radii of curvature of the mirrors are equal,

and atoms are trapped approximately in the center of the cavity. Assuming the cavity mirrors are

separated by a distance L, we can derive the beam properties of the cavity lattice using the fact

that, for a stable cavity, at z = L/2 the beam’s radius of curvature Rc(z) is equal to R (the radius

of curvature of the mirror). Rc(L/2) = R implies that the beam’s Rayleigh range is

zR =
πw2

0

λ
=

1

2

√

L(2R − L), (2.10)

which gives a cavity design equation for the beam waist w0. It is worth noting that Equation 2.10

is not valid for L > 2R because in this case the cavity is unstable. It is straightforward to show

with cavity stability analysis [117] that for a symmetric resonator, the criterion for a stable cavity

is 0 < L < 2R.

The cavity intensity inside and outside the cavity is given by [87]

Itr/Iin =
(1− r1)(1 − r2)t

(1− t
√
r1r2)2 + 4t

√
r1r2 sin

2(kL)
, (2.11)

Iref/Iin =
(
√
r1 − t

√
r2)

2 + 4t
√
r1r2 sin

2(kL)

(1− t
√
r1r2)2 + 4t

√
r1r2 sin

2(kL)
, (2.12)

Ien/Iin =
(1− r1)t

(1− t
√
r1r2)2 + 4t

√
r1r2 sin

2(kL)
. (2.13)

Here Iin is the incident laser intensity (taken to be constant in these equations), r1 is the reflectivity

of the input mirror, r2 is the reflectivity of the output mirror, and t is the cavity loss (fraction of

intensity lost after one pass through the cavity) from materials inside the resonator. The cavity is

resonant when the round-trip phase accumulated by the electric field inside is equal to multiples of

2π, or equivalently kL is a multiple of π as in Figure 2.6. Itr is the intensity transmitted through

the cavity, and Itr = Iin when the cavity is resonant, t = 1 (no cavity loss), and r1 = r2. For t < 1,

Itr is always less than Iin. Iref is the reflected intensity, which comes from the field reflected by the

laser incident on the cavity as well as the field inside the cavity that leaks out of the input mirror.

In the impedance matched case, the input mirror reflectivity is chosen such that r1 = r2t
2. This
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Figure 2.6: a) The intensity enhancement of an optical cavity. Plotted is Ien/Iin for the r1 = r2 = r
case. The green curve depicts the enhancement for r = 0.5 and no losses in the cavity (t = 1).
For the red curve, t = 1 but r is increased to 0.9, which increases the enhancement and makes the
intensity peaks narrower. In the blue curve, r remains at 0.9 but t = 0.95. Here the narrowness
of the peaks remains but the intensity in the cavity is diminished. b) The cavity behavior for the
r = 0.9 and t = 0.99 case. The gray curve is the one-way intensity Ien/Iin inside the cavity. The
black curve is Iref/Iin, showing the reflected intensity decrease when the cavity enhancement is
maximal. The magenta curve is Itr/Iin.

condition causes Iref to vanish when the cavity is resonant, increasing the power inside the cavity.

Sr2 operates with mirrors from the same batch, so r1 = r2.

The enhanced intensity Ien is the motivation for using a cavity lattice. The standing wave

inside the cavity is comprised of two counterpropagating electric fields, and the one-way intensity

Ien is the intensity associated with one of those fields. When trapping atoms in this standing wave,

both k and L are electronically controlled using Pound-Drever-Hall stabilization [10] to ensure that

the cavity is resonant2 , which is necessary to achieve the maximum value of Ien (Figure 2.6).

The fact that light circulates several times in the cavity before leaking out means that the

optical power stored in the cavity can be significantly larger than the incident power. Trapping

atoms in a cavity-enhanced lattice allows us to leverage the extra power (compared to a retrore-

flected lattice) for a larger beam waist w0 while maintaining a good trap intensity and therefore a

2 k is controlled by locking the laser to the cavity, and L is controlled by locking the cavity length with a
piezoelectric actuator. See Section 3.4 for more technical details.
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good value of the trap depth U0. This leads to a larger spatial extent of the trap potential, which

proved to be critical for dealing with an important systematic frequency shift caused by atomic

interactions (as I will explain in Section 5.5). According to Equation 2.13, the enhancement factor

is

(1− r1)t

(1− t
√
r1r2)2

. (2.14)

To give a sense of the size of the enhancement, for t = 0.99 and r1 = r2, this factor can be as large

as 25.

2.3.4 The Magic Wavelength

Although the ac Stark effect facilitates atom trapping, it also causes a frequency shift of the

clock transition ∆νac

∆νac = (Eac,3P0
− Eac,1S0

)/h = − 1

2ǫ0hc
∆α(ω)I(r, z), (2.15)

where ∆α is the differential polarizability

∆α(ω) = α3P0
(ω)− α1S0

(ω). (2.16)

This shift is unwanted since the clock is based on the atom’s bare frequency (Section 1.6). Therefore,

we choose a lattice frequency ω at which α3P0
= α1S0

, causing the differential polarizability to

vanish. This is the called the magic frequency, and the corresponding wavelength is the magic

wavelength [60, 57, 125].

The polarizability is given by [17]

αn(ω) = 6πǫ0c
3
∑

k

Ank

ω2
nk(ω

2
nk − ω2)

, (2.17)

where the sum is performed over all hyperfine states except k = n. ωnk is the frequency of a

transition between hyperfine states n and k, and Ank is the Einstein spontaneous decay coefficient
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of this transition.

The polarizability is often expanded to make mF dependence explicit,

αn = αs,n + αv,n
mF

2F
ξk̂ · B̂ + αt,n

3m2
F − F (F + 1)

2F (2F − 1)
(3|ǫ̂ · B̂|2 − 1), (2.18)

where αs,n, αv,n, and αt,n are the scalar, vector, and tensor polarizabilities. Also, ξ is the degree

of ellipticity of the lattice polarization, k̂ is the laser propagation direction, ǫ̂ is the direction of

the lattice polarization (assumed to be nearly linear), and B̂ is the quantization axis of the atomic

angular momentum. Using this form, ∆νac can be expressed as [121]

∆νac = −
{

κs + κvmF ξk̂ · B̂ + κt
[

3m2
F − F (F + 1)

]

(3|ǫ̂ · B̂|2 − 1)
}

Ulat(r, z) (2.19)

where the scalar, vector, and tensor shift coefficients κs, κv, and κt are proportional to their

corresponding scalar, vector, and tensor polarizabilities. As explained in Section 2.6, the vector

term is strongly suppressed in the Sr2 clock, so the desired wavelength is that at which the scalar

and tensor terms cancel each other (Figure 2.7). The magic wavelength is approximately 813.4 nm

[121].

2.4 Spectroscopy of Narrow Resonances in the Lamb-Dicke Regime

2.4.1 System Hamiltonian

To reference the clock oscillator to the Sr clock transition, this resonance will need to be

interrogated. The fact that the atoms are trapped in an optical lattice means that the dipole

approximation, which is often used for the spectroscopy of atoms, can no longer be made, leading

to distinct qualitative differences compared to the free atom case.

To analyze this case, I will treat the electric field of the clock laser as ~Ec = ~Ec0 cos(~kc ·~r−ωct),

where ~Ec0 is a constant electric field amplitude, ~kc is the clock laser k -vector, ~r is the position

vector, and ωc is the clock laser frequency. ~Ec is linearly polarized because only π transitions
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Figure 2.7: The differential ac Stark shift corresponding to the peak lattice intensity. Here ǫ̂ · B̂ = 1
(implying k̂ · B̂ = 0). The scalar and mF = ±1/2 tensor terms are included on the plot. The
shift vanishes for the angular momentum stretched states mF = ±9/2, which are used in clock
operation.

(transitions that do not change mF ) are used for clock spectroscopy. This expression ignores the

spatial properties of the clock laser beam, which is valid because this beam is typically made several

times larger than the atom sample density to ensure uniform intensity across the sample.3 Also,

the trapping potential will be treated as a harmonic oscillator. The interaction Hamiltonian Hint

is −~d · ~Ec, where ~d is the dipole operator. Transforming to a frame rotating with the laser frequency

and using the rotating wave approximation,

Hint =
~Ω

2

(

ei
~kc·~r|e〉〈g| + e−i~kc·~r|g〉〈e|

)

. (2.20)

Here |g〉 and |e〉 are the ground and excited electronic state vectors, Ω = −〈e|~d|g〉 · ~Ec0/~ is the

Rabi frequency, and ~d = e~r (where e is the electron charge).

As explained in Section 2.4.3, it is desirable to align the clock laser along the direction with

the largest trap frequency, which is the lattice axial direction ẑ (also referred to as the “lattice

axis”). In this case, ~kc · ~r = kcz. Since the atoms are trapped in a harmonic potential, z should

be regarded as an operator z = z0√
2
(â+ â†), where z0 =

√

~/mωz is the harmonic oscillator length,

and â and â† are the annihilation and creation operators. These act on the harmonic oscillator

3 This is done to ensure that the clock laser excites the atoms uniformly across the sample density.
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Figure 2.8: The normalized clock laser absorption cross section (from [123]) for weak excitation
and T = 3 µK. The detuning is measured with respect to the free-atom resonance frequency in the
atom’s rest frame. a) The black line depicts free-atom motional shifts. This is a Doppler-broadened
lineshape offset by the recoil shift νc,rec. The green bars are the trapped-atom cross section for
η = 1. Under this modest confinement, the effect of motional quantization begins to appear. b)
For η = 0.6, motional transitions are well resolved, and each absorption event for nonzero detuning
involves gaining or losing motional quanta. The frequency spacing between the motional transitions
is νz, with the strongest transition now occurring at zero detuning instead of at νc,rec. The trap
frequency νz scales with 1/η2 (since η =

√

νc,rec/νz). c) For η = 0.25, sidebands are weak, and the
zero detuning transition (or carrier transition), corresponding to no change of motional quanta,
nearly dominates the cross section. Note that this carrier transition is not offset from zero detuning
as in the free-atom case. Here the momentum from the clock laser photon is taken up by the lattice
rather than the atom, resulting in recoil-shift-free spectroscopy [30].

state |nz〉 of the lattice potential with the usual ladder operator behavior â|nz〉 =
√
nz|nz − 1〉 and

â†|nz〉 =
√
nz + 1|nz + 1〉.

For many experiments, it is common to further simplify Hint with the dipole approximation,

in which ei
~kc·~r ≃ 1. This is valid when ~kc · ~r is much less than unity. For free atoms, the relevant

length scale of the atoms’ spatial extent is the Bohr radius a0, so ~kc · ~r ∼ kca0 ≪ 1, and the dipole

approximation holds. For atoms confined in the (approximately) harmonic potential of the lattice,

the length scale is now the harmonic oscillator length z0, and kcz0 for an optical lattice is typically

comparable to unity or greater. Therefore, the exponentials in Equation 2.20 must be kept.

The Hamiltonian of this system in the rotating frame (the same frame as Equation 2.20) is

H = −~∆|e〉〈e|+ ~ωz

(

â†â+
1

2

)

+
~Ω

2

(

eiη(â+â†)|e〉〈g| + e−iη(â+â†)|g〉〈e|
)

. (2.21)

Here ∆ = ω − ωc is the detuning, η = kcz0/
√
2 =

√

νc,rec/νz is the Dicke parameter, νz = ωz/2π,
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νc,rec = h/2mλ2c = 4.68 kHz is the recoil frequency of the clock laser, and λc = 698.4 nm is the

clock laser wavelength. This system is typically analyzed using the basis |e, nz〉 = |e〉 ⊗ |nz〉 and

|g, nz〉 = |g〉 ⊗ |nz〉 [123]. In this case |nz〉 is the z-directional motional quantum state. Although

the trapped atoms also have motional excitations in the x and y directions, H in Equation 2.21 does

not affect |nx〉 or |ny〉. Therefore, according to this model, the x- and y- directional excitations stay

constant, so the trivial energy offset produced by these states is ignored. In this basis, an arbitrary

quantum state |ψ(t)〉 can be expressed as |ψ(t)〉 = ∑nz
[cg,nz(t)|g, nz〉+ ce,nz(t)|e, nz〉], where the

sum is taken from nz = 0 to ∞.

Spontaneous decay and laser decoherence are neglected in this treatment, implying that the

spectroscopy of the clock states is fully coherent.4 Spontaneous decay can be neglected when the

pulse time of the clock laser interrogating the atoms is much shorter than the spontaneous lifetime

of the excited clock state. Also, laser decoherence can be neglected when the clock laser pulse time

is much shorter than the coherence time of the laser. These approximations are valid in this work

since the excited clock state is long lived and the clock laser is ultrastable.

2.4.2 Sideband Transitions

Analogous to the famous two-level Rabi solution, one can define a sideband Rabi frequency

Ωeg in terms of the matrix elements of the interaction Hamiltonian,

~Ωeg

2
= 〈e, ne|Hint|g, ng〉 =

~Ω

2
〈ne|e−iη(â+â†)|ng〉, (2.22)

where ng and ne are the motional state quantum numbers associated with the ground and excited

electronic states. This expression has been evaluated [123] as

Ωeg = Ωe−η2/2

√

n<!

n>!
η|ne−ng|L|ne−ng|

n< (η2). (2.23)

Here n< is the lesser of ng and ne, n> is the greater of the two, and Lα
j (x) is the jth generalized

4 Decay and decoherence could easily be treated with complex decay terms in the Hamiltonian of Equation 2.21
or with a Lindblad master equation and a Liouvillian superoperator to describe decay.
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ne = ng - 1
ne = ng

ne = ng + 1

3P0

1S0

hνz

a)

Figure 2.9: a) The carrier transition, for which ng = ne, is shown with a green arrow. It is also
possible for atoms in the state |g, ng〉 to be coupled to the excited electronic state when ne 6= ng,
allowing for motional state addressing. The ng → ng − 1 transition is the red sideband, and
ng → ng + 1 is the blue sideband. These resonances are separated in frequency from the carrier
by νz. b) The sideband Rabi frequency for η = 0.5. Here ∆n = ne − ng. Ωeg is only defined
at integer values of ∆n, but the curves are plotted as continuous functions to make the behavior
more apparent. At ng = 0, atoms are initialized in the lowest possible motional state, so losing a
motional excitation (∆n < 0) is impossible. Ωeg begins to vanish for ∆n = 0 as ng gets large.

Laguerre polynomial. This expression describes the optical coupling for the |g, ng〉 → |e, ne〉 tran-

sition, which is nonzero even for sideband transitions in which the motional state changes when

driving the electronic states (Figure 2.9). This is often interpreted as the Doppler shift when atomic

motion is quantized [30] (Figure 2.8).

Solving the Schrödinger equation with the Hamiltonian from Equation 2.21 is considerably

simpler in the resolved sideband regime. In this limit, sideband transitions are very well resolved

from one another, making it possible to drive one sideband transition without exciting others.5

This is a good approximation for spectroscopy of the clock transition, which is very spectrally

narrow. The system Hamiltonian in the resolved sideband approximation can be written in a 2× 2

subspace

H/~ =







−∆+ ωz(ne − ng)
1
2Ωeg

1
2Ωge 0






. (2.24)

Equation 2.24 has an identical form to the familiar Rabi Hamiltonian, which describes the coherent

5 The resolved sideband regime occurs when γ ≪ νz, where γ is the full width at half maximum of the transition
lineshape.
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Figure 2.10: Sideband spectra for η = 0.5, νz = 500 Hz, Ω = 100 s−1, and t = π/Ω.

interrogation of a free atom at rest,

HRabi/~ =







−∆ 1
2Ω

1
2Ω

∗ 0






. (2.25)

Solving the Schrödinger equation with HRabi for the excited state population fraction ρee after a

square pulse of length t,

ρee =
|Ω|2

|Ω|2 +∆2
sin2

(

t

2

√

|Ω|2 +∆2

)

. (2.26)

Therefore, the excited state population fraction ρne implied by Equation 2.24 is

ρne =
|Ωeg|2

|Ωeg|2 + [∆− ωz(ne − ng)]
2 sin

2

(

t

2

√

|Ωeg|2 + [∆− ωz(ne − ng)]
2

)

. (2.27)

Equation 2.27 describes transitions occurring for detunings ∆ = ωz(ne − ng) (Figure 2.10).

2.4.3 The Lamb-Dicke Regime

The transition for which the motional state does not change (ng = ne) is a carrier transition.

Carrier spectroscopy of lattice-trapped atoms has the advantage (compared to untrapped atoms)

of being free of motion-related frequency shifts [30]. This is desirable since the clock is based on the

unshifted bare frequency. However, at a sample temperature of a few µK, the Sr atoms may not
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Figure 2.11: Sideband spectra for η = 0.2, with νz, Ω, and t the same as in Figure 2.10. The carrier
transition is robust for different values of ng. For η ≪ 1, the sidebands would not be noticeable on
this plot.

be entirely confined to the motional ground state of the lattice. As Figure 2.10 shows, the contrast

of carrier transitions can degrade if one interrogates a gas of atoms that occupy different motional

states.

To alleviate this problem, it is useful to work in the Lamb-Dicke regime. In this limit, the

clock laser wavelength is much greater than the harmonic oscillator length along the lattice axis

(λc ≫ z0, or equivalently η ≪ 1). Here spectroscopy of the carrier transition is like that of an atom

at rest, which is useful for an atomic clock based on a bare transition. The lineshape contrast is

maximal, and Doppler and recoil shifts are absent. For typical Sr2 lattice parameters, η = 0.2,

which is sufficient to reap these benefits (Figure 2.11).6 These advantages are not afforded to

clocks based on free atoms (like Cs fountain clocks). Also, the magic wavelength discussed in

Section 2.3.4 alleviates the main drawback to introducing the trap, namely the systematic ac Stark

shift from the trap itself.

6 Probing the clock transition along the lattice radial direction, for which νr = ωr/2π = 120 Hz, would yield
η = 6. This is the reason for aligning the clock laser to the z direction.
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2.4.4 Anharmonicity and Sideband Broadening

Since the Sr2 clock operates in the resolved sideband regime, measuring the frequency differ-

ence between the carrier and the red or blue sidebands (Figure 2.11) yields a value for νz. In fact,

in the harmonic approximation, the frequency difference between the carrier and the red or blue

sidebands is exactly νz. Since measurements of νz via the sideband frequencies will be important to

the lattice Stark shift systematic measurement (Section 5.6), it is important to consider how these

frequencies are related to νz in the true potential, which is anharmonic.

The motional part of the Hamiltonian in Equation 2.21 was approximated as harmonic,

Hmotion = ~ωz(â
†â+ 1/2). Ignoring motion along the lattice radial direction, the full Hmotion is

Hmotion =
p2

2m
− U0 cos

2(kz), (2.28)

where p = ip0√
2
(â†− â), z = z0√

2
(â+ â†) as before, and p0 =

√
m~ωz. Expanding the potential in kz0,

Hmotion = ~ωz

(

â†â+
1

2

)

− 1

12
~ωzη

2
L(â+ â†)4 +

1

90
~ωzη

4
L(â+ â†)6 + . . . , (2.29)

and ηL = kz0/
√
2 =

√

νrec/νz is the lattice Dicke parameter. The trivial potential offset −U0 has

been neglected. The blue sideband frequency νbsb (Figure 2.9) is therefore

νbsb = 〈nz + 1|Hmotion|nz + 1〉/h − 〈nz|Hmotion|nz〉/h

≃ νz − (1 + nz)νrec. (2.30)

Terms of order η4L and higher have been discarded since ηL is typically about 0.2. As Equation 2.30

shows, the blue sideband frequency is largest for atoms in the ng = 0 state.

The effect of radial motion can be analyzed by expanding Hmotion with the radial dependence

included [12],
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Figure 2.12: a) The unbroadened (purple) and broadened (blue) lineshape functions describing
the blue sideband. These lineshape functions are area normalized. The carrier is located at zero
detuning. b) The broadened lineshape function alone, showing broadening toward the carrier.

Hmotion =
p2

2m
− U0e

−2r2/w2
0 cos2(kz)

≃ p2

2m
− U0

(

1− k2z2 +
1

3
k4z4 − 2r2

w2
0

+
2r4

w4
0

+
2k2z2r2

w2
0

)

. (2.31)

Considering now the radial motional excitations nx and ny,

νbsb = 〈nx, ny, nz + 1|Hmotion|nx, ny, nz + 1〉/h − 〈nx, ny, nz|Hmotion|nx, ny, nz〉/h

≃ νz − (1 + nz)νrec − νrec
νr
νz

(nx + ny + 1). (2.32)

Since nx and ny do not change during spectroscopy, the r2 and r4 terms in Equation 2.31 do not

contribute to νbsb; however, the r
2z2 term that couples the radial and axial states results in the

dependence on radial excitations. To obtain the correct sideband lineshape, we must thermally

average over these states [12],

Lblue(δ) =
2

πΓZ

∑

nx,ny,nz

e−nxhνr/kBTre−nyhνr/kBTre−nzhνr/kBTz

1 + 4
Γ2 (δ − νbsb)2

. (2.33)

Here Lblue is the lineshape function, Γ is the power broadened linewidth of a zero-temperature line-

shape (modeled here as Lorentzian), Tr is the temperature in the radial direction of the lattice, Tz
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is the axial temperature, and Z =
∏

x,y,z

∑

i exp(−nihνi/kBTi) is the partition function. Although

there are enough radial motional states in the potential to approximate the nx and ny sums as

running from zero to ∞, the sum over nz should be taken from zero to the maximum number of

axial excitations in the potential, which in this model is ⌊U0/hνz⌋ (where ⌊. . .⌋ denotes the floor

function).

This thermal averaging broadens the sideband asymmetrically toward the carrier (Figure

2.12). Physically, this broadening can be viewed in terms of atoms experiencing quantized motion

in the axial direction (hνz > kBTz) and classical motion (hνr ≪ kBTr) in the radial direction.

Atoms rolling back and forth in the radial direction will experience different axial trap frequencies

since the trap intensity they feel will vary depending on their radial position. The sharp sideband

edge at large detunings from the carrier corresponds to when atoms are in the most intense region

of the lattice laser (r = 0) and in the lowest axial motional state (Equation 2.30), resulting in the

largest axial trap frequency. Therefore, in light of Equation 2.30, the frequency difference νblue

between the blue sideband edge and the carrier is approximately

νblue ≃ νz − νrec. (2.34)

2.4.5 The Lattice in the Presence of Gravity

As I will explain in Section 5.6, the lattice ac Stark shift is studied as a function of the

potential depth experienced by the atoms. This depth can be conveniently determined through

νz = νblue + νrec (Equation 2.34), which is measured with sideband scans of the clock transition

(Figure 3.19). According to Equation 2.9, U0 = (νz/2νrec)
2Erec; however, this expression is only

valid when gravity is ignored.

Gravity will change the sample’s equilibrium position, moving the atoms out of the most

intense region of the lattice. Since the position of the atoms is a function of U0, the lattice

laser intensity at the location of the ultracold sample will not scale linearly with the laser power.

Fortunately, the measured axial trap frequency can always determine the intensity at the location
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of the atoms even in the presence of gravity. To demonstrate this, I analyze this situation with

classical potential theory [41]. The lattice potential including gravity is

Ugrav = −U0e
−2x2/w2

0 cos2(kz) +mg(x cos θ + z sin θ), (2.35)

where θ is the angle the lattice axial direction subtends with respect to the horizontal (θ = 16◦ for

Sr2). Here I take x, y and z to be the same coordinates as in Equation 2.6: z is the lattice axis, x

makes an angle θ with respect to gravity, and y is taken to be perpendicular to both gravity and

the lattice axis.7

The equilibrium coordinates xeq and zeq of Ugrav are given by

Ux(xeq, zeq) =
∂Ugrav

∂x

∣

∣

∣

∣x=xeq
z=zeq

= 0 (2.36)

Uz(xeq, zeq) =
∂Ugrav

∂z

∣

∣

∣

∣x=xeq
z=zeq

= 0. (2.37)

When the two axes are coupled, the angular trap frequencies are the square roots of the eigenvalues

of

1

m







Uxx(xeq, zeq) Uxz(xeq, zeq)

Uxz(xeq, zeq) Uzz(xeq, zeq)






, (2.38)

where Uxx, Uxz, and Uzz are second derivatives [41]. The equilibrium position of the atoms is

affected enough by gravity to significantly diminish the potential depth at the location of the

atoms (Figures 2.13a and 2.13b). However, as a function of νz, Ulat (Equation 2.6, which is the

optical part of Ugrav) evaluated at xeq and zeq agrees with the simple expression (νz/2νrec)
2Erec at

the 0.1Erec level (Figure 2.13c).

According to Equation 2.9, in the absence of gravity (νz/2νrec)
2Erec is equal to U0 =

4α1S0
P/πǫ0cw

2
0 (Equation 2.6), where P is the total trap power. As the above analysis shows,

7 y is ignored in this analysis because its contribution is trivial. The equilibrium position along y is always y = 0.
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Figure 2.13: a) The lattice x direction as a function of the one-way lattice power. The z direction
is only affected at the 0.1 nm level for the Sr2 experimental parameters w0 = 160 µm and α1S0

=
286 a.u. [105]. x = z = 0 is the laser focus where the atoms would be located without the influence
of gravity. 8 W is the maximum lattice power our system can achieve. b) The difference between
the potential depth at the equilibrium position of the atoms and the potential depth at the bottom
of the trap (U0) in units of Erec as a function of one-way lattice power. The change is significant
even for large lattice powers. c) The potential depth at the equilibrium position and the expression
−(νz/2νrec)

2Erec as a function of νz.

when gravity is considered, (νz/2νrec)
2Erec = 2α1S0

Ieq/ǫ0c, where Ieq is the laser intensity experi-

enced by the atoms at their equilibrium position. Therefore, the potential depth at the location of

the atoms is related to the blue sideband edge frequency νblue as

Uatom =

(

νblue + νrec
2νrec

)2

Erec. (2.39)
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2.5 Digital Servo to Atomic Spin Stretched States

2.5.1 Spin Polarization

The concerns about spectroscopy in a lattice raised in the previous section are addressed by

working with a small value of the Dicke parameter η (Section 2.4.1) and operating in the resolved

sideband regime. I now turn my attention to referencing the clock laser to the Sr clock transition.

The free running clock laser suffers from frequency drift that would preclude its use as a frequency

standard, which requires an accurate, stable frequency. Locking this laser to the clock transition

removes this drift and ensures that the laser frequency matches that of the atoms trapped in the

lattice. With the aim of providing an overview of how this lock works, it is important to first discuss

magnetic effects on the clock transition due to interactions between external magnetic fields and

the atom’s spin.

Since F = 9/2 for both clock states, each state has the same 10 values of mF . As explained

in Section 2.1, the nuclear part of the clock transition g-factor determines its first-order Zeeman

shift. The differential first-order Zeeman shift of the clock transition is

∆νZ1 = −µB δg
h

〈F = 9/2,mF |~F · ~B|F = 9/2,mF 〉 = −µB δg
h

mFB, (2.40)

where µB is the Bohr magneton, δg is the clock transition differential g-factor, ~B is an external

dc magnetic field, and a π transition has been assumed. The g-factor has been measured [16] as

µB δg/h = −108.4(4) Hz/G.

The clock transition Rabi frequency is also affected by themF state. Using the Wigner-Eckart

theorem [17, 102] to make the mF dependence explicit,

ΩmF
= −〈F = 9/2,mF |~d|F = 9/2,mF 〉 · ~Ec0/~

= −〈F = 9/2,mF |F = 9/2,mF , 1, 0〉〈F = 9/2||~d||F = 9/2〉 · ~Ec0/~

= − 2mF

3
√
11

Ωred, (2.41)
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Figure 2.14: a) ρmixture plotted t = 160 ms for B = 0 (purple) and B = 10 mG (blue). The latter
is typical of stray laboratory magnetic fields. At zero field, the maximum achievable contrast is
0.61 (rather than unity, like in the case of the two-state population fraction ρee). This is because
the Rabi frequency ΩmF

is different for each mF state, each of which comprise 10% of the total
population. At small fields, the lineshape broadens and loses contrast since the states are slightly
split but unresolved. b) ρmixture for B = 250 mG (blue) and spin-polarized lines (red and orange).
At B = 250 mG, the ten π transitions are well resolved from each other. Polarizing the entire
population into one of the two angular momentum stretched states, shown in red and orange,
results in the Rabi lineshape of a two-state system.

where ΩmF
is the Rabi frequency for the specific mF state, 〈F = 9/2,mF |F = 9/2,mF , 1, 0〉 is a

Clebsch-Gordan coefficient, ~Ec0 is the clock laser electric field amplitude vector, 〈F = 9/2||~d||F =

9/2〉 is the reduced dipole matrix element, and Ωred is the reduced Rabi frequency (Rabi frequency

corresponding to the reduced matrix element).

Since state randomization during MOT cooling (Section 2.2) prepares the atoms in an inco-

herent mixture of mF states with equal population in each state [86], the excited state population

fraction after this cooling is

ρmixture =
1

2F + 1

F
∑

mF=−F

Ω2
mF

Ω2
mF

+∆2
mF

sin2
(

t

2

√

Ω2
mF

+∆2
mF

)

. (2.42)

In this expression, ρee from Equation 2.26 is evaluated for the appropriate Rabi frequency ΩmF

and detuning ∆mF
= ∆ + µB δg mFB/~ and then summed over. Compared to the two-state

population fraction ρee, typical stray magnetic fields of a few mG result in line broadening and

contrast degradation of ρmixture (Figure 2.14). This is undesirable since broader lines and poorer
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contrast tend to worsen clock stability.

To deal with this problem, the Sr clock operates with a bias magnetic field B of about 300

mG to fully resolve the ten π transitions (Figure 2.14). The bias field direction B̂, clock laser

polarization ǫ̂c, and lattice polarization ǫ̂ are parallel. To take advantage of the best possible

contrast, the atoms are spin polarized. Spin polarization is performed with an additional laser that

is resonant with the |1S0, F = 9/2〉 → |3P1, F = 9/2〉 transition. The laser has circular polarization

(with switchable helicity) and propagates in the direction of the bias field, driving σ transitions8

until atoms are polarized into one of the angular momentum stretched states (mF = ±F ). The

resulting population fraction is ρee (Figure 2.14).

2.5.2 Locking to the Clock Transition

To reference the clock laser to the Sr clock transition, the laser is locked to the resonance

center using a feedback loop (Figure 2.15). The excited state population fraction is measured on

one side of resonance, then the clock laser is stepped by the full width at half maximum (FWHM)

of the lineshape, and then the population fraction on the other side of resonance is measured. The

difference between these population fractions is the error signal ǫclock, which the servo loop nulls by

adjusting the laser frequency, locking the laser to the resonance center. This lock will be referred

to as an atomic servo.

The FWHM γ can be changed by adjusting the pulse duration of the clock laser. The relation

between γ and the probe time t is

γ ≃ 0.8

t
, (2.43)

which is obtained by numerically finding the detuning at which ρee in Equation 2.26 is equal to

1/2, assuming a π-pulse.9 When the FWHM of the measured lineshape obeys this equation, it is

often referred to as the “Fourier-limited linewidth” for Rabi spectroscopy.

8 Transitions that change mF by one
9 A π-pulse occurs when the Rabi frequency of the transition times t is equal to π, yielding the maximum signal

contrast.
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Figure 2.15: a) The clock transition is probed on the left side of resonance, driving the excited
state population fraction to ρL (indicated by the left blue dot). The laser frequency is then stepped
by the full width at half maximum of the transition, which is set using the clock laser probe time.
The right side is probed, driving the population fraction to ρR (right blue dot). Measurements of
these two populations fractions yields an error signal ǫclock = ρL − ρR. When the clock laser is
detuned from the clock transition, ǫclock 6= 0. The atomic servo adjusts the laser frequency until
ǫclock = 0, locking the laser to the resonance center. b) A simplified block diagram of the servo loop.
The clock laser drives the atoms along the lattice axial direction. The counting laser fluoresces the
ground state atoms, and some of the fluorescence is collected by the PMT. A computer stores the
signal observed by the PMT, and once the population fraction has been measured on either side
of resonance, the computer processes the correction needed to center the laser on resonance. The
correction is made by varying an optical frequency modulator that changes the clock laser detuning
in attempt to null ǫclock.

The atomic servo measures the population fractions ρL and ρR (Figure 2.15) destructively,

meaning that each time either of these quantities are measured, the ultracold sample is lost. A new

sample needs to be cooled and loaded into the lattice again, resulting in servo dead time, during

which no information about the resonance center is added to the loop. For this reason, the atomic

servo is digital. One cycle of preparing atoms, interrogating them with the clock laser, and probing

the sample population takes about Tc = 1 s, where Tc is the cycle time. Corrections to the laser

frequency fcorr are computed (Figure 2.15b) using a digital proportional-integral-differential (PID)

filter,

fcorr,n = kp

[

ǫn +
Tser
2Ti

(ǫn + ǫn−1) +
Td
Tser

(ǫn − ǫn−1)

]

, (2.44)

where ǫn is the nth value of ǫclock = ρL − ρR (Figure 2.15) for the data record; Tser is the cycle
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time10 of the servo; and kp, Ti, and Td are the proportional, integral, and differential gain constants,

which are found empirically.

2.5.3 Digital Lock to Alternate Stretched States

So far, I have explained techniques for dealing with the broadening and reduced contrast that

results from stray magnetic fields. Operating in a bias field ensures a nice Rabi lineshape rather

than something broader. Spin polarization improves the signal-to-noise ratio of clock transition

measurements. However, the bias field has the undesirable effect of frequency shifting the stretched

states hundreds of Hz from their B = 0 values, which is an impediment for clocks based on a bare

atomic resonance.

A stretched-states servo [112] is used to combat this problem. This technique involves four

interrogations of the clock transition. Switching between the two stretched states, measurements

are taken on either side of both resonances (Figure 2.16). The modulator that controls the laser

frequency is an acousto-optic modulator (AOM), which shifts the frequency of the light passing

through it by the frequency of a microwave drive injected into the device. For each measurement,

the modulator drive frequency and the excited state population fraction are both recorded. With

this information, the value of the modulator frequency needed to set the laser frequency on the

resonance center is computed for both states using Equation 2.44. For each cycle of these four

measurements, the ǫclock data is treated by the software as two independent atomic servo error

signals (one for each stretched state).11 This is accomplished by computing the correction for each

stretched state only from data taken for that resonance.

The modulator frequency required to detune the clock laser to a given mF state is

fmF
= fSr +

µB δg

h
mF B, (2.45)

where fSr is the modulator frequency that centers the laser on the zero-field resonance. With this

10 The servo cycle time depends on how it is run. For a single atomic servo running by itself, Tser = 2Tc. For two
servos updating in an alternate fashion, like in Section 2.5.3, Tser = 4Tc.

11 Note that the phrase “stretched-states servo” implies two atomic servos.
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Figure 2.16: Timing diagram (not to scale) for the spin polarization and locking sequence. Atom
cooling and lattice loading takes up most of one measurement cycle. In the first cycle, after the
sample is prepared, atoms are spin polarized into the mF = F stretched state using σ+-polarized
light. The clock transition is excited on the left side of resonance (Figure 2.15), and the excited
state population fraction is recorded. In the next cycle, the helicity of the spin polarization laser
is switched, polarizing atoms into the mF = −F stretched state. Again, the left side of resonance
is excited, and the population fraction is recorded again. The third and fourth cycles are the same
as the first two except that now the right side of resonance is measured.

stretched-state locking scheme, the data record of values for f9/2 and f−9/2 can be used to infer

fSr as the stretched state average frequency (f9/2 + f−9/2)/2. This value of fSr can then be used

to produce clock laser light oscillating at the zero-field resonance frequency.12 These frequency

data can also be used to infer the magnetic field through the stretched state frequency difference

f9/2 − f−9/2.

With the first-order Zeeman shift removed from the stretched state average frequency, this

alternate stretched state scheme has done much to eliminate the problems associated with locking

to an unpolarized resonance in the presence of stray magnetic fields. The one drawback is that the

bias field creates a second-order Zeeman shift [16] that is not canceled upon averaging f9/2 and

f−9/2. This shift is regarded as a systematic effect that must be evaluated to understand how much

the clock laser frequency differs from the bare Sr frequency. This is a worthy trade off since the

second-order Zeeman shift is one of the more manageable systematic effects in the JILA Sr clock.

12 This can be accomplished by splitting off some of the clock laser light before it enters the modulator in Figure
2.15b and then sending this light through a second modulator, which has a frequency that tracks the computed value
for fSr
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2.6 The Magic Wavelength Optical Lattice Revisited

With an understanding of the spin states involved in clock operation, the need for a bias

field, and the bias field alignment, it is worthwhile to revisit the discussion of the magic wavelength

optical lattice. Recalling Equation 2.19,

∆νac = −
{

κs + κvmF ξk̂ · B̂ + κt
[

3m2
F − F (F + 1)

]

(3|ǫ̂ · B̂|2 − 1)
}

Ulat(r, z),

it is clear that the vector shift term is triply suppressed. Since ǫ̂ and B̂ are aligned parallel to one

another (Section 2.5.1), the value of k̂ · B̂ is minuscule, arising out of small imperfections in the

alignment of ǫ̂ and B̂. The lattice is also linearly polarized, so ξ is also very small but nonzero

due to imperfections in the polarization purity. Also, since the stretched-states servo cancels shifts

linear in mF , it diminishes the vector term as well. This strong suppression ensures that the vector

shift does not affect the Sr clock.

Furthermore, since mF = ±F for clock operation, the tensor term appears less ambiguous

than before (Section 2.3.4) when I claimed that the magic wavelength causes the scalar and tensor

terms to cancel (without elaborating on how this works given that the tensor term is different for

each mF state). The lattice Stark shift of the stretched-states servo is

∆νac = − [κs + 2κtF (2F − 1)]Ulat(r, z). (2.46)

Therefore, the desired magic wavelength is one for which the scalar and tensor shifts cancel when

mF = ±F and ǫ̂ · B̂ = 1.

2.7 Introduction to Stability and Systematic Effects

This chapter describes an ultracold gas of lattice-trapped Sr used as a frequency reference.

The technique for referencing a laser to the clock transition has also been described. To character-

ize the performance of this system, the stability and systematic uncertainty must be determined

(Section 1.6).
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Clock stability is limited by the clock laser’s spectral noise. Because the servo loop described

in Section 2.5.3 is digital, it has an inherent problem with aliasing, which degrades servo stability

[28]. This problem is known as the “Dick Effect.”

Another important limitation to clock stability is the standard quantum limit, which, in the

context of clocks, is called the “quantum projection noise limit” [54]. Since the clock is based

on locking a laser to the half-maximum points of a Rabi lineshape (Figure 2.15), the quantum

state of each atom is projected into either |g〉 or |e〉 with equal probability when the excited state

population fraction is measured. Therefore, quantum projection noise (or QPN) is given by coin-

toss (binomial) statistics. If several coins are tossed at once, the percentage that land on heads

will fluctuate about 50% each time another toss is made. If the number of coins is increased, the

percentage that lands on heads will fluctuate less. Similarly, more atoms leads to less QPN, which

scales like 1/
√
N , where N is the number of atoms.

As explained in Section 1.6, systematic uncertainty arises because the Sr lattice clock is based

on the bare clock transition. Perturbations that shift this transition must be well understood and

their uncertainties must be quantified so that the clock oscillator frequency can be appropriately

corrected to the bare atom frequency. The uncertainty of the combined corrections is the total

systematic uncertainty, which is the uncertainty in a clock’s ability to provide the bare atom

frequency.

Most of the major systematic shifts that need to be considered for the Sr clock are electro-

magnetic perturbations. Despite operating the lattice at or near the magic wavelength, there can

be a residual ac Stark shift from the lattice. Also, as explained in Section 2.5.3, the bias field creates

a second-order Zeeman shift. A residual first-order Zeeman shift might also exist even though the

stretched-states servo removes most of this effect. Patch charges or faulty electronics can cause

dc electric fields that create clock transition Stark shifts. The clock laser itself causes an ac Stark

shift. The ambient room-temperature heat in our lab is an electromagnetic field that causes a Stark

shift. Furthermore, the clock transition is perturbed by atom-atom interactions.

There have been two evaluations of these systematic effects, as well as several other more
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minor shifts, in the JILA Sr2 clock. However, before I begin a discussion of these measurements, I

will describe the JILA Sr2 apparatus in the next chapter.



Chapter 3

The Sr2 Apparatus

3.1 The Sr2 Vacuum Chamber

3.1.1 Sr Oven

The different stages of the Sr2 clock measurement cycle were discussed in the previous chapter.

To summarize, first a hot atomic beam from the Sr oven is slowed (with a Zeeman slower) and

then trapped using a three-dimensional MOT. The first stage of MOT cooling operates on a dipole

allowed transition at 461 nm, reducing the temperature of the atoms to about 1 mK. Next, the

461 nm MOT is shut off and a second-stage of three-dimensional MOT cooling begins. The second

MOT operates on a singly forbidden (intercombination) transition at 689 nm, cooling the atoms

to a few µK. These cold atoms are loaded into a one-dimensional magic wavelength optical lattice,

and a clock laser interrogates the 1.5 mHz linewidth clock transition. After interrogation by the

clock laser, the change in the Sr excited clock state population is measured. This measurement is

processed by a feedback loop that corrects the clock laser frequency, locking the laser to the clock

transition. This section describes the systems used to realize these measurement stages.

The hot atomic beam comes from a Sr oven that is based on a custom-made 2.75” vacuum

nipple with a bend (Figure 3.1). The nipple contains solid Sr and a microchannel array to collimate

the atomic beam. The oven is heated with two pairs of clamshell heaters. Homemade refractory

ceramic fiber spacers keep the clamshells in place. Several thermocouples are attached to the

bent nipple for temperature monitoring. For insulation, the oven is wrapped with a ceramic fiber
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Figure 3.1: The Sr oven after many years of use. The clamshell heaters and water cooling block
are not shown in this picture. One clamshell pair is wrapped around the conflat flanges closest to
the bend (labeled “reservoir”). The strontium is contained near these flanges. Another clamshell
pair is used to heat the “nozzle” region. The water cooling block is used where the oven joins with
the rest of the chamber.

blanket, then a ceramic braid, and then aluminum foil. A water cooling block prevents heat from

conducting away from the oven to other parts of the chamber.

The heaters are driven with ac current provided by variacs that output 60 ac volts. For each

heater pair, both clamshells are wired in series, and their current can be gated with a solid state

relay. Temperature controllers from Omega Engineering sense on two of the thermocouples and

actuate on the solid state relays. Typically, the Sr reservoir is heated to 575 ◦C, and the nozzle

(Figure 3.1) is heated to 625 ◦C.

3.1.2 Main Chamber

The Sr2 main chamber is an 8 inch extended spherical octagon from Kimball Physics. The

atomic beam enters through one of the 16 1.33 inch conflats that makes a 16◦ angle with gravity.

A pneumatic gate valve separates the main chamber region from the oven region (Figure 3.2). This

valve is closed when the Sr2 clock is not running, protecting the main chamber region in case a leak

were to occur in the oven region. Opposite the atomic beam is a sapphire viewport that is heated

to 150 ◦C to prevent Sr deposition.

The remaining 14 1.33 inch conflats, the two 8 inch conflats, and the eight 2.75 inch conflats
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Figure 3.2: A CAD of the Sr2 vacuum chamber. A number of components—including pumps, coils,
and valves—have been omitted to show the fundamentals of the chamber. The Zeeman slower is
shown here as a simple nipple, around which the slower coils are wrapped in the actual machine.
The Zeeman slower is joined with the main chamber using a flexible bellows. The side of the gate
valve containing the main chamber is referred to in this work as the “main chamber region,” and
the side of this valve with the oven is called the “oven region.” The oven region has two ion pumps
as well as an all-metal valve for turbo and roughing pump access. The main chamber also has an
all-metal valve for turbo and roughing pumps.
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Figure 3.3: The main chamber region. The support structures and one ion pump are depicted.
Opposite the four-way cross (on which the ion pump is attached) is a nude ion gauge. The top
MOT coil can be seen as well. The two ion pumps in the oven region are not shown here.

are fitted with multiband-antireflection-coated fused silica viewports. The coating was performed

by Research Electro-Optics and provides reflectivity at the 0.1% level for 461 nm, 689 nm, 698 nm,

and 813 nm.

The main chamber has a 70 l/s ion pump (Figure 3.3). This configuration results in a pressure

at the mid 10−10 torr level. At this pressure, the number of atoms in the lattice exponentially decays

due to collisions with the chamber background gas with a time constant of a few seconds. This

vacuum lifetime is sufficient for an atomic clock.

3.2 Cooling on the 1
S0 →1

P1 Transition

3.2.1 461 nm Laser System

The first stage of cooling is based on the 461 nm |1S0, F = 9/2〉 → |1P1, F = 11/2〉 transition.

The three hyperfine states of the 1P1 level are unresolved [61], so cooling on this transition is
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Figure 3.4: The 461 nm laser system. The master laser is a New Focus ECDL that is frequency
stabilized using sub-Doppler saturation spectroscopy of a Sr discharge cell. A fiber is used to
clean up the mode of the master laser. The AOMs here are labeled with the frequency shift they
generate. All AOMs in this figure are aligned to provide light in their -1st order. The AOM before
the saturated spectroscopy lock can be adjusted to a -155 MHz shift for 88Sr trapping. The AOMs
provide the detunings needed for the different cooling beams. The three slaves are injection locked
by the master laser through the rejected light port out of the laser isolators. Light for the Zeeman
slower and MOT is delivered to the Sr2 chamber by fibers. The slave laser for transverse cooling is
sent to the chamber through free space.
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affected by the entire 1P1 hyperfine manifold. Sr2 had two generations of the laser system used

for this cooling stage. In the first generation system, 922 nm light was frequency doubled to

461 nm using home-built linear doubling cavities based on periodically poled KTP. The 922 nm

laser originated from an Eagleyard diode that seeded an Eagleyard tapered amplifier. This system

suffered appreciable power degradation after a few hours of operation and was difficult to work

with because of this. As we later learned, linear doubling cavities based on periodically poled KTP

suffer from thermally induced dephasing, which compromises frequency doubling efficiency [68].

Fortunately, over the past few years, single frequency diode lasers at 461 nm became available.

After encouragement from our research team, New Focus began selling external cavity diode lasers

(ECDLs) at 461 nm, and Nichia also made an engineering sample of single frequency laser diodes

at this color. Using this new technology, a second generation 461 nm laser system was constructed

(Figure 3.4). This system uses a New Focus 461 nm ECDL referenced to the Sr 1S0 →1P1 transition

frequency with sub-Doppler saturation spectroscopy (Figure 3.5). Light from the New Focus ECDL

injection locks three Nichia slave diodes, which are dedicated to the Zeeman slower, 461 nm MOT,

and transverse cooling beams.

The Nichia diodes put out 100 mW of power. The New Focus laser originally emitted about

50 mW of power, but this number degraded to 35 mW over the course of a year and remained at

this value ever since. Nevertheless, 35 mW is sufficient for our application.

3.2.2 Zeeman Slower and Transverse Cooling

70 mW of light from the Zeeman slower slave laser is delivered by a fiber to the Sr2 main

chamber. Zeeman slowing is switched on and off with a mechanical shutter installed in the path of

this slave laser (Figure 3.4) before the fiber that delivers it to the atoms. The slower is wound in

spin flip or zero crossing configuration. It also has a compensation coil to cancel the slower field

at the center of the main chamber where the atoms are trapped. After fiber delivery near the main

chamber, the Zeeman slower laser passes through a λ/4 waveplate and enters the chamber through

the heated sapphire window.
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Figure 3.5: Saturated spectroscopy for referencing the New Focus master laser to the Sr 1S0 →1P1

transition [87]. The photodiode output is mixed with the 40 MHz EOM frequency, and the output
of this is sent to a lock-in detector referenced to the frequency at which the AOM intensity is
chopped (90 kHz). The New Focus master laser external cavity piezoelectric transducer is locked
to the resulting dispersive feature.

Figure 3.6: The Sr2 Zeeman slower. The right half of the slower has a zero crossing region. Coils
to the left of the zero crossing have current flowing in the opposite direction from the coils on the
right. The zero crossing configuration reduces the amount of wire needed for the slower, which
reduces the resistive heating of the coils.
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The output of the transverse cooling laser is split in two and sent into viewports mounted on

six-way cross (Figure 3.2). One beam is periscoped up and sent through the horizontal direction

of the cross. This light is retroreflected through the atomic beam to better counter balance the

force in the horizontal direction. A similar retroreflected beam is present in the (nearly) vertical

direction. When these transverse cooling lasers are well aligned, they boost the number of atoms

trapped in the lattice by a factor of two.

3.2.3 Three-Dimensional MOT and Repump Lasers

A 3D MOT operating on the 461 nm transition is set up at the center of the main chamber.

The slave laser designated for MOT power is delivered to the main chamber with an evanescent wave

fiber-based one-to-three splitter from Evanescent Optics. The three output fibers are collimated to

2.5 cm diameter beams. The two horizontal MOT beams and one vertical beam are sent into the

main chamber through two-color waveplates (3λ/4 for 461 nm and and λ/4 for 689 nm), creating

circular polarization. Each beam is retroreflected, double passing another two-color waveplate to

provide the usual three pairs of σ+- and σ−-polarized beams for the MOT [81].

The MOT light passes through an AOM before being fiber coupled to the main chamber

(Figure 3.4). This AOM is useful for fast intensity switching and servoing. The counting laser,

used for atom number counting (Section 2.5.2), is taken from the zeroth order of this MOT AOM.

The counting laser has its own AOM to bring its detuning closer to zero.

The MOT coils are an anti-Helmholtz pair mounted on the top and bottom of our vacuum

chamber (Figure 3.3). The coils are made of square-shaped copper tubing1 that has an electrically

insulating coating. Chilled water is flowed through the tubing to keep the coils from overheating,

which would cause the electrical insulation to melt and short coil turns. The coils are driven by

a 60 A power supply, and the coil current is controlled with a servo that actuates on a MOSFET

bank. A Hall probe senses the coil current and feeds back through a PID filter to the gates of the

MOSFETs. The MOSFETs are mounted on a cooling block to prevent overheating. The coils are

1 By “square shaped” I mean that the cross section of the tubing is square shaped.
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designed to provide a gradient at the center of the chamber of 60 G/cm for 50 A of current.

As explained in Section 2.2, repump lasers are needed to deal with shelving in the 3P2 state.

To target the many hyperfine states in the repumping process, the repump lasers are ECDLs

that are frequency modulated by sweeping both the laser current and piezoelectric transducer (or

“piezo”) voltage, spectrally broadening these lasers. These lasers are left free running; however,

frequency drift is not an issue since drift over several hours of operation is insignificant compared

to the large spectral widths of the modulated repump lasers.

With the Zeeman slower, transverse cooling, 461 nm MOT cooling, and repumping combined,

this first stage of trapping and cooling takes 500 ms and results in roughly ten million atoms trapped

at a temperature of about 1 mK.

3.3 Cooling on the 1S0 →3P1 Transition

3.3.1 689 nm Laser System

As explained in Section 2.2, ultracold Sr is prepared using two stages of MOT cooling. The

natural linewidth of the second cooling transition, 1S0 →3P1, is 7.5 kHz. This is significantly

narrower than the linewidth of ECDLs, which are typically of order 100 kHz. To ensure that the

lasers used for the second stage of cooling provide sufficient power within the linewidth of the

transition, the 689 nm laser system makes use of cavity stabilization.

This system is based on home-built ECDLs with diodes from Hamamatsu. These diodes were

anti-reflection coated using the diode coating facilities at JILA. A master ECDL is stabilized to a

cavity, resulting in a 300 Hz laser linewidth. To remove the effect of slow cavity drift, the master is

frequency referenced to the 1S0 →3P1 transition using saturated spectroscopy and a low-bandwidth

servo loop (Figure 3.7). The trapping laser, operating on the |1S0, F = 9/2〉 → |3P1, F = 11/2〉

transition, and the stirring laser, operating on the |1S0, F = 9/2〉 → |3P1, F = 9/2〉 transition

(Section 2.2), are slaved to the master with phase locks.

Each phase lock is based on one optical and one RF beat. The slave lasers are optically
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Figure 3.7: A home-built master EDCL is double passed through a 1.1 GHz AOM and stabilized
to a cavity using the Pound-Drever-Hall technique [10]. The output of the Pound-Drever-Hall
photodiode is mixed with the EOM frequency to achieve an error signal, to which the master laser
current and external cavity piezo are locked. The cavity is under vacuum, temperature controlled,
and has passive vibration damping. The stabilized laser linewidth is 300 Hz. The saturation
spectroscopy setup is similar to Figure 3.5 aside from the fact that here the laser is locked to a heat
pipe with Sr inside rather than a discharge cell. The photodetector output is mixed with the EOM
frequency and then measured with a lock-in detector referenced to the AOM chopping frequency.
A low-bandwidth loop filter takes the lock-in output as an error signal and feeds back onto the 1.1
GHz AOM frequency.

beat with the master, and the output of this beat on a photodetector is beat again with an RF

frequency (Figure 3.8). The output of this second beat provides a error signal to which the current

and external cavity piezos of the slave lasers are locked.2 In this case, the phase lock mixers are

intentionally saturated, providing a steeper and more linear slope of the error signal about zero.

The frequency of each slave laser can be controlled using the synthesizer frequencies.

3.3.2 The 689 nm MOT

After the first stage of MOT cooling at 461 nm, the sample temperature is a few mK. At this

temperature, the Doppler width of the 1S0 →3P1 transition is roughly 1 MHz. To address all of

the atoms, the slave lasers are spectrally broadened by frequency modulating the phase lock syn-

2 This technique is sometimes referred to as an “RF offset lock.”
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the Sr main chamber using fibers. AOMs are included for intensity stabilization and fast switching
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thesizers. Each synthesizer has an external frequency modulation (FM) port and a programmable

frequency deviation. A triggerable two-channel arbitrary waveform generator controls the FM ports

of the synthesizers.

The electric field amplitude of the frequency modulated laser Emod, assuming no phase noise,

is [45]

Emod = E0,mod

∞
∑

n=−∞
Jn(β)e

−i(ω+nωmod)t, (3.1)

with the auto correlation Rmod

Rmod(τ) = E2
0,mod

∞
∑

n=−∞
J2
n(β)e

i(ω+nωmod)τ . (3.2)

Here β = fdev/fmod is the modulation index, ωdev = 2πfdev is the frequency deviation, ωmod =

2πfmod is the modulation frequency, and Jn is a Bessel function of the first kind. For MOT cooling,

we offset the broadened laser by the frequency deviation (Figure 3.10). Taking this into account,
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Figure 3.9: Timing diagram for intercombination line MOT cooling. The top curve (in red) is
the gradient from the anti-Helmholz field. A current servo (Section 3.2.3) controls the gradient.
The gradient ramps down from its 461 nm MOT value of 60 G/cm to 3 G/cm. After this ramp
completes, the 461 nm MOT light is extinguished. Broadband cooling on the intercombination
line, where the laser is significantly broadened from the FM, remains on. As the atoms cool, the
frequency deviation of the FM decreases to cool more efficiently, and the gradient ramps up to
compress the atoms. Once the gradient ramps up to 10 G/cm, the coil current is held for “single
frequency cooling” (beginning at the 305 ms mark). In this stage, the laser is modulated with a
small deviation until the 345 ms mark, at which point the modulation is shut off. The middle curve
(blue) is the intensity of the trapping and stirring lasers as a fraction of their maximum value.
These intensities are servo controlled using the AOMs shown in Figure 3.8. The control voltage for
these intensity servos originates from a National Instruments DAC card. Intensity is ramped down
as the frequency deviation shrinks. This is to compensate for the fact that as the FM deviation
decreases and the sample cools, there is more power in the spectral components resonant with the
atoms. The intensity is held constant during single frequency cooling. The bottom curve (cyan) is
the arbitrary waveform generator voltage sent to the FM ports of the frequency synthesizers used
in the trapping and stirring laser phase locks. The input voltage range of the FM ports is -1 V
to 1 V, where 1 V corresponds to the programmed frequency deviation (3 MHz in this case). The
oscillation frequency in this plot is 100 times smaller than the experimental value for the purpose
of visualization.
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Figure 3.10: Equation 3.3 plotted for different values of fdev (shown in the legend). This is the power
spectrum that results from the FM external control depicted in Figure 3.9. Here fmod = 36 kHz,
as in the experiment. For this plot, Equation 3.3 is convolved with a Lorentzian to account for
the fact that the laser has phase noise. The FM deviation starts at 3 MHz, collapsing until the
modulation is shut off for the latter part of single frequency cooling. The center of the spectrum
is shifted by the frequency deviation to ensure that the laser is always red detuned. At ∆SF = 0,
the laser is detuned by -200 kHz from resonance.
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the power spectral density Smod (computed with the Wiener-Khinchin theorem) is

Smod(∆SF )

Ptot
=

∞
∑

n=−∞
J2
n(β)δ(∆SF − nωmod − ωdev), (3.3)

where ∆SF is the difference between the laser detuning from resonance and the detuning during the

single frequency cooling stage, Ptot is the total laser power, and δ(. . .) is the Dirac delta function.

This spectral density is plotted in Figure 3.10 for typical experimental parameters. For this second

stage of MOT cooling, the frequency deviation is dynamic, decreasing to allow for a laser linewidth

that tracks the width of the atoms’ velocity distribution as they are cooling and the velocity

distribution narrows. Both the trapping and stirring lasers have this functionality.

After the trapping and stirring lasers are delivered to the optical table near the Sr2 main

chamber, they are combined and divided into three beams using beamsplitters. These 1 cm diam-

eter beams are aligned along the 461 nm MOT beams, and the two-color waveplates provide the

necessary circular polarization. The intensities of these lasers are ramped on during the last 100

ms of 461 nm MOT cooling (Figure 3.9).

To ensure that the 689 nm MOT forms at the location of the optical lattice, Helmholtz coils

are used to adjust the 689 nm MOT center (Figure 3.11). Two pairs of large, square coils are placed

near the main chamber to provide two dimensions of horizontal fields, and a vertical bias field is

created by coils that are mounted to the chamber above (below) the top (bottom) MOT coil. The

coil currents are stabilized using servos that sense with Vishay Precision resistors and actuate with

MOSFETs (Figure 3.17). The servo locks the voltage across the sense resistors to a voltage based

on a stable LM399H source.

3.4 One-Dimensional Optical Lattice

3.4.1 The Cavity Lattice

Throughout both stages of laser cooling, the cavity lattice is left on. The cavity is comprised

of two mirrors, both with a radius of curvature of R = 20 cm. The mirrors are held in place using
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Figure 3.11: The three pairs of Helmholtz bias coils. These coils are indicated with arrows. For
the remainder of this thesis, the square coils that form bias fields in the horizontal plane are called
the “xy bias coils” or “xy coils,” the circular coils that make a vertical bias field are the “z bias
coils” or “z coils,” and all three together will be referred to as the “xyz bias coils” or “xyz coils.”

custom mounts made by the JILA machine shop. The mounts clamp to two 1.33 inch conflat view-

ports on the main chamber. The mounts have adjustable tilt plates for cavity alignment (Figures

3.12 and 3.13). The lattice laser is locked to the cavity using Pound-Drever-Hall stabilization.

The mirrors are custom coated by Advanced Thin Films for reflection at 813 nm and trans-

mission at 698 nm, allowing the clock laser to be aligned along the lattice axis (the need for which

is explained in Section 2.4.3). The mirror surfaces are separated by about 27 cm, resulting in a

160 µm beam waist at the focus and a 9 cm Rayleigh range. The cavity output mirror (Figure 2.5)

is adhered to a ring-shaped piezo stack. Scanning this piezo and measuring the cavity transmission

on a photodetector, the transmission fringe observed on an oscilloscope is similar to that in Figure

2.6. Cavities are often characterized by their finesse, which is the transmission peak separation

divided by the FWHM of the transmission fringes. Inferred from the cavity fringes, the Sr2 cavity

lattice finesse is 120.
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Figure 3.12: The two cavity lattice mirror mounts. These mounts were home-built in the JILA
machine shop. The bodies of the mounts are anodized aluminum. The mounts clamp onto opposing
1.33 inch conflat viewports. Screws adjust the mirror position on a spring loaded tilt plate inside
the mount body. On one of the mounts, there is an adjustable tilt plate for mounting the fiber
phase noise cancellation mirror (see Section 3.6.2).

Figure 3.13: A cutaway of one lattice mount. The tilt plate inside the mount body changes the
cavity alignment. The standoff is present because the other cavity mirror mount has a piezo stack
actuator with similar dimensions, ensuring that the mirrors are equidistant from the center. Aside
from tilt screws, ball bearings, and springs, the mounts are made out of anodized aluminum.
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Aligning the cavity lattice makes temporary use of a laser resonant with the |1S0, F = 9/2〉 →

|3P1, F = 9/2〉 transition. This laser is sent through the cavity (entering through the output mirror)

and aligned to extinguish the atoms in the 689 nm MOT.3 A laser frequency that effectively

extinguishes the atoms was found empirically and used for this purpose.4 The laser is also focused

on the 689 nm MOT to ensure that the alignment procedure is sensitive. Comparing the positions

of the lattice laser before the input mirror and the alignment laser after passing through the cavity,

the lattice laser position is adjusted to be counterpropagating with the alignment laser. With

this change in the lattice laser alignment, the cavity needs to be realigned by adjusting the cavity

mirrors until the transmission indicates a single cavity mode. This procedure tends to steer the

alignment laser off the atoms (since the output mirror surface often needs to be aligned during this

process), so it needs to be iterated a few times until the cavity and 689 nm MOT are aligned. After

a few iterations of this alignment procedure, the xyz coils (Figure 3.11) are varied to maximize the

atom signal in the lattice.

The AR coating of the viewports has been observed to be birefringent. A cavity mode occurs

for lattice laser polarization at a few degrees angle with respect to gravity, and another mode

(resolved from the first) appears for lattice polarization nearly perpendicular to gravity. The cavity

lattice laser polarization is rotated to align with the polarization mode perpendicular to gravity.

3.4.2 Tapered Amplifier Lattice Laser

Tapered amplifiers (TAs) can be problematic sources of lattice light [114]. Amplified spon-

taneous emission from the TA can cause a large ac Stark shift of the clock transition that varies

in time. A better source of lattice light is a titanium sapphire (Ti:saph) laser, which has much

greater spectral purity. However, a TA-based system is a more convenient source of 813 nm light

since it requires little maintenance and start-up time. Therefore, when performing measurements

that are insensitive to this amplified spontaneous emission shift, a TA system is preferable. For

3 The cavity mirrors transmit at this wavelength well enough for this procedure.
4 The detuning used here is -70 kHz from resonance. This could be a photoassociation resonance in 87Sr.
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Figure 3.14: A free-running ECDL seeds a tapered amplifier (TA). Mode shaping optics (represented
here as a single lens) collimate the output in the horizontal and vertical directions and then telescope
it down to a smaller beam. An AOM is used for intensity control of the field in the cavity. This
light is delivered via fiber from the laser source to the Sr2 main chamber. A Pound-Drever-Hall
servo locks the laser to the cavity resonance.

measurements of the lattice ac Stark shift or for running the system as a clock, a Ti:saph-based

lattice is necessary.

The TA for the lattice is seeded by an ECDL comprised of an Eagleyard diode laser in a

home-built enclosure (Figure 3.14). The laser is centered on the magic wavelength every few hours

(using a Wavemeter) and left free running. Laser frequency drift about the magic wavelength is not

problematic since the drift rate is sufficiently small and this system is only used for measurements

that are insensitive to lattice Stark shifts. Sidebands for a PDH lock to the lattice cavity are put

on the laser by modulating the ECDL current. The laser diode current and the cavity lattice piezo

stack are locked to the PDH error signal. The cavity transition is separated from the clock laser

using a dichroic mirror and then measured on a photodetector. This detector is part of an intensity

servo loop that actuates on the AOM just before the lattice light is fiber coupled (Figure 3.14).

There is as much as 8 W of one-way power in the cavity.
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Figure 3.15: The home-built Ti:saph-based lattice laser. The frequency of this system is stabilized
by frequency locking the Ti:saph to a Yb fiber comb (actuating on the ECDL external cavity piezo).
A Ti:saph crystal is situated inside a bow tie cavity and pumped with an 18 W Coherent Verdi
laser. The light reflected off of the bow tie cavity’s input mirror beats with the field leaking out of
the cavity for a Pound-Drever-Hall error signal. This error signal is used to lock the ECDL current
and bow tie cavity piezo for maximum cavity transmission. A double-passed AOM and the cavity
lattice piezo lock this laser to the cavity lattice. An EOM before the double-passed AOM puts the
sidebands on the light needed for a Pound-Drever-Hall lock to the cavity lattice.

3.4.3 Titanium Sapphire Lattice Laser

The lattice Ti:saph laser is a home-built system, injection locked [22] with an ECDL based

on an Eagleyard diode. When the Ti:saph laser is needed, frequency drift of the lattice wavelength

is unacceptable, so the diode is frequency locked (using the ECDL external cavity piezo) to a Yb

fiber comb that is referenced to the NIST Boulder maser array. This stabilization procedure allows

the absolute frequency5 of the lattice laser to be determined. In this case, a double-passed AOM

provides the high-frequency lock to the cavity lattice. Although this double-passed AOM lock has

a lower bandwidth (about 200 kHz, which is typical of AOM-based servos) than the current lock

for the TA-based lattice laser, the Ti:saph laser also has a purer spectrum (on the order of a 1 kHz

linewidth). Because of this, the AOM lock is sufficient for the Ti:saph laser. The maximum one-way

lattice power using the Ti:saph laser is about 8 W. This system also uses an intensity servo that

stabilizes the cavity transmission (actuating on the drive amplitude of the Ti:saph double-passed

5 The frequency in SI units
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AOM). For clock operation, the intensity servo is set such that the one-way power is 2.3 W.

Ramping the MOT field from 60 G/cm to 3 G/cm (Figure 3.9) causes the MOT coils to

shake, which shakes the cavity lattice as well. Although we checked to ensure that this shaking is

well dampened by the time clock spectroscopy is performed, the 813 nm source can come unlocked

from the cavity lattice during the ramp. For the TA lattice, the 2 MHz lock bandwidth is large

enough for the laser to survive the shaking; however, the smaller-bandwidth AOM lock for the

Ti:saph lattice occasionally unlocks when the lattice cavity shakes. To combat this, the ramp is

made as gentle as can be, and the Ti:saph lattice also includes an auto-locking circuit.

3.5 Spin Polarization into the Angular Momentum Stretched States

3.5.1 Spin Polarization Bias Field Coils

With 87Sr atoms cooled to ultracold temperatures and trapped in an optical lattice, spec-

troscopy of the clock transition is now possible. As explained in Section 2.5.1, clock spectroscopy is

performed in a bias field that is aligned parallel to the lattice and clock laser polarizations. To this

end, it is convenient to include another pair of Helmholtz coils mounted on the main chamber (Fig-

ure 3.16). These “spin polarization coils” (or just “polarization coils”) are also current stabilized

using a sense resistor and MOSFET (Figure 3.17). Since the polarization coil field is not precisely

in the direction of the lattice polarization (as defined by the cavity polarization modes), additional

fields are provided by the xyz coils (Section 3.5.1) to align the bias field. For each of the xyz coils,

the field used to align the magnetic bias to the lattice polarization and the field that centers the

689 nm MOT on the lattice are controlled with independent voltages, which are summed to create

a set point for the xyz coil servos (Figure 3.17). The fields created by these voltages can be tuned

and switched separately, acting as two independent coils.

The clock laser and lattice polarization are aligned by sending both these lasers through the

same broadband-AR-coated polarizer. The bias field is aligned to these two polarizations using

clock transition spectroscopy. Alignment using spectroscopy is possible because when the bias
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Figure 3.16: A second pair of cavity mirror mounts are clamped to 1.33 inch viewports. These
were constructed with forms around which 125-turn bias coils are wrapped. The mirrors are not
installed in this work.
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Figure 3.17: Bias coil current servo. The loop stabilizes the magnetic field and allows for field
control. There is one of these servo loops for each pair of bias coils, allowing for independent
control of the x, y, and z coils. V1 and V2 are tunable dc voltages based on LM399H voltage
sources. These voltages are set by hand and do not typically need to be adjusted. They can also be
tuned and switched independently. A digital-to-analog converter (DAC) computer card provides a
third voltage for the background field servo, which will be discussed in Section 5.2.2.

field is not aligned with the clock laser polarization, scans about the clock resonance will show σ

transitions that do not have the same −108.4(4)mF Hz/G magnetic field sensitivity as π transitions

(Section 2.5.1). Therefore, the bias field is aligned by nulling the amplitude of the σ transitions

using the xyz coil fields.

3.5.2 Spin Polarization

After the atoms are loaded into the lattice and the MOT fields are shut off, spin polarization

is performed. The zeroth order of the stirring laser AOM (Figure 3.8) is sent through another

AOM and then delivered by optical fiber to the main chamber. This acts as a spin polarization

beam. The beam passes through a liquid crystal half waveplate and then a quarter waveplate for

circular polarization. The liquid crystal waveplate allows for the resulting circular polarization to

be switched between σ+ and σ− helicity using a TTL signal (motivated in Section 2.5.1). This

beam is sent through clearance holes in the center of the polarization coil mounts (Figure 3.16).



62

Figure 3.18: A CAD of the cavity used to stabilize the clock laser. Also pictured is the Zerodur
cradle (in blue, false color). The cavity and cradle are separated by viton standoffs. The ultralow
expansion glass spacer is 40 cm long.

During spin polarization, a small 50 mG field is applied to the polarization coils, and the fields

from the xyz coils that align the bias field are shut off. The spin polarization beam is applied for

30 ms, driving σ transitions until the atoms are in one of the ground angular momentum stretched

states (where the state is selected by the helicity of the liquid crystal waveplate). Like with the

stirring laser, the |1S0, F = 9/2〉 → |3P1, F = 9/2〉 transition is used here. The field in this stage

is kept small to ensure that the spin polarization direction is defined by the bias field, yet not so

large as to shift some of the σ transitions far out of resonance with the spin polarization beam.

After this, the polarization coil current is increased and the xyz coil fields that align the

bias field are turned on, resulting in a 300 mG field in the direction of the lattice polarization.

The atoms are spin polarized along the polarization coil direction (Figure 3.16), yet the clock

laser polarization is parallel to the lattice polarization; therefore, changing the bias field direction

after spin polarization causes the atoms to become depolarized with respect to the clock laser

polarization. This reduces the contrast of the π transitions used in the clock (Figure 2.14b). In

practice, this contrast reduction is small (at the few percent level), so no attempt is made to fix it.
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3.6 The Clock Laser

3.6.1 Cavity Stabilization

The 698 nm stable clock laser was constructed out of an ultralow expansion glass spacer that

is 40 cm long [110, 89, 77, 8]. The mirrors were coated by Advanced Thin Films on fused silica

substrates. The cavity is supported against gravity by viton hemispherical standoffs placed at four

contact points. The standoffs were positioned to make the cavity insensitive to vibration noise [91].

The cavity and its cradle (Figure 3.18) are placed inside a heat shield and two-stage vacuum

chamber. Active bipolar temperature control keeps the cavity temperature stable. The vacuum

chamber resides on a Herzan active vibration cancellation stage. Also, to prevent acoustic noise,

the vacuum chamber is surrounded by an acoustic shield.

The 689 nm light source is a home-built ECDL. First, this laser is current and piezo locked

to a prestabilization cavity. The laser then double passes an AOM, which is used to lock the laser

to the 40 cm cavity. A piezo on the prestabilization cavity also provides a lower bandwidth lock to

the 40 cm cavity. Measurements of this laser’s noise spectrum show that the fully stabilized clock

laser has a 26 mHz linewidth [8].

3.6.2 Fiber Phase Noise Cancellation

To prevent the ECDL from unlocking due to laboratory bustle, the clock laser cavity stabi-

lization setup is kept in a separate room that remains unoccupied while the Sr2 clock is running.

The fully stabilized laser is sent via optical fiber to the Sr system. A fiber of the length required to

transfer the clock laser between these rooms would cause broadening at the 1 kHz level, which would

be devastating for the Sr2 system, if it were not for fiber phase noise cancellation [75]. Fiber phase

noise cancellation reduces the decoherence from this fiber to levels that are currently negligible for

Sr2 [36].

For fiber phase noise cancellation, the source laser passes through an AOM before getting

launched into the fiber. A fraction of the fiber output is retroreflected back through both the fiber
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and the AOM. The retroreflected electric field will acquire a phase factor e2i(ωAOM t+φnoise), where

ωAOM is the frequency shift due to the AOM, φnoise is a stochastic function that describes the

decoherence (mostly due to the fiber) between the AOM and the retroreflecting mirror, and the

factor of two comes from double passing both the fiber and the AOM. Using a beat between the

retroreflected light and the source before the AOM, the retroreflected beam is phase locked to the

source laser using the AOM frequency, removing the effects of the fiber.6

After the clock laser is delivered to the Sr lab using a phase-noise-canceled fiber, its power

is not sufficient for both Sr1 and Sr2. Therefore, the light from the 40 cm cavity injection locks a

diode, the output of which provides ample power for both systems. Light from the diode is divided

equally between Sr1 and Sr2 and sent to these two experiments using fibers, which are again phase

noise canceled. In this second stage of fiber noise cancellation, one can benefit from judiciously

positioning the retroreflecting mirror that sends light back through the fiber.

Any decoherence encountered by the laser light as it travels from the phase noise cancellation

AOM to the retroreflecting mirror is corrected by this cancellation technique. In other words, the

retroreflecting mirror defines a plane at which the source laser coherence is reproduced (within the

bandwidth of the phase noise cancelation lock). Therefore, the phase noise cancellation retrore-

flecting mirror is mounted to the same structure that holds the cavity lattice mirrors (Figure 3.12).

In this case, the laser phase is adjusted to track any shaking of the lattice, removing the Doppler

shift that would result from atoms moving with respect to the clock laser.

3.7 Digital Atomic Servo

3.7.1 Clock Laser Frequency Modulator and Drift Cancellation

Another AOM, labeled as the “modulator” in Figure 2.15b, is used to control the frequency

of the clock laser for spectroscopy. The zeroth order of this AOM is retroreflected back through the

fiber for phase noise cancellation, whereas the -1st order interacts with the atoms. The beam from

6 The phase lock actuates on a voltage-controlled oscillator (VCO) centered at twice the AOM frequency. The
VCO frequency divided by two drives the AOM. The loop adjusts the VCO frequency to lock the beat to a stable
RF reference at twice the desired AOM frequency.
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the 698 nm injection-locked diode is too powerful for normal clock operation, so a neutral density

filter with an optical depth of four is placed in the -1st order beam.

The frequency that drives this AOM comes from two synthesizers that are mixed together.

One “scanning synthesizer” is responsive to the experimental control software that steps the clock

laser frequency for scanning the clock transition or for the atomic servo. The other synthesizer

has a linear frequency drift with a fixed drift rate of about -30 mHz/s. This drift rate is adjusted

once or twice per day to cancel the drift of the 40 cm cavity. The cavity drift, which is attributed

to material creep, is linear and can be canceled effectively. The scanning synthesizer, which has 1

µHz resolution,7 is connected to the Sr2 experimental control computer. The computer adjusts the

clock laser frequency through a GPIB command that sets the frequency of the scanning synthesizer.

The modulator AOM that controls the clock transition frequency (Figure 2.15b) also has an

intensity servo. Part of the -1st order is split off and sent to a photodiode. The photodiode output

goes into a PI-I controller (one proportional-integral gain stage and one pure integrator), which

actuates on the drive amplitude of the modulator AOM. Two versions of this servo have been used:

one with 50 kHz of bandwidth and one with 250 kHz. The setpoint for this servo is provided by

an adjustable dc voltage (based on a stable LM399H-based voltage source) that can be switched

on and off using a 5 ns switch from Mini-Circuits. This allows for clean clock laser square pulses

with an easily adjustable pulse duration and amplitude.

3.7.2 Camera Imaging and Photomultiplier Tube Detection

As explained in Section 2.5.2, the error signal for the atomic servo is the difference between

excited state population fraction measurements. To measure the excited population fraction, three

lasers are used. After driving the clock transition, the ground state is fluoresced with a resonant

counting laser on the 1S0 →1 P1 transition (Figure 2.1). This strong transition scatters many

photons, which are detected with a photomultiplier tube (PMT), yielding a ground-state population

signal Vg that is proportional to the number of atoms in the ground state. The ground state

7 This is a Stanford Research Systems DS345.
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population scatters so many counting laser photons that it is quickly heated out of the trap and

lost to the experiment. The excited state population is not resonant with the counting laser, so it

is unaffected. Next, the repump lasers (Figure 2.2) are applied, rapidly driving the excited state

population to the clock transition ground state. Atoms are then fluoresced again on 1S0 →1P1, and

photons are counted again with the PMT, providing the excited state population signal Ve. The

measured excited state population fraction is computed as8 ρmeas = Ve/(Ve + Vg).

When the counting laser is applied to measure the excited state population fraction, fluores-

cence is collected through two viewports. A 3 inch diameter lens collects fluorescence through the

large 8 inch conflat viewport on the top of the main chamber, focusing this signal down onto the

PMT with 2f imaging.9 The PMT output is sent to an oscilloscope computer card from GaGe

Applied Technologies. Each time the counting laser is applied to the sample to measure the ground

(excited) state population, Vg (Ve)—given by the time integral of the fluorescence signal measured

by the PMT and the oscilloscope card—is added to the data record.

When Vg is measured, fluorescence is also collected by a 2 inch diameter lens outside one of

the 2.75 inch conflat viewports. This light is imaged on an Andor CCD camera with a wedged

window anti-reflection coated for 461 nm light. This camera is typically used for signal monitoring,

but it has also been used for absorption imaging to calibrate the fluorescence counts in terms of

atom number.

3.7.3 Clock Transition Scans

The software for scanning and locking the clock laser to the clock transition was written in

MATLAB using the environment’s GUI building functionality. To begin the digital servo, first

the clock transition is found by scanning over a 200 kHz window centered about the last known

scanning synthesizer frequency corresponding to the clock transition resonance. This broad scan

is performed at zero bias field and with the neutral density filter removed from the clock laser

8 One detail not covered in this treatment is that once the atoms are all headed out of the lattice, a third
measurement is taken with the counting laser. This yields the background counts, which are subtracted off of the
excited and ground state population measurements (Section A.4).

9 When the lens is twice the focal length from the source
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Figure 3.19: A typical sideband scan for 1.5 kHz frequency steps, a 160 ms pulse, and the neutral
density filter (Section 3.7.1) removed from the clock laser. At this clock laser power, the clock
transition is saturated and dephases, achieving a final excited state fraction of about 0.5. This
value is not portrayed in this data set due to the coarseness of the scan. The carrier transition
occurs at zero detuning, the blue sideband at positive detuning, and the red sideband at negative
detuning. The sidebands are asymmetrically broadened due to the effect described in Section 2.4.4.

beam (Section 3.7.1) to power broaden the transition. This power broadening helps to locate the

resonance quickly using coarse frequency steps of 1.5 kHz. A scan over this range and at this large

power drives sideband transitions.

Data from this scan (Figure 3.19) resembles the calculation plotted in Figure 2.12. These

data can be used to infer the trap frequency. As explained in Section 2.4.4, the frequency difference

between the center of the carrier transition and the blue sideband edge, νblue, determines the lattice

axial trap frequency νz as νblue = νz − νrec.

The temperature in the lattice axial direction, Tz, can also be approximated using this scan.

For the case of a 1D harmonic oscillator potential, the entire population in the lattice can make

a blue sideband transition whereas all population that is not in the motional ground state can

make a red sideband transition. Statistical mechanics gives the population in motional state n

(where, again, n = 0 is the motional ground state) of [1− exp(−hνz/kBTz)] exp(−nhνz/kBTz).

Therefore, the population participating in a blue sideband transition divided by that participating

in a red sideband transition is exp(hνz/kBTz). To a rough approximation, this ratio is equal to the
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Figure 3.20: With the bias field applied, all 10 mF states are resolved. Here the detuning is
measured with respect to the zero field resonance. These data are mathematically described by the
formalism presented in Section 2.5.1.

ratio of the maximum excited state fraction achieved for the blue and red sidebands. Therefore,

ρmax,blue/ρmax,red ≃ exp(hνz/kBTz). This approximation typically agrees within 15% of a more

complex model that accounts for radial motion and trap anharmonicity [12].

With the clock transition located, the intensity is reduced with a neutral density filter and

the clock laser intensity servo, and the bias field is applied. Without spin polarization, a scan of

the carrier transition shows ten resonances corresponding to the different mF states (Figure 3.20).

This scan provides the clock laser AOM frequency corresponding to the two stretched states, and

with this information the stretched-states servo (Section 2.5.3) can be initialized.

3.7.4 Digital Servo Software

The software requires the user to input the initial modulator frequencies corresponding to the

stretched state resonances (obtained from clock transition scans) and the linewidth of the feature

it is locking to. To lock to a lineshape, the software steps the scanning synthesizer half of the input

linewidth on one side of the resonance center and then measures the excited state fraction. The

scanning synthesizer is then stepped on the other side of the resonance by the input linewidth, and

the excited state fraction is measured again. The first iteration of the computed error signal ǫclock
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Figure 3.21: A scan of one stretched state in a bias field after the atoms have been spin polarized.
Here the pulse duration is 160 ms. The clock laser intensity is adjusted for maximum contrast.

will be large in magnitude if the initial modulator frequencies are off from the resonant values. Laser

frequency noise will also cause noise in ǫclock. A desktop computer records the fluorescence counts

and the line center, which is calculated from ǫclock with Equation 2.44. The next iteration of the

servo uses the last computed value of the line center, and with this information the measurement

cycle begins again. The stretched-states servo locking procedure is performed for both stretched

states using two independent servo loops, with the locking sequence described in Figure 2.16.

The lineshapes used in the stretched-states servo are Rabi π-pulses, which occur when ΩmF
t =

π (see Equation 2.42). Lineshapes very similar to those predicted by the Rabi solution are typically

observed (Figure 3.21).



Chapter 4

Clock Stability

4.1 The Allan Deviation

4.1.1 Definition

As explained earlier, total systematic uncertainty and stability are the two figures of merit

used to gauge clock performance (Section 1.6). Stability is a measure of the noise of a frequency

standard, for it quantifies the uncertainty in the mean clock oscillator frequency due to random

processes such as frequency or phase fluctuations. In essence, better stability is useful because it

implies less measurement time. If an oscillator needs to be calibrated to a frequency standard,

this calibration measurement will typically involve averaging down the noise in a beat between

the oscillator and the standard. The noisier the standard, the longer the calibration will take to

average. Also, stability affects total systematic uncertainty. Systematic effects are often studied

by modulating a parameter of the apparatus (like the amplitude of an electromagnetic field that

perturbs the clock states) and measuring the corresponding frequency shift of the clock transition.

Frequency noise in such a measurement needs to be averaged down to obtain precise uncertainties

of systematic biases. Better stability means that evaluating these uncertainties will take less data

acquisition time, which is usually the main practical limitation of systematic measurements.

According to the IEEE, the recommended statistic [50] for quantifying stability is the Allan

Deviation, σy(τ), where
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Figure 4.1: The three processes found in Sr2 that degrade stability. Each are scaled to σ1, which is
their value at τ = 1 s. For white noise, σy(τ) averages down in the same manner as the standard
deviation of the mean, which decreases as the square root of the number of data points. There is
no advantage to averaging pure 1/f noise since σy(τ) does not improve with τ . In the case of drift,
stability gets worse with averaging time.
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. (4.1)

Here τ is the averaging time, E [. . .] denotes the expectation value, and

y(t) =
νc(t)− νSr

νSr
. (4.2)

νc(t) is the cavity stabilized clock laser frequency, which is a stochastic as a function of time, and

νSr is the frequency to which the clock laser is referenced (that of the Sr atoms in this case).

It is straightforward to show (Section A.2) that

σ2y(τ) = 2

∫ ∞

0
Sy(f)

sin4(πτf)

(πτf)2
df, (4.3)

where Sy(f) is the one-sided power spectral density of y(t). The power spectrum of most atomic

clocks can be described with a simple model Sy(f) =
∑2

j=−2 hjf
j, where hj is constant [50, 100].
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Figure 4.2: The Allan deviation estimator for overlapping and non-overlapping averages. The
frequency data yn (red points) is binned in two different ways. The binning scheme shown above
the points is for the non-overlapping Allan deviation. The points yn(m) are the average of the data
within a given bin, and m is the bin size (which is 3 in this figure). The binning scheme below the
points is for the overlapping Allan deviation. Again, the points yn(m) are the average of the data
within a given bin; however in this case the bins overlap.

Typically only three noise processes govern the behavior of the Sr2 clock: white noise, flicker

frequency noise (or “1/f noise”), and linear drift.

For white noise, Sy(f) = h0, and using Equation 4.3, σy(τ) =
√

h0/2τ . For 1/f noise,

Sy(f) = h−1/f , and σy(τ) = 2 ln(2)h−1. In the case of drift at a rate α, y(t) = αt, and Equation

4.1 yields σy(τ) = ατ/
√
2. Therefore, these three processes can be distinguished by the behavior

of the Allan deviation as a function of averaging time (Figure 4.1).

4.1.2 Estimators

Suppose y(t) is sampled with a cycle time 2Tc and a total of Ny points.
1 Let

{

y1, y2, . . . , yNy

}

be equal to {y(2Tc), y(4Tc), . . . , y(2NyTc)}. The Allan deviation is often estimated as

σ2y(2mTc) ≃
1

2(Ny − 1)

Ny−1
∑

n=1

[

yn+1(m)− yn(m)
]2
. (4.4)

Here τ = 2mTc is the averaging time and m is an integer. The way this estimator is defined, m

runs from a minimum of 2 to a maximum of Ny/2. yn is the average of data binned in a particular

1 Recall from Section 2.5.2 that the cycle time Tc is the time it takes to cool atoms, trap them in the lattice, and
interrogate the clock transition once. It takes two interrogations of the clock transition to get one resonance center
frequency, so 2Tc is needed to measure one point. If y(t) were the stretched state average frequency, 4Tc would be
needed to measure one point.
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Figure 4.3: Frequency points used to calculate the total deviation. A set of points y# is created by
reflecting the original data set twice.

way. Overlapping and non-overlapping binning schemes are typical (Figure 4.2), but overlapping

bins are much more utilized in the clock community [101]. When overlapping bins are used, this

estimator is typically referred to as the “overlapping Allan deviation.” Ny is the total number

of points after binning and averaging, and m is the bin size. Stability is typically analyzed by

calculating the Allan deviation estimator for different values of m to observe how noise diminishes

as a function of averaging time. The Allan deviation is usually plotted as a function of 2mTc. In

essence, the Allan deviation estimator quantifies fluctuations in the difference between averaged

subsets of data as a function of averaging time.

Another useful estimator is the total Allan deviation (or total deviation), σtotal(τ) [43]. This

is calculated using a set of points constructed by reflecting the frequency data twice (Figure 4.3).

Reflecting generates the points {y#−Ny
, y#−Ny+1, . . . , y

#
Ny

}, which are defined as y#n = yn for 1 ≤ n ≤

Ny. For 1 ≤ j ≤ Ny − 1, y#1−j = yj and y#Ny+j = yNy+1−j. Using this definition,

σ2total(2mTc) =
1

Ny − 1

Ny
∑

n=2

[

y#n (m)− y#n−m(m)
]2
, (4.5)

where y#n (m) = 1
m

∑m−1
k=0 y

#
n+k. This estimator is useful because it has less error at longer averaging

times [43].
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4.2 Effects that Limit Stability

4.2.1 Quantum Projection Noise

For atoms in uncorrelated states, the fundamental limit to clock precision is quantum pro-

jection noise (QPN). QPN is the result of the binomial statistics (Section 2.7) associated with

projecting a coherent superposition of electronic states onto one of the levels of the clock transi-

tion. For a clock laser pulse chosen to drive the excited state population fraction ρee to a value

p (typically 1/2 during clock operation), the fluctuation in the excited state atom number σN is

√

Np (1− p). This is simply the standard deviation of a binomial distribution, which is approxi-

mately Gaussian for N & 50 and which averages down like white noise.

The fluctuation in the measured excited state population fraction σρ due to QPN affects the

clock signal. This is given by σρ = ∆N/N =
√

p (1− p)/N . The atomic servo cannot distinguish

between these fluctuations and clock laser noise, so it will adjust the laser frequency in attempt to

correct for the QPN. This negatively affects the stability of the locked clock laser.

When the clock laser is locked to a value of the excited state fraction, the slope s of the

Rabi lineshape at the lock point is the factor that determines the effect of the excited state fraction

fluctuation on the atomic servo.2 Differentiating ρee (Equation 2.26) with respect to detuning

δ = ∆/2π and evaluating this derivative at the detuning for which ρee = 1/2 (since p is typically

selected to be this value), s can be obtained numerically. Since QPN is a white noise process, the

noise amplitude averages down with the square root of the number of points averaged. For an

averaging time of τ and a cycle time of Tc, the number of points averaged is τ/2Tc, and the clock

stability due to QPN is

σQPN (τ) =

√
2σρ

2s νSr

√

2Tc
τ

=
1

πQ

√

Tc
Nτ

, (4.6)

where Q = νSr/γ, γ is given by Equation 2.43, and p = 1/2. Equation 4.6 is not exact for Rabi

2 Although there are two values of the slope (one on each side of resonance), which are equal in magnitude and
opposite in sign, for convenience I take s to be the positive slope.
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spectroscopy, 3 but it is good to 3%. The fact that Equation 4.6 has
√
2σρ in the numerator instead

of just σρ is because the atomic servo requires two measurements of the excited state fraction to

infer the center frequency of a lineshape.

The factor of 2 appears in the denominator of Equation 4.6 because the atomic servo error

signal is twice as sensitive to clock laser frequency fluctuations as a single measurement of the

excited state fraction. To see this, suppose the atomic servo is locked to an excited state fraction

of 1/2, and then the detuning due to laser frequency drift fluctuates by a small amount δǫ. The

two values of the excited state fraction measured by the atomic servo (one on either side of the

lineshape) can be expanded about their lock points as ρee(±δ0 + δǫ) ≃ 1
2 ± sδǫ, where δ0 is the

detuning corresponding to an excited state fraction of 1/2. The clock error signal is therefore

ǫclock = 2sδǫ, so the sensitivity of the atomic servo to detuning fluctuations is 2s. Since the atomic

servo cannot discern between detuning fluctuations and QPN, it responds to QPN assuming the

same 2s sensitivity.

4.2.2 The Dick Effect

The main limitation to lattice clock stability is the Dick Effect [28]. The Allan deviation due

to the Dick Effect, σDick(τ), is given by [42]

σ2Dick(τ) =
1

τ

∞
∑

k=1

Slocked(k/Tc), (4.7)

where Slocked(f) is the one-sided power spectral density of the clock laser after it is locked to the

atoms.4 According to this equation, the Dick Effect is stability degradation caused by discrete

values of the clock laser’s noise spectrum. This is simply signal aliasing, whereby noise components

of the locked clock laser with frequencies equal to harmonics of the sampling rate 1/Tc appear

to the atomic servo as lower-frequency signals. This causes high-frequency noise that is beyond

the atomic servo bandwidth to appear as low-frequency noise within the bandwidth of the servo.

3 It is exact for Ramsey spectroscopy with infinitesimal pulses
4 Like the spectral densities defined in previous sections, this is the spectral density of the clock laser frequency

fluctuation about the clock transition resonance in fractional units.
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Since the servo cannot distinguish between aliased noise and actual low-frequency noise that it is

designed to remove, stability is negatively affected as the servo attempts to correct for the aliased

frequencies. The Dick effect is simply the sum of these contributions.

The derivation of this expression makes use of a widely utilized relation for discrete time

signals (Section A.3), which is worth quoting because it provides intuition about the Dick Effect.

For a continuous signal φ(t) sampled every Tc,

Sdis(f) =

∞
∑

k=0

Scon

(

f +
k

Tc

)

, (4.8)

where Scon(f) is the one-sided power spectral density of the continuous signal, Sdis(f) is the spectral

density of φ(nTc) (the sampled signal φ(t)), and n is an integer. The terms for which the summation

index k 6= 0 arise from sampling the continuous signal and describe aliasing. Comparing this relation

to Equation 4.7, it is clear that the Allan deviation due to the Dick effect is just the aliased part

of the locked clock laser power spectrum evaluated for low frequencies.

Note in Equation 4.7 that the Allan deviation averages like 1/
√
τ , which is characteristic of

white noise (Section 4.1.1). Dick’s original paper [28] explained this in the following way. Stability

degradation arises from the laser noise spectrum windowed about harmonics of 1/Tc. About suf-

ficiently small windows, a complicated noise spectrum will have the characteristics of white noise;

therefore, the Dick Effect is the sum of white noise, which is itself white.

Before quoting the standard form of the Dick Effect, another signals relation is worth men-

tioning. Suppose for two continuous signals φ1(t) and φ2(t), with Fourier transforms Φ1(f) and

Φ2(f), the transfer function G(f) relates them as Φ2(f) = G(f)Φ1(f). It is straightforward to show

that S2(f) = |G(f)|2S1(f) (Section A.1), where S1(f) and S2(f) are the power spectra of Φ1(f)

and Φ2(f). When these signals are sampled at a rate 1/Tc, Equation 4.8 implies that, for f = 0,5

the spectrum of the sampled signal is
∑∞

k=0 S2(k/Tc) =
∑∞

k=0 |G(k/Tc)|2S1(k/Tc). Motivated by

this expression, it is advantageous to seek a transfer function that relates the locked spectral density

5 Here f is taken to be zero to give the same form as Equation 4.7.
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Figure 4.4: a) The sensitivity function for Rabi spectroscopy. Here Tc = 1 s and tp = 0.25 s. At
the end of the 1 s cycle, the clock laser pulse comes on and g(t) is no longer zero. b) The squared
magnitude of the normalized Fourier coefficients, |gk/g0|2, for the same Tc and tp.

to the spectrum of the free-running clock laser, which is easier to measure.6

With some work [42], it can be shown that the Dick Effect is

σ2Dick(τ) =
1

τ

∞
∑

k=1

∣

∣

∣

∣

gk
g0

∣

∣

∣

∣

2

Sclock(k/Tc), (4.9)

where Sclock(f) is the one-sided power spectral density of the free-running clock laser, and

gk =
1

Tc

∫ Tc

0
g(t)e−2πikt/Tcdt (4.10)

is the kth Fourier coefficient of the sensitivity function g(t) [65]. The sensitivity function is the

change in the excited state fraction due to an instantaneous phase step of the clock laser. g0 in

Equation 4.9 is simply gk for k = 0. The sensitivity function depends on the type of spectroscopy

used in the clock (i.e., Rabi, Ramsey), the measurement time, and the experimental cycle time.

For Rabi spectroscopy, when the clock laser pulse is on (at the end of a cycle),

g(t) = − π2κ

(π2 + κ2)3/2

[

sin
(
√

π2 + κ2
)

+ sin

(

t− Tc
tp

√

π2 + κ2
)

− sin

(

t− Tc + tp
tp

√

π2 + κ2
)]

.

(4.11)

6 Here “free-running clock laser” means a laser that is cavity stabilized but not locked to the Sr atoms with the
atomic servo.
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In this expression, tp is the pulse time. g(t) is piecewise, and when the clock laser is off, g(t) = 0

(Figure 4.4). κ is the product of detuning and pulse time for which ρee = 1/2 (where the atomic

servo locks). Therefore, κ = 2.509, determined numerically by 1
1+κ2/π2 sin

2
(

1
2

√
π2 + κ2

)

= 1
2 .

Equation 4.9 shows that the Dick Effect can be mitigated in two ways: reducing the sensitivity

to laser noise, and reducing the laser noise amplitude. The sensitivity function can be reduced by

decreasing the measurement dead time so that more of the experimental cycle is occupied by Rabi

spectroscopy [120]. Also, better laser stabilization improves laser noise.

4.2.3 Long-Term Drift

Over timescales of hundreds of seconds and longer, long-term drift can dominate over QPN

and the Dick Effect. The atomic servo removes frequency drift due to thermal variations in the

length of the cavity used to stabilize the clock laser; however, the clock transition frequency itself can

change. After all, the laser is locked to the perturbed clock transition, and laboratory perturbations

are subject to drift.

One example of this drift is a time varying laboratory temperature. As I will explain in

Section 5.8.1, the electric field associated with the ambient laboratory heat causes a blackbody

radiation (BBR) Stark shift that has a strong effect on the clock transition. Even a 1 ◦C drift in

laboratory temperature causes a measurable change in the BBR shift. The experimental signature

of temperature drift would be an Allan deviation that averages down at first, then reverses direction

and begins increasing linearly with averaging time (Figure 4.1) when drift has accumulated enough

to become appreciable.

Long-term drift can be alleviated by stabilizing ambient temperatures and other sources of

clock transition perturbations.
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Figure 4.5: Fractional clock stability per square root of averaging time (in seconds) for several
clocks. Stability quoted here is for a single clock rather than for a comparison. The record for best
Cs clock stability, from BNM-SYRTE, is shown on the left [118]. The NIST Al+ ion clock [23] and
PTB Yb+ ion clock [52] have comparable stability to that reported by lattice clocks prior to this
work. The JILA Sr1 lattice clock [74] and the NIST Yb lattice clock [63] are also shown here.

4.3 Stability in Optical Clocks

4.3.1 The Stability of Lattice Clocks and Ion Clocks

With QPN and the Dick Effect explained, the stability of the two prominent types of optical

clocks, ion clocks and lattice clocks (Section 1.5), can now be compared. Regarding QPN, ion

clocks tend to use shorter clock transition wavelengths [23, 93, 52] than lattice clocks [63, 74], and

this is beneficial for ion-based systems due to the factor of Q in σQPN (Equation 4.6). This is also

why optical clocks are better than Cs, which is based on a microwave transition. Furthermore,

ion clocks can operate with faster cycle times [23], which is a positive trait of these clocks due to

a superior
√
Tc factor in the σQPN expression. However, ion clocks only have one atom whereas

N is of order 103 for lattice clocks. Since σQPN (τ) ∝ 1/
√
N , the larger atom number is a major

advantage of lattice clocks. Due to larger atom numbers, the QPN of lattice clocks is typically at

least an order of magnitude better than that of ion clocks.
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The stability limitation of ion clocks tends to be QPN [54]. For lattice clocks, QPN is small

and duty cycles are shorter (AKA more dead time), so the Dick Effect dominates. Prior to the

work discussed in this thesis, the Dick-effect-limited stability of lattice clocks was about equal to

reported ion clock stabilities (Figure 4.5). At the time, the laser causing the Dick Effect in the Sr1

clock was based on a 7 cm long cavity [72], which was similar to those used by other lattice clock

teams.

4.3.2 Using Longer Cavities to Reduce Thermal Noise

When the Sr1 7 cm clock laser stabilization cavity was built, this new system made use of a

clever cavity mounting scheme to remove ambient mechanical vibration noise [91]. Prior to these

advances in cavity mounts, vibration noise was the dominant mechanism limiting cavity stability

[126]. When vibration noise dominates, cavities should be made short since the amplitude of

this noise scales with the size of the cavity. With vibration noise removed, the best stable lasers

became limited by thermal fluctuations of cavity mirror coatings [92]. This thermal noise degrades

cavity length stability, which negatively affects the frequency stability of clock lasers (since cavity

stabilization is the stabilization of the laser frequency to the length of the cavity).

The 7 cm cavity in Sr1 was designed to be short to reduce residual vibration noise not

canceled by the cavity mounting scheme. The tradeoff for using a short cavity is more thermal

noise. The stability of a laser locked to a thermal-noise-limited cavity scales as δL/L, where L is

the cavity length and δL is the fluctuation in L [90]. Although longer cavities could potentially

suffer from worse residual vibration noise, if vibration noise cancellation could be made to work

well for a longer cavity, this would yield better clock laser stabilization and a reduced Dick Effect.

This possibility motivated the construction of a longer 40 cm cavity at JILA to improve the

stability of our lattice clock (Section 3.6.1) [77]. This cavity proved to be vibration insensitive and

thermal noise limited at stability an order of magnitude better than that of the 7 cm cavity (Figure

4.6). Early characterizations of the clock laser based on the 40 cm cavity revealed a free-running
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Figure 4.6: Overlapping Allan deviations of diode lasers stabilized to 7 cm and 40 cm cavities.
Linear drift is removed to show the laser instabilities due to high frequency noise.

power spectrum7 with a flat Allan deviation, indicating a 1/f noise process [89]. This is consistent

with a thermal-noise-limited laser, which also has a 1/f noise spectrum [92].8

For a laser with a 1/f noise spectrum, Equation 4.3 can be used to write Sclock(f) in terms

of the Allan deviation of the free-running laser, σclock,

Sclock(f) =
σ2clock

(2 ln 2)f
. (4.12)

Using this expression, the Dick Effect is

σ2Dick(τ) =
σ2clock
2 ln 2

Tc
τ

∞
∑

k=1

1

k

∣

∣

∣

∣

gk
g0

∣

∣

∣

∣

2

. (4.13)

Therefore, since the free-running laser stability with the 40 cm cavity is 10 times better than with

the 7 cm cavity, and since the Sr1 stability with the 7 cm cavity was comparable to that of ion

clocks, we expect this new cavity to make Sr2 clock stability an order of magnitude better than ion

7 The “free-running power spectrum” is the power spectrum of the clock laser stabilized to the cavity but not to
the atoms.

8 A later, more detailed study revealed 1/f noise, white noise, and resonances in the power spectrum [8].
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Figure 4.7: Best reported Sr and Yb stability results compared to the ion clock stabilities in Figure
4.5. Both the Sr and Yb advances were primarily due to better laser stabilization. The Yb result
is reported in Reference [49], and the Sr2 result is discussed in Section 4.6.

clock stability.

As I will explain in the rest of this chapter, this order-of-magnitude improvement over ion

clock stability is indeed what we have observed (Figure 4.7).

4.3.3 Self-Comparison

Self-comparison is a useful technique for characterizing clock stability. With self-comparison,

a clock compares two independent atomic servos that are locked to the same stretched state and

that update in an alternating fashion. If processed correctly, the center frequencies measured by

the two servos yield the short-term stability of the clock.

Suppose that one atomic servo measures the center frequency ν1, and immediately after that

the other servo measures ν2. Since these are scanning synthesizer frequencies, they contain the

free-running clock laser drift (due to stabilization cavity length variations) that is not removed by

drift cancellation (Section 3.7.1).9 To remove this drift, the center frequencies are processed as a

9 The atomic servo records the scanning synthesizer frequency required to set the free-running clock laser (after
drift cancellation) on the clock transition resonance. In the presence of uncanceled clock laser drift, the servo
will adjust the scanning synthesizer frequency to compensate for this drift, adding drift to the record of scanning
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difference ν2−ν1. This works because the uncanceled laser drift is typically negligible over the 4Tc it

takes to make the two center frequency measurements. This difference also removes long-term drift

of systematic shifts, so it does not determine long-term stability. However, (ν2 − ν1)/2 determines

the short-term stability of the clock.

ν2 − ν1 is divided by 2 to extrapolate to the noise performance of the stretched state average

frequency. Since the stretched state average frequency is an average of two atomic servo measure-

ments (Section 2.5.3), its noise (using the usual error propagation mathematics) is
√

(σ/2)2 + (σ/2)2 =

σ/
√
2, where σ is the noise of a single center frequency measurement. The noise of ν2 − ν1 is

√
2σ,

so this difference must be divided by 2 to have the same frequency fluctuation as the stretched state

average frequency. Therefore, for frequency data {ν1, ν2, ν3, . . .}, where the odd subscripts indicate

data taken by one atomic servo and the even subscripts are taken by the other, the self-comparison

data is {1
2 (ν2 − ν1),

1
2(ν4 − ν3), . . .}

4.4 Synchronous Interrogation

4.4.1 Two Sr Clocks with a Shared Clock Laser Source

To study the stability of a frequency standard at different timescales, it is useful to beat this

standard with a similar system. Therefore, we measure the Sr2 clock stability through a series of

comparisons with the Sr1 system [89]. These comparisons were set up using a shared clock laser

source.

As explained in Section 3.6.2, light from the clock laser is divided between the two experiments

into two independent clock laser beams. Each system has its own AOM to realize independent

atomic servos (Figure 4.8a). As the frequencies of the each scanning synthesizer (one for the Sr2

AOM and one for Sr1) are adjusted to lock the two clock laser beams, these synthesizer frequencies

are recorded.10 One advantage to this setup is that a comparison between Sr1 and Sr211 can be

synthesizer frequencies.
10 Both synthesizers share a stable RF reference.
11 Here “comparison” simply means the difference between the frequencies of the two clock laser beams after they

are locked to their respective Sr clock
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Figure 4.8: a) Comparison setup for the two JILA Sr clocks. b) Top panel: Stability with the
7 cm cavity (image on left) is studied using synchronous pulses (plot on right). Bottom panel:
Asynchronous pulses (plot on right) are used to study stability with the 40 cm cavity (image on
left). The Sr1 falling pulse edge and the Sr2 rising edge are separated by 10 ms for asynchronous
interrogation. The synchronous and asynchronous measurements use 160 ms Rabi π-pulses for both
systems.

performed in post processing. Since the two systems share a common clock laser source, taking

the difference between the recorded values of the two scanning synthesizer frequencies provides the

same information as beating the two clock laser beams (Figure 4.8a).

To rigorously study the stability with the new cavity (Figure 3.18), we use the setup shown

in Figure 4.8a to perform comparisons between Sr2 and Sr1 with lasers stabilized to either the 7

cm or 40 cm cavities. Measurements with the 7 cm cavity made use of synchronous interrogation

[9, 113]. In this case, the Rabi pulses of both Sr clocks were carefully synchronized such that they

always occur at the same time (Figure 4.8b top). The PID filters of both systems are also set to

have equivalent gain constants (Section 2.44), ensuring that both clocks respond to noise in the

same way. Pulse synchronization is accomplished by triggering Sr1 off of the Sr2 clock.

Since the synchronous clock comparison occurs in post processing, data analysis must cor-

rectly match each Sr2 frequency measurement with the simultaneous Sr1 measurement; therefore,

sorting errors in the data record could destroy the comparison. To ensure that the data record is

robust against such errors, both systems used a shared counter (triggered by Sr2 to advance by 1
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each measurement cycle) to stamp each measurement with a counter value. When comparing the

Sr1 and Sr2 data, counter values can be checked to ensure that they agree.

With synchronous interrogation, the two clocks always sample the same laser noise. There-

fore, the difference between the clock frequencies benefits from common-mode laser noise cancella-

tion, which will suppress the Dick Effect. Also, studying the effect that synchronous interrogation

has on stability is useful for quantifying the Dick Effect [89].

Synchronous interrogation is also useful for systematic evaluations. Systematic shifts can be

evaluated using two synchronized clocks, where one clock modulates a parameter known to cause

systematic bias and measures the resulting change in frequency with respect to the other clock.

This would result in a systematic evaluation that is largely free of the Dick Effect [116]. However,

a clock used for timekeeping is a stand alone system that has stability limited by the frequency

noise of the clock oscillator. To quantify the stability of a system for use as a clock, synchronous

comparisons will not work since they do not show the stability of independent systems. For this,

we use asynchronous interrogation, which will be discussed in Section 4.5.1.

4.4.2 Excited State Fraction Correlation

Synchronous interrogation using the 7 cm cavity shows a clear effect on raw frequency data

(Figure 4.9). This measurement scheme should also affect the excited state fraction measurements

of these two systems [113]. When the two clocks are synchronized, clock laser noise will cause

measurements of ρee to fluctuate about 1/2, but synchronization means that these fluctuations will

be correlated between the two clocks.

To understand the effect of synchronous interrogation on the excited state fractions, it is

worthwhile to simulate what the corresponding measurements would look like. Treating laser

fluctuations as a Gaussian white noise process, I simulate the excitation fraction data when both

Sr1 and Sr2 are locked to set points of 1/2 (Figure 4.10). When the two atomic servos use pulses that

are not synchronized, both laser noise and QPN (simulated for 1000 atoms) are uncorrelated. This

is apparent because of the circle-shaped distribution of the simulated data in Figure 4.10a. Here an
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Figure 4.9: Raw data measured by synchronized clocks. The scanning synthesizer frequencies for
both Sr1 and Sr2 during synchronized atomic servo operation are plotted with offsets between them
removed. The Rabi π-pulses are 160 ms long. The y axis has been offset by the scanning synthesizer
frequency at about 28 s. The linear laser drift removed by the atomic servos is apparent here. A
striking correlation between the frequency data is apparent. For uncorrelated data, the average
frequencies would agree but the instantaneous frequencies would not.
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Figure 4.10: Simulated correlation measurement data. Appreciable laser noise is assumed. a)
The two clocks are locked using pulses that are not synchronized. b) The clocks are locked with
synchronized pulses.
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Figure 4.11: a) Correlation data using a clock laser stabilized to the 7 cm cavity. The width is due
to uncorrelated noise, which can come from QPN, imperfect synchronization, or technical noise not
common to both clocks. b) Overlapping Allan deviations of the Sr2 self-comparison data with and
without the Sr1 reference. The 7 cm cavity is also used for this measurement.

excited state fraction measurement in one clock does not necessitate a value for the other system.

When pulses are synchronized, the data has a diagonal stripe distribution (Figure 4.10b). Here

laser noise causes the excited state fraction measurements to fluctuate, but the synchronization

of the two clocks ensures that measured values are similar for both systems. The width of the

horizontal stripe is given by quantum projection noise, which remains uncorrelated.

Using the noisier 7 cm cavity to test this situation, the 160 ms π-pulses from both clocks

are synchronized and the same clock laser source is used. A correlation is observed in the data,

showing that synchronous interrogation has succeeded in making much of the laser noise common

mode between the two clocks (Figure 4.11a) [89].

The effect of synchronous interrogation on clock stability can also be seen with Allan devia-

tions. This is done by running Sr2 and Sr1 in a synchronized fashion while Sr2 takes self-comparison

data. Self-comparison data fits to 1.2× 10−15/
√
τ (Figure 4.11b, unreferenced data), where τ is in

seconds, and the first few points shown on the unreferenced Allan deviation of Figure 4.11b have

been ignored in the fit. If the Sr1 center frequency data is subtracted from the Sr2 measurements

(where the difference is taken between points measured simultaneously), the boost in stability is
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appreciable (Figure 4.11b, synchronized data). The stability now fits to 4.6 × 10−16/
√
τ , which

is better than the unreferenced case by a factor of 2.6. This corresponds to a factor of 6.8 less

averaging time.

The fact that the first few points of these Allan deviations are flatter is because for the first

∼ 20 s, the Allan deviation is that of the free-running laser. After a few updates of the atomic

servo, the lock to the atoms takes over and the stability begins averaging down. Because of this,

Allan deviations limited by the Dick Effect or QPN are typically fit by excluding the points before

the servo becomes effective and then performing regression to a 1/
√
τ power law (and they will be

fit this way from here on). Clock stability is usually quoted in terms of this fit.12

4.5 Asynchronous Interrogation

4.5.1 Using Asynchronous Interrogation to Measure Independent Clock Stability

As explained in Section 4.3.2, given the Allan deviation of the free-running clock laser based

on the 40 cm cavity (Figure 4.6), we expect that upgrading to this cavity will provide a significant

boost in stability (over the laser based on the 7 cm cavity). As the previous section shows, one can

use synchronous interrogation to gauge the Dick Effect with this new laser. Also, after upgrading to

the 40 cm cavity, it is important to measure the independent clock stability, which characterizes the

Sr2 system as a frequency standard (Section 4.4.1). To do this, we use asynchronous interrogation,

which ensures that the Sr1 and Sr2 π-pulses never overlap in time. With this interrogation scheme,

the falling edge of the Sr1 pulse and the rising edge of the Sr2 pulse are separated by 10 ms (Figure

4.8b, bottom) so that the two clocks never sample the same laser noise.

It is important to note that two asynchronously interrogated systems are not 100% indepen-

dent. Since the pulses have a fixed temporal relationship to one another, spectral components of

the clock laser with frequencies that are integer multiples of 1/∆tp, where ∆tp is the separation

between the pulse centers, will affect asynchronous interrogation differently than they would an

12 For instance, “1 s stability” typically means the fit quoted at τ = 1.
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independent clock. To analyze this issue,13 it is useful to express the sensitivity function g(t)

(Section 4.2.2) in terms of the excited state fraction [106],

ρee(t) =
1

2
+

1

2

∫

g(t)ǫν(t)dt, (4.14)

where ǫν(t) is the stochastic frequency fluctuation of the laser about the clock transition frequency.

The integral is taken over the clock cycle under consideration. This expression describes the be-

havior of ρee when the clock laser is locked to the atoms. Here it is assumed that ρee is locked to

a value of 1/2. This expression is a first-order approximation to the effect of laser noise on the

excited state fraction, treating ǫν(t) as a small-amplitude perturbation.

When ρee deviates from 1/2, the atomic servo error signal ǫclock ≃ 2(ρee−1/2) =
∫

g(t)ǫν(t)dt

(using Equation 4.14). Since an asynchronous comparison is the difference between center frequen-

cies computed by the Sr1 and Sr2 atomic servos—both of which operate with the same pulse

durations, gain constants, and cycle times—it follows from Equations 2.44 and 4.14 that the noise

in the comparison is given by the integral
∫

[gSr2(t)− gSr1(t)] ǫν(t)dt =
∫

[g(t+∆tp)− g(t)] ǫν(t)dt.

Here, gSr2(t) and gSr1(t) are the Sr2 and Sr1 sensitivity functions. The expression g(t+∆tp)− g(t)

can be viewed as the sensitivity function of the asynchronous comparison.

Using the fact that g(t) is periodic in Tc, the Fourier coefficients (Equation 4.10) of g(t+∆tp)

are gke
2πik∆tp/Tc (where gk is the kth Fourier coefficient of g(t)). This leads to the Dick Effect for

an asynchronous comparison σasynch of

σ2asynch(τ) =
1

τ

∞
∑

k=1

∣

∣

∣e2πik∆tp/Tc − 1
∣

∣

∣

2
∣

∣

∣

∣

gk
g0

∣

∣

∣

∣

2

Sclock(k/Tc)

=
4

τ

∞
∑

k=1

sin2
(

πk∆tp
Tc

) ∣

∣

∣

∣

gk
g0

∣

∣

∣

∣

2

Sclock(k/Tc). (4.15)

Replacing the sin2() factor with its average of 1/2 results in the Dick Effect for two identical but

independent clocks, for which one would simply add two identical single-clock Allan deviations

13 My thanks to Michael J. Martin for working this out first.
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Figure 4.12: a) Synchronous data with the 7 cm cavity (from Figure 4.11a) and asynchronous data
with the 40 cm cavity. The 40 cm cavity data shows a markedly narrower distribution, implying
less laser noise. b) Synchronous and asynchronous data using the 40 cm cavity. Synchronous
interrogation shows a bit of correlation.

in quadrature. Including this factor and using a good model for the clock laser power spectrum

[8] changes the Dick Effect by 3% from its independent clock value. Therefore, asynchronous

interrogation reproduces independent clock stability at the 97% level.

4.5.2 Correlations and Allan Deviation

Measuring excited state fraction correlations with the clock laser based on the 40 cm cavity,

the distribution shows a dramatic difference. In Figure 4.12a, asynchronous data with the 40 cm

cavity is compared with synchronous measurements using the 7 cm cavity [89]. The distribution

is much narrower, implying less laser noise. Synchronous measurements with the 40 cm cavity

show a bit of correlation (Figure 4.12b), indicating that the Dick Effect has not been completely

suppressed below QPN [89].

Looking at Allan deviations of synchronous and asynchronous data taken with the 40 cm

cavity, a significant stability improvement over the 7 cm cavity is observed (Figure 4.13). Self-

comparison is also used to characterize the stability. Looking at self-comparison and synchronous

data on the same plot (Figure 4.13), it is apparent that the Dick Effect plays a much smaller role



91

10
0

10
1

10
2

10
3

10
−17

10
−16

a)

Averaging Time (s)

A
lla

n 
D

ev
ia

tio
n

 

 

10
0

10
1

10
2

10
3

10
−17

10
−16

a)

Averaging Time (s)

A
lla

n 
D

ev
ia

tio
n

Synchronous
Self Comparison
QPN

10
0

10
1

10
2

10
3

10
−17

10
−16

b)

Averaging Time (s)

A
lla

n 
D

ev
ia

tio
n

 

 

10
0

10
1

10
2

10
3

10
−17

10
−16

b)

Averaging Time (s)

A
lla

n 
D

ev
ia

tio
n

Asychronous
Dick Effect + QPN
QPN

Figure 4.13: Overlapping Allan deviations with the 40 cm cavity. a) Synchronous and self-
comparison data. b) Asynchronous data, which gives the stability of a comparison between two
independent clocks. The Allan deviation fits to 4.4 × 10−16/

√
τ for the asynchronous comparison

or, extrapolating to the performance of a single clock, 3.1×10−16/
√
τ . Using the known clock laser

power spectral density [8], the theoretical one-clock Dick Effect is 3.5× 10−16/
√
τ .
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Figure 4.14: Overlapping Allan deviation for a 3.75 hour asynchronous comparison. 160 ms Rabi
π-pulses were used again here.

in the stability [89].14 Synchronous interrogation now results in stability that is only a bit below

the self-comparison (compared to the much larger effect shown in Figure 4.11b).

However, these measurements are only complementary to that shown in Figure 4.13b. This is

an asynchronous comparison between Sr1 and Sr2, which yields the full independent clock stability.

It is sensitive to long-term drift (that is not common to the two clocks), so it demonstrates the

long-term stability as well. Drift, which would be evident by the Allan deviation increasing linearly

with averaging time (Figure 4.1), is not present in the asynchronous data. This measurement

achieves 3.1 × 10−16/
√
τ one-clock stability (the stability of a comparison between two identical

clocks divided by
√
2). When this stability was reported [89], it was the first instance of a lattice

clock surpassing all ion clocks in an important measure of clock performance. The following year,

the Yb lattice clock team at the Boulder campus of NIST also reported stability of 3.1× 10−16/
√
τ

and averaged this down for 7 hours to 1.6× 10−18 [49].

To study the Sr2 stability at longer averaging times, which ensures that drift is well controlled,

Sr1 and Sr2 are compared asynchronously for 3.75 hours [13]. No drifts are apparent; however, the

stability was a bit worse for this measurement, fitting to a value of 3.4 × 10−16/
√
τ (Figure 4.14).

14 Recall that self-comparison data is sensitive to the Dick Effect whereas synchronous measurements are not.
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4.6 High Stability Self-Comparison

So far, all stability measurements discussed used 160 ms π-pulses with Tc ≃ 1 s. To infer the

best stability possible in Sr2, it is worthwhile to make the duty cycle larger, which reduces the Dick

Effect (Section 4.2.2). However, the best possible stability of Sr2 should, in principle, be better

than that of Sr1. An attempt to quantify the maximum Sr2 stability by comparing the two clocks

would be difficult once Sr2 has significantly better performance.

The reason why Sr2 should have higher stability is because of its cavity lattice. As explained

in Section 2.3.3, the cavity lattice is designed to have a large trap volume compared to the retrore-

flected lattice in Sr1. The advantage of this is twofold. First, the large volume means that the

cavity lattice has a much better spatial overlap with the 689 nm MOT, allowing Sr2 to trap more

atoms than Sr1; therefore, Sr2 can obtain 2000 atoms with less MOT cooling time, resulting in less

dead time and a bigger duty cycle. Second, the larger volume implies that if Sr2 and Sr1 operate

with 2000 atoms, which is the number used for clock operation, then Sr2 will have lower density

(by a factor of 30 for the actual trap parameters). This lower density allows Sr2 to use long pulses

while still operating at 2000 atoms. This is useful because Sr1 has observed resonance contrast de-

cay, broadening, and lineshape distortion of the clock transition due to atomic interactions [6, 78].

These effects (which compromise stability) increase with density, and for typical operating atom

numbers, Sr1 was unable to achieve unbroadened lineshapes for pulse durations of 1 s and longer

[78, 77].

Unfortunately, it is very inconvenient to upgrade the Sr1 lattice to a cavity-based trap because

the vacuum chamber viewports on that system do not have anti-reflection coating at 813 nm. This

coating on the Sr2 viewports (Section 3.1.2) is necessary to achieve good cavity enhancement, which

is negatively affected by power loss through the viewports (Equation 2.14). Therefore, we must

evaluate the Sr2 stability with self-comparison, which does not rely on another clock.

Since self-comparison is insensitive to long-term drift (Section 4.5.2), this technique alone

cannot determine the full independent clock stability. However, if we use previous comparisons to
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Figure 4.15: Simulations of stability data with drift. The noise is taken to be white, which is
valid after the few 10s of seconds it takes for the atomic servo to kick in. The blue data has
3.4×10−16/

√
τ stability, equivalent to that in Figure 4.14, and the red data fits to 2.2×10−16/

√
τ .

The cycle times of both data sets match those used in our experiments. a) A drift rate of 1.4×10−18

over the measurement time. Drift is not easy to discern from either Allan deviation. The red data
is turning up slightly, which could easily be mistaken for a different feature. b) 4.1 × 10−18 drift
over the measurement time is apparent for both curves. c) 1.4× 10−17 drift over the measurement
time. d) 1.4× 10−16 drift over the measurement time.
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constrain the magnitude of long-term drift, self-comparison can determine the full stability at a

level given by this constraint (Figure 4.15). Figure 4.14 shows that the total long-term drift over

3.75 hours of averaging is below 3×10−18, or a 2.2×10−22 s−1 drift rate. Therefore, self-comparison

stability is equal to the independent clock stability—so long as it is understood that the former

should not be extrapolated below 3× 10−18 or longer than 3.75 hours of averaging time (whichever

comes first).

Using 1 s pulses and reducing MOT cooling time to achieve a 60% duty cycle15 , the self-

comparison (Figure 4.16) demonstrates one-clock stability of 2.2×10−16/
√
τ [88]. This value, which

is compared in Figure 4.7 with other prominent optical clocks, is the best stability per
√
τ achieved

to date.

15 With two clocks operating at 50% duty cycle, one can realize a proposal by Dick, et al. [29], which was
demonstrated in the microwave by Biedermann, et al. [5]. This involves using two clocks operating in an interleaved
fashion. When the first system measures the clock transition, the second is accruing dead time for sample preparation.
Then they switch roles, ensuring that the clock transition is always being measured and reducing dead time to zero.
This would affect the Dick-Effect-limited stability dramatically.
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Figure 4.16: a) The effects of pulse duration on the clock transition. A typical line scan with a 1
s interrogation time is shown in open black circles. To explore the limit of coherence in Sr2, we
scan the clock transition with a 4 s interrogation time and more atoms (solid green squares). Here
the linewidth and contrast are affected by the Fourier width and atomic interactions [6, 78]. b) A
new stability record (black circles) achieved by running with 1 s clock pulses and a 60% clock laser
duty cycle for each preparation and measurement sequence. The stability fits to 2.2 × 10−16/

√
τ

(red line). The previous result is indicated with the blue dashed line.



Chapter 5

Systematic Uncertainty

5.1 Systematic Measurements

5.1.1 Introduction

Improved stability, demonstrated in Chapter 4, is critical for better systematic shift mea-

surements. This is because systematic uncertainty is often measured by the clock itself (Section

4.1.1). A parameter known to cause a systematic shift (such as the lattice intensity or bias field) is

modulated, and the frequency shift that results from changing this parameter is measured with a

scheme similar to self-comparison. These measurements, which are typically limited by the stability

of the clock, are extrapolated to operating conditions. Although most major systematic shifts are

measured in this way, there is one important exception: the blackbody radiation (BBR) shift, for

which a completely different approach must be taken.1

Systematic uncertainty arises because in practice the clock laser is locked to the perturbed

clock transition, but we want to extrapolate the locked clock laser frequency to the bare transition

(Sections 1.6 and 2.7). With all systematic frequency shifts well known, real-time corrections could

be applied to Sr2 so that, when running this system as a clock (with the frequency comb counter

enabled), it ticks at a rate determined by the bare frequency.

1 Other teams have measured the BBR shift by looking at the effect of temperature modulation on their clock
transition frequency [2, 116]. This requires the ability to change the ambient temperature in a spatially uniform
manner, and the Sr2 clock is not equipped for this kind of temperature control. This approach to the BBR shift is
different than other systematic measurements performed in Sr2 (which are measured with a single clock) because it
requires the clock that is under evaluation to be referenced to a second, highly stable frequency standard. A reference
is needed because temperature cannot be modulated quickly, so drift of the clock laser cavity would ruin a BBR shift
measurement with only one clock. Referencing to a second system removes this drift from the evaluation.
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Sr2 has performed two systematic evaluations. Prior to these, the record for the best atomic

clock2 was 8.6× 10−18 total systematic uncertainty [23]. The first Sr2 systematic evaluation broke

this record with 6.4×10−18 total systematic uncertainty. The second evaluation, which began with

the goal of realizing low-10−18-level performance, secured the standing of Sr2 as the best clock by

achieving 2.1× 10−18 total uncertainty.

Evaluation 1 Evaluation 2

Effect Shift Uncertainty Shift Uncertainty

1st-order Zeeman -0.2 1.1 -0.2 0.2
2nd-order Zeeman -144.5 1.2 -51.7 0.3

Probe Stark 0.8 1.3 0.0 0.0
Density -4.7 0.6 -3.5 0.4

Lattice Stark -461.5 3.7 -1.3 1.1
Dc Stark -3.5 2.1 0.0 0.1

Static BBR -4962.9 1.8 -4562.1 0.3
Dynamic BBR -345.7 3.7 -305.3 1.4

AOM phase chirp 0.6 0.4 0.6 0.4
Servo offset 0.4 0.6 -0.5 0.4

Line pulling and tunneling 0 < 0.1 0 < 0.1
2nd-order Doppler 0 < 0.1 0 < 0.1

Background Gas Collisions 0 < 0.6 0.0 < 0.6

Total -5921.2 6.4 -4924.0 2.1

Table 5.1: The uncertainty budget for both evaluations. The effects are listed in the order that
they are discussed in this chapter. All uncertainties are quoted at the 1σ level.

5.1.2 Digital Lock-In Detection

The act of modulating a parameter to observe the change in the clock transition frequency

is similar to lock-in detection. The parameter under consideration is modulated at a certain rate,

and then the data record is demodulated at this rate in post processing, suppressing effects that

do not change with the modulation. From here on this procedure will be referred to as “lock-in

detection.”

An example of how this works for systematic evaluations is the following. A chosen parameter

(such as the lattice intensity or bias field magnitude) switches between two states. Each state of

2 The word “best” is often used to describe the clock with the lowest total systematic uncertainty despite that
stability is also an important figure of merit for clock performance.
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Figure 5.1: The lock-in measurement. A parameter is modulated by switching between two values
(“State 1” and “State 2” in the Figure). If the cycle time is Tc, which involves one interrogation
of the clock transition and an excited state fraction measurement, it requires 2Tc to measure the
scanning synthesizer frequency corresponding to the resonance center (Section 2.5.2). When the
parameter is in State 1, the clock transition is probed on either side of resonance, and the line
center is determined by the digital PID filter (Equation 2.44). The parameter is then switched to
State 2, shifting the clock transition resonance center, which is determined by the second servo.
The red and blue points in the Figure depict the time and parameter value when the line center is
determined.

this parameter corresponds to an independent atomic servo locked to the clock transition, and the

lock-in alternates between these two servos (Figure 5.1). Aside from this modulation parameter,

the atomic servos operate in the same conditions.

Suppose the scanning synthesizer center frequency data taken in the lock in measurement

is {ν1, ν2, . . . , νM}, where odd (even) subscripts mean that the data was taken with the lock-in

parameter in State 1 (2), and M is always an even number. For each of these points, the lock-

in parameter is known (either by measuring it each time a frequency point is acquired or by

stabilizing the two lock-in states to be constant throughout the measurement). The lock-in data is

∆νlock−in = {ν2 − ν1, ν4 − ν3, . . . , νM − νM−1}. If clock laser drift is canceled well enough (Section

3.7.1) such that it is negligible over the 4Tc it takes to measure one lock-in point, then the lock-in

data is equal to the clock transition frequency difference between the two states of the modulated

experimental parameter.3

3 Many Sr lattice clock groups have performed systematic measurements while referenced to another clock; however,
with good drift cancellation and point-string analysis (Section 5.1.5), the evaluations discussed in this thesis do not
require a second clock as a reference.
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5.1.3 Lever Arm

Extracting the information needed from lock-in data requires a model of how these data vary

with the lock-in parameter. As an example, take the probe ac Stark shift. This is the systematic

Stark shift caused by the clock laser. It is known that this shift is proportional to the clock

laser power P . The proportionality constant K is related to atomic structure and experimental

conditions such as the clock laser intensity distribution, so K is not known a priori. A lock-in point

ν2−ν1, taken when the power is modulated between P1 and P2, is equal to K(P2−P1). Suppose P0

is the clock laser value during normal clock operation. The systematic shift of the clock transition

during normal operation is inferred from lock-in data as

∆νprobe =
〈∆νlock−in〉P0

P2 − P1
=

〈∆νlock−in〉
L , (5.1)

where 〈. . .〉 is the mean of the data set and, by analogy with simple machines, L = (P2 −P1)/P0 is

known as the lever arm. Note that inferring ∆νprobe from 〈∆νlock−in〉 using Equation 5.1 relies on

the fact that the probe Stark shift is proportional to P . If this model were not accurate, Equation

5.1 would be an incorrect extrapolation of the data.

The uncertainty in ∆νprobe, δνprobe, is

δνprobe =
σlock−in

L , (5.2)

where σlock−in is the statistical uncertainty in the mean of the lock-in data, 〈∆νlock−in〉. σlock−in

is given by the stability of the clock (Section 4.6). As Equation 4.6 shows, the lever arm provides

a means of measuring a systematic shift with precision much better than the clock stability. For

many systematic measurements, L > 10, allowing for a systematic shift to be measured at a given

precision more than 100 times faster than if clock stability were relied upon alone.
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Figure 5.2: a) Simulated lock-in data. Here ∆I = I2 − I1. The data scatter is such that χ2
red takes

on the ideal value of 1 (despite looking ugly, as sparse χ2
red = 1 data often does). b) Simulated

shift extrapolated to the clock operation intensity. This is simply the lock-in data divided by the
measurement lever arm.

5.1.4 Model Testing

Lock-in data can also be used to test the model of the frequency shift as a function of the

lock-in parameter. To demonstrate this, I have simulated a probe Stark shift measurement (Figure

5.2). In this simulation, a clock laser intensity of I0 = 10 µW/cm2 is chosen as the clock operation

value. The lock-in modulates between I1 = I0 and I2, and the frequency difference between these

two conditions is averaged until it reaches 1 × 10−17 statistical uncertainty. This measurement

is repeated for values of I2 ranging from 0.1 to 1 mW/cm2.4 The mean of the lock-in data

〈∆νlock−in〉 for each value of I2 − I1 is shown in Figure 5.2a. The scatter is simulated as Gaussian

white noise with a reduced chi-square statistic χ2
red = 1. The extrapolated shift, ∆νlock−in/L, where

L = (I2 − I1)/I0, is shown in Figure 5.2b. The simulation treats the shift as linear in intensity,

and the mean and uncertainty of the mean of the extrapolated data is (−6.9 ± 0.5) × 10−19. This

agrees with the simulation’s true value of −6.5× 10−19.

In the context of a real measurement, since extrapolating data to the clock operation condition

4 As I will show in Section 5.4, in the actual probe Stark shift evaluation, we study this effect as a function of
clock laser pulse duration rather than intensity.
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relies the shift being linear in intensity, it is tempting to worry if a next-order Stark shift term

(quadratic in intensity) might be present in a subtle but significant way. An F -test for an additional

term [4] can be used to see if the data requires a quadratic model. This test compares the chi-

square statistic for different models to see if an extra term improves chi-square. In the simulated

∆νlock−in/L data, an F -test for an additional (quadratic) term results in the test statistic F = 0.37

(with 8 degrees of freedom). This corresponds to a test probability of 0.56.5 The F -test argues

for another term if the test probability is lower than a critical value that is conventionally taken

as 0.01 to 0.05 [4], so 0.56 is a strong indication that the data does not resolve quadratic behavior.

This is expected since ∆νlock−in values are simulated with a linear intensity dependence.

To study the effectiveness of the test, I add a small quadratic term (proportional to I22 − I21 )

to the simulated lock-in data. In this case, the extrapolated shift has the form ∆νlock−in/L =

α+β(I1+I2), where α is the linear (in intensity) probe Stark shift at the clock operation condition

and β is a positive constant. When ∆νlock−in/L is studied as a function of intensity, the mean

of the extrapolated data will be offset from α by the mean of the β(I1 + I2) term. Ideally, when

β is small enough for the offset to be statistically unimportant, the F -test would conclude that

the β(I1 + I2) term is not needed to model the data. It would also be desirable for the F -test

to conclude that β(I1 + I2) is required when the offset is significant. For most values of β, these

desired properties of the F -test hold true.

However, there is a small range of β values for which the mean is significantly affected but the

F -test does not conclude that an additional term is needed. For example, β can be made as large as

5.8×10−19 (W/cm2)−1, yet the F -test will show a model linear in intensity with a comfortable test

probability of 0.15. For this β, the mean of ∆νlock−in/L is −2.3×10−19, but β is still small enough

that the simulation’s true value of the clock operation probe Stark shift, α+βI0 = −6.4×10−18, is

statistically consistent with α. Meanwhile for β < 2.3 × 10−19 (W/cm2)−1, the offset of the mean

of the extrapolated data is within statistical uncertainty, and the F -test reflects that another term

is not needed. Therefore, for this simulation, the linear shift model will introduce significant error

5 This probability is computed using the F -test probability distribution given in Reference [4].
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for the range of 2.3 × 10−19 (W/cm2)−1 < β < 5.8 × 10−19 (W/cm2)−1, and the F -test will fail in

this regime.6

Since this blind spot results from neglecting higher-order terms, it may seem as if the clear

path forward is to always fit these terms even when the F -test argues that there is no statistical

justification for doing so. However, for β in the blind spot range and below, fitting the simulated

data to a+b(I1+I2) (where a and b are fit parameters) increases the uncertainty in the extrapolated

shift a + bI0 to four times above that when linear intensity dependence is assumed—even when

β = 0. Therefore, a wide range of probe Stark measurements that would be well described by a

model linear in intensity are greatly affected by treating the quadratic term as unknown. Also, for

β in the blind spot range, the value for the b fit coefficient often differs from the simulation’s true

value by more than the fit uncertainty.

This analysis based on the probe Stark shift extends to the many systematic shifts that have

higher-order terms that are not known precisely, such as shifts from the lattice that are nonlinear

in intensity, the quadratic density shift, and the third-order Zeeman shift. Although the range

of β values for which the statistical blind spot exists might seem insignificantly small, there has

been a great deal of concern in the clock community over higher-order effects that have not been

resolved but cause significant measurement bias [18, 121, 111]. If we choose to be concerned about

higher-order terms that might be significant but will not show up in an F -test, it is often difficult

to know how to proceed. Fits of higher-order terms will not be accurate, and they extract a big

toll, destroying the total uncertainty of the clock over a shift that may be negligible. Furthermore,

many of these shifts cannot be experimentally resolved even in the systems best equipped to do

so.7 Being confronted with the possibility of effects that cannot be statistically tested for, fit,

or measured, yet there is still concern about their size seems like a contrived scenario, but it

6 Note that this regime will vary with the parameters of the measurement set since the offset depends on the
variable that is modulated.

7 For instance, an M1-E2 lattice light shift was predicted to be very large [111]. Before this prediction, it had not
been considered in Sr clocks, and theory suggested that clock uncertainty budgets need to be amended to account for
this effect. However, the weak dependence of this effect on trap intensity made it impossible to resolve in most lattice
Stark shift measurements. The Sr clock at LNE-SYRTE could achieve unusually large lattice intensity, which should
be conducive to observing an M1-E2 shift, yet they measured no shift within their precision [121]. They concluded
the shift is much smaller than predicted.
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does happen [111, 121]. In the face of this, and because even seemingly sound calculations of

important shifts have turned out to be incorrect [94, 105, 111], we only accept higher-order terms

in two situations: if our statistical tests demand them, or if another team has reported statistically

resolved measurements of these effects that we have no cause to doubt. Although this approach

technically leaves open a small possibility of uncorrected measurement bias (should we be unlucky

enough for the coefficient of a higher-order effect to fall within the blind spot), to do otherwise would

leave our experimental methods and conclusions highly sensitive to experimentally unsubstantiated

concerns of higher-order effects.

5.1.5 Point-String Analysis

During a lock-in measurement, the scanning synthesizer data can be affected by drift of the 40

cm clock laser cavity. This is because if the rate of the drift cancellation oscillator (Section 3.7.1) is

not optimized, the atomic servo removes the remaining drift by adjusting the scanning synthesizer

frequency to compensate for it. We have observed that when this rate is far from optimized, the

lock-in data (which is comprised of scanning synthesizer frequency measurements) is contaminated

by this drift when it is analyzed as simple differences {ν2 − ν1, ν4 − ν3, . . . , νM − νM−1}. To guard

against this problem, the residual drift is monitored by real-time plotting of the center frequency

computed by one of the atomic servos to look for a linear slope. If a slope becomes apparent, the

rate of the drift cancellation oscillator is reset to compensate. Also, the data is processed to remove

any residual linear drift. This drift-insensitive method of analyzing lock-in measurement data is

point-string analysis [109].

For residual linear drift at a rate rres, the probe Stark data will be
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where νoffset is an unmeasured technical offset to the scanning synthesizer frequency. If these data

are used to create the vector
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then the drift will be canceled, making each entry in the vector equal to K(P2 − P1) as desired.

Therefore,

∆νprobe =
〈∆ν3pt〉

L , (5.3)

and each entry in the vector ∆ν3pt is called a three-point string. This analysis is valid as long as the

residual drift is sufficiently linear over the 6Tc it takes to measure three center frequencies. Control

experiments with a known frequency offset added between the two states of the lock-in shows that

three-point strings can effectively reproduce this added offset in the presence of uncanceled clock

laser drift.8

The three-point string vector ∆ν3pt hasM−2 elements whereas the vector of simple difference

data {ν2 − ν1, ν4 − ν3, . . . , νM − νM−1} has M/2 elements. Therefore, taking the uncertainty in the

8 For the control experiments, the rate of the drift cancellation synthesizer is intentionally set off its optimum.
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mean of ∆ν3pt to be the uncertainty in the lock-in measurement will underestimate the error bar

(since ∆ν3pt has more elements than the M/2 statistically independent simple difference points).

The uncertainty in the mean of ∆ν3pt should be inflated to account for this issue.

Suppose a single center frequency measurement has uncertainty of σ. A single point in a

measurement of ∆νprobe, processed using a simple difference, is (ν2 − ν1)/L. Using standard error

propagation and assuming no uncertainty in L, the uncertainty in this measurement is
√
2σ/L, and

the uncertainty in the mean is 2σ/L
√
M (for largeM). However, the first point of ∆νprobe processed

as a three-point string is
[

ν2 − 1
2(ν1 + ν3)

]

/L. The single-point uncertainty and uncertainty in the

mean are
√
3σ/

√
2L and

√
3σ/

√
2ML (again, for large M). Therefore,

δνprobe =

√

8

3

σ3pt
L , (5.4)

where σ3pt is the statistical uncertainty in the mean of ∆ν3pt.

This approach can be generalized to higher orders of drift [109]. Point strings of length n

remove polynomial drift of order n− 2. If νk is the kth point of {ν1, ν2, . . . , νM}, the n-point string

is

1

2n−2

n
∑

m=1

(−1)k+m−1 (n− 1)!

(n −m)!(m− 1)!
νk+m−1. (5.5)

This expression is valid from k = 1 to k = M − n + 1, which is the total number of point strings.

When this formalism is used to remove drift, the uncertainty in the mean must be inflated by a

factor

2n−1

√

∑n
m=1

[

(n−1)!
(n−m)!(m−1)!

]2
(5.6)

to extrapolate this uncertainty to that of statistically independent points.
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5.2 Residual First-Order Zeeman Shift

5.2.1 Introduction

With an understanding of how many systematic measurements are performed and analyzed,

I will now discuss the Sr2 systematic measurements. Before I discuss the systematic shifts that

are measured with the lock-in technique, it is useful to first discuss the residual first-order Zeeman

systematic shift. This is because a discussion of this shift provides a good context for introducing

the background magnetic field servo, which is used for many other systematic measurements.

During normal clock operation, the stretched-states servo (Section 2.5.3) cancels most of the

first-order Zeeman shift. However, if the background magnetic field (due to stray fields from lab

equipment or Earth’s field) drifts appreciably in between measurements of the two stretched-state

center frequencies, there can be a residual first-order Zeeman shift.

Let {ν1, ν2, ν3, . . .} be a vector of center frequency data taken by the stretched-states servo.

Even (odd) subscripts correspond to data taken for the stretched state with a negative (positive)

first-order Zeeman shift. Also, let the stretched state first-order Zeeman shift per Gauss be ζ =

9µBδg/2h = 487.8 HzG−1 (Equation 2.40). For an external field of B(t), which is comprised of the

added bias field and possible a drifting background field, ν1 = νSr − ζB(t1) and ν2 = νSr + ζB(t2),

where t2 − t1 = 2Tc and νSr is the zero-field clock transition frequency.9 When the external field

is free of drift, the zero-field clock transition center frequency is inferred as (ν1 + ν2)/2 (Equation

2.5.3).

When the external field does drift, (ν1 + ν2)/2 = νSr + ζ [B(t2)−B(t1)] /2. This stretched

state average frequency, normally used to infer νSr, now has a residual first-order Zeeman shift

ζ [B(t2)−B(t1)] /2. The shift of the entire data set is

∆νZ1 =
1

2
ζ〈B(t+ 2Tc)−B(t)〉, (5.7)

9 Given that the two stretched state resonance centers are not measured one after another—rather, the data used
to determine these resonances is interleaved (Figure 2.16)—perhaps t2−t1 should not be set equal to 2Tc. However, to
simplify the presentation and arguments in this Section, I consider the case of the resonance centers being measured
one after another. All of the conclusions of this Section can still be applied to normal clock operation.
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where 〈. . .〉 is an average over the time values for which the data was taken.

5.2.2 Background Field Servo

The Sr2 system can experience background magnetic field drifts at the level of 10 mG over a

couple of hours. This is due to the magnet from an ion pump near the main chamber (Figure 3.3),

which produces a field that changes as the laboratory temperature fluctuates.10 To remove this

drift, we implement a background magnetic field servo [13].

Measurements for this servo take place with the spin polarization beam extinguished. The

polarization coil current and V2 (Figure 3.17) are also shut off.11 In this state the clock transition is

unpolarized and the only remaining field is the residual background field. For a typical background

of about 10 mG, the unpolarized clock transition lineshape is broader and has worse contrast than

in the zero-field case (Figure 2.14a).

The background field servo adds a field to cancel this background. The servo accomplishes

this by adjusting the currents in the xyz coils to maximize the unpolarized clock transition contrast,

which is biggest for zero background field. One iteration of this servo requires three measurements

per xyz coil pair (nine total). The first three of these are taken holding the y and z coil currents

fixed while the x coil current is switched between the values Ix, Ix+∆I, and Ix−∆I (one for each

measurement). Here Ix is the initial coil current and ∆I is a small current step.

For each of these three currents, the clock transition interrogates the center of the unpolarized

line, and the excited state fraction is recorded. For a well-canceled background field, the excited

state fraction would be the highest when the x coil current is Ix, and it would diminish equally

for Ix + ∆I and Ix − ∆I. If the background field drifted off its optimum, the currents Ix + ∆I

and Ix −∆I would yield different excited state fractions. Treating the on-resonance excited state

fraction as a parabolic function of external field, a digital PI filter computes a new value for Ix that

balances the excited state fractions measured for currents Ix +∆I and Ix −∆I (where ∆I, which

10 Temperature stabilization of the space around the vacuum chamber, which will be discussed in Section 5.8.8,
helps with this problem.

11 V1 from Figure 3.17 is shut off after 689 nm MOT cooling, so it is off at this point as well.
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is determined empirically to optimize the servo, remains fixed throughout servo operation). The x

coil is then held while this same procedure is performed on the y and then z coils.

These servo measurements cannot occur while the stretched-states lock is running; therefore,

normal clock operation involves switching between 81 cycles of the stretched-states lock and nine

measurements for the background field servo.12 The background field servo adjusts the coil

currents using a DAC card. Each of the three outputs of the card are summed into a current

stabilizer setpoint voltage for one of the xyz coils (Figure 3.17). After a few iterations of this servo,

the background field remains well canceled while this servo is engaged.

In a typical day, before the background field servo is initiated for the first time, we find xyz

coil servo voltages that roughly cancel the background field,13 allowing for the initial state of the

servo to be nearly stabilized. However, to test the servo, we intentionally offset the xyz coils from

their optima and observe the servo effectively correcting the coil currents to cancel the background

field (Figure 5.3).

5.2.3 Shift Analysis

With the background field well canceled, the residual first-order Zeeman shift ∆νZ1 must

be measured and assigned an uncertainty. This shift can be inferred with stretched-states servo

data. As explained in Section 5.2.1, for a time varying magnetic field, the first two stretched-states

servo points are ν1 = νSr − ζB(t1) and ν2 = νSr + ζB(t2). To analyze the shift, first I define a

stretched state frequency difference vector as {s1, s2, s3, . . .} = {ν2 − ν1, ν4 − ν3, ν6 − ν5, . . .}. Note

that s2 − s1 = ζ [B(t3)−B(t1) +B(t4)−B(t2)].

Forming a new vector S = {s2 − s1, s4 − s3, s6 − s5, . . .}, the mean of S is

12 The background field servo operates with the scanning synthesizer at the frequency corresponding to the zero-
field clock transition resonance. This frequency is known from the stretched-states servo. Just before pausing the
stretched-states servo to allow for the background field servo measurements, the position of the zero-field resonance
center is computed by averaging the most recently acquired stretched state center frequencies.

13 This is done by setting the free running clock laser on the zero-field resonance and adjusting the coil currents
by hand (without feedback) to coarsely maximize the excited state fraction.
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Figure 5.3: The zero-field-resonance excited state fraction as a function of servo iteration and
detuning. To test the servo, the xyz coil currents are intentionally offset from their optima. This
results in the broadened line of the right plot (red open circles). The servo is then turned on, and
the excited state fraction gets larger as the servo runs (left plot). After 11 iterations, a scan of
the zero-field clock transition shows the familiar Rabi lineshape (right plot, blue circles), indicating
that the 10 mF states are degenerate and the background field is well canceled.

〈S〉 = 2ζ〈B(t+ 4Tc)−B(t)〉 (5.8)

≥ 4ζ〈B(t+ 2Tc)−B(t)〉. (5.9)

where this second expression is equal to 〈S〉 for drift linear in time and less than 〈S〉 for higher-order

drift. Using Equation 5.7,

∆νZ1 ≤
1

8
〈S〉. (5.10)

This inequality puts an upper bound on ∆νZ1. Since ∆νZ1 is usually consistent with zero, an upper

bound is sufficient. Applying this analysis to the full record of stretched-states servo data, ∆νZ1 is

less than (−1.6± 2.0) × 10−19 [88]. In practice, this value is quoted for ∆νZ1.
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5.3 Second-Order Zeeman Shift

5.3.1 Introduction

As explained in Section 2.5.3, using a bias field for clock operation introduces a second-order

Zeeman shift that cannot be removed with the stretched-states servo. This effect is predicted to

shift the stretched states equally by (−0.233 HzG−2)B2, where B is the bias field magnitude [16].

To measure this shift, we use a lock-in measurement with B as the modulation parameter. Like in

Equations 5.1 and 5.2, the shift of the clock transition for normal clock operation is 〈∆νlock−in〉/L.

The lever arm for the measurement is L = (B2
2 −B2

1)/B
2
0 , where B1 and B2 are the lock-in states

and B0 is the field during normal clock operation.

It is convenient to measure this shift as a function of the frequency difference between the

stretched states (which is proportional to the bias field magnitude) for normal clock operation [121].

As explained in Section 2.5.1, the first-order Zeeman shift per unit field is −108.4mF HzG−1, which

implies a stretched state frequency difference of 975.6 HzG−1. Using this number, the predicted

value of the second-order Zeeman shift in units of fractional frequency per kHz of stretched state

difference is −5.71 × 10−18 kHz−2. Working in these units, we choose a clock operation bias field

corresponding to a stretched state difference of S0 = 300 Hz. Therefore, the lever arm for the

measurement can also be written as L = (S2
2 − S2

1)/S
2
0 , where S1 and S2 are the stretched state

differences corresponding to B1 and B2.

To measure the second-order Zeeman shift due to modulating the field, the lock-in data must

be free of the first-order Zeeman effect. This is accomplished using four atomic servos (rather than

two servos as discussed Section 5.1.2). For both lock-in states of the bias field, there is a stretched-

states lock (comprised of two atomic servos) generating a stretched state average frequency (Section

2.5.3) that is not affected by the first-order Zeeman shift. The difference between the two stretched

state average frequencies after one cycle through the four atomic servos is one lock-in data point.

Also, since a drifting background field would introduce unwanted variation in the second-order

Zeeman shift measurement, the background field servo is enabled during this evaluation.
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Figure 5.4: The data used to align the z coil field. The σ transition is scanned for different values
of the z coil field. Measured lineshapes are fit, and the fit amplitudes are plotted here. These data
are then fit to a parabola, and the parabola’s offset is the desired field value.

5.3.2 The Lattice Tensor Shift

This measurement could be negatively affected by the lattice tensor shift if care is not taken.

As shown in Equation 2.19, the lattice tensor shift ∆νt is

∆νt = 36κt(3|ǫ̂ · B̂|2 − 1)Ulat(r, z). (5.11)

Due to the dependence on B̂, if the bias field is modulated in a manner that changes the field

direction, the measurement will be contaminated with a lattice tensor shift that differs between

the two lock-in states. Since the overall bias field is comprised of fields from the polarization and

xyz coils, lattice tensor shift contamination can be prevented by adjusting all four coil currents so

that the bias field is well aligned with the lattice polarization ǫ̂ for both field states of the lock-in

measurement. As explained in Section 3.5.1, B̂ and ǫ̂ are aligned by first aligning the clock laser

polarization with ǫ̂ and then studyingmF -changing σ transitions (Figure 5.4). σ transitions become

possible when B̂ is not aligned with the clock laser polarization.

For each state of the lock-in measurement, the polarization coil provides the bulk of the field
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magnitude, and the xyz coils merely help to point the bias field in the correct direction.14 Two

polarization coil currents are selected as lock-in parameter states, and then σ transition scans are

used to adjust the xyz coils such that the bias field is aligned with the clock laser polarization. This

procedure is repeated a few times to ensure that the bias field is well aligned.

5.3.3 First and Second Evaluations

The first evaluation of the second-order Zeeman shift is performed with lock-in parameters

S1 and S2 ranging from 300 Hz to 1.2 kHz [13]. This evaluation measures a second-order Zeeman

shift of (−5.78±0.05)×10−16 kHz−2. The second evaluation uses S1 = 291 Hz and S2 = 1.66 kHz,

measuring a second-order Zeeman shift of (−5.82 ± 0.07) × 10−16 kHz−2. Extrapolating to the

operating stretched state difference of S0 = 300 Hz, the Sr2 second-order Zeeman shift implied by

the second evaluation is (−5.23 ± 0.07) × 10−17 (Figure 5.5a).

The shift per stretched state frequency difference squared is an atomic property, so evaluations

of this by different research teams can be treated as independent measurements of the same quantity

(Figure 5.5b). Performing a weighted average of several reported measurements [74, 13, 88, 121,

35], the shift and its root-reduced-chi-square-inflated uncertainty is (−5.75± 0.03)× 10−16 kHz−2.

Extrapolating to the operating S0, the final Sr2 second-order Zeeman shift is −5.17 × 10−17 with

an uncertainty of 2.5 × 10−19 [88].

5.4 Probe Ac Stark Shift

5.4.1 Introduction

As explained in Section 5.1.3, the probe Stark shift ∆νprobe is proportional to P , the clock

laser power. This shift is measured using the lock-in technique. For state 1 (2) of the lock-in, a

stretched-states lock uses clock laser π-pulses with a long (short) interrogation time, which means

that a smaller (larger) Rabi frequency, and therefore less (more) laser power is needed to make a

14 Recall that the polarization coils point at an angle 16◦ with respect to the horizontal and the clock laser
polarization is nearly horizontal
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Figure 5.5: a) Overlapping Allan deviation of the second-order Zeeman shift extrapolated to the
operating value of S0. This is the second Sr2 evaluation of this shift. b) Measurements of the
fractional second-order Zeeman shift per stretched state frequency difference squared. These values
have been reported by four strontium clocks: Sr1 [74], Sr2 [13, 88], the Sr clock at LNE-SYRTE
(Paris) [121], and the PTB (Braunschweig, Germany) Sr clock [35]. The uncertainty of the weighted
average is depicted as the gray band.
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π-pulse. The difference between the two stretched state average frequencies is the lock-in data.

Two stretched-states servos are used in the lock-in measurement (rather than only two atomic

servos) because the background field servo is run during this evaluation (Section 5.2.2). The

background field needs to be canceled because the probe Stark shift has a tensor component that

will vary with a drifting magnetic field. For the lock-in parameter values P1 and P2, and an

operating laser power P0, the lever arm for this measurement is L = (P2 − P1)/P0. It is easier to

express L in terms of the pulse duration used for each of these laser powers, t0, t1, and t2. Since

π-pulses are used, the Rabi frequency for the measurement Ω = π/t. Also, Ω ∝ Ec0, where Ec0 is

the clock laser electric field amplitude (Section 2.4.1). Since Ec0 ∝
√
P , ∆νprobe ∝ 1/t2. Therefore,

the lever arm is L =
(

t0
t2

)2
−
(

t0
t1

)2
.

5.4.2 First and Second Evaluations

The first evaluation of the probe Stark shift uses t2 = 50 ms and t1 = 200 ms [13]. In this

case, the pulse duration for clock operation is t0 = 160 ms, resulting in a lever arm of L = 9.6.

Modulating the clock laser interrogation time by this amount requires that the laser power be

modulated by a factor of (t1/t2)
2 = 16 to maintain π-pulses. This is accomplished using the clock

laser intensity servo (Section 3.7.1). Dividing the mean and standard deviation of the mean of the

lock-in data by L, the final probe Stark shift for the first evaluation is (0.5 ± 1.3) × 10−18 [13].

This treatment of the measurement lever arm assumes that both pulses perfectly achieve a

pulse area of π. The uncertainty in this assumption is assigned by studying the range of clock

laser powers for which the measured lineshape still resembles a π-pulse. For power slightly larger

or smaller than that corresponding to a π-pulse, the peak excited state fraction will be diminished.

Studying the change in clock laser power required to diminish the excited state fraction, treating

this range as uncertainty, and propagating it into the final processed signal, we calculate a negligible

correction for this effect.

For the second evaluation, we would like the probe Stark uncertainty to be characterized

at the mid-10−19 level or better. This is because our measurement goal for BBR dynamic shift
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Figure 5.6: a) Overlapping Allan deviation of the first probe Stark shift evaluation. This is the
measurement of the shift extrapolated to normal clock operation, meaning that it is the lock-in
data divided by L. b) Binned lock-in data. Each marker represents a mean of 25 points, and the
error bars are the standard deviation of this mean. The reduced chi-square χ2

red is 0.92.
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Figure 5.7: Overlapping Allan deviation of the second probe Stark shift evaluation. Here the
measured shift extrapolated to clock operation conditions reaches the low-10−20-level in less than
an hour of measurement time.

coefficient (discussed in Section 5.9) would yield low 10−18 level uncertainty, and we want to reduce

as many other uncertainties as possible to negligible levels. To reduce the probe Stark uncertainty,

it is advantageous to improve the measurement lever arm. This is accomplished with a neutral

density filter attached to a stepper motor to move this filter in and out of the clock laser. This

allows the clock laser intensity to be modulated by a factor of 83.5.

t1 is fixed at 180 ms, and the clock laser intensity servo is adjusted for a π-pulse when the

motorized neutral density filter is removed from the beam. For the same intensity servo value, t2 is

adjusted for a π-pulse when the filter is in the beam, resulting in t2 = 19.7 ms. If t0 = 160 ms as in

the first evaluation, we would have already achieved a lever arm of 65.2. However, to bolster the Sr2

stability for our second evaluation [88], clock operation with 1 s pulses has now been demonstrated

(Section 4.6). With t0 = 1 s as the new pulse duration for normal clock operation, L reaches a

staggering value of 2546. With this amazing lever arm, the second probe Stark evaluation measures

a shift of (−3.2 ± 1.7)× 10−20.



118

5.5 Density Shift

5.5.1 p-Wave Density Shift

Although most major systematic shifts of the Sr2 clock transition come from electromagnetic

perturbations, there is one important exception: the density shift [66]. This is a frequency shift

due to interactions between particles in multiply occupied lattice sites. Since the 87Sr lattice clock

is based on spin-polarized ultracold fermions, the s-wave part of these interactions is suppressed

unless there is a significant amount of excitation inhomogeneity [19, 99].

A substantial density shift was observed in the Sr1 clock, and early studies of this effect

attributed the shift to inhomogeneous s-wave interactions [19]. Later, a study by the NIST lattice

clock team identified p-wave interactions as the dominant partial wave interaction in ytterbium

[64]. Further measurements in Sr1 revealed a p-wave contribution to the strontium density shift

[7], meaning that s- and p-wave interactions most likely played a role in density shift measurements

[109, 6]. More recent work in Sr1 showed improved excitation homogeneity, which suppressed s-

wave interactions and left p-wave effects as the dominant density shift mechanism [78].

The p-wave density shift in the mean field approximation is given as [71]

∆νp =
π

h
n(~r)ET [veeρee − vggρgg + (ρgg − ρee)veg] , (5.12)

where n(~r) is the particle density and ET is the mean collision energy, which is proportional to

kBT . ρgg and ρee are the ground and excited state population fractions, and vgg, veg, and vee are

the p-wave scattering volumes.

The density in a given lattice site is [110]

n(~r) =
Nsite

π3/2LxLyLz
exp

(

− x2

L2
x

− y2

L2
y

− z2

L2
z

)

, (5.13)

where Nsite is the number of particles in the site. The lengths Lx,y,z are given by
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Li =

√

~

mωi

√

2〈ni〉+ 1. (5.14)

Here ωx,y,z is the trap frequency in the {x, y, z} direction (Equations 2.7 and 2.8) and the occupancy

factor 〈ni〉 is

〈ni〉 =
1

exp
(

~ωi
kBT

)

− 1
. (5.15)

In the limit kBT ≫ ~ωi, Li →
√

2kBT/mω
2
i , which is the length scale of a thermal gas in a

harmonic trap. For kBT ≪ ~ωi, Li becomes the harmonic oscillator length
√

~/mωi. Since the

radial trap frequency νr = 120 Hz, Lx and Ly are both equal to
√

2kBT/mω2
r to a very good

approximation (for typical lattice temperatures of a few µK).

It is interesting to look at how the density shift scales with the experimental parameters N ,

T , and U0. If one uses sideband cooling along the lattice axis, whereby the atoms are cooled to the

motional ground state in this direction by driving a blue sideband transition, then Lz →
√

~/mωz,

and

∆νdensity ∝ NU
5/4
0 . (5.16)

This expression uses the fact that ωr and ωz are proportional to
√
U0 (Equations 2.7 and 2.8).

The measured density shift ∆νdensity results from spatially averaging ∆νp. In this case, the p-wave

density shift is temperature independent.

For kBT ≫ ~ωz,

∆νdensity ∝ NU
3/2
0√
T

. (5.17)

In Sr2, kBT is comparable to ~ωz,
15 , and treating the density as thermal is an approximation

that is good to 3%. Also, for consistency with Equations 2.7 and 2.8, this analysis has ignored

15 The biggest value of νz usually observed in Sr2 is 120 kHz. At this depth, the sample temperature is usually
7 µK.
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the influence of gravity. Gravity can be included by replacing U0 in these scaling laws with Uatom

(Section 2.4.5).

5.5.2 Density Shift in a Cavity Lattice

When operating a lattice clock, there is a tension between the density shift and QPN. A

small atom number is good for reducing the density shift, yet a large N is preferred for minimizing

QPN. Therefore, it is best to operate with N just large enough to make QPN a few times lower

than the Dick Effect. For the 160 ms clock pulses used in the first Sr2 evaluation, the Dick Effect

for typical experimental parameters is 3.6× 10−16/
√
τ . Therefore, N = 2000 is a good choice since

it results in QPN of 1.2 × 10−16/
√
τ . For the 1 s pulses used in the second evaluation, the Dick

Effect is predicted to be 1.8× 10−16/
√
τ , and QPN for N = 2000 is 2.1× 10−17/

√
τ . Although the

clock operation atom number could stand to be reduced by an order of magnitude for 1 s pulses,

the Sr2 system is optimized for N = 2000,16 so it is convenient to use this value is used for both

160 ms and 1 s pulses. As I will show in Section 5.5.4, the density shift is manageable at N = 2000.

Although the density shift is large in Sr1 [74], it is significantly smaller in Sr2 due to the

large-volume cavity lattice (Section 2.3.3). For both systems, the maximum lattice intensity is

limited by the power available from the 813 nm light source. However, because of the intensity

enhancement from the lattice cavity (Equation 2.14), the Sr2 system can achieve a good lattice

depth for a trap beam waist of 160 µm (compared to the Sr1 waist of 40 µm). At this waist, Sr2

achieves a maximum axial trap frequency of νz = 120 kHz (corresponding to Uatom = 300Erec or

50 µK), whereas Sr1 measures νz = 80 kHz (with Uatom = 130Erec or 22 µK).

The two advantages of the cavity lattice that improve clock stability (Section 4.6) also improve

the density shift. First, the large volume means that Sr2 can operate with a smaller density at

N = 2000 than Sr1. For the same atom number, the Sr2 density is estimated to be 30 times less

than that of Sr1 using a Poissonian lattice filling model [110].17 Second, the good spatial overlap

16 In particular, for the measured Sr2 detection noise of δN = 11.4 atoms, stability degradation due to detection
noise is worse than it is for QPN when N < 2 δN2 = 260 (Section A.4).

17 This model assumes that the lattice overlaps a 1/e 689 nm MOT cloud width of 160 µm, compared to 30 µm
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with the 689 nm MOT means that Sr2 can trap an excess of atoms, which is useful for making

density shift measurements with a large lever arm.

5.5.3 Large Lever Arm Measurement

Due to the ability to trap many more atoms than are needed, N is a good choice for a lock-in

modulation parameter. Although Equation 5.17 suggests that Uatom might also be a good choice,

it would result in a worse lever arm than if N were used. With a maximum Uatom of 300Erec and

a minimum reliable Uatom of 71Erec, the best achievable lever arm is 8.4. Meanwhile, the lattice

can trap N = 1× 105. Extrapolating to an operating atom number of N = 2000, a lever arm of 50

is possible.

However, at some level, the density shift for Rabi spectroscopy becomes nonlinear in N [98].

To check the linearity of the density shift, this effect is measured as a function of ∆N , which is the

difference in lock-in parameters [89]. For this measurement, we use the lock-in scheme described

in Section 5.1.2, where two atomic servos (one for each value of the lock-in parameter) are locked

to the same stretched state. Because the atom number fluctuates, the total PMT counts (Section

3.7.2), which are proportional to the atom number, are recorded for every excited state fraction

measurement. Using the set of measurements of N , {N1, N2, N3, . . .}, where Nk is controlled to be

large when k is even and small when k is odd, the lever arm for this measurement is treated as a

vector L = {(N2 −N1)/N0, (N4 −N3)/N0, . . .} (with N0 = 2000). Density shift data is processed

by dividing each lock-in point by the instantaneous lever arm, {(ν2 − ν1)N0/(N2 − N1), (ν4 −

ν3)N0/(N4 −N3), . . .}. Here νk is the center frequency taken when the atom number is Nk.
18

We study the density shift as a function of ∆N = Nhigh − Nlow, which is the difference

between the large and small atom numbers used for each lock-in point. A plot of the difference

between νhigh − νlow (the frequencies corresponding to Nhigh and Nlow) divided by ∆N should

appear constant as a function of ∆N if the density shift is linear, and this is the observed behavior

for the manner in which the Sr1 lattice is aligned.
18 Control of N is based on changing the 461 nm MOT laser intensity using the MOT light AOM (Section 3.2.3).

Fluctuations in N of 15% about its average value are typical, and N can also drift downward when one of the Sr2
cooling laser systems needs to be reoptimized.
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Figure 5.8: The measured Sr2 density shift as a function of ∆N (taken from Reference [89]). Each
point on this plot represents an average over a bin of 30 measurements of (νhigh − νlow)/(Nhigh −
Nlow). Our statistics show that these data extrapolated toN = 2000 do not support nonlinear terms
within an uncertainty of 8.2 × 10−19. This measurement was performed with Uatom = 210Erec, so
if the data is extrapolated to the clock operation Uatom of Uclock = 71Erec, a nonlinear shift is not
supported within a 1.6× 10−19 uncertainty. Inset: A single 2000 s long density shift measurement
with ∆N = 4.1× 104 (average value). The shift per atom was measured and then scaled up to the
clock operation atom number of N0 = 2000.

0 1 2 3 4 5

x 10
4

−8

−6

−4

−2

0

2

x 10
−16

∆N

Lo
ck

−
in

 d
at

a

Figure 5.9: The linear trend is more apparent for the lock-in data. Here the data is binned more
coarsely, using bin sizes of 600, for clarity. The blue line is a linear fit that assumes the shift goes
to zero for ∆N = 0.



123

120 160 200 240 280

−5

0

5

10
x 10

−18

Trap Depth (E
rec

)

R
es

id
ua

ls
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a fit to the expected U
3/2
atom power law (Equation 5.17) are plotted here to make the statistical

behavior more apparent. The light blue band is the ±1σ confidence interval. The fit coefficient

is (−3.9 ± 0.3) × 10−21 E
−3/2
rec . The confidence interval has been inflated by the square root of

χ2
red = 2.0.

(Figure 5.8). An F -test19 shows that measurement does not require a quadratic model, arguing

for a linear model within the measurement uncertainty of 1.6 × 10−19. For large atom number

modulation, the shift averages down to 1×10−18 uncertainty in about 20 minutes (Figure 5.8) [89].

The data in Figure 5.8 is overscattered, resulting in a reduced chi-square statistic of χ2
red =

1.7. Although χ2
red is typically very close to unity for most of the Sr2 systematic evaluations, it

is consistently around 2 for density shift measurements. An extra noise source could be present

that has not been identified, such as variations in optical trapping conditions. To ensure that

error bars are sufficiently inflated to account for possible unidentified sources of noise, all final

uncertainties, including the 1.6× 10−19 uncertainty from the data in Figure 5.8, are multiplied by
√

χ2
red if χ2

red > 1 [4].

We also study the density shift as a function of Uatom. For this measurement, we prefer to

use the Ti:sapphire lattice laser instead of the TA system (Section 3.4), which was employed in the

19 With 305 degrees of freedom, the F -test results in a test statistic F = 3.36, corresponding to the probability
0.068.
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probe Stark and second-order Zeeman shift evaluations. This is because any study of clock behavior

determined by the lattice should use the light source that is part of normal clock operation. Uatom is

determined using sideband spectroscopy to measure the trap frequency, which implies the potential

depth accord to Equation 2.39. The data fits to a U
3/2
atom model (Figure 5.10) with χ2

red = 2.0.

5.5.4 Systematic Evaluation

Rather than use the results of the study of density shift linearity to assign a clock operation

value to this effect, we opted to re-evaluate the density shift (Figure 5.11). This is because shortly

after the linearity studies, changes to the Sr2 apparatus required the system to be re-optimized,

potentially changing experimental parameters that could affect the density shift. For the systematic

measurement, Uatom = 119Erec, and the lock-in modulates between 2400 and 12000 atoms (average

values), leading to an average lever arm of 4.8. Extrapolating this to clock operation conditions

quoted in the first evaluation of N = 2000 and Uatom = 87 Erec, the final shift is (−4.7±0.6)×10−18

[13].

This measurement was taken at values of Uatom lower than the best we could achieve (meaning

that the maximum atom number, and therefore the lever arm, was also lower). Despite that the

lever arm is low for this measurement, it ultimately proved to be a good determination of the Sr2

density shift due to the length of the data record. This measurement is also good enough for the

second evaluation, which quoted new clock operation conditions of N = 2000 and Uatom = 71 Erec,

implying a final shift of (−3.5± 0.4) × 10−18 [88].

5.6 Lattice Stark Shift

5.6.1 Lever Arm and Nonlinear Light Shifts

Using Equation 2.19, the lattice ac Stark shift for clock operation is

∆νac = −
[

κs(λ) + 36κt(λ)(3|ǫ̂ · B̂|2 − 1)
]

Uatom, (5.18)
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Figure 5.11: The density shift extrapolated to operating conditions of N = 2000 and Uatom =
71Erec.

where the vector term has been ignored (Section 2.6). As explained in Section 2.6, the magic

wavelength for the optical lattice clock is the wavelength λ at which the scalar and tensor terms

of ∆νac cancel one another for the ǫ̂ · B̂ = 1 case. Sr1 measured this wavelength, but at the time

measurement precision was not high enough to resolve the tensor shift [74]. The Sr team at LNE-

SYRTE achieved the precision needed to observe tensor shift effects, but they did not determine

the scalar-tensor cancellation wavelength, reporting instead the wavelength at which κs(λ) = 0

[121]. Recently the Sr group at PTB measured this cancellation wavelength, obtaining a value of

c/368.554465(3) THz [33].

The two Sr2 lattice Stark shift evaluations are both performed with our Ti:saph lattice laser.

The laser wavelength is stabilized to a frequency comb that is referenced to the NIST hydrogen

maser array (Section 3.4.3), and the cavity lattice intensity is modulated for lock-in detection.

Modulation is performed with the lattice cavity transmission intensity stabilizer (Section 3.4.2),

which actuates on the drive amplitude of the Ti:saph double-passed AOM (Figure 3.15). Uatom is

modulated by about 180 Erec, resulting in a small measurement lever arm of about 2.

The calculation of this lever arm assumes that the shift is linear in lattice intensity. However,



126

lattice hyperpolarizability, which is proportional to the square of the lattice intensity, has been

considered since the first proposals of the Sr lattice clock [58]. Also, a frequency shift from the

lattice laser coupling to M1-E2 transitions, which goes as the square root of the lattice intensity,

has been discussed [111]. Attempts have been made to measure the size of these effects [121]. As

I will discuss in Sections 5.6.3 and 5.6.4, we have very carefully considered the treatment of these

shifts in the Sr2 systematic evaluations.

5.6.2 Technical Considerations

To perform a robust and rigorous evaluation of the lattice Stark shift, other systematic shifts

that could couple to this measurement must be controlled. As with the probe Stark shift, the

background field servo is used to prevent the tensor term (Equation 5.18) in the lattice shift from

drifting. Also, we align the bias field to the lattice polarization to ensure that the tensor term is

first-order insensitive to any residual magnetic field drift that may exist.

Another potential problem is an uncontrolled density shift, which can mimic a lattice Stark

effect due to its U
3/2
atom dependence (Equation 5.17). Therefore, as the trap intensity is modulated for

lattice Stark measurements, we also modulate the atom number to ensure that NU
3/2
atom is the same

for both lock-in states. In this case, the density shift is common mode to both states, and therefore

it cancels in the lock-in data. To thoroughly enforce the constancy of NU
3/2
atom in the presence of a

fluctuating N , lock-in points for which the magnitude of N1U
3/2
1 −N2U

3/2
2 is largest are removed

in post processing until the data run average of N1U
3/2
1 −N2U

3/2
2 is well below our measurement

precision.20 We calculate the maximum acceptable value of the magnitude of N1U
3/2
1 − N2U

3/2
2

from the shift coefficients obtained from studying the density shift as a function of N and Uatom.

We then enforce that the data run average of N1U
3/2
1 −N2U

3/2
2 is more than 10 times smaller than

this maximum value.21

20 For one lock-in point ν2 − ν1, N1 (N2) and U1 (U2) are the atom number and observed Uatom for which ν1 (ν2)
is measured.

21 Great care must always be taken when removing data points. It is important to stress that no data point
is removed based on its frequency value; rather, measurements of the atom number and trap depth are used to
compute N1U

3/2
1 −N2U

3/2
2 , and the value of this difference determines whether frequency points should be removed.

Additionally, the cuts are performed in an automated fashion that is blind to the frequency values (looking only at
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Lastly, as explained in Section 3.4.2, a Ti:saph laser is needed for lattice Stark measurements.

This is because the amplified spontaneous emission from the TA-based lattice laser system can cause

severe frequency shifts. To get a rough idea of the magnitude of the TA amplified spontaneous

emission shift, we measure the change in the clock transition frequency caused by putting a narrow

optical bandpass filter (centered on the magic wavelength) in the TA-based lattice laser, observing

a 10−15-level effect. Furthermore, comparisons between Sr1 and the Yb lattice clock at NIST

suffered from 10−15-level drift that has been attributed to the TA lattice laser Sr1 used at the time.

This implies that the Sr1 amplified spontaneous emission spectrum was time varying. In other

measurements that used both an optical filter and a prestabilization cavity to remove amplified

spontaneous emission, Sr1 still observed significant time varying frequency shifts due to their TA

lattice spectrum, implying that filtration is not enough to remove this effect. The Sr group at

LNE-SYRTE observed similar issues with TA systems [114].

Fortunately this spectral drift will have no measurable effect on TA-based evaluations of the

probe Stark shift, second-order Zeeman shift, and other shifts that are not caused by the lattice.

Since a lock-in measurement is the difference between two data points taken within a few seconds

of each other, the drift rate of the amplified spontaneous emission shift is slow enough that it is

common mode between these two points. However, shifts caused by the lattice are measured over

days or weeks, and the TA spectrum drift is significant on these timescales. A spectrally pure

Ti:saph laser does not suffer from these problems.

5.6.3 First and Second Evaluations

The Ti:saph frequency of the first lattice Stark shift evaluation [13] is 368.5545965(3) THz.

If U1 and U2 represent the lock-in parameter values of Uatom, ∆U = U2 − U1 is varied from 34 to

184 Erec (Figure 5.12a). For each value of ∆U , lock-in data is averaged to 1 × 10−17 statistical

uncertainty. We also measured 87Erec to be the lowest value of Uatom for which N = 2000 could

be reliably obtained, so 87Erec is a good choice for Uclock, the clock operation value of Uatom.22

N1U
3/2
1 −N2U

3/2
2 ).
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Figure 5.12: a) Lock-in data for the first evaluation (blue squares) and the second evaluation (red
circles). Data from the first evaluation and other data (not shown) is used to compute the lattice
frequency for the second evaluation. For the second evaluation, the fact that the shift remains zero
for changes in the lattice intensity indicates that the magic wavelength has been identified. b) The
lock-in data for the second evaluation with the values of U2 specified (legend on right side).

To extrapolate this evaluation to the clock operation condition of Uclock = 87Erec, we must

determine whether the data should be modeled as linear in Uatom or whether nonlinear terms like

hyperpolarizability should be included (Sections 5.1.4 and 5.6.1).

The LNE-SYRTE reports of the hyperpolarizability and M1-E2 coefficients do not specify

whether the density shift was under control during their measurements of these nonlinear effects

(Section 5.6.1). Their determination of these coefficients involved modulating their lattice depth

[119], and this could have been corrupted by an uncontrolled density shift. Also, measurements of

22 Using the analysis from Section 2.4.5, Uatom = 87Erec corresponds to a one-way lattice power of 2.6 W.
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nonlinear effects were performed by comparing two clocks with TA-based lattices [121]. Though the

output of the TAs were filtered, one of the Sr systems used in these nonlinear shift measurements

was later reported to still suffer from the effects of spectral drift [114].

Therefore, we perform an F -test on our data to see if hyperpolarizability and M1-E2 shifts are

justified (Section 5.1.4). If hyperpolarizability were significant, the lock-in data ∆νlock−in would

need to be modeled as k1(U2 − U1) + k2(U
2
2 − U2

1 ), where k1 and k2 are constants. The F -test

compares two fits of the extrapolated shift ∆νlock−inUclock/(U2−U1): a constant fit (corresponding

to a Stark shift linear in Uatom) and a fit to k1 + k2x (linear shift plus hyperpolarizability), where

x = U1 + U2. Comparing these two models, for 6 degrees of freedom the result is F = 0.44,

corresponding to a test probability of 0.53. This is a comfortable margin above the 0.01 to 0.05

range below which a new term is required.

If an M1-E2 shift were significant, ∆νlock−in should be fit to k1(U2 − U1) + k2(
√
U2 −

√
U1).

A second F -test compares a constant fit of ∆νlock−inUclock/(U2 − U1) to the fit k1 + k2x, where

x = 1/(
√
U1+

√
U2). The result for 6 degrees of freedom is F = 0.40, resulting in the test probability

0.55. Therefore, the first evaluation does not support the addition of hyperpolarizability and M1-E2

terms.

Using reduced-chi-square-inflated least-squares fitting, the data from the first evaluation has

a shift per Erec of potential depth (at the atoms) of (−5.31±0.05)×10−18E−1
rec. For Uclock = 87Erec,

the final value of the lattice Stark shift for the first evaluation is (−4.62 ± 0.04) × 10−16.

The lattice Stark shift is known to also be linear in lattice frequency within tens of GHz

of the magic wavelength [18]. Using this fact, data from the first evaluation and a handful of

measurements taken at different lattice frequencies imply that the magic wavelength is 368.554485

THz. Therefore, our second evaluation [88] of the lattice Stark shift is performed with a lattice

frequency of 368.5544849(1) THz. For these data, the lattice Stark shift has largely vanished

(Figure 5.12a and 5.12b). We also achieve a lower value of Uclock = 71Erec by operating the Sr

oven reservoir at a hotter temperature of 600 ◦C.23 Lowering the lattice depth means that the

23 Using the analysis from Section 2.4.5, this corresponds to a one-way lattice power of 2.3 W.
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trap will retain fewer atoms, so this Uclock is again determined as the lowest potential depth at

which N = 2000 can be reliably obtained. Running the reservoir hotter increases the amount of

trapped atoms overall (for any lattice depth), implying that N = 2000 can be achieved for a lower

value of Uatom. We also find that the atom number is best when we load atoms into a deep lattice

and then ramp down the lattice intensity to the final value rather than load in a shallow lattice.

Performing an F -test on these data to look for hyperpolarizability and M1-E2 effects (in

the same manner as the first evaluation), the test yields F = 0.17 for hyperpolarizability and

F = 0.03 the M1-E2 shift for 22 degrees of freedom.24 These correspond to probabilities of 0.68

and 0.86, respectively. Therefore, we again model the data from the second evaluation as linear

in Uatom. Extrapolating the data to Uclock = 71Erec, we obtain a final value of the lattice Stark

shift of (−1.3 ± 1.1) × 10−18. The final shifts from the first and second evaluations imply a magic

wavelength of 368.5544845(3) THz, which is statistically consistent with the value used for the

second evaluation. These evaluations also imply a lattice Stark shift per Uatom per detuning from

the magic wavelength of (−4.73 ± 0.02) × 10−17 GHz−1E−1
rec.

5.6.4 Hyperpolarizability

Although we have chosen not to include previously reported values of the LNE-SYRTE

hyperpolarizability coefficient (0.45 ± 0.10)µHzE−2
rec [114], the uncertainty in the correction at

Uclock = 71Erec would be only 1.2 × 10−18. It is also possible to processes the data from the

second evaluation (Figure 5.12) in a manner that is sensitive only to higher-order terms. In the

presence of hyperpolarizability, the extrapolated shift will have the form k1 + k2(U1 + U2); there-

fore, differences between extrapolated shift data points that have different values of U1 + U2 will

depend only on hyperpolarizability (and other nonlinear terms). With this analysis, and treating

hyperpolarizability as the most significant nonlinear shift, we infer a hyperpolarizability coefficient

of (0.3±0.3)µHzE−2
rec. Although this is consistent with the LNE-SYRTE value, it is also consistent

24 The degrees of freedom for this F -test is equal to the number of points minus 2. Here I quote 22 degrees of
freedom, yet in Figure 5.12, the two plots of the second evaluation data have 8 and 12 points. This is because the
F -test is performed on unbinned data, whereas the points in Figures 5.12a and 5.12b are binned.
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with zero.

The magic wavelength of 368.554465(3) THz measured by the PTB Sr group [33] differs

from our value by 19.5 MHz. One difference in their approach that can account for some of this

discrepancy is that they assume the LNE-SYRTE hyperpolarizability coefficient and subtract if off

of each of their lock-in measurements.

5.7 Dc Stark Shift

5.7.1 Introduction

A large systematic shift caused by dc electric fields was recently discovered by the LNE-

SYRTE group [69]. Their in-vacuum lattice cavity mirror substrates had acquired patch charges

that caused clock transition shifts at the 10−13 level, and they were able to remove these charges

using UV treatment [69]. Motivated by this discovery, we looked for a dc Stark shift in Sr2, and

an effect was indeed present [13]. The PTB group also measured a significant dc Stark shift that

they attributed to an unwanted voltage across their MOT coils [33].

We measure the dc Stark shift using electrodes, with one placed above (below) our top

(bottom) vacuum chamber viewports. Obtaining a value for the shift requires a measurement of

the clock transition frequency for each of three conditions: the top and bottom electrodes held at

voltages V and -V (respectively), the top and bottom electrodes held at voltages -V and V, and

both electrodes grounded. The chamber metal is grounded, and V is usually around 90 volts. When

the electrode field is applied, the clock transition frequency is

ν± = νSr −
1

2h
∆α(0) |~Ebg ± ~Eelec|2, (5.19)

where νSr is the unshifted clock transition frequency, ∆α(0) is the differential dc polarizability,

~Ebg is the background electric field, and ±~Eelec is the dc field from the electrodes. The ± sign

corresponds to the two directions of the electrode field. When the electrodes are grounded, the

clock transition frequency is
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νgnd = νSr −
1

2h
∆α(0) E2

bg . (5.20)

These three frequency measurements can be combined to obtain the applied shift,

νapp = − 1

2h
∆α(0) E2

elec =
1

2
(ν+ + ν−)− νgnd, (5.21)

and the background shift,

νbg = − 1

2h
∆α(0) E2

bg =
(ν+ − ν−)2

16 νapp
. (5.22)

5.7.2 Electrodes and Lock-In Sequence

Two steel quadrant electrodes provide the dc electric field, one of which is mounted above

the top viewport and the other below the bottom viewport (Figure 5.13a). Both electrodes are

cut into four pieces, which can be hooked up in three different ways to create fields along three

orthogonal axes (Figures 5.13c and 5.13d). Also, a hole is drilled in the center of both electrodes

for MOT laser clearance. Finite element analysis of the chamber and electrodes shows an electric

field that is reasonably uniform over the ultracold sample (Figure 5.13b).25 The electrode voltage

is provided by two low-noise commercial power supplies, one for the positive voltage and one for

the negative. Reed relays allow us to choose which of these voltages are applied to which electrode

using TTL logic.

The dc Stark shift sensitivity to the squared magnitude of this electric field is −7.2 ×

10−17 V−2cm2; therefore, a small applied field of only a few V/cm2 (Figure 5.13b) will be suffi-

cient to produce a large effect.26 To ensure that this measurement is stable and repeatable, it is

important to use the background field servo, which prevents the tensor component of the dc Stark

shift from drifting. To facilitate the background field servo and the three clock transition mea-

25 High field uniformity is not a requirement for this measurement. All that is needed is for the field to have the
same magnitude when reversed and to be constant over the time it takes to measure one value of ν+ and one value
of ν−.

26 I calculated this sensitivity using the known value of the Sr clock transition’s dc polarizability [82]
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Figure 5.13: a) Electrodes are mounted above and below the vacuum chamber. They are separated
by 17.5 cm. b) Finite element model of the electrode field. The potential difference between
electrodes is 180 V. In this plot the field points in the vertical direction. Moving about the horizontal
plane, with the vertical position fixed at the center of the chamber, the field is reasonably uniform
over a 1 cm length scale. Along the vertical coordinate (not shown), the field is even more uniform.
c) The electrodes have holes for MOT laser clearance and are cut into quadrants. The quadrants
are colored cyan (pink) if they are held at a negative (positive) potential. If all four quadrants
of the top (bottom) electrode are shorted together, the electric field is vertical. d) Holding halves
of the electrodes at different potentials produces a horizontal field. The quadrants can also be
arranged to create a field in the other horizontal dimension.
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Figure 5.14: The first check for a dc Stark shift (red circles), and the shift after UV and nitrogen
gas treatment (blue squares). Both data sets are from measurements along the vertical direction.
The red data implies a background dc Stark shift of −1.3 × 10−16. After removing the shift with
UV light and nitrogen, the shift is −1.6× 10−18.

surements needed to compute the background dc Stark shift (Equation 5.22), the lock-in sequence

uses four atomic servos. For two of these servos, the electrodes are grounded and a stretched state

lock is performed, yielding the zero-magnetic-field clock transition frequency that is needed for the

background field servo. For the other two atomic servos, there is one servo for each direction of the

electrode field, and they both operate on themF = 9/2 stretched state. After one cycle through the

four servos, the three center frequencies measured for mF = 9/2 are used to infer the background

shift.27 The frequency measured for mF = −9/2 is used only for the background field servo and

does not contribute to the dc Stark shift data.

5.7.3 Observation of Dc Stark Shift and Removal of Background Field

During the first check for a dc Stark shift in Sr2, we were surprised to find a large background

shift in the vertical direction. Fitting dc Stark shift data measured as a function of the potential

difference between the electrodes (Figure 5.14), a background shift of (−1.27 ± 0.05) × 10−16 is

27 These three frequencies are taken to be ν+, ν−, and νgnd in Equation 5.22.
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observed. This corresponds to a background field of (1.33 ± 0.03)V/cm.28

Simple checks for background fields caused by our MOT coils did not turn up anything;

therefore, we hypothesized that patch charges on the Sr2 vacuum viewports were causing the shift.

In attempt to remove this shift, we treated the vacuum viewports with radiation from a UV lamp

[69]. The UV treatments did have a positive effect on the shift but progress was very slow, and

we projected from our measurements that it could take weeks or months to remove a −1.3× 10−16

effect. After a couple of days of this procedure, the UV treatment was temporarily set aside so

that we could install temperature sensors in the vacuum chamber (discussed in Section 5.8.5). This

installation required that the vacuum chamber be vented to high-purity nitrogen. After venting,

the shift was orders of magnitude smaller.29

UV treatment followed by a nitrogen vent reduced the shift in the vertical direction to (−1.6±

1.0) × 10−18 (Figure 5.14). We also looked for a horizontally oriented background dc Stark shift

and obtained a value of (−1.9± 1.9)× 10−18. The shift proved stable, so for the first evaluation we

combine the vertical and horizontal measurements for a final dc Stark shift of (−3.5± 2.1)× 10−18

[13].

The horizontal shift was persistently below measurement resolution even when the vertical

shift was quite large. If a patch charge on a Sr2 viewport were responsible for the shift, this patch

would have the field of an electric monopole [46]. For a monopolar field to cause a dc Stark shift in

only the vertical direction, it would need to be located directly above or below the atoms (depending

on the sign of the charge).30

28 Despite that the electrodes are separated by 17.5 cm, the fit tells us that the applied field behaves as if the plates
are separated by (41.4 ± 0.3) cm. We did not attempt to track down the cause of this discrepancy since it does not
affect our measurements.

29 Later, cleaning the top Sr2 viewport created a 10−15-level dc Stark shift. We wiped the outer viewport surface
with material that should have removed static charge buildup, but the shift did not change. Therefore, we repeated
the same procedure of UV treatment followed by venting the chamber to clean nitrogen. This removed the shift
again.

30 Reference [46] shows that laser light causes electron emission from anti-reflection coated viewports. The parts
of the top and bottom viewports illuminated most brightly by the MOT lasers are directly above and below the
atoms, so this is where positive patch charges resulting from electron emission would be located. Given the sign of
the background field, the top viewport would need to be the bad actor. However, this explanation alone is insufficient
to explain the Sr2 dc Stark shift because it is unclear why electron emission would not be significant for the five other
viewports (all with the same coating) that MOT lasers are sent through.
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Figure 5.15: The control loop that cancels the background shift. While the stretched-states servo
is running, two TTL lines from the computer set both multiplexer outputs to ground. In this case,
the computer DAC card provides a voltage that, after amplification by a factor of 10, charges the
electrodes (shown here as a capacitor). The gain = 10 stages are composite amplifiers based on
high-voltage op-amps controlled for noise reduction using low-noise, lower-voltage op-amps. The
DAC voltage is periodically adjusted to cancel the background dc Stark shift. Background shift
cancellation utilizes a fixed dc voltage source depicted as a circled V. To measure ν+, the multiplexer
sets Out 1 = Vs and Out 2 = −Vs, where Vs is the voltage of the dc source (similarly, for ν−, Out
1 = −Vs and Out 2 = Vs). The potential difference of ±20Vs across the electrodes is summed
with the amplified DAC voltage used to cancel the background Stark shift. If the background shift
is not well canceled by the DAC, ν+ − ν− will not be zero. Excited state fraction measurements
made by the Sr2 PMT are processed by the computer to create the error signal ν+ − ν−. A PI
filter (with gain constants optimized empirically) uses this error signal to compute the voltage that
the DAC must apply to balance ν+ and ν− and cancel the background shift. After one of these
measurements, the multiplexer again grounds its outputs, and clock operation resumes with the
new DAC voltage.

5.7.4 Active Control of the Dc Stark Shift

The dc Stark shift was measured again for the second evaluation. This time around, the

horizontal shift remained unresolved, but the vertical shift seemed to be less stable. To remove

the (possibly time varying) vertical shift in a dynamic way, we use active control similar to the

background field servo. This “electrode servo” is based on measurements using an applied electric

field (Figure 5.15). During clock operation, the stretched-states servo pauses after tens of cycles,

and the electrode servo takes two center frequency measurements. With the quadrant electrodes
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Figure 5.16: Dc Stark shift frequency data. A background shift means that ν+−νgnd and ν−−νgnd
will be different. a) Frequency data before the first UV treatment and N2 vent were performed. It
is only a coincidence that the background field nearly cancels the applied field in the + direction.
b) Frequency data with the shift under active control.

configured for a vertical field, the servo measures ν+ (ν−), which is the center frequency when

the field is pointing up (down). The difference between these center frequencies is ν+ − ν− =

2∆α(0) EbgEelec, which is proportional to the background field. This frequency difference is treated

as an error signal that uses a digital proportional-integral (PI) filter to compute the voltage at

which these two frequencies are equal.31 The electrodes are then held at this voltage, and the

stretched-states servo resumes.

A key feature of this servo is the fact that the voltage that cancels the background field

and the voltage that creates the applied shift (used to measure ν+ − ν−) come from independent

sources (Figure 5.15). The DAC voltage that cancels the background field is always on, whereas

the voltage that creates the applied shift is fixed and is only used when ν+− ν− is being measured.

This means that ν+ − ν− measures the residual field that is not canceled by the DAC voltage. In

principle, this technique can be scaled up to servo a background field that has components in all

three dimensions. There would need to be a DAC voltage and composite amplifier (Figure 5.15)

for each quadrant of both electrodes.32

31 The fact that the error signal ν+− ν− is also proportional to the magnitude of the applied electrode field Eelec is
not an issue for this application. Eelec is fixed for this measurement, so it just acts like additional proportional gain.

32 We had these electronics ready, but in the end only vertical shift control proved important.
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Figure 5.17: Data from Figure 5.16b processed point by point using Equation 5.22. Processing
data in this way biases the mean toward negative values.

With the electrode servo operating, we observe a clear effect (Figure 5.16b). It is worth

noting that a well-canceled shift means that the dc Stark effect can be evaluated rapidly. To see

this, assume that each center frequency in Equation 5.22 has the same statistical uncertainty σ.

Propagating σ to νbg, the (squared) uncertainty in the background shift is

δν2bg =
1

2

νbg
νapp

(

1 + 3
νbg
νapp

)

σ2. (5.23)

In this expression, νbg is treated as the background field plus the cancellation field from the servo.

Therefore, with the background field well canceled, the dc Stark shift averages down very rapidly.

About 20 minutes of averaging results in a total shift of (−0.1± 1.1) × 10−19 [88].

Care must be taken when processing measurements of ν+, ν−, and νgnd to obtain values of νbg.

Since the applied electric fields for these measurements are small, νbg computed for each point (using

Equation 5.22) has unusual noise properties. The fact that the data scatters near or above zero

causes erratic fluctuations when it is processed point by point, making the usual statistical analysis

impossible (Figure 5.17). Simulating this measurement, the same fluctuations toward negative

numbers are reproduced when the simulated data is processed as in Figure 5.17, resulting in a data
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mean that is much more negative than the simulation’s true value. However, the simulation does

show that the true value can be recovered if νbg is computed as 〈(ν+ − ν−)2〉/8〈ν+ + ν− − 2νgnd〉.

Here 〈(ν+ − ν−)2〉 is the mean of the numerator of Equation 5.22 processed point by point, and

8〈ν+ + ν− − 2νgnd〉 is the mean of the point-by-point-processed denominator. The uncertainty in

this ratio is the propagated standard deviation of the mean of the numerator and denominator,

which is shown by the simulation to be a good assignment of uncertainty for the measurement.

Given the conclusions of this simulation, all dc Stark background shift data sets are averaged as

〈(ν+ − ν−)2〉/8〈ν+ + ν− − 2νgnd〉.

5.8 Static Blackbody Shift

5.8.1 Introduction to the Blackbody Radiation Shift

The blackbody radiation (BBR) shift causes the largest systematic uncertainty in many

prominent lattice [114, 74] and ion [52, 76] clocks. Of all optical clocks currently in development,

Sr unfortunately has the largest BBR shift [104]. The effect is essentially the ac Stark shift caused

by the electric field from the ambient heat in the laboratory. Since the electric field associated with

heat is distributed over a range of frequencies, Equation 2.15 can be converted to an integral form

to express the BBR shift,

∆νBBR =
−1

2ǫ0ch

∫ ∞

0
∆α(ω)I(ω)dω, (5.24)

where I = dI/dω is the electric field intensity per unit angular frequency. For a blackbody, I is

the Planck distribution

I(ω) = ~

π2c2
ω3

e~ω/kBT − 1
. (5.25)

As Equation 2.17 shows, the polarizability ∆α(ω) varies over frequency scales given by atomic

transition energies. Since room-temperature BBR peaks at about a 10µm wavelength, whereas the

relevant atomic resonance wavelengths are orders of magnitude shorter, the atomic polarizability
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is nearly constant over the room-temperature BBR spectrum. Therefore, Equation 5.24 is often

approximated by performing a dc expansion ∆α(ω) = ∆α(0) + 1
2∆α

′′(0)ω2 + . . . on the differential

polarizability, which results in

∆νBBR ≃ −∆α(0)

2ǫ0ch

∫ ∞

0
I(ω)dω − ∆α′′(0)

2ǫ0ch

∫ ∞

0
ω2 I(ω)dω (5.26)

= νstat

(

T

T0

)4

+ νdyn

(

T

T0

)6

. (5.27)

The remaining terms in the polarizability expansion have been neglected since they result in correc-

tions that are well below the current total uncertainty of the Sr clock. The first term in Equation

5.27 is called the static shift, which approximates the polarizability as its dc value, and the second

term is the dynamic shift. The reference temperature T0 = 300K, and

νstat = − π

60c3ǫ0

(

kBT0
~

)4

∆α(0), (5.28)

νdyn = −4π4

21

(

kBT0
~

)6
∑

k

(

Aek

ω6
ek

− Agk

ω6
gk

)

. (5.29)

Here Aek and ωek (Equation 2.17) are the Einstein coefficients and atomic resonance frequencies

associated with coupling the excited clock state to the hyperfine state k, and Agk and ωgk correspond

to the ground state coupling to k (where |k〉 6= |g〉 and |k〉 6= |e〉).

5.8.2 Sources of Uncertainty

As Equation 5.27 shows, physically there are two sources of uncertainty in the BBR shift:

uncertainty in the atomic response to BBR, which is described by the shift coefficients νstat and

νdyn, and uncertainty in measurements of the ambient temperature T at the location of the atoms.

In 2008, uncertainty in the Sr1 clock from the shift coefficients was 7 × 10−17 [95, 74]. In 2012,

the PTB Sr group performed an important measurement of the differential dc polarizability of the

clock transition, resulting in νstat = (−4.9629 ± 0.0001) × 10−15 [82]. With the static coefficient

uncertainty at 1×10−19, it can be neglected for both Sr2 evaluations. The PTB group also calculated
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the dynamic coefficient at 1.6% uncertainty [82]. Later, another team calculated νdyn with a bit

lower uncertainty [105], resulting in νdyn = (−3.48± 0.04)× 10−16. Prior to these calculations, the

dynamic coefficient had 7% uncertainty [105, 84].

Improving on the uncertainty in νdyn will not be necessary for our first systematic evaluation,

which has the goal of breaking the previous clock record of 8.6×10−18 total uncertainty; however, the

second evaluation needs a more accurate determination of νdyn to reach low-10−18 total uncertainty.

Although uncertainty in νstat is negligible, the static shift is the dominant contributor to the portion

of the BBR shift uncertainty caused by δT (the uncertainty in T ). Therefore, one can think of

the static shift and the dynamic shift as two separate effects that must be tackled with different

strategies. Reducing the uncertainty in the dynamic shift through a better determination of νdyn

requires measurements of Sr atomic properties [105]. Meanwhile, reducing the uncertainty in the

static shift due to δT requires improvements to the Sr2 apparatus.

For many years, different Sr teams measured T by attaching several temperature sensors

to their clock vacuum chambers [74, 114, 33]. T was determined from this array of sensors as

the average of the hottest and coldest measurements, and δT was taken as half of the difference

between these two extreme values. With this scheme, δT was usually reported to be about 1 K,

which results in a BBR shift uncertainty of 7 × 10−17. To improve the Sr BBR shift uncertainty

beyond this, a setup based on a cryogenic environment was proposed [83]. Cold environments,

which have successfully mitigated the blackbody shift in ion clocks [103] and Cs fountains [48],

would reduce the shift immensely since ∆νBBR is a rapidly decreasing function of T .

Cold environments are unattractive to us because of their complexity and invasiveness. A

cold environment would at least require the Sr2 main vacuum chamber to be vented to install the

necessary hardware, meaning that much of the apparatus would need to be dismantled to bake the

chamber and restore the vacuum. This feat could take the better part of a year. Also, it is possible

that a good cryogenic system would demand an entirely new clock apparatus designed around it.

These technical issues motivated us to come up with a simpler, room-temperature strategy for

improving BBR shift uncertainty.



142

T2

T1

r

R

Figure 5.18: In this simple model, the chamber is treated as a sphere with a patch at temperature
T2 and the rest of the chamber at T1. The atoms are located at the center.

5.8.3 Radiation Thermometry

Determining the BBR shift with arrays of sensors mounted to a vacuum chamber has large

uncertainty because it is difficult to characterize and model the chamber at the level required to

accurately infer the ambient temperature where the atoms are trapped. The vacuum chamber

provides a complex boundary that would need to be measured with a fine-mesh sensor array and

well modeled (accounting for both the realistic geometry and material properties of the chamber) to

predict the temperature at the center with low uncertainty. Instead, we opt to put a well-calibrated

thermometer inside the vacuum chamber near the location of the atoms. This allows us to directly

measure the radiative temperature at the chamber center.

To see why an in-vacuum radiation thermometer is a dramatic improvement over a chamber

sensor array, it is constructive to consider a simple model. Treating the chamber as a spherical

shell at two temperatures (Figure 5.18) with the atoms at the center, one can gain intuition about

radiation thermometry even in a non-thermal (out of equilibrium) environment. Assuming steady

state, the electric field intensity per unit frequency at the atoms is I(ω) = Ω1I1(ω) + Ω2I2(ω).

Here I1 and I2 are the intensities per frequency at the two boundary surfaces (Figure 5.18). Ω1

and Ω2 are the area fractions, which are the ratios of the areas of the surfaces at T1 and T2 (Figure
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5.18) to the total surface area 4πR2. Using this I(ω) in the BBR expression from Equation 5.26,

∆νBBR =
νstat
T 4
0

(Ω1T
4
1 +Ω2T

4
2 ) +

νdyn
T 6
0

(Ω1T
6
1 +Ω2T

6
2 ). (5.30)

First I will use this model to analyze the error inherent in using measurements of the chamber

temperature to infer the temperature at the atoms. One typically calculates the atom temperature

from measurements of the chamber surface temperatures as Tsurf = (T1+T2)/2, and the uncertainty

in Tsurf is computed as δTsurf = (T2−T1)/2. Since other Sr teams typically report 1 K temperature

variation across their chambers, I will take δTsurf = 1K. The BBR shift is then calculated by

evaluating Equation 5.27 at T = Tsurf . The uncertainty in this approach results from propagating

δTsurf to ∆νBBR, and the error is the difference between the true shift (Equation 5.30) and the

BBR shift calculated with Tsurf .

Writing the true shift (Equation 5.30) in terms of Tsurf and δTsurf and expanding it in

δTsurf/Tsurf (since Tsurf is roughly 300 K), the error νerr between the calculated and true values

is

νerr ≃ −(Ω1 − Ω2) δνsurf . (5.31)

δνsurf is the BBR shift uncertainty calculated by assuming that δTsurf is the measurement uncer-

tainty,

δνsurf =

∣

∣

∣

∣

∂

∂T
∆νBBR

∣

∣

∣

∣

T=Tsurf

δTsurf . (5.32)

Since in reality, the spatial behavior of the chamber temperatures is not well known, Ω1 and Ω2

should be regarded as unknown quantities in Equation 5.31. Both Ω1 and Ω2 range from 0 to 1, so

it is reasonable to bound νerr within ±δνsurf ; therefore, δνsurf is a good choice for the uncertainty.

For δT = 1K, δνsurf = 7× 10−17.

Now suppose a thermometer is measuring the radiative temperature inside the chamber very

near the atoms. The sensor absorbs thermal energy and provides a readout of its own temperature,
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Tsens. Since the sensor equilibrates quickly, the heat energy it radiates per unit time can be treated

as proportional to T 4
sens (via the Stefan-Boltzmann law). Assuming the sensor to be an ideal

blackbody, T 4
sens ∝

∫∞
0 I(ω)dω, or

Tsens = (Ω1T
4
1 +Ω2T

4
2 )

1/4. (5.33)

Although the sensor exactly provides the static part of the true shift (Equation 5.30), which is also

proportional to the fourth power of temperature, it does not provide the exact dynamic part. The

error νerr in the radiation thermometer case is the difference between the true shift and the BBR

shift calculated with Tsens. To compare with the case of the chamber sensor array, it is useful to

write the radiation thermometry BBR shift error in terms of Tsurf and δTsurf . Expanding this,

νerr ≃ 6
[

1− (Ω1 − Ω2)
2
]

νdyn

(

Tsurf
T0

)6(δTsurf
Tsurf

)2

. (5.34)

Assuming Ω1 = Ω2 (which maximizes the error) and taking Tsurf ≃ T0, νerr = −2.3× 10−20, which

is negligible for the total uncertainty goals in this work.

In summary, for a distribution of chamber temperatures that are within a degree of each other,

the radiation thermometer provides the static shift and a good approximation to the dynamic shift.

As I will explain later, a more complicated model of these processes (Section 5.21) also concludes

that radiation thermometry error is negligible.

5.8.4 Kirchhoff’s Radiation Law

Section 5.8.3 regarded the sensor as a device that treats T 4
sens as proportional to the frequency-

integrated spectral distribution of heat intensity incident on the sensor surface. For simplicity, the

case of perfect sensor surface absorption and emission (an ideal blackbody) was considered; however,

even sensors that are coated with highly absorptive paint are not ideal blackbodies. If imperfect

absorption and emission significantly affect radiation thermometry in Sr2, we would need to perform
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Tcav

Tobj

Figure 5.19: The cavity considered in the simple explanation of Kirchhoff’s radiation law given in
the text. The cavity temperature is fixed, and the temperature of the object inside can vary. The
temperature of the object can only change by heat emission or absorption.

the difficult task of characterizing the absorptive and emissive properties of the sensor surface.33

Fortunately, for a well-equilibrated environment, Kirchhoff’s radiation law [85] means that

imperfect absorption and emission are not concerns. To develop an understanding of Kirchhoff’s

law, it is instructive to consider a simple case. Suppose a cavity is carved out inside a mass of

thermally conductive material, which has a fixed temperature Tcav (Figure 5.19). Inside the cavity,

there is another thermally conductive object at temperature Tobj , which can vary. The inner

surface of the cavity and outer surface of the object inside the cavity have emissive and absorptive

properties that are uniform over each surface; however, emission and absorption at these surfaces

is not necessarily perfect.

The electromagnetic power incident on the object is Pin = ǫcavPcav + ρcavPout. ρcav is the

reflectivity of the cavity inner surface, which is defined as the reflected power divided by the incident

power [85]. ǫcav is known as the emissivity of the cavity inner surface [85]. For a mass at temperature

T , the emissivity is defined as the emitted power divided by the power of a perfect blackbody at

temperature T . An emissivity of unity is considered perfect since heat radiation is maximal for a

perfect blackbody. Pcav is the power of a perfect blackbody at temperature Tcav. Pout is the power

directed away from the object in the cavity, due to either emission from that object or reflection

33 These surface properties are difficult to characterize because they generally depend on wavelength, angle of
incidence or emission, and temperature.
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off of the object’s surface. This quantity can be expressed as Pout = ǫobjPobj + ρobjPin. Here ǫobj

and ρobj are the emissivity and reflectivity of the object’s surface, and Pobj is the electromagnetic

power of a mass at temperature Tobj .

Solving for the incident and output power,

Pin =
ǫcavPcav + ρcavǫobjPobj

1− ρcavρobj
, (5.35)

Pout =
ǫobjPobj + ρobjǫcavPcav

1− ρcavρobj
. (5.36)

In steady state, Pin = Pout, implying that

αobjǫcavPcav − αcavǫobjPobj

1− ρobjρcav
= 0. (5.37)

Here I have made use of αobj (αcav), the absorptivity of the object’s (cavity’s) surface. The ab-

sorptivity is defined as the absorbed intensity divided by the incident intensity, which is unity for

a perfect absorber. This implies that αobj + ρobj = 1 = αcav + ρcav. In steady state, the second law

of thermodynamics requires that Tcav = Tobj , which implies that Pcav = Pobj (since the blackbody

power depends only on temperature). Under this condition, the expression in Equation 5.37 can

only be zero when

αcav

ǫcav
=
αobj

ǫobj
. (5.38)

Since the absorptive properties of the two surfaces can vary independently with respect to one

another (same for the emissive properties), Equation 5.38 can only hold if both ratios are equal to

a constant. Given that the absorptivity and emissivity are maximal at unity, it follows that

αcav

ǫcav
=
αobj

ǫobj
= 1. (5.39)

This is Kirchhoff’s radiation law.
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Now suppose that the object inside the cavity in Figure 5.19 is a temperature sensor. In

steady state, the power absorbed by the sensor is equal to the power emitted,

αobjPin = ǫobjPobj . (5.40)

Since Pobj ∝ T 4
obj and Pin is proportional to the integral of the incident intensity per unit frequency,

T 4
obj ∝

αobj

ǫobj

∫ ∞

0
Iindω. (5.41)

Note that this expression resembles a relation that Section 5.8.3 relied upon, which assumed the

proportionality T 4
obj ∝

∫∞
0 Iindω. As long as the proportionality factor in T 4

obj ∝
∫∞
0 Iindω is

a constant, the analysis of Section 5.8.3 is valid. Equation 5.41 shows why Section 5.8.3 had

to assume the sensor to be a perfect blackbody in order to use T 4
obj ∝

∫∞
0 Iindω. Although the

proportionality factor in Equation 5.41 is constant, αobj and ǫobj are generally variable (as a function

of temperature, for instance); however, for a perfect blackbody, αobj = ǫobj = 1, and Equation 5.41

reduces to the desired relationship. As I have shown in this Section, the difficult-to-realize case of

a perfect blackbody is not required for accurate radiation thermometry since Equation 5.41 also

reduces to T 4
obj ∝

∫∞
0 Iindω when Kirchhoff’s law holds.

This simple development of Kirchhoff’s law is for equilibrium that is global to the entire

sensor-cavity system. In practice, the Sr2 vacuum chamber is near global equilibrium but has a 1

K temperature variation across it. In this situation, Kirchhoff’s law for global equilibrium holds

approximately; however, the error in this approximate treatment might not be small enough for

the high temperature accuracy needed for clock radiation thermometry. Fortunately local thermo-

dynamic equilibrium ensures that the sensor surface properties do not effect the measurement [53].

If an object is in local thermodynamic equilibrium, each point on its surface absorbs and radiates

like a body at a well-defined thermodynamic equilibrium temperature; however, the temperature

across this object is not necessarily uniform. Local thermodynamic equilibrium exists in the pres-

ence of small temperature variations in time and across the body of the object under consideration.
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The criteria for local equilibrium are well met by our system. Temperature variations in time are

slow and small (shown later in Figure 5.27), and variations in space occur over length scales much

larger than the sensor dimensions. In local equilibrium, Kirchhoff’s law applies at each point on

the sensor surface [53], meaning that imperfect absorption and emission do not affect temperature

measurements.

5.8.5 First Evaluation: Silicon Diode Radiation Thermometers

For the first evaluation, the radiation thermometers are silicon bandgap temperature sensors

from Lake Shore Cryotronics (part DT-471-SD) [13]. These diode sensors are useful for their high

signal-to-noise ratio and low sensor self-heating properties. Two diode sensors, which have factory-

specified uncertainties of 16 mK, are used for this work. The sensors are coated black with vacuum-

compatible paint (VacKote 48816, Ball Corp) to improve their absorptivities and emissivities. Each

sensor is held near the center of the chamber with a borosilicate glass tube (7 mm diameter, 1 mm

glass thickness) that has a mounting tip at the end (Figure 5.20a). The glass tube is useful because

it is a poor thermal conductor (conductivity of ∼ 1W/mK) that is compatible with ultrahigh

vacuum. Electrical feedthroughs allow us to read the sensor from outside the vacuum. One sensor

is fixed at 2.5 cm from the center of the chamber to prevent it from being coated by the strontium

beam. The other sensor can move between the center of the chamber or 2.5 cm away from the

center using an edge-welded bellows (Figure 5.20b). This allows the movable sensor to measure

the temperature at the center of the chamber where the atoms are located. Of course, the clock

cannot be running with the movable sensor in this position, so the sensor is retracted by 2.5 cm

during clock operation. The mounting structure for the fixed sensor is 8.1 cm from the sensor to

the conflat base, and for the movable sensor this dimension is 14.4 cm. The fixed sensor is also

referred to as the “short sensor,” and the movable sensor is also called the “long sensor.”

Prior to installation in the main chamber, the sensors were put in a test chamber. This test

chamber was baked at 200◦C (limited by the melting temperature of silver solder) and pumped

down to the low 10−10 torr level to ensure that contaminants from the black coating and sensors
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Figure 5.20: a) The shorter, fixed sensor. The black-coated sensor is at the tip of the glass tube. A
glass-to-metal seal joins the glass tube to a shorter steel tube, which is welded to a 1.33” vacuum
conflat. The conflat has a hole in the center (which cannot be seen in the photo) that allows
access to the inside of the hollow glass and metal tubes. Since the insides of the tubes are at
atmosphere, cartridge heaters for vacuum baking the sensors can be inserted in the tubes after the
sensor mounts are installed in the main chamber. The leads of the sensor are connected to two
electrical feedthroughs in the conflat for temperature measurements outside the vacuum chamber.
The hook-up wire is phosphor bronze for low thermal conductivity, and this wire is joined with
the sensor leads and electrical feedthroughs using silver solder. b) A CAD of both sensors in the
chamber. The movable sensor is positioned near the center of the chamber. The mechanism used
to move this sensor in and out is depicted at its base. c) The sensors installed in the vacuum
chamber. The image is taken through one of the main chamber 2.75” viewports. The arrows point
to the two glass tubes that hold the sensors. The glowing spot in the center of the chamber is the
461 nm MOT.
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were removed. Surprisingly, pumping the sensors to this pressure took several weeks. At the

time we attributed this to the black coating retaining water vapor. To transfer the sensors to

the Sr2 system, the main chamber was vented to clean nitrogen at a pressure a few PSI greater

than that of the Boulder atmosphere. With this positive main chamber pressure, removing two

1.33” conflat viewports from the main chamber to make space for the sensor does not significantly

contaminate the chamber with water vapor. The sensors were transferred from the test chamber to

the main chamber in air. Once installed, the nitrogen was shut off and the chamber was pumped

out. The chamber did not pump down well at first until we added cartridge heaters (Figure 5.20a

caption) inside the sensor glass tubes to bake the mounting structures.34 Within a few days, the

main chamber pressure had returned to normal. We refer to the technique of venting the vacuum

chamber to clean nitrogen to provide positive pressure so that the chamber can be opened safely

as a “nitrogen backflow.”

The diode is measured with electronics from Lake Shore. These electronics drive the diodes

with a constant 10µA current and measure the resulting diode drop. Lake Shore provides the

fit parameters (for a high-order fit function) used to calibrate the diode drop to a temperature

standard. The Lake Shore circuit is queried by the Sr2 control software, recording temperature

data each time the clock transition is measured. For clock operation, the BBR shift can be removed

from each frequency measurement in post processing using this temperature record and Equation

5.27.

5.8.6 First Evaluation: Non-Thermal Heat Bias

There are several sources of systematic uncertainty that must be mitigated to ensure accurate

radiation thermometry. The phenomenon with the greatest potential to bias temperature measure-

ments is non-thermal heat.35 The sensors are factory calibrated to a thermal heat distribution

(realized inside a highly isothermal cavity), so non-thermal heat will shift the clock transition in

34 These were baked at about 100◦C.
35 “Non-thermal heat” is heat that occurs in an out-of-equilibrium environment; therefore, it does not have a

blackbody spectrum.
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Figure 5.21: Simulating the non-thermal heat bias. The bottom 8” viewport temperature is raised
above the rest of the chamber, which is fixed at 301 K. The non-thermal heat correction is then
computed. The inset is a measurement of the chamber gradient using the movable thermometer.

a manner that the sensors will not predict.36 Temperature gradients are the signature of non-

thermal heat, so it is important to identify gradients and reduce temperature nonuniformity around

the Sr2 vacuum chamber.

Section 5.8.3 argued that variations in temperature of 1 K across the vacuum chamber cause

a negligible non-thermal heat bias. We also confirm this with a more elaborate analysis. We

simulate the heat spectrum from the Sr2 chamber and viewports, assuming local thermodynamic

equilibrium and allowing for temperature to vary across the chamber [13]. The emissivities of the

chamber metal and viewports are included. To bound the non-thermal bias, we check an extreme

case in which the temperature of the entire 8” bottom viewport is raised above that of the rest of

the chamber. We find that for a 1 K variation across the chamber, the non-thermal bias is below

36 The BBR shift is caused by the small part of a heat distribution that interacts with atomic transitions out of the
clock states. Much of a room temperature blackbody distribution is too far detuned from any resonance involving
one of the Sr clock states to have a significant effect on the BBR shift. On the other hand, the sensors measure the
integrated heat spectrum. Using the integrated spectrum to predict the shift relies on the heat distribution being
well known, which is the case in thermodynamic equilibrium. This is rarely the case for non-thermal heat; however,
as I show in this Section and Section 5.8.3, the non-thermal heat bias in our system is well below the total systematic
uncertainty of Sr2.
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the 10−19 level (Figure 5.21). This conclusion holds even if the material emissivities are changed

by 20%.37 We also measure the gradient inside the chamber using the movable sensor, and we

observe a 40 mK change over 2.5 cm (Figure 5.21 inset). Note that as long as imperfect sensor

absorptivity and emissivity do not affect the measurement (Section 5.8.4), non-thermal heat only

changes the dynamic BBR shift. This is because when we can ignore imperfections in heat transfer

at the sensor surface, the sensor provides the total integrated heat, which is a direct measurement

of the static shift (Equation 5.26) even in somewhat non-thermal conditions.

There are two sources of heat that require special attention: the Zeeman slower window and

the oven. The Zeeman slower window (Section 3.2.2) is heated to 150◦C and has line of sight to

the atoms. Also, although the oven region is long, the oven is hot and has line of sight to the

atoms. We have confirmed that the clock can operate with the Zeeman slower window cooled

to room temperature for several hours, so long as the window is heated when the experiment is

off; therefore, the Zeeman slower window heater is not used during clock operation. Also, the

oven region has a rotary feedthrough that is used to block the atomic beam. The feedthrough is

motorized, which allows us to block the oven after atoms are cooled and ready for spectroscopy,

preventing oven heat from reaching the atoms.

Measuring the distribution of temperatures around the vacuum chamber, we observe that 1

K is indeed the temperature variation. This means that non-thermal heat bias can comfortably be

ignored.

5.8.7 First Evaluation: Immersion Error

Since we want the sensors to only measure the radiative temperature inside the chamber,

temperature measurements will be biased by any heat that conducts from the chamber along the

glass mounting tubes (Section 5.8.5) and into one of the sensors. This is known as immersion error

[122]. Immersion error is mitigated by the fact that the glass tubes emit and absorb radiation,

37 Since the metal emissivity is 4 orders of magnitude smaller than that of the viewports, the emissivities can
actually change by a factor of 20 and the simulation will not be affected; however, 20% is a much likelier margin of
error for the emissivitiy values.
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which attenuates heat that conducts along the length of the tubes.

To quantify the immersion error, we heat the conflat base of the fixed (shorter) sensor about

8 K above room temperature. The response of the sensor is minor and occurs after 2 to 3 minutes.

We also measure the radiative response of the sensor with a heat gun on its coolest setting. Pointing

the gun such that emitted heat passes through both the top vacuum chamber viewport and the

center of the chamber, the sensor responds within seconds. This means that the sensor equilibrates

with the radiative environment orders of magnitude faster than with the vacuum chamber through

heat conduction, further reducing immersion error.

To bound uncertainty due to immersion error, we use the data from heating the sensor conflat

base. We extrapolate these data to the case of heating the flange by normal temperature variations

of about 1 K. Treating this error entirely as uncertainty, 0.7 mK uncertainty is added to that of

the sensor [13].

5.8.8 First Evaluation: Passive Temperature Control

The Sr2 chamber is surrounded by a black enclosure (Figure 5.22) [13]. This enclosure shields

the atoms from radiation emitted by warm objects throughout the lab.38 The laser light required

for the experiment is delivered into the enclosure via optical fibers, meaning that there are no holes

in the enclosure to admit laser beams. Without holes, there is no way for stray thermal radiation

from outside of the enclosure to enter the chamber.

To ensure that the system is robust against the usual laboratory temperature changes, tem-

perature control of the space around the vacuum chamber is also attractive. This prevents temporal

and spatial variations in the laboratory temperature from coupling too strongly to the chamber.

Since we only require the temperature to be stable at the 1 K level (out of few-K fluctuations),

passive temperature stabilization will be sufficient. The black enclosure around the chamber is also

insulating, providing the temperature control we need. For the first evaluation, measurements with

38 The chamber viewports have emissivities of 0.8-0.9 for IR wavelengths corresponding to thermal radiation, so
the absorptive properties of the viewports also help with stray heat.
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Figure 5.22: A cartoon of the black enclosure around the vacuum chamber. Light is delivered into
this enclosure via optical fibers.

thermistors inside the enclosure show that the distribution of temperatures around the chamber is

consistently around 1 K. Also, records from the diode sensors show that temporal fluctuations of

the temperature inside the box are at the few hundred mK level even when the laboratory tem-

perature changes by a few degrees K. This enclosure ensures that the temperature of the chamber

does not vary in a markedly inhomogenous way, which further keeps the non-thermal error under

control.

5.8.9 First Evaluation: Other Sources of Uncertainty

Low sensor self-heating is one major advantage to working with diode sensors compared to

the widely used platinum resistance thermometers (PRTs). With PRTs, there is a competition

between signal-to-noise and sensor self-heating. PRTs are resistors, so more current will provide
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Effect Correction (mK) Uncertainty (mK)

Factory calibration 0 16
Immersion error 0 0.7
Sensor translation 40 20
Wire resistance 7.7 1.5
Lattice heating -15 7.5

Total 32.7 26.7

Table 5.2: Uncertainty budget for the diode sensors. All uncertainties are quoted at the 1σ level.
“Sensor translation” is the temperature difference between the center of the chamber and 2.5 cm
from the center.

more signal but also more self-heating, which compromises accuracy. For example, a 100Ω PRT

with an excitation current of 1 mA will cause small-but-significant self-heating and produce a 100

mV signal; however, diode sensors are excited with only 10µA of current, which leads to negligible

self-heating, yet the signal is a ∼ 0.5V diode drop.

The mounting structures for the sensors (Figure 5.20) use 2-wire (rather than 4-wire) mea-

surements. This means that the resistance of the phosphor bronze leads will affect the measurement

of the diode voltage drop used to infer the temperature. Estimating this effect based on the lengths

of the leads and the diode calibration, the sensor measurement needs to have 7.7 mK added.39 A

generous uncertainty of 1.5 mK has been added to this correction [13].

As explained in Section 5.8.6, measurements with the movable sensor show that there is a 40

mK temperature difference between sensor readings at the center of the chamber (where the atoms

are located) and 2.5 cm away. Since the sensors are 2.5 cm from the chamber center during clock

operation, a 40 mK correction must added to the final temperature reading. A large uncertainty

of 50% is assigned to this correction [13].

Two other systematic biases were checked. When the lattice is turned on, the fixed sensor

heats up by 15 mK. We treat this as a correction and add another generous 50% uncertainty. We

also checked to see if the sensor was affected by any of the Sr2 magnetic fields and did not see a

change.

39 The sensor diode drop decreases with increasing temperature, so extra voltage will cause the sensor to read a
temperature that is too cool.
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Combining all systematic uncertainties in the thermometry measurements, we obtain a final

temperature uncertainty of δT = 26.7mK (Table 5.2) [13]. This corresponds to a static BBR shift

uncertainty of 1.8 × 10−18 and a total BBR shift uncertainty of 4.1 × 10−18. Since this work, two

other lattice clock teams achieved BBR shift uncertainty below the 10−17 level. The Tokyo Sr group

realized cryogenic lattice clocks, resulting in a 9×10−19 BBR shift uncertainty [116], and the NIST

Boulder Yb group achieved BBR shift uncertainty of 1.0×10−18 using a uniform, well-characterized

thermal environment [2].

5.8.10 Second Evaluation: Platinum Resistance Radiation Thermometers

To improve radiation thermometry for the second evaluation, we began a collaboration with

the Sensor Science Division of NIST (Gaithersburg campus). Our collaborators had their misgivings

about diode temperature sensors. In the 1980s, NIST tested diode thermometers for NASA and

found these devices to have poor reproducibility after thermal cycling (which is an issue for us since

we want to bake our sensors). The problem is that contact resistances at the junction between the

silicon and the metal leads can vary significantly with thermal cycling. In the 2000s, Lake Shore

published data showing more favorable thermal cycling properties [25], and new sensor models since

then are likely to be even better. However, our collaborators did not feel that there was sufficient

data to verify good diode sensor performance after several thermal shocks.

Our collaborators recommended platinum resistance thermometers. PRTs have been well

studied for long-term stability and performance during thermal cycling; therefore, we opted for

thin-film PRTs [14], which have good vacuum properties and are insensitive to calibration shifts

caused by mechanical impacts. Motivated by a demonstration of a thin-film PRT that shifts only

1 mK after several significant thermal shocks [21], we chose 100Ω model C416 PRTs from Heraeus

Sensor Technology.40 The Heraeus PRTs are not factory specified at uncertainties better than

what we achieved with diode sensors, but they can be calibrated at NIST at the 10 mK level or

40 The demonstration in Reference [21] was for a different Heraeus model that is no longer sold. After contacting
Heraeus, we were told that C416 is the replacement part for that used in Reference [21].
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below.

5.8.11 Second Evaluation: Sensor Prequalification

Although Reference [21] demonstrated PRTs that shift by 1 mK after thermal cycling, this

high performance was only observed in 20% of their sensors (all the same model). Motivated by

these observations, we perform prequalification tests on our Heraeus sensors to identify those with

the best temperature properties. These tests involve cycling the sensors between 0 ◦C and 200 ◦C.

Those that only change at the 1 mK level after several cycles are identified as the most robust.

The lower cycling temperature of 0 ◦C is realized in an ice bath. The tests begin by measuring

the initial sensor resistances at 0 ◦C. After the initial measurement, the sensors are heated in an

oven at 200 ◦C for an hour, cooled to room temperature for about 20 minutes, and then returned

to the ice bath for an hour. During this hour in the bath, the sensors’ resistances are checked every

30 seconds, and we record these resistances when the sensors have clearly equilibrated. Each sensor

is subject to 5 cycles of heating and cooling.

Since we are looking for 1 mK-level variations over several hours of measurement time, the

temperature at which the sensors’ resistances are checked must be stable at this level throughout

the measurement (otherwise poor temperature stability could be mistaken for calibration shifts).

This is why we need an ice bath, which can be stable to about 1 mK in the right conditions [47].

The bath is kept in a dewar. It is based on frozen distilled water broken up with a clean ice shaver.

The shaved ice is made into dense slush with more distilled water. The bath must be carefully

monitored, draining it or repacking it with ice as necessary, to prevent it from warming up due to

the ice melting. The sensors are mounted inside test tubes, plunged in the bath, and measured with

phosphor bronze leads that feed through the lid of the dewar. After 5 rounds of thermal cycling,

one sensor maintained ±0.5mK reproducibility and one was repeatable to ±2.0mK. The ±0.5mK

sensor is chosen for the fixed sensor mount and the ±2.0mK sensor is picked for the movable mount.
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Figure 5.23: Electronics for measuring the PRT resistance. The sensor resistance Rsens is compared
with a resistance standard Rstd. A stable current drives the two resistors, and both voltage drops
are recorded. Relays are used to switch between resistors. The measurement is repeated with the
current reversed so that data can be processed in a manner that removes thermoelectric effects.

5.8.12 Second Evaluation: New Radiation Thermometry Hardware

To prevent lead resistance from affecting the thermometry, we upgrade to four-wire sen-

sor measurements [88]. In this case, two pieces of phosphor bronze hookup wire are soldered

to each sensor lead (one for sourcing/sinking current, one for measuring voltage). This requires

new electronics (Figure 5.23) and new sensor mounting structures that each have four electrical

feedthroughs. These electronics are based on comparing the PRT resistance to a 100Ω commercial

resistance standard (Fluke 742A-100).

The standard and the PRTs are wired in series, and a commercial low-noise current source

(Keithley 6220) drives the sensors. The voltage drop across the PRTs and the standard is measured

using an 8.5-digit voltmeter (Keithley 2002). The current direction is then reversed, and these

voltage drops are measured again. For one PRT, the resistance inferred from these measurements

is

Rsens =
V+ − V−
v+ − v−

Rstd, (5.42)

where V+ (V−) and v+ (v−) are the PRT and standard voltage drops measured for positive (neg-
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ative) current. Also, Rstd is the resistance of the standard (quoted at 1 ppm accuracy by the

manufacturer). Recording the voltage drops with two currents (one in each direction) makes the

measurement of Rsens insensitive to thermoelectric voltages, which do not change sign with the cur-

rent. This method is also insensitive to any problems that would arise from the voltmeter having

an out-of-date calibration, relying only on the resistance standard to provide accuracy.

5.8.13 Second Evaluation: Sensor Calibration at NIST

Since the sensors will ultimately be used in ultrahigh vacuum, their calibration must be

performed under vacuum as well.41 We designed and built a vacuum chamber at JILA with the

dimensions needed for the calibration facilities at NIST Gaithersburg (Figure 5.24). The sensors

were installed (on their glass mounts) in the calibration chamber, which was then pumped down

to a pressure similar to that of the Sr2 main vacuum. Like the diode sensors, the PRTs were

painted black with VacKote 48816 to increase radiative coupling; however, the chamber pumped

down in less than 24 hours this time, indicating that the difficulty obtaining good pressure with

the silicon sensors was not due to the black paint.42 The chamber was then transported to NIST

under vacuum. The safest and most cost effective option for transport was for me to hand carry

the chamber on a commercial flight. We obtained an official Department of Commerce request for

airport security to forgo x-ray scans of the chamber (which could damage the sensors) and perform

chemical testing instead.

The NIST calibration is performed in a water bath [115]. The calibration chamber (Figure

5.24) is submerged in the bath, which is spatially uniform in temperature to 1 mK and has 1 mK

temperature stability. Two standard PRTs, calibrated to the NIST ITS-90 temperature scale to 1

mK accuracy, are also submerged in the bath. This allows the Sr2 sensors to be calibrated with

respect to the standard PRTs. PRT resistance as a function of temperature behaves according to

41 One reason for this is that sensor self-heating would be markedly different if the sensors were calibrated at
atmospheric pressure. Convective heat transfer at the sensor-air interface mitigates self-heating, which will be worse
under vacuum.

42 This may be because the Heraeus sensors are coated with a vacuum-compatible material, whereas the diodes
have more structure that could trap air.
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Figure 5.24: a) CAD of the chamber used for shipping. The chamber is pumped through the 2.75”
conflat angle valve. The blanked-off arm of the chamber holds a nude ion gauge in the real setup.
The 1.33” conflat is the base of the long sensor, and the sensor’s four electrical feedthroughs can be
seen here. Inside the black tube is the base of the shorter sensor. The tube, which is water tight,
is present so that the chamber can be submerged (in the calibration bath) up to the long sensor
base. b) A cross section of the chamber CAD (with false color for clarity). The 1.33” conflat sensor
bases are in pink. The glass tubes that hold the sensors can be seen. The chamber is designed such
that the two PRTs are situated close to each other (in the center of the cyan-colored reducer). The
watertight tube is shown in cyan.



161

−2.0 −1.0 0.0 1.0

−0.04

−0.02

0.00

0.02

T ange −Tprimary  (K)

R
v

a
cu

u
m

−
 R

H
e

 (
Ω

)

Short Sensor Long Sensor

Figure 5.25: The calibration of the primary sensors. The primary sensors’ resistances are measured
with respect to the He calibration data as a function of the temperature difference across the
mounting structures. The longer sensor is less sensitive to immersion error, as expected.

the Callendar van Dusen equation,

R = R0(1 +AT +BT 2), (5.43)

where T is in celsius (valid for T ≥ 0 ◦C), and R0, A, and B are fit parameters for the calibration.

For the Sr2 sensors, the manufacturer designed R0 to be 100Ω. For platinum, A = 3.9×10−3 ◦C−1,

and B is on the order of −1× 10−7 ◦C−2.

Immersion error is a bigger problem for the NIST calibration than it was with the diode

sensors in the Sr2 main chamber [88, 115]. This is because at NIST the bases of the senors cannot

be submerged in the bath (for the sake of electrical measurements), so they are coupled to the

laboratory temperature. As the bath temperature is varied 5 to 10 ◦C above and below room

temperature to calibrate the sensors, larger gradients than those present in the Sr2 main chamber

will cause increased heat conduction through the mounting structures.
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To fix this, a two-part strategy is employed [115].43 First, a second pair of PRTs are

calibrated, and each of these PRTs are affixed to the conflat flange at the base of one of the

sensor mounting structures. With these “flange sensors,” the in-vacuum resistances of the “primary

sensors” (AKA the Sr2 PRTs that will be used as radiation thermometers) are studied as a function

of Tflange−Tprimary, where Tflange is the temperature of the relevant mounting structure conflat as

measured by one of the flange sensors [88]. Second, the primary sensors are calibrated in a manner

that is free from immersion error. This is done using an exchange gas, which thermally couples the

sensors and mounting structures more strongly to the walls of the chamber. High purity helium

was selected as the exchange gas, and after venting the chamber to He, immersion error could no

longer be detected.44 Combining the data from both parts of this strategy, the immersion error

for both sensor mounting structures can be understood (Figure 5.25).

The sensor resistances behave according to

Rprimary = RHe + CIE(Tflange − Tprimary) + Λ (5.44)

= R0(1 +ATprimary +BT 2
primary) +CIE(Tflange − Tprimary) + Λ, (5.45)

where the immersion error coefficient CIE and offset Λ are free parameters in a linear fit of the data

in Figure 5.25, and R0, A, and B come from the calibration of the primary sensors in the presence

of the He exchange gas [88, 115]. To calculate the final temperature, this equation is solved for

Tprimary as a function of the measured quantities Rprimary and Tflange. The flange sensors, which

will need to be installed in the Sr2 system for this equation to hold, are useful because they provide

real-time monitoring of the immersion error. It is worth noting the fit values of CIE for the two

sensors: (0.1358 ± 0.0075)ΩK−1 for the short sensor and (0.0183 ± 0.0006)ΩK−1 for the long

43 My thanks goes out to Weston Tew for his excellent work on this problem and on the sensor calibration in
general.

44 Under vacuum, heat conduction along the glass tubes would cause the primary sensor readings to fluctuate with
the lab temperature. Argon was tried as an exchange gas, but under Ar the sensors still displayed small fluctuations
that tracked the laboratory temperature, indicating that immersion error was not suppressed. However, with a
helium exchange gas, the primary sensors read steady values and only varied with the bath temperature. In this
case, measurement precision was high enough that if few-degree laboratory temperature fluctuations could not be
observed on the primary sensor with the short mounting structure, then immersion error is negligible (compared to
other uncertainties) for the exchange gas measurements.
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sensor. Despite that the long sensor mount is not even twice the length of the shorter mount, the

immersion error for the shorter sensor is an order of magnitude larger. This is because immersion

error decays exponentially with the tube length [122].

The final uncertainty of the sensors is 5.2 mK for the long sensor (Table 5.3) and 11 mK for

the short sensor45 [88]. Because propagated uncertainty in the solution to Equation 5.44 increases

with the value of CIE (Figure 5.27), the short sensor has larger total uncertainty than the long

sensor; therefore, we use the longer sensor for determining the BBR shift. The short sensor will be

used primarily to ensure that the two sensors agree after installation in the Sr2 chamber.

Two other phenomena were checked during the NIST calibration. First, the sensor self-

heating is studied in vacuum and under He. This is done by measuring the sensor readout as a

function of the driving current squared (which is proportional to the dissipated electrical power)

and then extrapolating the trend to zero current. Self-heating data plotted as a function of squared

current fits to a line, which can be used to extrapolate resistance measurements to zero self-heating

[115]. For the data in Figure 5.25, all resistances are zero-heating extrapolated values. Second,

the effect of vacuum pressure on the sensor readout is studied. In the presence of background gas,

the sensor will not be sensitive to radiation alone since convection will be present. However, we

observed that pressure effects are negligible below a vacuum pressure of 1× 10−7 torr [115]. Since

the Sr2 main chamber is at the 10−10 torr-level, pressure effects can be comfortably neglected.

5.8.14 Second Evaluation: Measurements in the Sr2 Chamber

After the NIST measurements, the calibration chamber with the sensors inside was hand

carried (this time by Jun) back to JILA. We pumped the chamber down again, and the sensors

were checked for agreement. They agreed within their combined uncertainties, indicating that

transportation did not significantly affect calibration (Figure 5.26).46 This is expected since thin-

45 These uncertainties are computed for negligible gradients across the mounting structures. The total uncertainties
of the sensors will be higher if significant gradients are present; however, significant gradients were not observed in
the Sr2 main chamber.

46 As our very knowledgeable collaborator Wes Tew (NIST Sensor Science Division) tells us, calibration shifts of
thin-film PRTs are random. If multiple sensors of the same model are subject to the same calibration-shift-causing
stress, the magnitudes and even the directions of their shifts will not be consistent. Therefore, agreement between
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Figure 5.26: Difference between the two sensors after transport. This measurement is performed
with the sensors in the calibration chamber. The data is represented in dark blue, and the light blue
region is the combined total uncertainty of the two sensors assuming zero gradient. Flange sensor
data has not been included. This data record is initialized right after shutting off the test chamber
ion gauge, which is a heat source that warms the sensors relative to their conflat bases. With the
sensors at markedly different temperatures than the bases, there will be heat conduction along the
glass mounting tubes, and the sensors will disagree since their immersion error constants are so
different. After an hour, the sensors have thermalized with the chamber, and sensor agreement is
within the combined sensor uncertainty of 12 mK.

film PRTs are robust against calibration shifts caused by impacts, and for added security they were

handled carefully throughout shipping and calibration.

The sensors are again installed in the Sr2 main chamber using a nitrogen blackflow technique

(Section 5.8.5). For the second evaluation, greater care is taken to ensure that the environment

inside the opaque chamber enclosure (Section 5.8.8) is uniform. In the first evaluation, one major

heat source in the enclosure was the Andor CCD camera used to image the atoms. This is unnec-

essary for clock operation, so it is removed from the enclosure. Also, the 8 ◦C chilled water used

to cool the MOT coils (Section 3.2.3) was a major heat sink in the first evaluation.47 Replacing

the two sensors indicates that calibration shifts did not occur at a significant level.
47 Since water flows inside the MOT coils (Section 3.2.3), these coils are cooled very efficiently. Operating at full

current (used in the blue MOT stage) for a few hours, the coils get hotter than room temperature. During clock
operation the field is ramped, and the coils settle at a temperature lower than that of the laboratory. Therefore,
before clock operation, we must turn the field ramps on and wait for an hour or two to let the inside of the enclosure
thermalize.
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the chilled water with 15 ◦C water balanced the heat from the coils much better, resulting in MOT

coils very near room temperature for clock operation.

With better uniformity of the temperature inside of the enclosure around the vacuum cham-

ber, we check sensor agreement to make sure that installation and baking at 100 ◦C did not affect

the sensor calibration. This bake was similar to that of the diode sensors, in which cartridge heaters

were used to bake the sensors while the main chamber was pumping down. Our checks confirm

that sensor agreement is still within uncertainty (Figure 5.27a) and quite similar to the agreement

observed in the calibration chamber after shipping (Figure 5.26) [88]. The temperatures measured

by the two primary sensors show that the temperature inside the enclosure is stable to 140 mK

(Figure 5.27b). Since the insides of the sensor mounting structures’ glass tubes are exposed to

atmosphere (Figure 5.20a caption), convection inside the tubes is suppressed by filling them with

cotton insulation.

Although we use the flange sensors for thermometry measurements, we have found that they

are unnecessary because gradients across the temperature mounting structures are so small (Figure

5.27c). The observed temperature difference between the long primary sensor and its flange sensor is

(on average) -0.45 mK, which indicates a well-thermalized environment inside the enclosure. Even

if the temperature difference across the long sensor mounting structure were as high as ±1 ◦C,

the increase in uncertainty (Figure 5.27d) would not significantly contribute to the final sensor

accuracy; therefore, for the mounting structure temperature difference data shown in Figure 5.27c,

the correction to the sensor uncertainty is below 1µK and can be comfortably ignored.

Lastly, the effect of translating the long sensor is studied. Since the translation mechanism

is a hand crank that can heat the mounting structure, one must wait for an hour or so after the

sensor is translated to allow the structure to thermalize with the ambient temperature. Therefore,

the temperature in the enclosure will drift (Figure 5.27b) between data points measured at different

positions of the long sensor. Fortunately, each of these points can be measured with respect to the

short sensor temperature, which cancels ambient temperature drift. The temperature difference

between the chamber center and 2.5 cm away (where the long sensor is positioned during clock
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Figure 5.27: a) The difference between the long and short sensor after installation in the Sr2 main
chamber. The data is in dark blue, and the light blue region is the combined uncertainty of the
sensors. b) The temperatures measured by the sensors. The standard deviation of the data (shown
as the grey band) reveals that the temperature fluctuates by 140 mK. The average temperature of
this data set is 20.7 ◦C, but in longer data records (not shown) it averages to 20.6 ◦C. c) Measured
temperature difference between the long primary sensor and its flange sensor. On average, the
temperature difference is -0.45 mK, and the standard deviation of these data is 12.8 mK (shown as
the gray band). d) Calculated total uncertainty of the long sensor, assuming Tflange = 20.6 ◦C. The
total uncertainty is determined as the propagated uncertainty in the solution to Equation 5.44. This
plot shows that temperature differences across the sensor mounting structures as large as ±1 ◦C
would not have a significant effect on the total clock uncertainty; therefore, the uncertainty accrued
by the observed temperature difference of −0.45± 12.8mK is orders of magnitude too small to be
of any concern.
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Effect Uncertainty (mK)

Bath non-uniformity 1.0
Bath SPRT calibration 1.0
Bath temp. stability 1.0
Sensor self-heating 0.5
Electrical errors 0.07
Sensor translation 0.03
Thermal cycling 2.0

Calibration coefficients 4.5

Total 5.2

Table 5.3: Uncertainty budget for the primary sensor with the longer glass tube. All uncertainties
are quoted at the 1σ level. Here “SPRT” is the standard PRT used in the calibration.

operation) is (1.45 ± 0.03)mK [88]. Again, this small gradient indicates that the chamber is well

thermalized.

Combining all of the PRT sensor measurements at JILA and NIST, the total uncertainty of

the long sensor is 5.2 mK (Table 5.3).48 For the Sr2 operating temperature of 20.6 ◦C, the static

BBR shift is −4.5621 × 10−15 with an uncertainty of 3.48 × 10−19 [88].

5.9 Dynamic Blackbody Shift

5.9.1 A Scheme to Measure the Dynamic Coefficient

As explained in Section 5.8.2, dynamic BBR shift uncertainty is dominated by uncertainty in

the coefficient νdyn. Furthermore, uncertainty in νdyn is dominated by insufficient accuracy in the

Einstein A coefficients for transitions out of the clock states. The relationship between νdyn and

the Einstein coefficients is given by Equation 5.29,

νdyn = −4π4

21

(

kBT0
~

)6
∑

k

(

Aek

ω6
ek

− Agk

ω6
gk

)

.

This expression is proportional to the curvature of ∆α(ω) (the differential polarizability of the clock

48 Lattice light heating was not observed this time around. With the lattice at its operating power, no effect could
be discerned from background temperature drift. This may be due to the reduction of scattered lattice light after
realigning the lattice and cleaning up dust around the chamber. Scattered light must have been the cause of lattice
light heating in the first evaluation because, at the position of the sensors, the Gaussian beam equation predicts that
the trap light intensity is smaller than its maximum value by a factor of e48828.
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transition) at ω = 0. Curvature in ∆α(ω) is caused by resonances, so νdyn is determined by the

lowest-frequency transitions out of the clock states (as long as the corresponding resonance widths

are substantial).

98.2% of the dynamic shift is caused by the 3P0 →3D1 transition at 2.603µm, and uncertainty

in the Einstein A coefficient for this resonance dominates the uncertainty in νdyn [105]. In Yb, this

same transition dominates νdyn (which is 6.6 times smaller than in Sr), and a scheme to measure

the 3P0 →3D1 Einstein coefficient was demonstrated by the NIST Yb lattice clock team [3]. The

NIST approach involves measuring the total decay rate of the 3D1 state and then inferring the

needed Einstein coefficient through the 3D1 →3P0 branching ratio. We use this same scheme to

measure νdyn in Sr.

We did not need to measure this decay rate in our first evaluation. The 3D1 →3P0 Einstein

coefficient had already been determined at the 1% level [82, 105], which results in 3.7 × 10−18

uncertainty in the dynamic BBR shift. This uncertainty is low enough for the first evaluation’s

goal of becoming the best clock, but for the second evaluation to reach low-10−18-level total clock

uncertainty, the dynamic coefficient must be measured more accurately; therefore, we aim for a

0.5% measurement of νdyn. Since the 3D1 →3P0 branching ratio is known to 0.1%, and since a

combined uncertainty of well below 0.1% arises from all terms in the νdyn expression aside from

that due to the 3D1 →3P0 line, νdyn can be determined at our accuracy goal by measuring the 3D1

decay rate to 0.5% [105].

The decay measurement begins by preparing atoms in the 1S0 ground state, driving popula-

tion into the 3P0 state using a clock laser π-pulse, and then driving the 3P0 →3D1 transition with

a 2.6µm laser (Figure 5.28). The 3D1 state decays into the 3P manifold. Of the 3P states, only

3P1 has any measurable decay on experimental timescales. Photons emitted from 3P1 →1S0 decay

are collected on a PMT, and the number of collected photons is recorded as a function of time.

Treating the five-level system depicted in Figure 5.28 with rate equations,
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Figure 5.28: The decay measurement scheme. (Left) Population is prepared in the electronic ground
state and then driven to 3D1 using two laser pulses. (Center) The 3D1 state decays into the 3P
manifold. The branching ratios to 3P2,

3P1, and
3P0 are 1.9%, 38.7%, and 59.5% (respectively).

(Right) The population in the 3P1 state then decays to the ground state. Photons emitted during
this decay are collected with a photomultiplier tube.

dN2

dt
= −N2

τtot
(5.46)

dN1

dt
=
N2

τ2
− N1

τ1
, (5.47)

where N1 (N2) is the population in the 3P1 (3D1) state, τtot is the lifetime for 3D1 to decay into

the entire 3P manifold, τ1 is the lifetime of the 3P1 state, and τ2 is the inverse of the decay rate for

the 3D1 →3P1 pathway. Solving this,

N1(t) =
τtotτ1

(τ1 − τtot)τ2
N0

(

e−t/τ1 − e−t/τtot
)

, (5.48)

where the initial conditions are N1(0) = 0 and N2(0) = N0 (assuming that the 2.6µm laser pulse

is infinitesimal). This is proportional to the number of photons emitted by the 3P1 →1S0 decay,

which is proportional to the experimental signal (Figure 5.29).

5.9.2 Decay Measurement

One cycle of the 3D1 decay measurement begins by laser cooling 87Sr atoms and trapping

them in the TA-based lattice. The atoms are spin polarized and driven into the 3P0 state using a 3
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Figure 5.29: Equation 5.48 plotted as a function of time. Correct values have been used for the
lifetimes τtot = 2.16µs, τ1 = 21.28µs, and τ2 = 5.58µs. An initial atom number of N0 = 1000 has
been assumed.

ms clock laser π-pulse. At this pulse time, the Fourier-limited clock transition linewidth is 270 Hz.

This comparatively broad linewidth is useful because it makes the decay measurement less sensitive

to clock laser drift, which is a greater concern (compared to other systematic measurements) since

atomic servos are not used here. We also spin polarize the atoms because this allows us to drive

population into the 3P0 state with near unity efficiency.49

With nearly all population in the 3P0 state, the atoms are driven into the |F = 11/2,3D1〉

state with a 2.6µm DFB laser.50 The DFB laser is from NanoPlus, and it is factory specified

to have a 2603.1 nm center frequency, a 3 MHz linewidth, ±1.5 nm wavelength tunability, and 2

mW of output power. We observed output power closer to 4 mW. The frequency drift of the DFB

laser is very low, and we can use it free running for an entire evening without having to adjust the

frequency.51 The DFB laser is pulsed with a 90 MHz AOM.

49 The peak excited state fraction for short π-pulses like these and a spin-polarized sample is typically 0.95. Recall
that for unpolarized lines, the peak excited state fraction is 0.61 (Figure 2.14a caption).

50 Prior to the decay measurement, we performed survey spectroscopy with an OPO laser and found the |F =
9/2,3 P0〉 → |F = 11/2,3 D1〉 line at 2603.128 nm. This is the Stark shifted resonance wavelength observed in the
TA-based lattice.

51 The resonance frequency of the |F = 9/2,3 P0〉 → |F = 11/2,3 D1〉 transition does drift if the lattice intensity is
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Figure 5.30: Decay data. Decay measurements are taken in 40 ns time bins. This figure is generated
by summing all data for each time bin. The magenta dots are the fit of data taken after the pulse is
off. The y-axis offset is due to dark counts on the PMT, and the x-axis offset is primarily a timing
delay added to ensure that all the early data is captured.

3P1 →1S0 fluorescence resulting from the 3D1 →3P1 →1S0 cascade is collected with a 3”

diameter lens and focused onto a Hamamatsu PMT.52 To get rid of dark counts, the PMT is

covered with two optical bandpass filters centered on 690 nm (the fluorescence is at 689.4 nm).53

The output of the PMT is sent directly to an SR430 photon counter.

Since atoms decay back to the ground state, more decay measurements can be performed

without having to prepare another ultracold sample; therefore, 50 decay measurements are made

each time we cool and trap atoms. Decay back into the ground state depolarizes the atoms into

othermF states, so for each cooling and trapping cycle the spin polarization laser is applied for 5 ms

in between decay measurements. Also, a bias field is turned on when the clock laser is pulsed, and

then it is shut off before the DFB laser is applied. Keeping the field off during the 3D1 →3P1 →1S0

decay prevents systematic bias due to Zeeman quantum beats [3].

The photon counter records the number of detected photons in time bins of 40 ns. Data is

not stabilized, resulting in a time varying ac Stark shift.
52 This a second PMT in addition to the one used to measure the atom number and excited state fraction.
53 We found that one optical filter was not enough to eliminate dark counts.
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Figure 5.31: a) Fit residuals of the decay data. b) Comparing statistical moments of the residuals.
For this plot, the residuals are binned (bin size of 15 points), and the mean and standard deviation
is computed for each bin. Plotted on a log-log scale, a pure Poisson process would have a slope of
0.5. The trend is somewhere between a Poisson process and a power law with a 0.515 exponent.

stored in the SR430 local memory for speed and offloaded after several minutes. The decay data

(Figure 5.30) was taken over one week in two shifts, one in the daytime and one overnight, for round-

the-clock acquisition. The data set corresponds to about 8 million single decay measurements, and

the trend in the data strongly resembles the rate equation solution shown in Figure 5.29 [88].

Motivated by the solution to the rate equations (Equation 5.48), the signal is fit with the function

y(t) = y0 +A
[

e
−(t−t0)/τ3P1 − e

−(t−t0)/τ3D1

]

, (5.49)

where y0, A, t0, τ3P1
, and τ3D1

are fit parameters. y0 and t0 are added due to the presence of

technical offsets (Figure 5.30).

5.9.3 Fit Uncertainty

Binning performed by the photon counter introduces concerns about fit uncertainty. For each

time bin, an offload of photon counter data provides the sum of all counts acquired since the previous

offload. These sums have an averaging-like effect on the bins, smoothing statistical fluctuations.

Therefore, in principle each bin should also have an error bar representing the statistical uncertainty
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Figure 5.32: Simulated fit uncertainty in τ3D1
. Here the experiment is simulated assuming Poissio-

nian noise. For each simulation, a weighted and unweighted fit to Equation 5.49 are performed.
The fit weights treat the statistical uncertainty of each simulated time bin as the square root of the
bin mean. The blue and red lines represent the simulated uncertainties. To compute the simulated
uncertainties, simulated data is generated and fit repeatedly, resulting in a distribution of fit values
of τ3D1

. For the blue (red) line, fit values are computed by an unweighted (weighted) fit. The
simulated uncertainty is taken to be the standard deviation of this distribution, which describes
the true scatter in the fit. In practice there is only one data set, so uncertainty in the fitted value
of τ3D1

must come from the uncertainty generated by the fit routine. If the fit routine provides
the correct uncertainty, it will agree with the simulated uncertainty. The green and cyan lines are
uncertainties generated by the fit routine, showing that an unweighted fit significantly disagrees
with the simulated uncertainty whereas a weighted fit (cyan) gets the uncertainty correct.

in each sum, and a fit of the data to Equation 5.49 should be weighted by these error bars. The

photon counter does not provide uncertainties, but it is possible to understand what they should

be by studying the measurement noise process.

The noise is characterized through the fit residuals of the decay data (Figure 5.31a). Plotting

the standard deviation of the residuals against the mean, we observe a trend consistent with a

(nearly) Poisson process (Figure 5.31b). This implies that the measurement is dominated by photon

counting noise, with no other noise sources significantly contributing. Since Poissonian noise has

a standard deviation equal to the square root of its mean, the data fits should be weighted by

the square root of the counts for each bin (Figure 5.32). Without weighting, the fit routine will



174

200 300 400 500
0

0.5

1

1.5

Pulse Duration (ns)

F
it 

E
rr

or
 (

%
)

No Cuts

200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

Pulse Duration (ns)

F
it 

E
rr

or
 (

%
)

With Cuts

a) b)

Figure 5.33: a) Theoretical fit bias due to finite pulses. This is based on numerically solving the
Lindblad master equation for different pulse durations. The situation is treated as a four-state
system of 1S0,

3P0,
3P1, and 3D1.

3P2 is ignored because its branching ratio is small, and it
does nothing except shelve population (including this state would merely increase the 3D1 lifetime
a bit, which would not affect the conclusion). A realistic Louivillian is used in the calculation,
assuming accurate values of state lifetimes and an estimate of the DFB laser linewidth based on
factory specifications. The master equation solution provides numerical data for the system density
matrix, which yields the 3P1 population (proportional to the experimental signal) as a function of
time. This population is fit to Equation 5.49, and the error is computed as |τfit−τtrue|/τtrue, where
τfit is the fitted value of τ3D1

and τtrue is the true value used in the master equation. The error is
nearly equal to the measurement accuracy goal of 0.5% for pulses of 250 ns. b) The same master
equation data with points cut from the fit. Here the fit only considers data after the DFB pulse is
off, which reduces error to a very comfortable level.

underestimate τ3D1
uncertainty.

Fitting the data in this way, the measured 3D1 lifetime is τ3D1
= (2.18 ± 0.01)µs, which is

slightly better than the 0.5% measurement goal [88]. The fit also yields a new best value for the

3P1 lifetime (which is of interest to other research teams) of τ3P1
= (21.28 ± 0.03)µs

5.9.4 Systematic Bias Due to the Finite DFB Laser Pulse

The function used to fit the data (Equation 5.49) is motivated by the solution to the rate

equations (Equation 5.48). The initial conditions for the rate equations assume an instantaneous

DFB laser pulse.54 To check if the length of the pulse has any effect, I numerically solve the

54 Equation 5.48 resulted from assuming the initial condition of all population in the 3D1 state. This implies an
instantaneous DFB laser pulse because for a finite pulse, population would leak into 3P1 while the DFB pulse is on.
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Figure 5.34: The master equation solution for a 500 ns pulse fit with Equation 5.49. Inset: Although
the instantaneous pulse model appears to fit the data well, closer inspection at early times reveals
disagreement. The non-instantaneous system response at time = 0 (due to dynamics while the
pulse is on) causes the master equation solution to be qualitatively different than the fit function
at short times. This causes a fit bias of nearly 1.5% (Figure 5.33), which is unacceptable for our
accuracy goal of 0.5%.

Lindblad master equation for a variety of pulse durations (Figure 5.33a). This calculation uses

realistic values for state lifetimes and the DFB laser linewidth. The numerical master equation

data is fit using the function from Equation 5.49 to extract the 3D1 lifetime, τ3D1
. The error, which

is the disagreement between the true lifetime value used in the master equation and the value

obtained by the fit, is higher than the measurement accuracy goal of 0.5% for pulses longer than

250 ns (Figure 5.33a). The error is caused because the signal edge when the DFB laser is turned

on gets smoothed (with respect to the instantaneous DFB pulse model) due to dynamics occurring

during the DFB pulse (Figure 5.34).

Treating the decay data while the pulse is on would require a good model of the real DFB

pulse shape and linewidth, and we would also need confirmation that these quantities do not vary

in time. However, the system still admits an easy solution after the DFB pulse switches off.55 The

55 My thanks to Murray Barrett for being the first in our team to work out the analytic treatment of the population
decay for finite pulses.
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rate Equations 5.46 and 5.47 still hold in this case, but the initial conditions are now N1(0) = N01

and N2(0) = N02, where N01 (N02) is the atom number in 3P1 (
3D1) when the pulse is extinguished.

The difference between this case and that used to derive Equation 5.48 is the number of atoms N01

that accumulate in 3P1 when the DFB laser is on. Here t = 0 is taken to be the instant when the

DFB pulse reaches zero intensity. The solution is

N1(t) =

(

N01 +N02
τtotτ1

τ2(τ1 − τtot)

)

e−t/τ1 −N02
τtotτ1

τ2(τ1 − τtot)
e−t/τtot . (5.50)

Defining constants A and t0 through the equations Aet0/τ1 = N01 + N02
τtotτ1

τ2(τ1−τtot)
and Aet0/τtot =

N02
τtotτ1

τ2(τ1−τtot)
, it is apparent that Equation 5.50 is faithfully modeled by the fit function that assumes

an instantaneous pulse (Equation 5.49). Therefore, as long as we only fit data taken after the pulse

switches off, the fit function will provide the correct 3D1 lifetime. This conclusion is independently

verified by fitting master equation data for times after the pulse is off (Figure 5.33b).

As the master equation analysis shows, two strategies can be used to reduce fit bias due to

the finite pulse duration: keep the DFB pulses at 200 ns or shorter, and only fit data after the

DFB pulse is off. To doubly suppress this bias, we take both approaches. We confirm the amount

of data that must be cut from the fit by comparing (on an oscilloscope) the 200 ns DFB pulses on

a high-speed photodetector to the electronic pulse used to trigger the photon counter.56 Based

on the master equation analysis, we assign a conservative upper bound of 0.1 ns on the systematic

uncertainty in τ3D1
due to the remaining finite pulse bias.

5.9.5 Fit Bias Due to Stray Electromagnetic Radiation

Stray electromagnetic radiation resonant with the 3P0 →3D1 transition will affect decay

dynamics and bias the τ3D1
measurement. The two sources of stray radiation at a 2.6µm wavelength

are the heat in the Sr2 laboratory and stray beams from the DFB laser. The bias due to laboratory

heat is extremely small, and it can be estimated using the Einstein approach to radiative processes

56 The fit of the data in Figure 5.30 is plotted only for the range of data included in the fit. The fact that the
fitted curve is absent right when the decay process begins is because early data is not included in the fit due to the
issues described in this subsection.
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[117]. Laboratory heat will cause unaccounted for absorption and stimulated emission on 3P0 →3D1,

meaning that the 3D1 decay rate will be

1

τ3D1

+B

∫ ∞

0
ρ(f)g(f)df, (5.51)

for spontaneous decay and stimulated emission. Here B is the stimulated emission Einstein coef-

ficient, ρ(f) is the energy density of blackbody radiation from the lab, and g(f) is the lineshape

function of the transition. Since g(f) is orders of magnitude narrower than ρ(f), g(f) can be treated

as a delta function δ(f − f0) in the integral, where f0 is the 3P0 →3D1 resonance frequency. Using

the relations between Einstein coefficients, the fractional systematic uncertainty in τ3D1
is simply

1/(ehf0/kBT − 1), which is the average number of blackbody photons at frequency f0. Although

this calculation neglects state degeneracy (which modifies the answer by a factor of order unity), it

also results in 10 ppb uncertainty, so this analysis could be off by a factor of 100,000 and the un-

certainty would still be negligible. A similar treatment for absorption results in another very small

correction. Therefore, we assign a conservative upper bound of 10 fs on the systematic uncertainty

in τ3D1
due to contamination from laboratory heat.

To study the uncertainty due to stray light, we set the AOM (used to pulse the DFB laser)

in its off state and scan the DFB frequency across the 3P0 →3D1 line. We expose the atoms to

residual light that may still be in the AOM diffracted order for three orders of magnitude more

time than the experimental pulse duration. No excitation of the 3P0 →3D1 resonance is observed.
57

Treating the background signal fluctuation in this measurement as the upper bound on 3D1 state

excitation, another master equation calculation is used set a bound on the effect of residual light

from the AOM diffracted order used in the decay data. The results show a negligible effect.

Although residual light in the AOM diffracted order is not significant, we do observe a stray

light effect when the DFB laser frequency is such that the AOM zeroth order is resonant with the

3P0 →3D1 transition. This effect is observed for an artificially long exposure time of 200 ms, and it

57 Excitation is measured by driving the clock transition, applying the DFB laser, and then measuring the clock
transition excited state fraction in the usual way. Excitation into 3D1 will diminish the excited state fraction.
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appears to be coming from the AOM zeroth order beam (rather than from the DFB beam before it

enters the AOM) because the effect disappears when we close a mechanical shutter installed after

the AOM. After measuring the population we can excite for 200 ms of exposure to the stray AOM

zeroth order light, the master equation is used to put an upper bound on the Rabi frequency from

this light. From this information, the bias due to stray light in normal experimental conditions is

inferred using the master equation.58 Again, the effect is negligible. The small size of this effect

is due to both the low intensity of the stray light and also because during the decay measurement,

the DFB frequency is such that the AOM zeroth order is detuned by 90 MHz from the 3P0 →3D1

resonance.

These studies of the effects of stray DFB light allow us to put an upper bound of 10 fs on fit

bias due to stray DFB beams.

5.9.6 Density-Dependent Effects

During their measurement of the 3D1 lifetime in Yb, the NIST Boulder lattice clock team

observed a density dependence to fitted values of τ3D1
[3]. Effects like superradiance and radiation

trapping could cause the 3D1 lifetime to vary with density. Uncertainty in extrapolating the mea-

sured lifetime to zero density was the dominant limitation to the precision of the NIST measurement

[3].

The Sr2 experimental sequence used to measure decay data also records the atom counts

(with the 461 nm counting laser and the PMT described in Section 3.7.2). Each cycle of the

sequence involves preparing the atoms in the lattice, applying the clock and DFB lasers, measuring

fluorescence from the 3D1 →3 P1 →1 S0 cascade 50 times, and then fluorescing the 1S0 →1 P1

transition to record how many atoms remain after each set of 50 decay measurements. Every 30

cycles, an interrupt shuts off the clock laser and photon counter trigger so that the atom number can

be recorded in a manner that is decoupled from the effects of the clock and DFB lasers. Treating

58 To calculate this bias, I account for the fact that the stray light interacts with the atoms whenever the shutter
is open during the decay measurement, which is on a tens of ms timescale. The calculation is performed by running
the simulation with the stray light included and then fitting the result. The disagreement between the fitted and true
values of 3D1 is the fit bias.
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Figure 5.35: Fitted 3D1 lifetime as a function of atom counts, which is proportional to the atom
number. Here the data from Figure 5.30 is reanalyzed to look for density dependence. No trend is
observed. The blue confidence interval represents the 1σ uncertainty in the weighted mean assuming

the decay is constant in density. This uncertainty has been inflated by
√

χ2
red, where χ

2
red = 1.12

for these data.

this one-in-thirty measurement as the atom number for each of the previous 29 cycles, sets of decay

data (as a function of time) are binned according to atom number, then summed and fitted as in

Figure 5.30.

The fitted 3D1 lifetime as a function of atom counts on the PMT does not show the same

striking trend observed by the Yb group [3]; in fact, it does not seem to be affected by density at

all [88]. To test the data for density dependence, a constant model is compared to a linear trend,

which would be the first-order description of density-related effects. The F -test comparing these

models results in F = 0.045 for 11 degrees of freedom. This corresponds to a test probability of

0.84, which concludes that the data does not resolve a density dependence; therefore, density effects

are excluded from the uncertainty budget for the decay measurement.

Two more systematic uncertainties are considered. First, 0.4 ns timing uncertainty is assigned

to the photon counting setup. Second, the decay measurement assumes that the 3D1 lifetime does

not depend on the large number of F and mF states that are populated during this experiment.
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Effect Uncertainty (ns)

Fit uncertainty 10
Photon counter timing 0.4
Finite pulse duration < 0.1
Hyperfine correction < 0.1
Stray laser light < 0.01

Laboratory heat contamination < 0.01

Total 10

Table 5.4: Decay measurement uncertainty budget. All uncertainties are quoted at 1σ or as upper
bounds on a 1σ uncertainty. Fitting uncertainty dominates this budget, with all other effects being
negligible at the 1 ns level.

One typically sums the decay rate over all product hyperfine states, resulting in decays that do

not depend on either the initial or final hyperfine quantum numbers [44]. This approximation

breaks down when hyperfine quenching becomes important. The hyperfine quenching correction is

calculated to be below 0.1 ns.59

Combining all of these uncertainties, the final value of the 3D1 lifetime is τ3D1
= (2.18±0.01)µs

(Table 5.4) [88]. This results in a dynamic coefficient of νdyn = (−148.7±0.7)mHz, or−3.464×10−16

with uncertainty of 1.6 × 10−18 [88]. For the Sr2 operating temperature of 20.6 ◦C, the dynamic

BBR shift is −3.053 × 10−16 with uncertainty of 1.4 × 10−18.

5.10 Minor Systematic Shifts

With all major systematic uncertainties now discussed, I will briefly mention a few minor

uncertainties that were checked. First, phase transients can occur when the clock laser AOM

(Section 3.7.1) is pulsed [26]. We study the AOM phase transients by looking at a beat of the -1st

AOM order with the zeroth-order on a digital phase detector. The phase detector was found to

have transients of its own that were measured, fit to a high-order polynomial, and removed from

the final measurement. We calculate the effect of clock laser phase transients on the atoms using

a model developed in Reference [34]. This results in systematic uncertainty due to an AOM phase

chirp of (6± 4)× 10−19. This value has been used in both evaluations.

59 My appreciation goes out to our theory collaborator, Marianna Safronova, for performing this calculation.
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Evaluations of several different optical clocks have considered a servo offset [63, 33, 52], which

is steady state error in the atomic servo resulting in a frequency bias of the clock laser. This offset

is computed as the mean of the entire history of atomic servo error signal data converted from

excited state fraction units (Section 2.5.2) to frequency. This is done by dividing error signal data

taken with a given clock laser pulse duration by 2 times the calculated slope of a Rabi lineshape

(corresponding to the correct pulse time) at half the maximum excitation. The factor of 2 comes

from the fact that the atomic servo error signal is the difference between excited state fractions

measured on each side of a resonance, so the error signal change per unit frequency excursion is 2

times the Rabi lineshape slope. For the first evaluation, the servo offset is (4 ± 6) × 10−19, and it

is (−5± 4)× 10−19 for the second evaluation.

A phenomenon called “line pulling” has the potential to cause small clock transition shifts.

This occurs when the tails of off-resonant spectroscopic features make the clock transition resonance

appear slightly off its true center. These features can be present due to imperfect spin polarization

resulting in population in mF states aside from ±9/2, residual clock laser ellipticity driving mF -

changing σ transitions, or clock transition sidebands that result from tunneling between lattice

sites. Population in the mF = ±7/2 states is most likely to cause off-resonant excitation, but

some common-mode cancellation of this effect will be present in the stretched-states servo. This is

because equal population in the±7/2 states will pull the±9/2 levels toward the clock transition bare

frequency equally, and averaging the ±9/2 stretched state data will remove this effect. Calculating

line pulling for these cases and bounding the calculations using the fact that, with our measurement

precision, we do not observe any off-resonant features near the clock transition (where they would

be the most harmful), we put a conservative upper bound on this effect of 1× 10−19. This is valid

for both evaluations.

In the ideal case of a perfectly stable lattice, probing the Sr atoms with the clock laser aligned

along the lattice axis will be free of a first-order Doppler shift. If mechanical noise causes the lattice

to shake with respect to the clock laser, a first-order Doppler shift is possible. Fiber phase noise

cancellation (Section 3.6.2) removes this problem, but a second-order Doppler shift (the second-
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order term in a low-velocity expansion of the relativistic Doppler expression) can still exist. We

estimate this effect to be at the 10−21 level. To buffer this calculation against errors, we give it a

comfortable 1× 10−19 upper bound for both evaluations.

The background gas in the Sr2 main chamber that limits the vacuum lifetime will collide with

the trapped Sr sample and cause frequency shifts. For the Sr2 vacuum pressure, the background

gas is mostly hydrogen. Using this fact, we employ the model of Reference [38] to put an upper

bound of 6× 10−19 on frequency shifts due to collisions between Sr and the background gas. This

bound is used for both evaluations.

Finally, there is added uncertainty associated with treating the BBR static and dynamic shifts

as two separate effects. When the static and dynamic uncertainties are added in quadrature, this

ignores the fact that they are not statistically independent. With a bit of uncertainty propagation

mathematics applied to Equation 5.27, it is straightforward to show that the static and dynamic

shift uncertainties must be added in quadrature with a covariance-like term
√

48νstatνdyn

(

T
T0

)4
δT
T0

,

which is equal 8.2 × 10−19 for the first evaluation and 1.4 × 10−19 for the second. The value for

the first evaluation is just barely negligible (a slightly larger value would affect the second digit

of the total clock uncertainty), and for the second evaluation this correction can comfortably be

ignored.



Chapter 6

Outlook and Concluding Remarks

I started as a first-year graduate student on the JILA Sr team shortly before Sr1 achieved

1.4×10−16 total uncertainty, which was the first time a lattice clock surpassed the total uncertainty

of the Cs primary standard at NIST Boulder [74]. 1.4 × 10−16 total uncertainty [20] was a great

accomplishment at the time, but despite our optimism about the future of lattice clocks, it is safe to

say that it was unclear whether an optical lattice clock would ever overtake ion clocks. Three major

issues needed to be addressed for lattice clocks to realize the best performance: clock stability, the

density shift, and the BBR shift.

Although lattice clocks seemed promising because of their potential for good stability, this

would require better laser stabilization. Unfortunately, for over a decade the best laser stabilization

efforts had not managed to surpass laser linewidth records set in the late 90s [126]. Then cavity

stabilization took a leap forward [89, 49], resulting in laser linewidths an order of magnitude nar-

rower than the previous best [8]. Clock stability resulting from these laser improvements enabled

the record total uncertainty we later achieved.

The density shift is not present in single-ion clocks. When Sr1 achieved 1.4 × 10−16 total

uncertainty, a density shift was observed in Sr1 evaluations [74, 20]. This shift was a major contrib-

utor to Sr1 uncertainty budgets, yet its physical cause was confusing. It implied collisions between

ultracold spin-polarized fermions, which naively seemed to be forbidden by the Pauli Exclusion

Principle. After many experiments and theoretical studies aimed at understanding and mitigating

this shift [19, 99, 37, 64, 73, 6, 89, 78], it is now a small contributor to the Sr2 clock uncertainty.
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The BBR shift has limited many of the best optical clocks [114, 74, 52, 76]. Ion-based

systems have an advantage on this front due to naturally smaller sensitivity of ion clocks to room-

temperature BBR. When Sr1 first outperformed Cs, BBR shift uncertainty was at 1×10−16. Given

that the sensor arrays used to measure the BBR shift in many lattice clocks [74, 33, 114] were merely

workarounds for systems not originally designed with this shift in mind, there was plenty of room

for progress. However, beating the 3×10−18 uncertainty in the miniscule BBR shift of the Al+ clock

seemed a formidable task. When the time came for the lattice clock community to confront the

BBR shift head on, the first three teams to make serious efforts on the BBR shift all succeeded using

distinctly different techniques [13, 2, 116]. It is now clear that the BBR shift is not a limitation at

the 1× 10−18 level, and it will no doubt improve as the lattice clock community continues to work

on this effect.

Despite the atomic clock performance records presented in this dissertation of 2.1 × 10−18

total uncertainty and 2.2 × 10−16/
√
τ stability, lattice clocks still have tremendous potential. For

the clock probe times, duty cycles, and atom numbers of 1 × 105 achievable in the Sr2 system, I

calculate the QPN-limited stability to be 2× 10−18/
√
τ . This would allow a clock to average to a

given precision 10,000 times faster than Sr2 can currently achieve. Although the density shift would

be a problem for large atom numbers in a 1D cavity lattice, multidimensional cavity lattices could

fix this [109]. The Sr2 blackbody shift due to temperature uncertainty is already at the low 10−19

level, and the uncertainty of the full BBR shift could match this with more precise measurements of

νdyn. The NIST Yb clock would also see improvement with a more precise measurement of νdyn [2],

reducing their total BBR shift uncertainty to the 10−19 level. Even cryogenic environments have

room for improvement [116] despite that advances in this technology would be more technically

challenging. For example, colder cryogenic environments can be used to further reduce the BBR

shift. Also, to confirm or reject previous determinations of higher-order lattice light shifts, it will

be important for another Sr team to measure these effects.

Better clock lasers are also on the horizon. Novel cavity spacers based on silicon [59] and

new mirrors with crystalline coatings [24] have been demonstrated to improve cavity stabilization.
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Our team is in the process of combining this technology to build a new clock laser, which will

surpass the previous best stable laser by a factor of 10 according to our simulations. Also, proof-of-

principle tests of proposals for novel stable lasers that do not use cavity stabilization [80, 79] have

been demonstrated [15]. If these proposed schemes become practical laboratory technology, clock

stability could take another giant leap forward.

Timekeeping at the level realized by Sr2 would not lose a second in 15 billion years (greater

than the age of the universe), yet there are good scientific reasons to push performance further.

Sr2 can now resolve 2 cm height differences near the surface of Earth due to the gravitational

redshift. With this sensitivity, optical comparisons of two remote clocks [96] would be sensitive to

variations of Earth’s surface due to tidal forces. Better clock precision combined with efforts to

realize portable clocks (currently underway at NIST and PTB) could make these systems useful for

relativistic geodesy. Clocks are also useful for studying fundamental physics like time variation of

the fine structure constant or the electron-to-proton mass ratio [40, 51]. Although ion clocks are

more sensitive to fundamental constant variation, with better precision lattice clocks may be in a

position to make competitive measurements.

Sr clocks have also been used to put limits on the coupling of fundamental constants to

gravity [11], which is predicted by some unification theories. Improvements to clock performance

could serve to improve these limits. Furthermore, upgrading to the 40 cm cavity enabled Sr1 to

spectroscopically observe many-body physics [78] and novel particle interactions [127, 108]. It is

likely that many more interesting quantum effects would be uncovered with better measurement

precision.

Theoretical proposals have argued for replacing the current system of global timekeeping with

a worldwide network of optical clocks [62]. Although such a network is far from being realized,

it exemplifies the potential of linking up precise optical clocks on an international scale. Finally,

it was argued that atomic clocks are useful systems for dark matter searches [1, 27]. We may be

entering a regime in which atomic clocks can answer some of the most pressing physical questions

of our time.
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In summary, the outlook for lattice clocks is bright, and I expect that the lattice clock

community will continue with the same impressive pace it has maintained for the past 10 years. It

has been a pleasure to participate in this wonderful field.
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Appendix A

Mathematical Relations Not Derived in the Main Text

A.1 Two Time Signals Related by a Transfer Function

Two time signals x1(t) and x2(t) have corresponding Fourier transforms X1(f) and X2(f),

respectively. The frequency functions are related by a transfer function H(f), such that X2(f) =

H(f)X1(f). Equivalently, according to the convolution theorem, x2(t) = h(t) ∗ x1(t), where ∗

denotes a convolution, and h(t) is the inverse Fourier transform of H(f). The cross correlation

R12(τ) between X1(f) and X2(f) is

R12(τ) = 〈x1(t)x2(τ + t)〉 =
∫ ∞

−∞
h(t′)〈x1(t)x1(t+ τ − t′)〉 dt′

=

∫ ∞

−∞
h(t′)R1(τ − t′) dt′ = h(τ) ∗R1(τ), (A.1)

where R1(τ) is the autocorrelation function of x1(t). Furthermore,

R2(τ) = 〈x2(t)x2(t− τ)〉 =
∫ ∞

−∞
h(t′)〈x1(t− τ − t′)x2(t)〉 dt′

=

∫ ∞

−∞
h(t′)R21(−τ − t′) dt′ = h(−τ) ∗R21(−τ) = h(−τ) ∗R12(τ), (A.2)

where the cross correlation identity R21(−τ) = R12(τ) was used. Putting equations A.1 and A.2

together, the relationship between the autocorrelation functions of x1(t) and x2(t) is

R2(τ) = h(−τ) ∗ h(τ) ∗R1(τ). (A.3)
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According to the Wiener-Khinchin theorem, the power spectral density (PSD) is the Fourier

transform of the autocorrelation function,

S2(f) = F [R2(τ)] = F [h(−τ)] · F [h(τ)] · F [R1(τ)]

= |H(f)|2S1(f). (A.4)

where F denotes a Fourier transform. This is the desired relation.

A.2 Relating the Allan Deviation to the Power Spectral Density

The Allan deviation is given by

σ2(τ) =
1

2
E

[

(

1

τ

∫ t−τ

t
y(t′) dt′ − 1

τ

∫ t

t−τ
y(t′) dt′

)2
]

, (A.5)

where y(t) is the fractional frequency fluctuation of the local oscillator and E [. . .] is an expectation

value. The integral terms can be combined in impulse-response form,

σ2(τ) =

[

(∫ ∞

−∞
hτ (t

′)y(t′ − t) dt′
)2
]

, (A.6)

where hτ (t) is an asymmetric window filter:

hτ (t) =



















− 1√
2τ
, −τ < t < 0

1√
2τ

, 0 < t < τ

. (A.7)

The transfer function of this filter is:

Hτ (f) =

∫ ∞

−∞
hτ (t)e

−2πift dt =
1√
2τ

∫ τ

0
e−2πift dt− 1√

2τ

∫ 0

−τ
e−2πift dt =

=
√
2
sin2(πfτ)

iπfτ
. (A.8)

Let f(t) =
∫∞
−∞ hτ (t

′)y(t′ − t) dt′,

σ2(τ) =
〈

f2(t)
〉

= 〈f(t)f(t− τ)〉 |τ→0 = Rf (0) (autocorrelation)

=

∫ ∞

−∞
Sf (f)

[

e2πifτ
]

τ→0
df

=

∫ ∞

−∞
Sf (f) df =

∫ ∞

−∞
|Hτ (f)|2 Sy(f) df = 2

∫ ∞

−∞

sin4(πfτ)

(πfτ)2
Sy(f) df , (A.9)
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where the relation developed in Appendix A.1 has been utilized. Here Sy(f) is the PSD of y(t).

Note that Sy(f) is the two-sided PSD. It is convenient to define a one-sided PSD,

S1−sided(f) = 2S2−sided(f) , for 0 ≤ f <∞ . (A.10)

This factor of 2 is chosen so that both spectral densities give the total power when integrated

over all frequencies for which these functions are defined,

Total power =

∫ ∞

−∞
S2−sided(f) df = 2

∫ ∞

0
S2−sided(f) df (since PSD is even)

=

∫ ∞

0
S1−sided(f) df . (A.11)

Therefore

σ2(τ) = 2

∫ ∞

0

sin4(πfτ)

(πfτ)2
S1−sided
y (f) df . (A.12)

A.3 Power Spectral Density of Discrete Time Signals

Suppose that y(t) is a stationary time signal. This function is sampled with a period of Tc.

For the nth cycle, the discrete time signal autocorrelation R(nTc) is defined as

R(nTc) =

∞
∑

m=−∞
y(mTc) y[(m− n)Tc]. (A.13)

The PSD of the discrete signal Sdis(f) is given by the discrete time Fourier transform of R(nTc),

defined as

Sdis(f) = Tc

∞
∑

n=−∞
R(nTc)e

−2πifTcn. (A.14)

Let R(τ) be the autocorrelation of the continuous signal y(t). Then let Scon(f) be the PSD

of y(t), obtained via a continuous Fourier transform F of R(τ). It follows that
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Sdis(f) = Tc

∞
∑

n=−∞
R(nTc)e

−2πifTcn = Tc

∞
∑

n=−∞
R(nTc)F [δ(t − nTc)]

= F
[

Tc

∞
∑

n=−∞
R(nTc)δ(τ − nTc)

]

= F
[

R(τ)

∞
∑

k=−∞
e−2πikτ/Tc

]

=

∞
∑

k=−∞
F
[

R(τ)e−2πikτ/Tc

]

=

∞
∑

k=−∞
Scon

(

f +
k

Tc

)

. (A.15)

where δ(t) is the Dirac delta function. Here I have used the well-known relation between a sum

over delta functions and a sum over complex exponentials. This is the desired relation between

Sdis(f) and Scon(f).

A.4 Detection Noise

Suppose that the counts measured on the PMT after fluorescing the counting laser (Section

3.7.2) are Ce, Cg, and Cbg, which are the excited, ground, and background counts. Also, Ve =

Ce−Cbg and Vg = Cg −Cbg (Section 3.7.2), and each are proportional to their corresponding atom

numbers by a factor of β. The measured excited state fraction is

ρmeas =
Ce − Cbg

Cg +Ce − 2Cbg
, (A.16)

where the total atom number N is proportional to Cg + Ce − 2Cbg.

The detection noise is the number of counts measured when the atomic beam and lasers

that cause background counts are blocked. The observed detection noise is δN = 11.4 atoms per

measurement of Ce, Cg, and Cbg. Propagating this error into ρee, the uncertainty due to detection

noise is

√

(

∂ρee
∂Ce

β δN

)2

+

(

∂ρee
∂Cg

β δN

)2

+

(

∂ρee
∂Cbg

β δN

)2

=
δN√
2N

. (A.17)

This assumes that the clock is locked to ρmeas = 1/2.
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Just like in the case of QPN, this fluctuation in ρmeas causes frequency instability in the clock

laser. Using arguments similar to those in Section 4.2.1, the frequency stability due to detection

noise is

σdet =
δN√

2N s νSr

√

Tc
τ
. (A.18)

Therefore, detection noise scales like 1/N , QPN scales like 1/
√
N , and the two stabilities cross one

another when N = 2 δN2. For atom numbers less than 2 δN2, detection noise dominates over QPN.


